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A B S T R A C T

In this paper, we present an adaptive implementation of the distributed Lagrange multiplier (DLM) immersed
boundary (IB) method on multilevel collocated grids for solving single- and multiphase fluid–structure inter-
action (FSI) problems. Both a non-subcycling time advancement scheme and a subcycling time advancement
scheme, which are applied to time-march the composite grid variables on a level-by-level basis, are presented;
these schemes use the same time step size and a different time step size, respectively, on different levels. This is
in contrast to the existing adaptive versions of the IB method in the literature, in which coarse- and fine-level
variables are simultaneously solved and advanced in a coupled fashion. A force-averaging technique and a
series of synchronization operations are constructed to achieve excellent momentum and mass conservation
across multiple levels of grid hierarchy. We demonstrate the versatility of the present multilevel framework
by simulating problems with various types of kinematic constraints imposed by structures on fluids, such as
imposing a prescribed motion, free motion, and time-evolving shape of a solid body. The DLM method is also
coupled to a robust level set method-based two-phase fluid solver to simulate challenging multiphase flow
problems, including wave energy harvesting using a mechanical oscillator. The capabilities and robustness of
the computational framework are validated against a variety of benchmarking single-phase and multiphase
FSI problems from the literature, which include a three-dimensional swimming eel model to demonstrate the
significant speedup and efficiency that result from employing the present multilevel subcycling FSI scheme.

1. Introduction

Many engineering fields address problems that involve complex
interactions between fluids and solids. Examples include biomedical
engineers who address heart valves [1,2] and drug particles [3], con-
trol and mechatronic engineers who address swimming fish [4,5],
flying drones [6], and tiny insects [7,8], marine engineers who ad-
dress offshore platforms [9] and risers [10,11], and mechanical and
energy engineers who address membrane distillation [12], wind tur-
bines [13] and wave energy converters (WECs) [14,15]. In the past
several decades, many researchers have investigated such problems
through numerical simulations and experiments, which provide de-
tailed descriptions of the flow field and help reveal the underlying
mechanisms involved in the fluid–structure interaction (FSI). Usually,
the fluid–solid interfaces in FSI simulations exist within a small spatial
region of the computational domain, and high spatial resolution is
required only in the vicinity of fluid–solid interfaces to adequately
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resolve the flow boundary layers. However, one does not need or
perhaps cannot afford a uniformly high grid resolution across an entire
domain, even if the simulation is executed on distributed memory
systems. The need to locally resolve thin fluid–structure interfaces
and boundary layers can be addressed by the dynamic adaptive mesh
refinement (AMR) technique. In brief, AMR increases the grid res-
olution in regions of interest as needed during a simulation while
providing a reasonable estimate of the flow field in other regions of
the domain. Since AMR was proposed in the 1980s [16,17], various
classes of AMR methods have been developed and applied to a wide
range of fluid mechanics problems, including marine ice sheets [18],
surfactant-driven flows [19], wave energy harvesting [14], deforming
flags [20,21], swimming eels [4], and stratified oceanic flows [22].

AMR methods can be broadly classified into two categories based on
the grid hierarchy and data structures: the quadtree/octree-based AMR
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(TBAMR) technique [23–25] and the block-structured AMR (BSAMR)
technique [16,17,26–29]. In TBAMR, each grid cell can be split into
four cells in two spatial dimensions or eight cells in three spatial di-
mensions, and a tree structure [30] is utilized to arrange the hierarchy
of grid cells. Although the tree-based structure is an intuitive represen-
tation of the multilevel grid hierarchy and simplifies grid refining and
coarsening operations, the data structures [30,31] employed in TBAMR
are not easy to implement. Moreover, the cell connectivity and the
refinement/coarsening history need to be stored at every time step of
the simulation [32,33]. In contrast, BSAMR builds the mesh as nested
Cartesian patches [16,17,26–29,34,35]. Each grid level includes several
rectangular patches that are grouped, and the resulting system of equa-
tions is efficiently solved utilizing a multigrid (MG) solver [26,29]. This
approach makes domain decomposition of the BSAMR data structures
relatively easy [36,37]. More specifically, in the context of immersed
boundary (IB) methods, where an immersed body is represented by
a Lagrangian mesh, BSAMR allows the moving structure to remain
embedded on the finest grid level during a simulation in a natural way.
Furthermore, IB velocity interpolation and force spreading routines can
be efficiently implemented using the BSAMR framework.

Broadly speaking, FSI problems can be simulated using interface
conforming arbitrary Lagrangian–Eulerian (ALE) methods or interface
nonconforming fictitious domain/immersed boundary methods. Al-
though an ALE-like method sharply resolves the fluid boundary layer
and imposes exact boundary conditions on the fluid–structure [38]
or the fluid–fluid [39] interface, for a solid structure with complex
geometry and large displacements or deformations, the ALE method
poses several numerical and implementation challenges because the
computational domain needs to be frequently remeshed to adhere to
the evolving structure or the interface [40,41]. In recent years, the IB
method has been widely employed for simulating complex FSI problems
that involve large deformations of a structure or topological changes of
the fluid–fluid interface due to the motion of the structure. In contrast
to an ALE approach, in the IB method, the background (Cartesian)
fluid grid does not deform due to a moving structure. Instead, the
moving structure is accounted for through IB forces that are applied
near the structure surface to satisfy the velocity matching boundary
condition on the fluid–solid interface [42]. Depending on the forcing
technique, IB methods can be further classified as a diffuse interface or
a sharp interface IB method [40,43]. In the diffuse-interface IB method,
the surface force calculated on the (Lagrangian) immersed boundary
is distributed to several adjacent fluid grid nodes by a regularized
integral kernel [44–48]. One of the most efficient ways to compute
the rigid body IB force is through the distributed Lagrange multiplier
(DLM) technique of Patankar et al. [49]. The sharp-interface IB method,
on the other hand, directly imposes the velocity of the moving solid
boundary by fitting a spatial polynomial through the solid interface and
nearby fluid nodes [50–57]. In addition to the IB method, the cut-cell
method [50,58,59] and the Brinkman penalization method [60] have
also been proposed to simulate complex FSI problems.

To reduce the execution times of FSI simulations, many researchers
have applied AMR frameworks to implement some of the aforemen-
tioned FSI schemes. Popinet [25] implemented the volume of fluid
(VOF) method on a TBAMR framework for simulating incompress-
ible Euler flows (no flow penetration through the solid boundary,
but tangential slip is present) in complex stationary domains. The
solid boundaries in [25] are represented by a Eulerian level set (LS)
function that is embedded on the finest grid level. Guittet et al. [23]
developed a LS-based method for the incompressible Navier–Stokes
equations adaptive quad/octrees grids, which can address arbitrary
refinement/coarsening ratios between adjacent cells. Roma et al. [61]
implemented the diffuse-interface IB method on a multilevel staggered
grid within the BSAMR framework. However, this method is only suit-
able for low Reynolds numbers (Re = 10–100) because of the explicit
treatment of the nonlinear convective term with a nonconservative cen-
tral differencing scheme and the lack of limiters. A similar formulation

was later implemented by Griffith et al. [62] on both multilevel collo-
cated grids and staggered grids. Vanella and Balaras [63] and Vanella
et al. [35] implemented a direct-forcing immersed boundary method
within the BSAMR framework for laminar and turbulent flows, in which
the governing equations are integrated simultaneously and iteratively
using a strong coupling scheme. Bhalla et al. [4] and Nangia et al. [64]
combined the DLM method with BSAMR to capture thin boundary lay-
ers and vortical structures present in high-density-ratio, wave–structure
interaction (WSI) problems. An advantage of the DLM/IB method is that
fluid–structure coupling is implicit, which implies that there is no need
to explicitly evaluate hydrodynamic stresses on the solid surface or to
iterate between fluid domain integrators and solid domain integrators.
In this study, we combine the DLM method with a collocated BSAMR
framework for simulating both single and multiphase FSI problems.

The choice of the grid layout affects the complexity of the discretiza-
tion and multilevel algorithms for resolving the FSI [62]. In the works
cited in the preceding paragraph, most of the authors considered a
staggered Mark And Center (MAC) grid layout [4,23,25,35,61,63,64],
in which different interpolation schemes for velocity and pressure fields
are required [34,35,65–67]. Compared to the staggered grid, the use
of a collocated grid layout simplifies the implementation of multilevel
differential and interpolation operators.

Because the coarse and fine grid variables are coupled to each other
through the coarse–fine boundaries in both staggered and collocated
grid layouts, discrete equations are typically solved on the entire grid
hierarchy using a composite grid time marching scheme. Consequently,
the time step size of the simulation is restricted by the finest grid
spacing to preserve numerical stability. This restriction is especially
valid for IB time integrators in the literature [4,23,25,35,61,63,64]. On
the other hand, the level-by-level time integration method decouples
the time advancement process among different levels [17,26]; this
technique has been successfully employed to solve hyperbolic flow
problems in the literature but has not been implemented in the context
of an IB method. The level-by-level time integration method can be
further divided into two types: non-subcycling methods and subcycling
methods [27,29]. The non-subcycling method uses a uniform time step
size for all levels. Thus, the time step size is also restricted by the finest
level for numerical stability reasons. The subcycling method, in which
grid variables on different levels are advanced with different time step
sizes, can reduce the number of advancement steps and total execution
time. Note that the non-subcycling method is different from the typical
composite grid time marching method, despite the commonality of
employing the same time step size on different levels. In the non-
subcycling method, a coarse level provides the required (Dirichlet)
boundary conditions to time advance the variables on the next (nested)
finer level. To our knowledge, there has been no implementation of an
adaptive version of the IB method that utilizes the level-by-level time
advancement method, especially the subcycling method. Considering
that vortical structures and thin boundary layers are often resolved only
on the finest grid level, time advancement using the subcycling method
is desired to reduce the FSI computational cost. Furthermore, the pro-
posed method is implemented using the AMReX package [68], which
already provides an efficient implementation of multilevel grid opera-
tions (data coarsening/refining/synchronization, hierarchy regridding
and associated data transfer, etc.) and linear solvers.

There are four main contributions of this paper. First, we develop
a level-by-level method for time advancing IB equations on collocated
grids. To our knowledge, this method is the first framework that uti-
lizes subcycling and non-subcycling methods to solve FSI problems on
adaptive meshes. Second, we propose a force-averaging technique and
a series of synchronization operations to achieve excellent momentum
and mass conservation across multiple levels. Third, we couple the
DLM method with a robust LS method-based two-phase flow solver
for efficiently simulating multiphase FSI problems. Last, we incorporate
several types of solid constraints into this unified framework.
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We would like to point out that the present paper is substantially
different from our previous work [69]. The latter simulated two-fluid
flows only, without considering the presence of the solid structures.
The present paper focuses on the FSI problems with different types of
kinematic constraints of the solid structures and their coupling with
the fluid motions. For the common numerical algorithms shared by the
two papers, we minimize the duplication by referring to [69] while
only providing a concise description of the numerical features in a
self-contained way in the present paper.

The remainder of the paper is organized as follows: we start with
the mathematical formulation of a coupled fluid–structure system in
Section 2, followed by the design concept of a multilevel adaptive
grid in Section 3; the spatial discretization of Eulerian and Lagrangian
variables are then described in Section 4; next, the time advancement
algorithm is presented in Section 5; validation cases and numerical tests
are shown in Section 6; and finally, conclusions are summarized in
Section 7.

