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A B S T R A C T

In this work, we present a novel MPC-integrated multiphase IB framework that can compute the optimal
energy-maximizing control force ‘‘on-the-fly’’ by dynamically interacting with a high-fidelity numerical wave
tank (NWT). The computational model closely mimics the working setup of the device at its site of operation.
Due to the requirement of solving a constrained optimization problem at each time step of the IB simulation, the
MPC algorithm utilizes a low-dimensional dynamical model of the device that is based on the linear potential
theory (LPT). The multiphase IB solver, on the other hand, is based on the high-dimensional fictitious domain
Brinkman penalization (FD/BP) method, which fully-resolves the hydrodynamic non-linearities associated with
the wave–structure interaction (WSI). A time-series forecasting auto-regressive model is implemented that
predicts wave heights (from the past NWT data) to estimate the future wave excitation/Froude–Krylov forces
for the MPC algorithm. Moreover, we also experiment with non-linear Froude–Krylov (NLFK) forces for the first
time in an MPC formulation. The NLFK forces are computed efficiently using a static Cartesian grid, in which
the WEC geometry is implicitly represented by a signed distance function. Under varying sea conditions, the
predictions of the MPC-integrated multiphase IB solver are compared to the widely popular LPT-based solvers.
In agitated sea conditions and/or under aggressive control, the LPT-based WSI solvers produce too optimistic
(and misleading) power output values. Overall, six WSI/MPC solver combinations are compared for a heaving
vertical cylinder to determine the reasons for discrepancies between high- and low-fidelity predictions. We also
determine the pathway of energy transfer from the waves to the power take-off (PTO) system and verify the
relationships using IB simulations. Additionally, three different sea states are simulated within the IB simulation
to test the adaptive capability of MPC for WECs. MPC is demonstrated to adapt to changing sea conditions
and find the optimal solution for each sea state.

The interaction between the distributed-memory parallel multiphase IB solver (written in C++) and the
serial MPC solver (written in MATLAB) is fully described to facilitate reproducibility. A bespoke communication
layer between the two solvers is developed, which can be easily modified by the WEC community to experiment
with other optimal controllers and computational fluid dynamics (CFD) solvers. All codes for this work are
made open-source for pedagogical and research purposes.

1. Introduction

Global warming is on the rise and is likely to breach the 1.5 ˝C limit
in the coming decades. It is imperative to switch to clean renewable
energy, including hydro, solar, and wind, in order to mitigate the
effects of climate change and meet the growing energy demands. A
combination of renewable energy technologies and existing energy
sources is necessary to accelerate the transition from carbon-based
sources. This can be achieved, in part, through ocean energy, which
remains a largely untapped energy resource. It has been demonstrated
that wave energy can be harvested, but commercial devices have
yet to be developed. This is mainly because wave energy converters
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(WEC) operate in harsh marine environments, which causes salt water
corrosion, marine growth, sub-system failure, and high maintenance
costs. The highly irregular nature of sea waves further complicates
device design and the controller’s task of optimizing performance. The
testing of expensive WEC devices and power take-off units (PTO) in
physical wave tanks is another challenge.

Numerical modeling of WECs is an efficient way to compare differ-
ent designs and control strategies. A widely popular modeling approach
in WEC research is the boundary element method (BEM) or its time-
domain variant, the Cummins equation (Cummins, 1962) based on the
linear potential theory (LPT) (Journée and Massie, 2001; Holthuijsen,
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2007) due to its simplicity, low computational cost, and flexibility
in simulating the wave structure interaction (WSI) of a variety of
WEC devices and control strategies. The linear models, which were
created originally to model large sea vessels, ships, and similar sea-
keeping applications, assume small body motion with respect to the
wave amplitudes and lengths. Additionally, inviscid, irrotational, and
incompressible flows are assumed. The BEM solvers perform exception-
ally well for relatively calm sea states with small wave amplitudes.
Nevertheless, the assumptions upon which linear methods are based are
severely challenged in conditions of agitated seas or aggressive control.
We demonstrate that, under these operating conditions, linear methods
overestimate the converter’s dynamics and power consumption. Addi-
tionally, BEM solvers use low-dimensional dynamical models that do
not provide insights into fluid dynamics resulting from fluid–structure
interaction (FSI), such as vortex shedding, wave breaking, and wave
overtopping.