2. Mathematical formulation

In this section, we describe the governing equations for a fluid–
structure system occupying a multilevel Cartesian grid ⌦ œ Rd , where
d = 2, 3 denotes the spatial dimension. The left part of Fig. 1 shows a
schematic of two solid bodies on a two-dimensional multilevel Carte-
sian grid. The momentum and material incompressibility equations are
described using a fixed Eulerian coordinate system x =

�

x
1
,… , x

d

�

À ⌦.
The immersed body is described using a Lagrangian coordinate system,
where s =

�

s
1
,… , s

d

�

À ⌦
c
denotes the fixed material coordinate

system attached to the structure and ⌦
c
œ Rd is the Lagrangian

curvilinear coordinate domain. The position of the structure at time
t is X(s, t); it occupies a volumetric region V

b
(t) œ ⌦. The equations of

motion of the coupled fluid–structure system are

⇢(x, t)
⇠

)u
)t

(x, t) + ( � (u(x, t)u(x, t))
⇡

= *(p(x, t) + ( �
⌅

�(x, t)
�

(u(x, t) + (u(x, t)T
�⇧

+}(x, t)g + f
c
(x, t), (1)

( � u(x, t) = 0, (2)

f
c
(x, t) =  

Vb(t)

F
c
(s, t)�(x * X(s, t))ds, (3)

)X
)t

(s, t) = U(s, t), (4)

U(s, t) =  
Vb(t)

u(x, t)�(x * X(s, t))dx. (5)

Here, u(x, t) is the Eulerian velocity of the coupled fluid–structure
system, p(x, t) is the pressure, ⇢(x, t) is the Eulerian density field (fluid
density in the fluid region ⌦

f
= ⌦ ‰ ⌦

c
and solid density in the

solid region ⌦
c
), �(x, t) is the dynamic viscosity of the fluid–structure

system, and }(x, t) is the modified density, which will be detailed in
Section 5.1. Because ⇢(x, t), }(x, t), and �(x, t) are allowed to change
spatially and temporally in this work, the solid structure can be heavier
(or lighter) and more viscous (or less viscous) than the surrounding
fluid. The gravitational acceleration is written as g =

�

g
1
,… , g

d

�

. In
Eq. (1), f

c
(x, t) represents the Eulerian force density, which accounts

for the presence of the solid in the domain. �(x) = ⇧
d

i=1
�
�

x
i

�

rep-
resents the d-dimensional Dirac delta function, which is employed
to facilitate the information exchange between the Eulerian quantity
and Lagrangian quantity. Specifically, Eq. (3) converts the Lagrangian
force density F

c
(s, t) to an equivalent Eulerian force density f

c
(x, t), in

an operation that is referred to as force spreading. Eq. (5) maps the
Eulerian velocity u(x, t) to the Lagrangian marker velocity U(s, t), in an
operation that is referred to as velocity interpolation. Constrained by the
no-slip boundary condition at the fluid–solid interface, the velocity of a

Fig. 1. Left: two solid bodies (confined by blue lines) on a multilevel Cartesian grid.
The Eulerian grid cells ( , purple) discretize the ⌦ region, and the Lagrangian markers
( , orange) discretize the V

b
(t) region. Right: schematic representation of a single

Cartesian grid cell. The Eulerian quantities are defined at the cell center ( , black);
the Lagrangian quantities are defined on the marker points ( , orange), which are free
to move on the Eulerian grid.

Lagrangian marker U(s, t) follows the local fluid velocity. For notational
convenience, we denote the force spreading operation in Eq. (3) as

f
c
= S[X]F, (6)

where S[X] is the force spreading operator. Similarly, the velocity
interpolation operation in Eq. (5) is written in shorthand notation as

U = J [X]u, (7)

where J [X] is the velocity interpolation operator. As shown in [45,64],
the Lagrangian–Eulerian coupling operators conserve energy as long asS and J are adjoint.

3. Adaptive grid design concept

This section describes the definitions of the variables and operators
for a multilevel adaptive grid. The coarsest level, enumerated level 0,
occupies the entire computational domain ⌦, and level l

max
is the finest

level in the grid hierarchy. Therefore, the total number of levels in the
grid hierarchy is l

max
+ 1. Grid cells at coarser levels are dynamically

tagged, grouped to form a series of rectangular patches, and then
refined to finer levels following a nesting criterion [17]. There can be
more than one patch on a specific level, and patches from the same
level may be mapped to different processors in parallel computing using
the domain decomposition technique. The solid structure is always
enclosed by the finest level patches. As an example, Fig. 1 illustrates
a two-level adaptive grid with l

max
= 1; level 1 has two patches, and

the two immersed structures are entirely enclosed by the finest level
patches.

We use ⌦l to represent the union of patches on level l. Because
BSAMR uses a nested hierarchy of rectangular patches, the union of
patches on level l+1 must be contained within the union of patches on
level l for all 0 f l < l

max
, i.e., ⌦

l+1

œ (⌦
l
)
˝. Here, the overline indicates

the closed set of level l+1 and the superscript ‘˝’ represents the interior
regions of the patches on level l. Three types of boundaries are involved
in an adaptive grid framework: the physical boundary, coarse–fine (CF)
boundary, and fine–fine (FF) boundary. A physical boundary refers to
the boundary that delineates the entire computational domain. The CF
boundary represents the boundary between the grid cells on the finer
level l + 1 and those on the coarser level l for all 0 f l < l

max
. The FF

boundary represents the boundary between two patches on the same
level. All three boundaries are illustrated using different line styles in
Fig. 2. The discrete operators described in Section 4 require filling ghost
cells near the aforementioned boundaries; techniques to fill ghost cells
at the three types of BSAMR boundaries have been discussed in detail
in the literature [26,68,70], and the same operations are followed in
this work.
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Fig. 2. Schematic of a three-level adaptive grid with three types of boundaries: the
physical boundary, coarse–fine boundary, and fine–fine boundary. ⌦i,j represents patch
j on level i for all i g 0, j g 0.

4. Spatial discretization on a multilevel adaptive grid

This section describes the spatial discretization of Eulerian and
Lagrangian quantities and their coupling on a multilevel adaptive grid.
The discretization of two-dimensional spatial operators is presented
in this section. The discrete version of the three-dimensional spatial
operators can be defined analogously.

4.1. Eulerian discretization

All Eulerian variables, including the fluid velocity u, pressure p,
and LS functions � and  , are defined at cell centers following the
collocated grid variable arrangement setup. Here, the LS functions �
and  are employed to represent the gas–liquid interface and fluid–
solid interface, respectively [64]. On a particular level l, the integer
index set (i, j) is used to label the Cartesian grid cells. The position of
the cell center is obtained from its index as xl

i,j
= (i�x

l
, j�y

l
), where �xl

and �yl represent the grid spacings in the x direction and y direction on
level l, respectively. Similarly, the discrete velocity u, pressure p, and
Eulerian force density f

c
on level l are denoted as u(xl

i,j
, t), p(xl

i,j
, t), and

f
c
(xl
i,j
, t), respectively.

For a multilevel adaptive grid, the union of patches ⌦l on level l
can be partitioned into a valid region ⌦l

valid
that is not covered by finer

grid patches and an invalid region ⌦l

invalid
that is covered by finer grid

patches. We note that on level l
max
, ⌦lmax

valid
= ⌦

lmax and ⌦lmax

invalid
= …. On

level l < l
max
, ⌦l

valid
= ⌦

l ‰ ⌦l+1 and ⌦l

invalid
= ⌦

l+1. Fig. 3 shows an
example grid, where green grid cells represent the valid region of level
l, and orange grid cells represent the valid region of l+1 (which is also
the invalid region of level l). Because a level-by-level time advancement
method (Section 5) is applied in this work, Eulerian variables need
to be available in both valid regions and invalid regions for the time
advancement process. This method is different from the composite grid
time advancement method employed in [4,64]. Composite variables
that are defined only in the valid regions across the grid hierarchy
can also be employed. All simulation visualizations in this work are
presented using the composite variables unless specified otherwise. On
the other hand, level variables are defined on an entire level, including
in its invalid region. Correspondingly, there are two types of operators
in an adaptive grid algorithm: composite operators that are defined
only in the valid regions across the multiple levels and level operators
that are defined for an entire level.

In Fig. 3, we use a two-dimensional pressure field p to define the
aforementioned composite and level operators. For a specified level
l, the composite Laplacian operator is denoted as Lcc,comp,l, where
the superscripts cc, comp, and l denote the cell center, composite
operator, and level l, respectively. For all p

i,j
œ ⌦

l

valid
on level l, the

two-dimensional composite Laplacian operator Lcc,comp,l is defined as

L
cc,comp,l

p
Û

Û

Ûi,j

:=

p
i+1,j

* 2p
i,j

+ p
i*1,j

(�xl)2
+

p
i,j+1

* 2p
i,j

+ p
i,j*1

(�yl)2
. (8)

The ghost cell p
i+1,j

œ ⌦
l

invalid
is obtained from the valid p data on

level l+1 as p
i+1,j

= (p
2i+2,2j

+p
2i+3,2j

+p
2i+2,2j+1

+p
2i+3,2j+1

)_4. Likewise,
for all p

2i+2,2j
œ ⌦

l+1

valid
on level l + 1, the composite Laplacian operator

L
cc,comp,l+1 is defined as

L
cc,comp,l

p
Û

Û

Û2i+2,2j
:=

p
2i+3,2j

* 2p
2i+2,2j

+ p
2i+1,2j

(�xl+1)2

+

p
2i+2,2j+1

* 2p
2i+2,2j

+ p
2i+2,2j*1

(�yl+1)2
.

(9)

In this equation, if the ghost cell p
2i+1,2j

belongs to the CF boundary, as
shown in Fig. 3, then it is filled using conservative interpolation by
combining the valid data on levels l and l + 1 [70]. The composite
gradient operator Gcc,comp,l is defined as

G
cc,comp,l

x p
Û

Û

Ûi,j

=

p
i+1,j

* p
i*1,j

2�xl
,

G
cc,comp,l

y p
Û

Û

Ûi,j

=

p
i,j+1

* p
i,j*1

2�yl
.

(10)

The composite divergence operator Dcc,comp,l � is applied to the
edge-centered velocity uedge,l as

Dcc,comp,l � uedge,lÛÛ
Ûi,j

=

u
edge,l

i+1_2,j
* u

edge,l

i*1_2,j

�xl
+

v
edge,l

i,j+1_2
* v

edge,l

i,j*1_2

�yl
.

(11)

For a specified level l, the level operators include the level Laplacian
L
cc,level,l, gradient Gcc,level,l, and divergence Dcc,level,l � operators. Their

definitions are the same as Eqs. (9), (10), and (11), except that the
invalid region of level l is now also included in the domain of the
operators, i.e., p

i,j
œ (⌦

l

valid
‰ ⌦

l

invalid
) and uedge,lÛÛ

Ûi,j

œ (⌦
l

valid
‰ ⌦

l

invalid
).

For ease of describing the time stepping scheme, we replace the discrete
level operators Dcc,level,l � , Gcc,level,l, and Lcc,level,l with their continuous
counterparts (�, (, and (

2, respectively, in Section 5.

4.2. Lagrangian discretization

In the IB approach, the Lagrangian markers that define the solid
structure are free to move on the background Eulerian grid. Following
the convention of Nangia et al. [64], the Lagrangian markers are
indexed by (q,m) with mesh spacings (�s

1
,�s

2
) in the two curvilinear di-

rections. Because the present work only considers rigid body kinematic
constraints, explicit connectivity information among the marker points
is not required. Moreover, the Lagrangian markers are placed on the
finest grid level l

max
, and therefore, the relevant Lagrangian quantities,

including the position (X)
q,m

, velocity (U)
q,m

, and force (F)
q,m

of the
marker points, are defined only on the finest grid level.

4.3. Lagrangian–Eulerian coupling

The Eulerian and Lagrangian quantities are transformed through
two coupling operators described in Section 2: the force spreading
operator S[X] and the velocity interpolation operator J [X]. In this
work, a canonical d-dimensional delta function with the tensor product
form �

h
(x) =

±d

i=1
�
h

�

x
i

�

is applied to approximate the coupling
operators. In each dimension, �

h

�

x
i

�

is defined as �
h

�

x
i

�

=
1

h
'
4

⇠

xi

h

⇡

,
where '

4
(r) is the four-point IB kernel of Peskin [44,45] given by

'
4
(r) =

h

n

n

l

n

n

j

1

8
(3 * 2r +

˘

1 + 4r * 4r2), 0 Õ r < 1,

1

8
(5 * 2r *

˘

*7 + 12r * 4r2), 1 Õ r < 2,

0, 2 Õ r.

(12)

The solid structure is completely enclosed by the finest level l
max
,

and the Lagrangian markers within the solid region ⌦
b
are identi-

fied by the marker set M
b
. Given a Lagrangian force density F =

�

F
1
,F

2

�

defined on M
b
, the corresponding Eulerian force density
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Fig. 3. Schematic of valid and invalid regions on a multilevel grid and five-point stencil used in the discrete Laplacian operator on coarse and fine levels. The refinement ratio
between level l and level l + 1 is 2.

f lmax =

⇠

f
lmax

1
, f

lmax

2

⇡

is obtained through the force spreading operation
(Eq. (6)) as
�

f
1

�lmax

i,j
=

…

(q,m)ÀMb

�

F
1

�

q,m
�
h
lmax

⇠

xlmax

i,j
* X

q,m

⇡

�s
1
�s

2
,

�

f
2

�lmax

i,j
=

…

(q,m)ÀMb

�

F
2

�

q,m
�
h
lmax

⇠

xlmax

i,j
* X

q,m

⇡

�s
1
�s

2
.

(13)

Likewise, with ulmax =

⇠

u
lmax

1
, u
lmax

2

⇡

being the Eulerian velocity
on the finest level l

max
and U =

�

U
1
,U

2

�

being the velocity of the
Lagrangian markers, the velocity interpolation operation (Eq. (7)) can
be written as
�

U
1

�

q,m
=

…

(i,j)

�

u
1

�lmax

i,j
�
h
lmax

⇠

xlmax

i,j
* X

q,m

⇡

�x
lmax�y

lmax ,

�

U
2

�

q,m
=

…

(i,j)

�

u
2

�lmax

i,j
�
h
lmax

⇠

xlmax

i,j
* X

q,m

⇡

�x
lmax�y

lmax .

(14)

5. Time advancement

In this work, we use a level-by-level method [27,28] for the time
advancement of variables on a multilevel grid. As our multilevel ad-
vancement algorithm (Section 5.4) is based on the single-level ad-
vancement method, we introduce a single-level advancement algorithm
(Section 5.1) in which different types of kinematic constraints (Sec-
tion 5.2) are considered and the hydrodynamic force and torque acting
on the immersed object are calculated (Section 5.3) if needed. The
multilevel advancement algorithm, which combines the single-level ad-
vancement algorithm with the subcycling and non-subcycling methods,
is discussed in Section 5.4.1. To match the data across multiple levels,
various synchronization operations are performed every time a finer
level catches up with a coarser level; the details of the synchronization
operations are discussed in Section 5.4.2.

5.1. Single-level advancement

Our numerical method uses a time-splitting approach, in which
we first solve the momentum equation Eq. (1) using the approximate

projection method [71–73] to enforce the incompressibility condition
Eq. (2) before correcting the Eulerian velocity to enforce the rigid
constraint in the solid domain. At time tn, we are given the collocated
Eulerian velocity un and time-staggered pressure pn*1_2 [4,26,74]. For
the rigid body, the mass center position Xn

r
, velocity Un

r
, and angular

velocity Wn

r
are also known at time tn. Our objective is to obtain the

updated fluid velocity un+1, pressure pn+1_2, and updated rigid body
quantities Xn+1

r
, Un+1

r
, and Wn+1

r
at the next time level tn+1. The details

of the single-level time advancement are given below.
1. The LS function  n is calculated based on Xn

r
and the geometry

of the solid body, and the LS function �n are calculated based on the
location of the gas–liquid interface, both at time tn. To capture the
movement of the fluid–solid and gas–liquid interfaces,  n and �n are
advanced to  n+1 and �n+1 using

 
n+1

=  
n
* �t [( � (u )]n+1_2 , (15)

�
n+1

= �
n
* �t [( � (u�)]n+1_2 , (16)

where the advection terms [( � (u )]n+1_2 and [( � (u�)]n+1_2 are com-
puted using the Godunov scheme [26,74–76], as described in Ap-
pendix A. The midpoint values of  and � are calculated as  n+

1

2 =

( 
n+1

+  
n
)_2 and �n+

1

2 = (�
n+1

+ �
n
)_2, respectively.

2. To set the midpoint density field ⇢n+
1

2 appearing on the left-hand
side of the momentum equation (Eq. (1)), two Heaviside functions are
defined as

õH
f low

⇠

�
n+

1

2

⇡

=

h

n

n

l

n

n

j

0, �
n+

1

2 < *n
cells

�x

1

2

⇠

1 +
1

ncells�x
�
n+

1

2 +
1

⇡
sin

⇠

⇡

ncells�x
�
n+

1

2

⇡⇡

,
Û

Û

Û

Û

�
n+

1

2

Û

Û

Û

Û

f n
cells

�x

1, otherwise,

(17)

õH
body

⇠

 
n+

1

2

⇡
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=

h

n

n

l

n

n

j

0,  
n+

1

2 < *n
cells

�x

1

2

⇠

1 +
1

ncells�x
 
n+

1

2 +
1

⇡
sin

⇠

⇡

ncells�x
 
n+

1

2

⇡⇡

,
Û

Û

Û

Û

 
n+

1

2

Û

Û

Û

Û

f n
cells

�x

1, otherwise,

(18)

where n
cells

is the smearing width of the fluid–solid or gas–liquid
interface assuming a uniform grid spacing in all directions, i.e., �x =

�y. The density ⇢n+
1

2 is then set via a two-step process [64,77] as

õ⇢
n+

1

2 = ⇢
g
+
�

⇢
l
* ⇢

g

�

õH
f low

⇠

�
n+

1

2

⇡

, (19)

⇢
n+

1

2 = ⇢
s
+

⇠

õ⇢
n+

1

2 * ⇢
s

⇡

õH
body

⇠

 
n+

1

2

⇡

, (20)

where ⇢
l
, ⇢

g
, and ⇢

s
are the liquid density, gas density, and solid

density, respectively. Depending on the type of kinematic constraint
(Section 5.2), the modified density } appearing in the gravitational
term of the momentum equation is set to

} =

<

⇢
l
, for prescribed motion of the solid

⇢
s
, for free motion and prescribed shape of the solid (21)

so that the inertia and buoyancy effects due to the weight of the solid
are properly included in the FSI simulation without producing spurious
gravitational currents [64,77].

3. Neither  nor � are guaranteed to retain the signed distance
property after the advections in Eqs. (15) and (16), even if they are
initialized as the signed distance function at the beginning of the
simulation. For the structures with relatively simple geometries that
are considered in this work, the solid LS function  can be directly
computed using the centroid information of the body. For immersed
bodies with complex geometries, the constructive solid geometry (CGS)
and/or R-functions [78] can be employed to determine the analytical
expressions for  . The fluid LS function � is reinitialized by computing
the steady-state solution to the Hamilton–Jacobi equation
)d

)⌧
= S(�)(1 * (d), (22)

where

S(�) = 2 (H(�) * 1_2) . (23)

The initial condition of Eq. (22) is

d(x, ⌧ = 0) = �
n+1

(x), (24)

where ⌧ is the pseudotime for iterations. A classical second-order
Runge–Kutta (RK) method is applied for the pseudotime advancement
of d [74,79], which helps minimize the volume change of each fluid
phase and ensure mass conservation [74,79,80]. The flow LS function
� is updated by d after this pseudotime advancement.

4. The intermediate velocity õu<,n+1 is solved semi-implicitly without
considering the rigidity constraint as

⇢
n+

1

2

0

õu<,n+1 * un
�t

+ ( � (uu)n+
1

2

1

= *(pn*
1

2 +
1

2

�

( � �( n+1,�n+1)(õu<,n+1 + ( � �( n,�n)(un
�

+}n+
1

2 g,

(25)

where the convective term ( � (uu)n+
1

2 is calculated using the Godunov
scheme (Appendix A). In this work, the viscosity �( 

n+1
,�

n+1
) or

�( 
n
,�

n
) does not depend on the solid LS function  and is set to the

surrounding fluid viscosity, i.e., �n+1 = �
f
(�
n+1

), following [64].
5. After obtaining the intermediate velocity, a level projection is

applied to obtain the updated velocity õun+1 and pressure pn+
1

2 fields.
An auxiliary variable V is first calculated by

V =
õu<,n+1
�t

+
1

⇢n+1_2
(pn*

1

2 . (26)

Next, V is projected on the divergence-free velocity field to obtain the
updated pressure pn+1_2 via

L
cc,l

⇢n+1_2
p
n+1_2

= ( � V , (27)

where L
cc,l

⇢n+1_2
p
n+1_2 is the density-weighted approximation to ( �

(1_⇢
n+1_2(pn+1_2) on level l. The divergence-free velocity õun+1 on level

l is then obtained as

õun+1 = �t

0

V *
1

⇢n+1_2
(pn+1_2

1

. (28)

We note that the intermediate velocity on each level is projected
without the pressure gradient term, as the pressure gradient term is
subtracted in Eq. (26). This step reduces the accumulation of pres-
sure errors and produces a more stable algorithm [71,81]. Moreover,
the approximate projection approach effectively removes the issue
of the pressure checker-boarding problem that appears on collocated
grids [27,69,73,82].

6. The updated velocity õun+1 satisfies the incompressibility condi-
tion but needs to be corrected to satisfy the constraints of motions
of the rigid body within the solid region V

b
(t). To achieve this, the

Lagrangian velocity (U
b
)
n+1

q,m
and the marker points position Xn+1

q,m
need

to be approximated. Because these approximations may vary based on
the kinematic constraints, for now, we assume that they are known vari-
ables; the detailed steps for calculating (U

b
)
n+1

q,m
and Xn+1

q,m
are presented

in Section 5.2.
To proceed, the difference between the Lagrangian velocity (U

b
)
n+1

q,m

and the background Eulerian velocity õun+1 is calculated via the velocity
interpolation operation as

�

�U
c

�n+1

q,m
=

T

�

U
b

�n+1

q,m
*

⇠J ⌧

Xn+1
q,m

�

Éun+1
⇡

q,m

, for (q,m) À V
b
(t),

0. for (q,m) Ã V
b
(t).

(29)

This velocity difference is then employed to approximate the La-
grangian and Eulerian constraint forces as

Fn+1
q,m

=
⇢
s

�t
(�U

c
)
n+1

q,m
, (30)

fn+1
c

= S ⌧

Xn+1
q,m

�

Fn+1
q,m

. (31)

The Eulerian velocity field is corrected by the Eulerian constraint force
as

un+1 = õun+1 + �t

⇢
s

fn+1
c

, (32)

and the solid effects are properly included in the fluid–solid sys-
tem [64].

5.2. Types of kinematic constraints

The approximation to the constrained Lagrangian velocity (U
b
)
n+1

q,m

and position Xn+1
q,m

depends on the type of kinematic constraint in the
FSI. In this work, we consider three types of kinematic constraints:
prescribed motion of the structure, free motion of the structure, and
prescribed shape of the structure.

5.2.1. Prescribed motion
If the motion of the structure is prescribed, then the velocity and

position of the body are known a priori and not influenced by the
surrounding fluid. Thus, the centroid position Xn

r
, centroid velocity

Un+1
r
, and angular velocityWn+1

r
of the body are given. The constrained

Lagrangian velocity (U
b
)
n+1

q,m
of the markers is calculated as

�

U
b

�n+1

q,m
= Un+1

r
+Wn+1

r
ù Rn

q,m
, (33)

where Rn
q,m

= Xn
q,m

*Xn
r
. Since the marker position Xn

q,m
is already known

from the calculation at the previous time step, the new position Xn+1
q,m

of the marker points is updated using the midpoint scheme as

Xn+1
q,m

= Xn
q,m

+
�t

2

⇠

(U
b
)
n

q,m
+ (U

b
)
n+1

q,m

⇡

. (34)
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5.2.2. Free motion
In contrast to the prescribed kinematics case, the motion of a freely

moving body is influenced by the surrounding fluid. To account for
this two-way coupled interaction, the linear and angular momentum
of the fluid occupying the solid domain is redistributed as rigid body
momentum, which provides an estimate of the centroid velocities Un+1

r

and Wn+1

r
at the new time level. This momentum projection step is

carried out using the principle of conservation of linear and angular
momentum in the solid domain and is written as

M
b
Un+1
r

=

…

Xq,mÀVb
⇢
s

⇠J
h

⌧

Xn+
1

2

�

õun+1
⇡

q,m

�s
1
�s

2
+ F

ext
�t, (35)

I
b
Wn+1

r
=

…

Xq,mÀVb
⇢
s
Rn+

1

2

q,m ù

⇠J
h

⌧

Xn+
1

2

�

õun+1
⇡

q,m

�s
1
�s

2
, (36)

where

M
b
=

…

Xq,mÀVb
⇢
s
�s

1
�s

2 (37)

is the mass of the solid body and

I
b
=

…

Xq,mÀVb
⇢
s

0

Rn+
1

2

q,m � Rn+
1

2

q,m I * Rn+
1

2

q,m ‰ Rn+
1

2

q,m

1

(38)

is the moment of inertia tensor, with I being the d-dimensional identity
tensor. In Eq. (35), F

ext
is utilized to account for the effects of external

(nonhydrodynamic) forces, such as those provided by springs and
dampers that may be attached to a solid body. The centroid position
Xn+1
r

is then updated using the midpoint scheme as

Xn+1
r

= Xn
r
+
�t

2
(Un+1

r
+ Un

r
). (39)

The constrained Lagrangian velocity (U
b
)
n+1

q,m
and position Xn+1

q,m
of the

marker points are updated using Eqs. (33) and (34), respectively, in a
manner similar to the prescribed motion case.