In recent years, models based on the non-linear potential flow the-
ory (NLPT) have been proposed Davidson and Costello (2020), Penalba
et al. (2017). By simulating the actual free water surface and including
large body displacements, these models provide more accurate power
estimates of the device than LPT-based models. The NLPT-based models
are computationally expensive and are not easily applicable to the
model-based control of WECs. An acceptable compromise, which is
also sufficiently accurate, is the partially non-linear BEM model, which
accurately resolves the hydrodynamical interactions between waves
and devices (Merigaud et al., 2012; Retes et al., 2015; Giorgi et al.,
2016; Giorgi and Ringwood, 2017). This can be accomplished by mod-
ifying the wave excitation force in the linear time-domain Cummins
equation. In particular, the wave excitation or Froude–Krylov (FK)
force is computed by integrating the incident wave pressure force
over an instantaneous wetted surface area instead of assuming it is
stationary at its mean equilibrium position. In this work, the Cummins
equation-based WSI solver employing the non-linear Froude–Krylov
(NLFK) method is referred to as the BEM-NLFK solver, and its linear
counterpart as the BEM-LFK solver.

Although the NLPT-based models are more accurate than those
based on LPT, they still do not account for the viscous phenomenon
or other major hydrodynamical non-linearities, such as wave-breaking
and vortex shedding. Computational fluid dynamics (CFD) provides
the most accurate description of WSI of WECs (Penalba et al., 2017;
Agamloh et al., 2008; Ghasemi et al., 2017; Anbarsooz et al., 2014;
Dafnakis et al., 2020; Khedkar et al., 2021). Some groups have recently
begun performing control-integrated CFD simulations of WEC devices.
These studies, however, are mostly limited to classical control laws,
such as reactive control (also called proportional–derivative control) or
latching control (also called phase control or bang–bang control); see
for example Penalba et al. (2018), Agamloh et al. (2008), Giorgi and
Ringwood (2016), Windt et al. (2021). Agamloh et al. (2008) performed
CFD simulations of a cylindrical buoy, in which the PTO was modeled
as an ideal linear damper to generate a control force proportional to
the device velocity, that is, the derivative control law. In Agamloh
et al. (2008), the optimal damping coefficient was estimated offline
and kept constant throughout the simulation. To accurately capture
the motion of the body, their CFD technique remeshed the domain
at every time step. Giorgi and Ringwood (2016) used the latching
control strategy for a 2D heaving cylinder subject to regular waves
and compared BEM-LFK and CFD solvers. This is the first paper to
implement a latching control for a WEC device within a CFD frame-
work. The authors computed the optimal latching period offline using
a combination of analytical techniques and free decay tests of the
WEC device in the CFD-based numerical wave tank (NWT). According
to Giorgi and Ringwood (2016), the BEM-LFK solver overestimates
heave amplitude (and therefore power production) compared to the
CFD solver. Recently, Windt et al. (2021) compared the performance
of a heaving WEC using BEM-LFK and CFD solvers. The predictions
for three controllers were compared: (1) classical resistive (derivative)

control; (2) classical reactive (proportional–derivative) control; and
(3) moment-matching optimal control (Faedo et al., 2018). As for the
resistive and reactive controllers, their optimal coefficients/gains were
computed offline and kept constant throughout the simulation, while
the moment-matching controller used a pre-computed/offline optimal
control force sequence. Similarly to Giorgi et al. Windt et al. also found
that the BEM-LFK solver over-predicts power absorption of the WEC
device (for all three controllers).

Unlike previous control-integrated CFD studies that used pre-
computed controller gains or optimal control force sequences, this work
uses the model predictive control (MPC) algorithm to compute the opti-
mal energy-maximizing control force online. Due to its ability to handle
many types of device and PTO topologies, model predictive control
of WECs has been dubbed the ‘‘Tesla’’ of controllers (Previsic et al.,
2020). In our modeling approach, the MPC interacts with the CFD-
based NWT that sends the wave elevation and device dynamics data to
the controller, which then solves a constrained optimization problem to
find the optimal control force sequence. In the NWT, both regular and
irregular sea conditions are modeled. A time-series forecasting auto-
regressive model is implemented to predict wave heights (from past
NWT data) to estimate the future wave excitation forces required by
the MPC. Due to the requirement of solving a constrained optimization
problem at each time step of the CFD simulation, the MPC algorithm
is formulated using the computationally efficient LPT. Moreover, we
include NLFK forces for the first time in an MPC formulation. The
NLFK forces are computed efficiently using a static Cartesian grid,
in which the WEC geometry is implicitly represented by a signed
distance function. The predictions of the MPC-integrated CFD solver
are compared to the MPC-integrated BEM solvers under varying sea
conditions. For a heaving 3D vertical cylinder device, six WSI/MPC
solver combinations are compared. The current study is the first of
its kind and comprehensively examines the reasons for prediction
discrepancies between different solvers. We also determine the pathway
of energy transfer from the waves to the power take-off (PTO) system
and verify the relationships using IB simulations. Additionally, three
different sea states are simulated within a CFD simulation to test the
adaptive capability of MPC of WECs. MPC is demonstrated to adapt
to changing sea conditions and find the optimal solution for each sea
state.