5.2.3. Prescribed shape
In some cases of freely moving bodies, particularly those encoun-

tered in aquatic locomotion, the shape of the body changes with time.
The deformation of the body can be prescribed as shape mapping � =

�(s, t). The deformation velocity of the body U
k
can be obtained as

U
k
= )�(s, t)_)t. In general, the net linear and angular momentum of

the deformation velocity is nonzero. A direct use of such deformation
velocity in the FSI algorithm would manifest as a spurious external
force or torque acting on the freely swimming body. Therefore, the
additional momentum due to the prescribed deformation velocity must
be removed from the equations of motion to conserve the system
momentum. To project the deformation kinematics onto a space of
net zero momentum, the linear and angular momentum redistribution
Eqs. (35) and (36) are modified to remove the extraneous momentum
as

M
b
Un+1
r

=

…

Xq,mÀVb
⇢
s

⇠

(J
h

⌧

Xn+
1

2

�

õun+1)
q,m

* (U
k
)
n+1

q,m

⇡

�s
1
�s

2
, (40)

I
b
Wn+1

r
=

…

Xq,mÀVb
⇢
s
Rn+

1

2

q,m ù

⇠

(J
h

⌧

Xn+
1

2

�

õun+1)
q,m

* (U
k
)
n+1

q,m

⇡

�s
1
�s

2
. (41)

In these equations, it is assumed that the deformation velocity
(U

k
)
n+1

q,m
has been obtained from the prescribed body shape �(s, t). In

addition, the deformation velocity (U
k
)
n+1

q,m
needs to be considered while

updating the constrained Lagrangian velocity (U
b
)
n+1

q,m
as

�

U
b

�n+1

q,m
= Un+1

r
+Wn+1

r
ù Rn

q,m
+
�

U
k

�n+1

q,m
. (42)

The position of the marker points Xn+1
q,m

is updated using Eq. (34).

5.3. Hydrodynamic force and torque calculation

In the DLM/IB method, the fluid–structure interaction is handled
implicitly. Therefore, there is no need to iterate between fluid domain
integrators and solid domain integrators to maintain stability, which
is a strict requirement for some sharp-interface immersed boundary
methods [52,83,84]. Moreover, there is no need to explicitly evaluate
the hydrodynamic force and torque acting on the body to determine its
motion. These features make the DLM/IB scheme more efficient than
some sharp-interface immersed boundary methods that require velocity
interpolation and pressure reconstruction around the solid surface to
calculate the required hydrodynamic forces and torques. However, if
needed, the hydrodynamic force and torque acting on the immersed
object in the DLM/IB method can still be calculated as a postprocessing
step using the following equations [64,65]:

F n+1
=

…

Xq,mÀVb
⇢
s

b

f

f

d

�

U
b

�n+1

q,m
*
�

U
b

�n

q,m

�t
*

�Un+1
q,m

�t

c

g

g

e

�s
1
�s

2
, (43)

Mn+1
=

…

Xq,mÀVb
⇢
s
Rn+1
q,m

ù

b

f

f

d

�

U
b

�n+1

q,m
*
�

U
b

�n

q,m

�t
*

�Un+1
q,m

�t

c

g

g

e

�s
1
�s

2
. (44)

5.4. Multilevel advancement

This section describes the extension of the single-level advancement
algorithm presented in Section 5.1 to the multilevel advancement algo-
rithm using subcycling and non-subcycling methods (Section 5.4.1). A
force averaging scheme is proposed to average the Eulerian forces from
the finest level to the coarser levels, which conserves the momentum of
the system at a discrete level. A synchronization step (Section 5.4.2) is
then applied to match the variables on multiple levels, which provides a
better representation of the composite solution on multiple levels. Next,
a multilevel initialization of the fluid and solid fields is introduced in
Section 5.4.3. A summary of the multilevel advancement algorithm is
provided in Section 5.4.4.

5.4.1. Subcycling and non-subcycling methods
To advance variables on a multilevel grid, we consider two types of

cycling methods, namely, the subcycling method and non-subcycling
method. In the subcycling method, variables on different levels are
advanced with different time step sizes. The main advantage of the
subcycling method is that when the Courant–Friedrichs–Lewy (CFL)
number is kept the same on different grid levels, a larger grid spacing
on a coarser level allows for a larger time step size on this level. For
example, if the refinement ratio between two neighboring levels is two
and the Lÿ-norm of velocity on both levels is approximately the same,
then the time step size on the coarser level �tl can be twice as large as
that on the finer level �tl+1. In contrast, in the non-subcycling method,
variables on different levels advance with the same time step size that
is dictated by the finest level l

max
. In this case, variables on all levels

are always at the same time instant.
Fig. 4 schematically shows how the subcycling and non-subcycling

methods are used to advance the variables on a multilevel grid with
l
max

= 2. As shown in the sketch, only 7 substeps are needed to
advance all levels from t

n to t
n
+ �t

0 using the subcycling method.
In contrast, 12 substeps are needed for the non-subcycling method.
Within each substep of the two cycling methods, the single-level ad-
vancement algorithm described in Section 5.1 is employed to time
march the solution. Although the non-subcycling method allocates
more steps than the subcycling method, the latter requires an additional
time interpolation of variables due to the mismatch of time step sizes
among different levels. For example, to fill the ghost cell values at the
coarse–fine boundary of a finer level, spatiotemporal interpolation of
variables on the coarser level is required in the subcycling method.
In contrast, in the non-subcycling method, spatial interpolation only
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Fig. 4. Schematic of the substeps in the level-by-level advancement method for a three-level grid (l
max

= 2). Left: the subcycling method. Right: the non-subcycling method. The
substeps are represented by circled numbers. The yellow dashed lines represent the averaging of Eulerian forces from the finest level to the coarser levels, and the yellow stars
represent the time advancement of the immersed body on the finest level.

suffices. In Section 6.9, the time savings for the subcycling and non-
subcycling methods are carefully quantified in the simulations of the
three-dimensional swimming eel.

In the context of FSI problems, there are two points of consideration
when using the level-by-level time advancement technique. First, the
Lagrangian markers are distributed only on the finest level. Thus, the
Lagrangian quantities are updated only after the time advancement of
the flow variables on the finest level, as indicated by the yellow stars in
Fig. 4. Consequently, the solution on the finest level represents the final
solid motion. Second, the Eulerian IB forces on a coarser level need to
be properly considered. If the IB forces are not included on a coarser
level, then the flow field on this level cannot ‘‘feel’’ the existence of the
solid structure. Consequently, the updated flow velocity on a coarser
level that is used to provide Dirichlet boundary conditions for the finer
level will be incorrect, which will further lead to incorrect solutions on
the finer level. To resolve this problem, we propose a force averaging
algorithm to average the latest Eulerian forces on the finest level onto
coarser levels in a sequential manner, as depicted in Fig. 4. Specifically,
Éf t+�t

l
,l

c
denotes the Eulerian force that needs to be approximated at time

t + �t
l on the coarser level l for all 0 f l < l

max
. Because the Eulerian

force Éf t,lmax

c
on the finest level l

max
is known at time t, we obtain the

following Algorithm 1:

Algorithm 1 Force averaging algorithm
1: if subcycling method is used then
2: �t

l
= 2

lmax*l�t
lmax for all 0 f l < l

max

3: else
4: �t

l
= �t

lmax for all 0 f l < l
max

5: end if
6: for l = l

max
* 1, 0,*1 do

7: if l = l
max

* 1 then
8: Éf t+�t

l
,l

c
} average Éf t,l+1

c

9: else
10: Éf t+�t

l
,l

c
} average Éf t+�t

l+1
,l+1

c

11: end if
12: end for
13: Replace fn+1

c
in Eq. (32) with Éf t+�t

l
,l

c
for updating the velocity

In Algorithm 1, four-point averaging operators and eight-point av-
eraging operators [27,28] are employed in two spatial dimensions and
three spatial dimensions, respectively.

5.4.2. Synchronization
The synchronization operation is utilized to make the solution data

consistent across multiple levels and to obtain the composite solution

from the level data. This operation is applied in both cycling meth-
ods [26–28]. There are three substeps involved in the synchronization
operation:

Substep 1. Averaging
The fluid velocity u, pressure p, and LS functions  and � on

coarser levels are replaced by the corresponding data on the finer
levels after the averaging substep. The variable values on the finer
levels are considered to be better resolved than those on the coarser
levels. Because a collocated grid framework is applied in this work, the
same averaging operator can be employed for all of the aforementioned
variables. We note that the averaging operation used here is different
from the averaging step of the force averaging algorithm. Here, the
averaging operator aims to synchronize all flow variables on multiple
levels; it is applied to variables at the same time instance whenever
a finer level catches up with a coarser level. On the other hand, the
averaging operator in the force averaging algorithm is applied only to
the Eulerian IB force variable at different time instants to obtain an
approximate value of the IB force on a coarser level.

Substep 2. MAC synchronization and refluxing
At the CF boundary, the advection velocity uadv,l on the coarser

level l is generally not equal to the edge average of the advection
velocity uadv,l+1 on the next finer level l+1. This difference can create an
imbalance of the momentum and scalar fluxes at the CF boundary. As
a result, the free stream is not preserved while advancing the variables
level by level. To remedy this problem, MAC synchronization and re-
fluxing algorithms are carefully designed to maintain the conservation
of momentum and scalar in the entire domain. The algorithms are
detailed in Appendix B.

Substep 3. Composite grid projection
Because the level projection is applied on a level-by-level basis,

it does not guarantee that the fluid velocity is divergence-free across
all levels [26,28]. As a last step of the synchronization operation, a
composite grid projection is applied to enforce the divergence-free
condition on the velocity field across the entire hierarchy [26,27].
Using the composite grid operators defined in Section 4.1, a multilevel
multigrid (MLMG) solver [29] is employed to project the fluid velocity
on a divergence-free space as

L
cc,comp

⇢n+1
⇥ =

1

�tsync
D
cc,compun+1, (45)

un+1 := un+1 * �tsyncGcc,comp
⇥, (46)

where �tsync is the time step of level 0, i.e., �tsync = �t
0, and Lcc,comp

⇢n+1
⇥

is the density-weighted approximation to the term ( � (1_⇢n+1(⇥). We
note that un+1 becomes divergence-free in a multilevel sense after the
composite grid projection substep.
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5.4.3. Multilevel initialization
All field values need to be initialized on all levels at the beginning

of the simulation. For example, the fluid velocity u on the coarsest level
(level 0) is assigned based on the initial condition. The solid LS function
 is computed analytically based on the position of the center of mass
of the body X0

r
and its geometry. The flow LS function � is initialized

based on the position of the gas–liquid interface when multiphase flow
effects are included in the FSI simulation. The grid cells on the next
level (level 1) are generated based on refinement and nesting criteria.
After the level refinement, the velocity u and LS functions  and �

values on level 1 are assigned based on the initial conditions. This
‘‘refining and filling’’ procedure is repeated until the finest level l

max

is reached or until there is no need to refine the grid based on the
refinement criteria.

Next, the Lagrangian markers are initialized on the finest level by
placing one Lagrangian marker per Eulerian grid cell. The physical
position X0

q,m
, velocity U0

q,m
and radius vector R0

q,m
of the Lagrangian

markers are determined from the known initial condition of the solid
body. The pressure p is initialized to zero on all levels.

5.4.4. Summary of the multilevel advancement algorithm
Algorithm 2 summarizes the unified multilevel advancement al-

gorithm for both the subcycling methods and non-subcycling meth-
ods. After the variable initialization, we can use either the subcycling
method or the non-subcycling method for time advancement. The force
averaging algorithm is employed before each time step to approximate
the Eulerian IB forces on all coarser levels. The synchronization step
is applied whenever a finer level catches up with a coarser level. Grid
refinement is applied before moving to the next time step.
Algorithm 2 Multilevel advancement algorithm
1: Initialize X0

r
, U0

r
, W0

r
, u0,  0, �0, and p

0 on level 0
2: l } 0

3: while refinement criteria are satisfied on level l and l < lmax do
4: Regrid the patch hierarchy to obtain level l + 1

5: Initialize X0

r
, U0

r
, W0

r
, u0,  0, �0, and p

0 on level l + 1

6: l } l + 1

7: end while
8: Initialize X0

q,m
, U0

q,m
and R0

q,m
for all Lagrangian markers on level lmax

9: if subcycling method is used then
10: �t

l
= 2

lmax*l�t
lmax for all 0 f l < lmax

11: else
12: �t

l
= �t

lmax for all 0 f l < lmax

13: end if
14: for n = 1, nmax do . nmax is the number of time steps in the simulation
15: LevelCycling(0, t0

n
, t0
n
+ �t

0, �t0)
16: Apply the synchronization projection using Eqs. (45)–(46)
17: Regrid the patch hierarchy and interpolate u,  , �, and p onto new patches
18: end for
19:
20: procedure LevelCycling(l, tl , tl

max
, �tl)

21: while tl < t
l

max
do

22: if l < lmax then
23: Apply the force averaging algorithm on level l . Algorithm 1
24: end if
25: Perform single-level advancement on level l from t

l to tl + �tl
26: ÷ Advect the LS functions  

n,l and �
n,l and reinitialize them using

Eqs. (15)–(23)
27: ÷ Solve momentum Eq. (28) to obtain õun+1,l
28: ÷ Calculate the Lagrangian correction velocity �Uc based on a specific

kinematic constraint
29: ÷ Correct the Eulerian velocity field un+1,l using Eq. (32)
30: if l < lmax then
31: LevelCycling(l + 1, tl , tl + �tl , �tl+1)
32: end if
33: t

l } t
l
+ �t

l

34: end while
35: if l > 0 then
36: Average all data from finer levels to the coarser levels
37: end if
38: if l < lmax then
39: Perform MAC synchronization and refluxing using Eqs. (51)–(71)
40: end if
41: end procedure

Fig. 5. Schematic of a submerged cylinder in a lid-driven cavity flow.

6. Results

This section presents several canonical testing problems to validate
the capabilities and robustness of the proposed AMR framework from
different aspects. The following notations are used unless stated oth-
erwise. For each case, �t

0
denotes the time step on level 0, and �x

0
,

�y
0
, and �z

0
represent the grid spacings in the x-direction, y-direction,

and z-direction, respectively, on level 0. For a multilevel grid, the grid
spacings on the finer level l satisfy �x

l
= �x

0
_2

l, �y
l
= �y

0
_2

l, and
�z

l
= �z

0
_2

l for all 0 f l f l
max

.

6.1. Lid-driven cavity with a submerged cylinder

We begin by considering the flow around a cylinder submerged in
a lid-driven cavity. As shown in the left part of Fig. 5, a stationary
cylinder with diameter D = 0.4L is immersed at the center of a
computational domain of extent ⌦ À [0,L]

2, with L = 1. The lid
velocity at the domain top is set to U = 1. The Reynolds number of the
flow is Re = ⇢

f
UL_�

f
= 1000. No-slip boundary conditions are applied

on all sides of the domain boundaries.
Both the single-level computational case and multilevel computa-

tional case are considered for this problem. For the single-level case,
we test both the temporal convergence rate and the spatial–temporal
convergence rate of the flow field. For the temporal convergence, it
is defined as the rate of error reduction with decreasing time step
size. When performing a temporal convergence study, it is necessary
to design the tests such that the spatial error is minimal [26,85]. We
thus use a fixed grid with the smallest grid size and only change the
time step size in different tests. For the spatial–temporal convergence,
we consider grid numbers of 64 ù 64, 128 ù 128, 256 ù 256, and
512 ù 512. The CFL number is kept at a constant value 0.5 for all
grids. Because no analytical solution is available for this problem, we
compare the numerical solution against a reference solution obtained
on a high-resolution 2048 ù 2048 uniform grid. When the flow field
reaches the steady state at around tU_L = 30, the L2 norm of the
velocity errors is computed [43], and the temporal convergence rate
and the spatial–temporal convergence rate of the solution are esti-
mated, as shown in Fig. 6. In the left part of Fig. 6, it shows that
our mid-point integration scheme can achieve the second order. The
right part of Fig. 6 demonstrates that spatial–temporal convergence
rate of the velocity is approximately 1.45 for the single-level case. This
convergence rate is reasonable considering the smearing of the fluid–
solid interface inherent in the DLM/IB method [61,62]. Also consistent
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Fig. 6. Temporal convergence (left) and spatial–temporal convergence (right) of u and v components of the flow velocity for the single-level case.

Table 1
Parameters of the lid-driven cavity with a submerged cylinder problem.
Case no. Grid numbers on

level 0
l
max

Cycling methods Force averaging
scheme used?

1 2048 ù 2048 0 – –
2 64 ù 64 2 Subcycling Yes
3 64 ù 64 2 Subcycling No

with other IB papers [4,49], the dominant errors are localized near the
fluid–structure interface.

For the multilevel grid case, we consider static mesh refinement.
Grid cells in the rectangular region (x, y) À [0.2, 0.8] are refined to level
1, and grid cells in the region (x, y) À [0.25, 0.75] are further refined to
l
max

= 2. The cylinder is kept on the finest level, and a refinement ratio
of two is applied to both levels.

Before proceeding to test the convergence rate on a multilevel
grid, we demonstrate the necessity of the force averaging algorithm
(Section 5.4.1) for the level-by-level time advancement method. Three
cases are considered, as listed in Table 1. Case 1 is the single-level case,
which is employed as a reference case. Case 2 has the force averaging
scheme, while Case 3 does not. Fig. 7 compares the time evolution
of the maximum Eulerian IB forces among the different cases, where
fb

x,max
and fb

y,max
represent the maximum IB force in the x direction

and y direction, respectively. It is clearly seen that the time series of IB
forces in Case 3 deviate from those in Case 1 and Case 2 because the IB
forces on the finest level in Case 3 are not averaged to the coarser levels
to obtain a proper estimation. By using the force averaging scheme, the
time evolution of the IB forces in Case 2 shows agreement with that
in Case 1, and their difference in the early stage of simulation can be
explained by the fact that it takes some time for the simulations on the
finer level to be tightly coupled with those on the coarser level before
the data across multiple levels match. In addition, the effectiveness of
the force averaging scheme is also demonstrated through the velocity
fields. As shown in Fig. 8, the contours of the velocity magnitude in
Cases 1 and 2 are almost identical, whereas in Case 3, a spurious vortex
is generated on the upper right side of the finest level. These results
show the necessity and efficacy of using the force averaging scheme
when a multilevel grid is employed in the simulations. Although only
the subcycling case results are shown here, the non-subcycling case also
exhibits a similar behavior.

After validating the force averaging scheme, we now assess the
temporal and spatial–temporal convergence rates of our numerical
scheme on a multilevel grid. For assessing the temporal convergence
rate, the grid size is kept fixed. For the spatial–temporal convergence
rate test, the CFL number is fixed and the grid sizes on level 0 are
taken to be 32 ù 32, 64 ù 64, and 128 ù 128. Both the subcycling
and non-subcycling methods are assessed. Similar to the single-level
case, we compare the composite solution with the reference solution
at tU_L = 30 using the L2-norm of the error. In Fig. 9, it can be
observed that we obtain second-order convergence rate in time for
both the non-subcycling and subcycling methods; the latter uses an

Table 2
Parameters of the cylinder with prescribed motion problem.
Case no. Grid numbers on

level 0
l
max

�t
0

Cycling methods

1 1024 ù 512 0 5 ù 10
*4 –

2 256 ù 128 2 2 ù 10
*3 Subcycling

3 256 ù 128 2 5 ù 10
*4 Non-subcycling

additional midpoint time interpolation scheme of variables defined on
different levels (Section 5.4.1). As seen in Fig. 10, the L2 errors of
u decrease as the grid resolution increases. The L2 errors at a given
grid spacing for the subcycling method and non-subcycling methods
are comparable. The two adaptive methods also achieve a spatial–
temporal convergence rate of approximately 1.44, which is nearly the
same as those observed for the single-level cases previously. These tests
prove the efficacy of the force averaging scheme and demonstrate that
our numerical schemes can achieve the expected order of accuracy on
(static) multilevel mesh.

6.2. Cylinder with prescribed motion

We first consider the flow past a cylinder oscillating about a mean
position with a prescribed velocity. Specifically, the cylinder oscillates
in the x direction with the prescribed velocity U

c
= U

max
cos(2⇡t_T ),

where U
max

= 1.0 is the maximum oscillating velocity and T is the
time period of the oscillation. To exclude wall effects, the size of
the computational domain is set sufficiently large to [*16D, 16D] ù

[*8D, 8D]. Here, D is the diameter of the cylinder. The center of the
cylinder is located at (0, 0). To match the previous studies by Shen
et al. [86] and Bhalla et al. [4], the Keulegan–Carpenter number is set
to KC = U

max
T _D = 5, and the Reynolds number is Re = ⇢

f
U
max

D_�
f
=

100. Three cases are considered, as listed in Table 2. The refinement
criterion is the distance to the fluid–solid interface indicated by the LS
function  . Specifically, the grid cells (i, j) on level l (0 f l < l

max
) are

refined to the finer level if  
i,j
 < 4.0max(�x

l
,�y

l
), where �xl and �yl

are the grid spacings in the x direction and y direction, respectively, on
level l.

The left part of Fig. 11 compares the drag coefficient in the single-
level case, defined as C

d
= F

x
_(0.5⇢

f
U

2

max
D), with the results of Shen

et al. [86] and Bhalla et al. [4]. We note that both Eqs. (30) and (43)
are used to calculate the drag coefficient in this test problem. Eq. (30)
only considers the constraint force, while Eq. (43) includes both the
constraint force and inertial force. The right part of Fig. 11 shows the
comparison of the drag coefficients among the single-level case (Case
1), three-level subcycling case (Case 2), and three-level non-subcycling
case (Case 3). The agreement indicates that when inertial effects are
present, our FSI algorithm can accurately estimate the hydrodynamic
force on the solid surface for both the single-level case (Case 1) and
multilevel case (Cases 2 and 3).
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Fig. 7. Comparison of the time evolution of the maximum Eulerian IB force among the different cases listed in Table 1. fb
x,max

(left) and fb
y,max

(right) represent the maximum
IB force in the x direction and y direction, respectively.

Fig. 8. Comparison of the velocity magnitudes for the cylinder submerged within a lid-driven cavity problem at tU_L = 30. Left: single-level case (Case 1); middle: three-level
subcycling case (Case 2) with the force averaging scheme; right: three-level subcycling case (Case 3) without the force averaging scheme. Black lines: fluid–solid interface; red
lines: patches on level 1; blue lines: patches on level 2.

Fig. 9. Temporal convergence of u and v for the problem of a cylinder submerged in a lid-driven cavity with mesh refinement. The finest level is l
max

= 2. Left: subcycling method.
Right: non-subcycling method.

Fig. 10. Spatial–temporal convergence of u and v for the problem of a cylinder submerged in a lid-driven cavity with mesh refinement. The finest level is l
max

= 2. Left: subcycling
method. Right: non-subcycling method.

6.3. Falling sphere in quiescent flow

In the test cases introduced above, the motion of the body was
prescribed. In this section, the falling sphere problem is simulated
to validate the DLM algorithm with a freely moving body. Here, we
follow the same setup as [4]. The computational domain is [*1m, 1m]ù

[0m, 8m] ù [*1m, 1m], and the sphere with diameter D = 0.625m is
initially centered at (x, y, z) = (0m, 7m, 0m). The density of the fluid
and the density of the solid are set to ⇢

f
= 2 kg_m

3 and ⇢
s
= 3 kg_m

3,
respectively. The fluid viscosity is �

f
= 0.05 Pa � s, and the Reynolds

number is Re = ⇢
f
V D_�

f
, where V is the terminal velocity of the falling

sphere. No-slip boundary conditions are employed in all directions.
Three cases are considered, as listed in Table 3.