Our CFD solver is based on the multiphase fictitious domain
Brinkman penalization (FD/BP) technique. FD/BP is a fully-Eulerian
version of the immersed boundary (IB) technique (Angot et al., 1999)
which solves a single set of equations in the entire domain, including
the air, water, and solid WEC regions. In comparison with body
conforming grid techniques that have previously been used to simu-
late WEC dynamics, the FD/BP method is computationally efficient,
since it eliminates the need to remesh the domain to account for
body motion. To accurately resolve the wave and WEC dynamics in
the specific regions of interest, we also make use of locally refined
Cartesian grids. As a result, the computation costs of 3D simulations
are low. For reproducibility of the technique, the interaction between
the distributed-memory parallel CFD solver (written in C++) and
the serial MPC solver (written in MATLAB) is fully described here.
Using the open-source PETSc library (Balay et al., 2021), a custom
communication layer is developed between the solvers. Furthermore,
the communication layer can be easily customized to experiment with
other optimal controllers and CFD solvers by the WEC community. We
have made all code freely available at https://github.com/IBAMR/cfd-
mpc-wecs.

The paper is structured as follows. In Table 1, we list the abbrevia-
tions that are frequently used throughout the paper. Section 2 discusses
the LPT-based dynamical models, MPC formulation with device con-
straints and regularization/penalization of the objective function, and
LFK/NLFK force estimation. In Section 3, we describe the numerical
wave tank setup to simulate regular and irregular sea conditions.

https://github.com/IBAMR/cfd-mpc-wecs
https://github.com/IBAMR/cfd-mpc-wecs
https://github.com/IBAMR/cfd-mpc-wecs
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Table 1
Frequently used abbreviations in the paper.
Abbreviation Entity

AR Auto-regression
BEM Boundary element method
CFD Computational fluid dynamics
FSI Fluid–structure interaction
LFK Linear Froude–Krylov
LPT Linear potential theory
MPC Model predictive control
NLFK Non-linear Froude–Krylov
NWT Numerical wave tank
PTO Power take-off
WEC Wave energy converter
WSI Wave–structure interaction

Fig. 1. Schematic representation of a 1 DOF heaving cylindrical wave energy converter
device.

Section 4 describes continuous equations of motion and their spatiotem-
poral discretizations. The section also deduces the pathway for energy
transfer from the waves to the PTO system. Section 6 discusses the
interactions between MPC and CFD codes. Section 7 simulates a bench-
marking example from the literature to validate our implementations of
the BEM and MPC solvers. The same section includes a motivation ex-
ample illustrating the stark differences between the power predictions
of the BEM and CFD solvers. We conduct a spatial and temporal grid
resolution study in Section 8 in order to determine the optimal mesh
spacing and time-step size for the IB solver. In the results and discussion
Section 9, a systematic comparison is conducted. Lastly, Section 10
summarizes the findings and draws the main conclusions of this study.

2. Dynamical model and model predictive control of WEC devices

Model-based optimal control is only possible when a dynamical
model describing the system/plant is available and is computationally
efficient. For WEC devices, the linear potential theory, also known
as the Airy wave theory, provides a dynamical model that is com-
putationally efficient. Thus, in this section we first outline the linear
dynamical model of the converter, which is well-suited for its optimal
control. Discussion includes pros and cons of the linear model and
improvements in terms of incorporating non-linear wave excitation
forces. Afterwards, model predictive control of WEC is presented using
the first-order hold method. We also discuss some of the key concepts of
a WEC’s MPC, including defining the cost function, device constraints,
regularizing/penalizing the cost function, and predicting future wave
excitation forces.

2.1. Linear potential theory-based WEC dynamical model

The WEC device considered in this study is a one degree of free-
dom (DOF) cylindrical point absorber.1 that heaves on the air–water
interface. A schematic representation of the device is shown in Fig. 1
Axisymmetric point absorbers are among the most common WEC-
types that mainly absorb wave energy due to their heaving motion.
Therefore, for such devices, motion in the other DOFs can be neglected
(or is constrained). If the amplitude of the motion of the device is
significantly smaller than the wave height, then according to the LPT,
the total force acting on the body is a linear sum of the hydrostatic
restoring force F

h
, radiation force F

r
, wave excitation (including wave

diffraction) force Fexc, and the viscous drag force Fv. The wave-induced
motion of the device is retarded by the controller to extract the electri-
cal energy. The WEC controller is typically embedded within a power
take-off unit, which exerts the actuator/control force FPTO on the
device.