When the sphere approaches the terminal state, its velocity in this
case is V = *1.24m_s, which agrees with prior studies [4,88]. Previous
studies have shown that the normalized vertical velocity can be fit using
an exponential curve as

v_V = 1 * e
*3t_t95 , (47)

where t
95
is the time required for the sphere to reach 95% of the

terminal velocity V . The left part of Fig. 12 compares the time series of
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Fig. 11. Time series of the drag coefficient of an oscillating cylinder at Re = 100 and KC = 5. Left: comparison between the single-level case (Case 1) and previous results. Right:
comparison among the single-level case (Case 1), the three-level subcycling case (Case 2), and the three-level non-subcycling case (Case 3). The dotted line, red circle ( ), and red
square ( ) represent the constraint force calculated from Eq. (30). The solid line, blue circle ( ), and blue square ( ) represent the sum of both the inertial term and the constraint
force obtained from Eq. (43).

Fig. 12. Time series of the vertical velocity of a falling sphere at Re = 31. Left: comparison among the single-level case (Case 1), the exponential curve fitting using Eq. (47), and
previous results [4,87]. Right: comparison among the single-level case (Case 1), three-level subcycling case (Case 2), and three-level non-subcycling case (Case 3).

Table 3
Parameters of the falling sphere in quiescent flow problem.
Case no. Grid numbers on

level 0
l
max

�t
0

Cycling methods

1 64 ù 512 ù 64 0 1 ù 10
*3 –

2 16 ù 128 ù 16 2 4 ù 10
*3 Subcycling

3 16 ù 128 ù 16 1 1 ù 10
*3 Non-subcycling

the vertical velocity among the single-level case (Case 1), exponential
curve fitting results using Eq. (47), and previous numerical [4] and
experimental [87] results. The right part of Fig. 12 shows that the
results of the multilevel cases (Cases 2 and 3) agree well with the single-
level results. These results indicate that our algorithms can accurately
capture the transient velocity of the falling sphere when it freely
interacts with the surrounding fluid.

6.4. Rotating cylinder in a shear flow

This section considers a rotating cylinder in a shear flow to validate
the multilevel DLM algorithm for problems with a rotational degree of
freedom (DOF). As shown in Fig. 13, a 2D cylinder is initially immersed
in a shear-driven channel flow with its centroid at (L_4,H_4). The flow
is driven by two moving plates with velocity U

w
in opposite directions.

No-slip and periodic boundary conditions are applied in the vertical
direction and horizontal direction, respectively. Three non-subcycling
cases are considered, as listed in Table 4, at Reynolds number Re =

8⇢
f
U
w
D_�

f
= 40. The refinement criterion is based on the distance to

the fluid–solid interface, i.e., the grid cells (i, j) on level l (0 f l < l
max
)

are refined to the next finer level if  
i,j
 < 4.0max(�x

l
,�y

l
).

Fig. 14 shows the time evolution of the angular velocity !
z
and

the vertical position of the cylinder centroid y
c
. The angular velocity

of the cylinder increases rapidly and then reaches a steady state at
approximately 2U

w
t_H = 200 at a value of 0.47. This value is consistent

with the results of Yeo et al. [89] and Bhalla et al. [4]. Similarly, the

Table 4
Parameters of the rotating cylinder in a shear flow problem.
Case no. Grid numbers on

level 0
l
max

�t
0

1 64 ù 512 0 1 ù 10
*3

2 16 ù 128 1 1 ù 10
*3

3 16 ù 128 2 1 ù 10
*3

Fig. 13. Sketch of a two-dimensional rotating cylinder in a shear flow.

evolution of the vertical position of the cylinder y
c
in the single-level

case (Case 1) also agrees with previous studies. Fig. 15 compares the
time series of !

z
and y

c
between the single-level case (Case 1) and

the multilevel non-subcycling cases (Cases 2 and 3). The agreement
proves that the proposed multilevel algorithms can accurately simulate
FSI problems with rotational degrees of freedom.

6.5. Oscillating cylinder in a spring–mass–damper system

This section considers an oscillating cylinder with different densities
in a spring–mass–damper system, aimed at testing the FSI algorithms
when external restoring and damping forces are applied to the solid
body at each time step. The schematic of the numerical configuration
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Fig. 14. Comparison of the angular velocity !
z
(left) and the vertical position of the cylinder centroid y

c
(right) between the single-level case (Case 1) and previous results.

Fig. 15. Comparison of the angular velocity !
z
(left) and vertical position of the cylinder centroid y

c
(right) between the single-level case (Case 1) and the multilevel non-subcycling

cases (Cases 2 and 3).

is shown on the left part of Fig. 16, in which the computational domain
is [0, 5D] ù [0, 10D] and no-slip boundary conditions are utilized on all
sides except for at the top boundary [90]. The cylinder is attached to
a spring-damper system with a damping constant of b

s
and a stiffness

constant of k
s
, and its initial centroid is located at (X

0
, Y

0
) = (2.5D, 8D).

The free length of the spring is set to 6.5D, which means that the initial
extension of the spring is 1.5D. The density ratio between the solid and
the fluid is m<

= ⇢
s
_⇢

f
. Six cases are listed in Table 5, in which we

choose two different density ratios, m<
= 100 and 0.8, corresponding

to a structure in a gas and a structure in a liquid, respectively. For all
these cases, we fix the diameter of the cylinder D = 0.2 m and spring
constant k

s
= 500N_m. We consider the damper with different values

of b
s
_b

critical
= ⇣ , where b

critical
= 2

˘

k
s
M

b
. We note thatM

b
is the mass

of the cylinder and ⇣ determines the behavior of the spring-damper
system [91]: ⇣ < 1 represents an underdamped system, ⇣ = 1 leads to a
critically damped system, and ⇣ > 1 results in an overdamped system.

For the density ratio m<
= 100, the left part of Fig. 17 compares

the time evolution of the vertical position of the cylinder centroid
between the single-level case (Case 1) and the analytical solution. The
analytical solution is obtained by disregarding the fluid forces on the
solid body because these forces are small compared to the inertial force
for this case with a large density ratio. Fig. 17 shows that our results are
consistent with the analytical results. The right part of Fig. 17 compares
Cases 1–3, which shows that both subcycling results and non-subcycling
results match the single-level result. To visualize the flow field, the
contours of the velocity vector at t = 0.5 and the patch hierarchy for
Case 2 are plotted in the right part of Fig. 16.

For the low-density ratio m<
= 0.8, the fluid and solid have com-

parable densities, and the hydrodynamic forces cannot be disregarded,
especially at low damping ratios. Although an analytical solution is not
available for this density ratio, we compare our numerical results with
those of Dafnakis et al. [92], in which a Brinkman penalization (BP)
method is used to simulate the oscillating cylinder and WEC problems.
As shown on the left part of Fig. 18, the numerical results of our single-
level case (Case 4) using the DLM method agree with those using the
BP method in [92], which proves the correctness and robustness of
our algorithms at low-density ratios between the solid phase and fluid

phase. The right part of Fig. 18 further compares the results between
the single-level case (Case 4) and the multilevel cases (Cases 5 and 6),
which shows the consistency in the numerical results regardless of the
presence of AMR.

6.6. Wave energy converter (WEC)

In this section, a WEC simulation is conducted to evaluate the
performance of our multilevel DLM algorithms in the presence of
multiphase flows and external forces. Here, the LS-based two-phase
flow solver [74] is coupled to the multilevel DLM algorithm to simulate
the WEC dynamics. A schematic representation of the WEC problem
is shown on the left part of Fig. 19. A water wave of height H =

0.01m and period T = 0.8838 s is generated from the left boundary
using Stokes wave theory. Refer to Appendix C and [92] for details.
The wave then propagates to the right, transfers energy to the WEC,
and is eventually dissipated in the damping zone at the right end of
the domain. The wavelength is � = 1.216m, and the water depth is
d = 0.65m [90,92]. A cylindrical-shaped WEC device with diameter
D = 0.16m and density ratio m<

= ⇢
s
_⇢

f
= 0.9 is initially submerged

to a depth of d
s

= 0.25m from the free water surface (19). The
stiffness and damping constants of the power take-off (PTO) system are
k
s
= 1995.2N_m and b

s
= 80.64N s_m, respectively. Two multilevel

computational cases are considered, as listed in Table 6. The air–
water interface and water–solid interface are refined to the finest level
(Fig. 19). In this work, the WEC device is only allowed to oscillate in
the heave and surge directions, i.e., with two free DOFs, and the same
k
s
and b

s
are applied to both directions.

Fig. 20 shows the heave and surge motions of the two-DOF WEC
and its power generation during the steady state. Our multilevel re-
sults agree with the previous CFD simulation [92], and the slow drift
phenomenon appearing in the surge dynamics is also well captured.
Compared with the one-DOF results (not shown here), the two-DOF
WEC slightly increases the power absorption, which shows agreement
with the theoretical analysis of [93]. These results indicate that our
multilevel DLM algorithm can accurately resolve the dynamics of a
solid body when external forces are applied in a wave environment,
for both the subcycling time advancement scheme and non-subcycling
time advancement schemes.
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Table 5
Parameters of the oscillating cylinder in a spring–mass–damper system problem.
Case no. Density ratio

m
<

Grid numbers on
level 0

l
max

�t
0

Cycling methods

1 100 256 ù 512 0 1 ù 10
*3 –

2 100 64 ù 128 2 4 ù 10
*3 Subcycling

3 100 64 ù 128 2 1 ù 10
*3 Non-subcycling

4 0.8 256 ù 512 0 1 ù 10
*3 –

5 0.8 64 ù 128 2 4 ù 10
*3 Subcycling

6 0.8 64 ù 128 2 1 ù 10
*3 Non-subcycling

Fig. 16. Left: schematic of an oscillating cylinder in a spring-damper system. Right: velocity vectors around the cylinder in an underdamped regime (⇣ = 0.5) for the three-level
subcycling case (Case 2). Black lines: patches on level 0; green lines: patches on level 1; blue lines: patches on level 2.

Fig. 17. Left: comparison of the time series of the vertical position of the cylinder centroid at m<
= 100 between the single-level case (Case 1) and the analytical solution.

Right: comparison of the time series of the vertical position of the cylinder centroid among the single-level case (Case 1), three-level subcycling case (Case 2), and three-level
non-subcycling case (Case 3). Various values of damping ratio ⇣ are considered.

Fig. 18. Left: comparison of the time series of the vertical position of the cylinder centroid at m<
= 0.8 between the single-level case (Case 4) and [92]. Right: comparison of the

time series of the vertical position of the cylinder centroid among the single-level case (Case 4), three-level subcycling case (Case 5), and three-level non-subcycling case (Case 6).
Various values of damping ratio ⇣ are considered.
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Fig. 19. Left: schematic of the submerged cylindrical WEC device. Right: patch hierarchy and contours among different phases. Red solid line: air–water interface; red dashed
line: solid-water interface; black lines: patches on level 0; green lines: patches on level 1; blue lines: patches on level 2.

Fig. 20. Comparison of the dynamics of the two-DOF WEC among [92], the three-level subcycling case (Case 1), and the three-level non-subcycling case (Case 2). (a) Heave, (b)
surge, and (c) generated power.

Table 6
Parameters of the WEC problem.
Case no. Grid numbers on level 0 l

max
�t

0
Cycling methods

1 800 ù 192 2 8 ù 10
*4 Subcycling

2 800 ù 192 2 2 ù 10
*4 Non-subcycling

6.7. Cylinder splashing onto a two-fluid interface

To further validate our multilevel algorithms in the multiphase flow
scenario, we consider a cylinder splashing onto a two-fluid interface,
which is different from the single-phase falling sphere problem (Sec-
tion 6.3). The computational domain is [8D, 48D], the upper half of
which from y = 12D to y = 24D is filled with a lighter fluid of density
⇢
g
= 1 ù 10

3
kg_m

3 and the lower half of which from y = 0 to y = 12D

is filled with a heavier fluid of density ⇢
l
= 1.25 ù 10

3
kg_m

3. No-slip
boundary conditions are imposed on all sides. A circular cylinder with
diameter D = 2.5 ù 10

*3
m and density ⇢

s
= 1.5 ù 10

3
kg_m

3 is initially
placed at location [4D, 40D]. For this FSI problem, two cases using
either the subcycling or non-subcycling method are considered, as listed
in Table 7.

Table 7
Parameters of the cylinder splashing onto a two-fluid interface problem.
Case no. Grid numbers on level 0 l

max
�t

0
Cycling methods

1 128 ù 768 2 2 ù 10
*3 Subcycling

2 128 ù 768 2 5 ù 10
*4 Non-subcycling

Fig. 21 shows the time evolution of the density contours of the three
phases. The dimensionless time is defined as T = t

˘

g_D. As plotted,
a cavity forms in the wake of the cylinder as it penetrates the two-
fluid interface. As the cavity collapses, a jet forms and breaks up into
small droplets. We note that both the cavity and jet dynamics remain
approximately symmetric in our simulations due to the initial symmetry
of the problem setup. Symmetrical results are also observed in [64].

In Appendix B, we assess the conservation of a passive scalar in the
inviscid shear layer. Here, instead, we assess the conservation of mass
by our multiphase FSI solver. This is done by tracking the normalized
fluid mass m?(t) = m(t)_m(0) as a function of time for the cylinder
splashing onto the two-fluid interface case. Here, m(t) = î ⇢(x, t) dV is
the total fluid mass in the domain. Fig. 22 plots the time evolution of
m
? over the course of the entire simulation. The results indicate that the
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Fig. 21. Evolution of the density field when a cylinder falls into a column containing two fluids at different time instances. Only part of the y axis is plotted for better visualization.

Fig. 22. Comparison of the time evolution of the normalized fluid mass between the
subcycling method (Case 1) and the non-subcycling method (Case 2) for a 2D cylinder
free-falling into a column containing two fluids.

total mass loss for Case 1 and 2 is less than 2%. We attribute the mass
loss to the level set technique, which is known to be non-conservative in
nature. Nevertheless, results of Fig. 22 indicate that our algorithm has
a reasonably good performance in terms of conserving the total fluid
mass for this complex problem including gas–liquid–solid interaction
using both subcycling and non-subcycling methods.

To further quantitatively validate the accuracy of our algorithms,
the time series of the vertical velocity and vertical position of the
cylinder are plotted in Fig. 23. Our results show agreement with the
studies of Nangia et al. [64], in which the same DLM approach was
applied to capture the motion of the splashing cylinder. In summary,
our simulations can accurately simulate the dynamics of the splashing
cylinder and achieve good performance of the mass conservation in
multiphase flow scenarios with both the subcycling time advancement
scheme (Case 1) and the non-subcycling time advancement scheme
(Case 2).

6.8. Two-dimensional self-propelled eel

In this section, we consider the two-dimensional self-propelled eel
problem to validate the proposed algorithms when the geometry and
deformation of the body are prescribed (Section 5.2.3). Eels are elon-
gated ray-finned fish that belong to the order Anguilliformes. Fig. 24
sketches the two-dimensional swimming eel considered in this study.
The eel has translation and deformation motions at t > 0 while
interacting with the surrounding fluid. For this problem, the eel is
assumed to move forward in the negative x direction, and thus, the
local h* ⇣ coordinate, which is attached to the body of the eel, retains
the same orientation as the fixed global y * x coordinate. To describe
the geometry of the fish, the vertical displacement of its middle line

Table 8
Parameters of the two-dimensional self-propelled eel problem.
Case no. Grid numbers on level 0 l

max
Cycling methods

1 4096 ù 2048 0 –
2 512 ù 256 3 Subcycling
3 512 ù 256 3 Non-subcycling

h(⇣ , t) is given by [4,54]

h(⇣ , t) = 0.125L
⇣_L + 0.03125

1.03125
sin

4

2⇡

0

⇣

L
*
t

T

15

, (48)

where L is the projected body length and T is the oscillating period
of the tail tip. The cross-section of the fish body is centered about the
middle line h(⇣ , t), and its half width r(⇣ ) is given by

r(⇣ ) =

T
˘

2w
H
⇣ * ⇣2 for 0 Õ ⇣ < ⇣

H
,

w
H

L*⇣

L*⇣H

for ⇣
H
Õ ⇣ < L.

(49)

Here, w
H

= 0.04L is obtained from the observations reported
in [4,94]. A periodic computational domain of size 8Lù4L is employed
for the two-dimensional eel simulation. The Reynolds number is Re =
V
max

L_�
f
, where V

max
= 0.785L_T is the maximum undulatory velocity

of the tail tip. At t = 0, the head of the eel is centered at (6L, 2L). The eel
then moves forward along the negative x direction when t > 0 because
of self-propulsion. Other useful parameters for different cases are listed
in Table 8. There are two refinement criteria in the eel simulation
problem. The first criterion is the distance to the interface, i.e., the
grid cells (i, j) on level l (0 f l < l

max
) are refined to the finer level

if  
i,j
 < 4.0max(�x

l
,�y

l
), where �xl and �y

l are the grid spacings
in the x direction and y direction, respectively, on level l. The second
criterion is based on the vorticity magnitude, in which grid cells are
also tagged and refined to the next finer level if ! > 0.7!

max
. The

refinement stops when l
max

is reached.
For the two-dimensional eel simulation, the left part of Fig. 25

shows the results of the evolution of the forward-moving velocity,
which agrees with the results of Bhalla et al. [4]. Fig. 26 shows vorticity
contours associated with the swimming eel and the grid hierarchy at
different time instants. Vortices are generated on both sides of the eel
and shed from the tail tip in the form of a reverse Von Kármán vortex
sheet. The frequency of vortex shedding corresponds to the oscillating
frequency of undulation. The eel moves forward as a result of self-
propulsion. The adaptive grid helps accurately resolve the fluid–solid
interface and the essential flow features at a reduced computational
cost. The Strouhal number is defined as St = 2A

tail
_TU

steady
[95], in

which U
steady

is the average forward speed of the eel in the quasi-steady
state and A

tail
is the amplitude of the tail tip flapping. In our simula-

tions, we obtain St = 0.41, which is in the range of experimentally
observed St data for eels [96].
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Fig. 23. Time series of vertical velocity (left) and vertical position (right) for a 2D cylinder free-falling into a column containing two fluids. The simulation results are compared
with those of [64].

Fig. 24. Sketch of a two-dimensional swimming eel. Here, (⇣
c
(t),h

c
(t)) is the centroid

of the eel, h(⇣ , t) is the vertical displacement of its middle line (red dashed line), and
r(⇣ ) is the half width of the cross-section centered at the middle line.

In summary, our adaptive algorithms can accurately capture the
dynamics of swimming eels with prescribed geometry and deformation.

6.9. Three-dimensional self-propelled eel

This section investigates a three-dimensional, self-propelled swim-
ming eel, a dynamic and complex problem that is considered to be
computationally expensive. In addition to validating the adaptive DLM
algorithms for 3D problems with prescribed deformations, another
objective of this test is to compare the computational cost of the single-
level, subcycling, and non-subcycling cases. The simulation parameters
and refinement criteria for the three-dimensional eel problem are the
same as those for the two-dimensional eel problem of Section 6.8, ex-
cept that the geometry of its cross-section is an ellipsoid with semimajor
and semiminor axis lengths of a = 0.51L and b = 0.08L, respectively.
The height h(s) is set to

h(⇣ ) = b

v

1 *

0

⇣ * a

a

12

. (50)

A periodic computational domain of size 8L ù 4L ù 4L is employed
in the simulation. The head of the 3D eel at t = 0 is centered at
(6L, 2L, 2L). Three cases listed in Table 9 are considered. As seen from
the right part of Fig. 25, we obtain agreement with the literature on the
forward swimming velocity of the eel. The left part of Fig. 27 shows
the vorticity contour and grid hierarchy of the four-level subcycling
case (Case 2) at Re = 5609. The flow features are consistent with those
reported in [94].

To compare the computational cost for different cases, we profile
each case for t_T = 0 * 0.1 on the Cray XC40/50 (Onyx) system at the
U.S. Army Engineer Research and Development Center, excluding the
I/O costs. Table 10 shows the total number of grid cells for different
cases at t_T = 0.1. Compared with the adaptive cases with l

max
= 3

(Cases 2 and 3), the single-level case (Case 1) has nearly 11.42 times
more cells, i.e., the adaptive refinement considerably reduces the total
number of grid cells.

The right part of Fig. 27 compares the wall clock time between the
single-level case and the multilevel case for the time range t_T = 0*0.1.
Compared with the single-level case (Case 1), the four-level subcycling

Table 9
Parameters of the three-dimensional eel problem.
Case no. Grid numbers on level 0 l

max
Cycling methods

1 1536 ù 512 ù 256 0 –
2 192 ù 64 ù 32 3 Subcycling
3 192 ù 64 ù 32 3 Non-subcycling

case (Case 2) achieves more than a 20ù speedup in terms of the wall
clock time, which significantly saves the computational cost of the 3D
simulation. By comparing the non-subcycling case (Case 3) with the
subcycling case (Case 2), we find that the subcycling case further lowers
the computational cost by a factor of 1.5. The reason is that, compared
to the non-subcycling method, the subcycling method uses a larger time
step size for the coarser levels.

In addition to the total wall clock time, the wall clock time spent
on some key parts of the algorithm is also documented, including the
MAC projection, viscous solver, level projection, synchronization, and
DLM algorithm. Among them, the DLM algorithm, which includes the
initialization and redistribution of the Lagrangian markers and the time
advancement of the solid structure, is the most time-consuming oper-
ation due to the suboptimal parallelization of the Lagrangian markers
while using the domain decomposition technique for the background
(Cartesian) grid. The second most time-consuming part and third most
time-consuming part are the level projection and MAC projection,
respectively, in which the Poisson equation needs to be solved on the
multilevel grid. The optimization of these three parts is beyond the
scope of this work and deferred to future studies.

7. Conclusions

In this work, we have established a novel adaptive distributed
Lagrangian multiplier (DLM) framework with subcycling and non-
subcycling time advancement methods for simulating fluid–structure
interaction (FSI) problems on adaptively refined grids. The four main
contributions of this work are summarized at the end of Section 1.
We note that the proposed multilevel advancement algorithm uses the
level-by-level advancement technique for time-marching the variables
in valid and invalid regions of the adaptive mesh refinement (AMR)
hierarchy and decouples the time advancement at different levels.
Because of this decoupling, the time step constraint on the coarser
levels is relaxed compared to the finer levels when the subcycling
method is applied. On the other hand, the non-subcycling method
avoids the time interpolation process across different levels because
data on all levels are located at the same time instant during the
simulation.

We also developed a force-averaging algorithm to maintain the
consistency of Eulerian immersed boundary (IB) forces across multiple
levels. The efficacy of the force averaging algorithm is validated using
the lid-driven cavity with a submerged cylinder problem, in which the
expected order of the convergence rate is obtained for the multilevel
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Fig. 25. Comparison of the evolution of the forward velocity u
f
of the cases for the two-dimensional eel problem (left) and the three-dimensional eel problem (right). Case 1:

single-level case; Case 2: four-level subcycling case; Case 3: four-level non-subcycling case.

Fig. 26. Vorticity contours of the four-level subcycling case (Case 2) at Re = 5609 for the two-dimensional eel problem. Black patches: level 0; brown patches: level 1; red patches:
level 2; blue patches: level 3.

Table 10
Number of grid cells for the 3D self-propelled eel problem at t_T = 0.1.
Case no. Level 0 cells Level 1 cells Level 2 cells Level 3 cells Total cells

1 201,326,592 – – – 201,326,592
2 393,216 1,081,344 3,932,160 12,222,464 17,629,184
3 393,216 1,081,344 3,932,160 12,222,464 17,629,184

Fig. 27. Left: vorticity contour (! = 1.8) and grid hierarchy of the four-level subcycling case (Case 2) at Re = 5609 for the three-dimensional eel problem. Blue lines: patches on
level 2; green lines: patches on level 3. Right: comparison of the wall clock time of key advancing steps among the single-level case (Case 1), four-level subcycling case (Case 2),
and four-level non-subcycling case (Case 3).

cases. When a fine level catches up with a coarse level, synchronization

operations are applied to represent the composite solution during the

level-by-level advancement. As shown in the shear layer problem in

Appendix B, the MAC synchronization and refluxing operation ensures

mass and momentum conservation of the entire flow field by correcting

the multilevel solution using velocity and flux registers.
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The accuracy and robustness of the computational framework were
validated using several canonical test problems. The results show that
our multilevel numerical schemes can simulate various FSI problems
with different types of solid constraints, including prescribed motion,
free motion, and prescribed shape change. The subcycling and non-
subcycling methods produced consistent and accurate results for all of
these problems. We also combined the DLM algorithm with our pre-
vious two-phase flow solver and incorporated external spring-damper
forces into the simulation. This approach enabled us to simulate the
wave energy converter (WEC) problem.

Finally, we demonstrated that multilevel simulation can achieve the
same level of accuracy with substantially fewer grid cells compared to
the single-level fine-grid simulation. In particular, for the 3D swimming
eel problem, the multilevel simulation is able to accurately capture
the forward velocity with a nearly 20ù speedup compared to the
single-level simulation. In summary, we conclude that our proposed
BSAMR framework is promising for high-fidelity and computation-
ally demanding single-phase and multiphase fluid–structure interaction
problems.
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Appendix A. Discretization of the advection terms

We use the Godunov scheme [75,97] for discretization of the advec-
tion terms [( � (u )]n+1_2 in Eq. (15) and ( � (uu)n+1_2 in Eq. (25). This
scheme is robust for a wide range of Reynolds numbers. There are four
substeps to calculate the advection terms:

1. The unsplit Godunov approach is utilized to estimate the edge-
centered velocity (un+1_2,L, un+1_2,R) and edge-centered LS func-
tion ( n+1_2,L,  n+1_2,R) at the middle time step t

n+1_2 on the
edges perpendicular to the x direction. The superscripts L and R

indicate that the edge-centered values are approximated on the
left edge and right edge, respectively. The edge-centered veloc-
ity (un+1_2,U , un+1_2,D) and edge-centered LS function ( n+1_2,U ,
 
n+1_2,D) can be calculated on the edges perpendicular to the y

direction at the middle time step tn+1_2, where the superscripts U
and D denote that the edge-centered values are calculated from
the up edge and down edge, respectively, of the computational
cell.

2. The MAC projection [26,74,76] is then applied to obtain the
divergence-free edge-centered advection velocity uadv.

3. The advection velocity uadv is then used to calculate the edge-
centered approximate state un+1_2 and  n+1_2 based on un+1_2,L,
un+1_2,R, un+1_2,U , un+1_2,D,  n+1_2,L,  n+1_2,R,  n+1_2,U , and
 
n+1_2,D.

4. The advection velocity uadv is then used to advect the approxi-
mate state un+1_2 and  n+1_2. The advection terms ( � (uu)n+1_2
and [( � (u )]n+1_2 are calculated as ( � (uadvun+1_2) and ( �
(uadv n+1_2).

We note that the calculation of the advection term [( � (u�)]n+1_2 in
Eq. (16) is the same as that for [( � (u )]n+1_2.

Appendix B. MAC synchronization and refluxing algorithm

The MAC synchronization and refluxing algorithm is applied as the
second substep of the synchronization step, aimed at maintaining the
conservation of momentum and scalar on the multilevel grid. Here, the
differences between uadv on the coarser level and the finer level are
quantified during the single-level advancement (Section 5.1). These ve-
locity differences, together with the flux differences, form the registers
to make the corrections for each level. Specifically, the velocity regis-
ters that hold the difference in the edge-centered advection velocity are
given by

�ul = *A
luadv,l + 1

2

2
…

k=1

…

faces

A
l+1uadv,k,l+1. (51)

In this equation, the superscript k represents the substeps of the
finer level l+1 because it takes two substeps for level l+1 to catch up
with level l in the subcycling method (Fig. 4),

≥

faces
is the sum over

the cell faces, and A is the area of each face. The velocity flux registers,
including both the advective flux register �f adv,lu and the viscous flux
register �fvisc,lu , are defined in a similar way as

�f adv,lu = �t
l

H

A
lf adv,lu +

1

2

2
…

k=1

…

faces

A
l+1f adv,k,l+1u

I

, (52)

�fvisc,lu = �t
l

H

A
lfvisc,lu +

1

2

2
…

k=1

…

faces

A
l+1fvisc,k,l+1u

I

. (53)

The LS function has the advective flux register �f adv,l only, which is
calculated as

�f adv,l
 

= �t
l

H

A
lf adv,l
 

+
1

2

2
…

k=1

…

faces

A
l+1f adv,k,l+1

 

I

. (54)

In Eqs. (52)–(54), f adv,lu , f adv,l , and fvisc,lu are given by

f adv,lu = uadv n+1_2, (55)

f adv,l
 

= uadv n+1_2, (56)

fvisc,lu =
1

2Re

�

�( 
n,l
)(un,l + �( n+1,l)(u<,n+1,l

�

. (57)

The mismatch of the velocity register in Eq. (51) forms the right-hand
side of a MAC solution for the correction �el on level l,

( �
0

A
l

⇢n+1_2,l
((�el)

1

= ( � �ul . (58)

After solving Eq. (58), a velocity correction ul
corr

is obtained by

ul
corr

=
*((�el)
⇢n+1_2,l

. (59)

The flux corrections associated with the above velocity correction are

f corr,l
 

= ul
corr

 
n+1_2,l

, (60)

f corr,lu = ul
corr

un+1_2,l . (61)

The final correction to the LS function on level l,  l
sync

, is determined
by the flux correction f corr,l in Eq. (60) and the advective flux register
�f adv,l in Eq. (54) as

 
l

sync
= *( � f corr,l

 
*

�f adv,l 

�t � V oll
, (62)

where V oll is volume of the grid cell on level l, i.e., V oll = �x
l
�y

l for
the 2D case and V oll = �x

l
�y

l
�z

l for the 3D case. The LS function on
level l is then updated as

 
n+1,l

:=  
n+1,l

+ �t
l
 
l

sync
. (63)
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Fig. 28. Left: contours of the scalar field and grid hierarchy at t = 0.8 of the two-level subcycling case with dynamic mesh refinement with refluxing (Case 4) for the inviscid
shear layer problem. Green line: patches on level 0; black line: patches on level 1. Right: comparison of the conservation errors of the passive scalar among the four cases of the
inviscid shear layer problem. Case 1 and Case 2 use static refinement, while Case 3 and Case 4 use dynamic refinement. Case 2 and Case 4 consider refluxing, while Case 1 and
Case 3 do not.

The flux correction about the velocity f corr,lu in Eq. (61), together
with its advective flux register �f adv,lu in Eq. (52) and viscous flux
register �f adv,lu in Eq. (53), forms a subsequent parabolic equation,

ul
sync

*
�t

2⇢n+1_2,lRe
( �

⇠

�( 
n+1

)(ul
sync

⇡

= *( � f corr,lu *
1

�t � V oll

0

�f adv,lu +
1

⇢n+1_2,l
�f adv,lu

1

, (64)

which gives the final correction of the velocity ul
sync

on level l. The
updated velocity on level l is then given by

un+1,l := un+1,l + �tlul
sync

. (65)

The corrections also need to propagate to all the finer levels q as

 
n+1,q

:=  
n+1,q

+ �t
lI

cons
( 

l

sync
) (66)

and

un+1,q := un+1,q + �tlI
cons

(ul
sync

) (67)

for all l < q f l
max
. Here, the conservative interpolation I

cons
is

performed.
For any level l > 0, the velocity registers and flux registers on the

coarser level l * 1 are affected by the abovementioned correction and
thus need to be updated as follows:

�ul*1 := �ul*1 + 1

2

…

faces

(A
lul

corr
), (68)

�f adv,l*1u := �f adv,l*1u +
1

2
�t
l*1

…

faces

(A
lf corr,lu ), (69)

�fvisc,l*1u := �fvisc,l*1u +
1

2
�t
l*1

…

faces

⇠

1

2
A
l
�( 

n+1
)(V l

sync

⇡

, (70)

�f adv,l*1
 

:= �f adv,l*1
 

+
1

2

…

faces

(A
lf corr,l
 

). (71)

As a reminder, the abovementioned MAC synchronization and re-
fluxing substep is utilized to maintain the conservation of momentum
and scalar in the whole flow field. To validate the efficacy of this
substep, we assess the conservation of a passive scalar in the inviscid
shear layer. Similar to the setup in Bell et al. [76], the computational
domain is 1 ù 1 with periodic boundary conditions in both the hori-
zontal direction and vertical direction. The density of the inviscid fluid
is ⇢

f
= 1.0, and the initial velocity is given by

u(x, y) =

T

tanh(�
1
(y * 0.25)) y f 0.5

tanh(�
1
(0.75 * y)) y > 0.5,

(72)

v(x, y) = �
2
sin(2⇡x), (73)

where �
1
= 30 and �

2
= 0.05. The grid size on level 0 is 100 ù 100.

A passive scalar advected by the abovementioned vortex pair is simu-
lated. The initial scalar field is set to

s(x, y) =

<

2.0, if x À [0.2, 0.8] and y À [0.2, 0.8],

1.0, otherwise .
(74)

Table 11
Parameters of the inviscid shear layer problem.
Case no. Mesh refinement type Is refluxing performed?

1 Static No
2 Static Yes
3 Dynamic No
4 Dynamic Yes

As the LS function is essentially a passive scalar governed by the
advection equation, the simulation of s is carried out using Eq. (15).
A total of four subcycling cases are considered, varying in the mesh
refinement and whether the refluxing step is performed, as listed in
Table 11. For mesh refinement, we consider static and dynamic refine-
ment. For static refinement, grid cells are refined to l

max
= 1 in the

rectangular region x À [0.2, 0.8] and y À [0.2, 0.8]. For the dynamic
refinement, the vorticity magnitude, !

z
 > 0.75!

max

z
, is used as the

refinement criterion.
The vorticity field at t = 0.8 for the dynamic refinement case with

refluxing (Case 4) is shown on the left part of Fig. 28. Because of the
advection by the vortices, a high concentration of the scalar crosses
the CF boundary, which can generate errors in the conservation of
the scalar if the MAC synchronization and refluxing operations are
not considered. To quantify this error, the relative change in the total
amount of the scalar compared to the initial time is evaluated as

e(t) =

î
⌦

�

s
t
* s

t=0

�

dx

î
⌦
s
t=0
dx

. (75)

The results for the abovementioned four cases are plotted in Fig. 28.
When refluxing is used (Cases 2 and 4), the relative error is within
10*16 for both static refinement and dynamic refinement, while notice-
able errors are present in simulations without refluxing (Cases 1 and 3).
This test shows that MAC synchronization and refluxing operations are
necessary and can help conserve the scalar.

Appendix C. Wave generation and wave absorption

This section presents the validation of the wave generation and
wave absorption algorithms utilized for simulating the WEC problem
in Section 6.6. These algorithms are only briefly introduced here; their
numerical details can be referenced in [64,90,92]. In short, the horizon-
tal and vertical velocity components are prescribed at the left boundary
based on wave theory such that Stokes waves can be generated and
propagate towards the right side. To mitigate the reflection of waves
from the right boundary, a damping zone is placed at a downstream
location to smoothly relax the velocities and LS function �.

A 2D example is presented here for validating the wave generation
and wave absorption algorithms. This example has the same computa-
tional parameters as the WEC problem of Section 6.6, except that the
WEC device is not included in the simulation. Five cases are considered,
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Fig. 29. Left: comparison of time series of the wave elevation at x = 2.87� among the cases with different grid sizes for the convergence study. Right: comparison of time series
of the wave elevation at x = 2.87� among the single-level case (Case 2), the three-level subcycling case (Case 4), the three-level non-subcycling case (Case 5), and the theory.

Table 12
Parameters of the wave generation and wave absorption problem.
Case no. Grid numbers on level 0 l

max
�t

0
Cycling methods

1 1280 ù 128 0 0.0002 –
2 2560 ù 256 0 0.0001 –
3 5120 ù 512 0 0.00005 –
4 640 ù 64 2 0.0004 Subcycling
5 640 ù 64 2 0.0001 Non-subcycling

as listed in Table 12. The first three single-level cases have different
grid sizes and are employed to show the numerical convergence of the
wave generation algorithms. As shown in the left part of Fig. 29, the
simulations converge to the theoretical wave elevation using Stokes
wave theory [98] as the grid resolution increases. We find that the
resolution of Case 2 is sufficient to accurately capture the wave profile,
in which there are approximately ten grid cells per wave height. Case
4 and Case 5 have the same resolution on their finest level as Case
2. From the right part of Fig. 29, it is seen that the results of these
three cases are consistent with each other and agree with the theoretical
result.
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