Using the Newton’s second law of motion, the dynamics of the
device in the heave direction (z) can be written as

máz(t) = F
h
(t) + F

r
(t) + Fexc(t) + Fv(t) + FPTO(t), (1)

in which m is the mass of the cylinder, z(t), Üz(t), and áz(t) are the displace-
ment (from the mean equilibrium position), velocity, and acceleration
of the device in the heave direction, respectively.

The hydrostatic restoring force due to buoyancy is given by

F
h
(t) = *kstiff � z(t), (2)

in which kstiff is the hydrostatic stiffness coefficient. For a cylindrical
shaped body, the hydrostatic stiffness coefficient is given by kstiff =
⇢
w
g⇡R

2
cyl, in which ⇢

w
is the density of water, g is the acceleration

due to gravity, and Rcyl is the radius of the cylinder. The length
of the vertical cylinder is Lcyl. For a vertical heaving cylinder, kstiff
does not change with time because the water plane area of the body
does not change. A possible means of modeling nonlinear buoyancy
forces for floating bodies whose water plane areas differ is discussed in
Section 2.3.2. In addition, Giorgi et al. (2016), Giorgi and Ringwood
(2017) describe an analytical approach to model nonlinear buoyancy
forces.

The radiation force F
r
(t) in Eq. (1) is written as

F
r
(t) = *mÿ áz(t) *  

t

0
K
r
(t * ⌧) Üz(⌧) d⌧. (3)

Here, mÿ is the added mass2 at infinite frequency. The radiation force
in Eq. (3) also includes a convolution integral of the radiation impulse
response function (RIRF) K

r
(t) with the velocity of the body. Physically,

RIRF explains how kinetic energy is dissipated by the water waves
produced by the oscillation of the body, which began its motion at time
t = 0 and continues to do so until current time t.

Excitation forces due to incident/incoming waves can be computed
on either a mean or instantaneous wetted surface of the device. In the
former case, excitation forces can be expressed as a convolution integral
between the wave impulse response function (WIRF) K

e
(t) and the

undisturbed wave surface elevation ⌘wave(t; xB) at the device location
x
B
:

Fexc(t) = Ke < ⌘wave =  

ÿ

*ÿ
K
e
(⌧)⌘wave(t * ⌧; xB) d⌧. (4)

From Eq. (4) it can be seen that Fexc(t) is non-causal because future
surface elevations affect the current motion of the body. The non-
causality of WIRF has practical implications when it comes to the

1 Point absorber is a WEC device whose characteristic dimensions are much
smaller than the sea/ocean wavelength.

2 The added mass represents the additional inertia of the system due to the
motion of the surrounding fluid.
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implementation of MPC of WECs, since the wave elevations at the
device location must be forecasted. Discussion of wave prediction is
deferred to Section 2.3.1. In Section 2.3.2, we discuss the evaluation of
wave excitation forces using the instantaneous wetted surface.

Lastly, the viscous drag force acting on the body can be written
using the non-linear Morison equation (Sarpkaya, 1986) as

F
v
(t) = *1

2⇢wCd⇡R
2
cyl Üz(t) Üz(t), (5)

in which C
d
is the coefficient of drag. Estimating an accurate value of

C
d
for Eq. (5) is a non-trivial task. This work estimates C

d
by equating

the work done
⇠

î T0 F
v
Üz d⌧

⇡

by viscous forces on a freely decaying
cylinder that heaves on an air–water interface in a NWT with the work
done by viscous forces defined according to Eq. (5). We chose one
period of the damped oscillation for the integral.

Putting all terms together, the governing equation for the 1 DOF
heaving WEC reads as

áz(t)+ 1
m + mÿ  

t

0
K
r
(t*⌧) Üz(⌧)d⌧+ 1

m + mÿ
kstiff �z(t) = u(t)+v(t)+

F
v
(t)

m + mÿ
,

(6)

in which

u(t) =
FPTO(t)
m + mÿ

, v(t) =
Fexc(t)
m + mÿ

.

To obtain Ke(t) and mÿ, we use the boundary element method software
ANSYS AQWA (ANSYS, 2014). The radiation convolution integral given
by Eq. (3) is approximated in a state-space form Yu and Falnes (1995)
with velocity of the device Üz(t) as input and the approximated con-
volution integral as output. The state-space representation offers both
computational efficiency (Taghipour et al., 2008) and representational
convenience for matrix-based MPC control. Following Yu and Falnes
(1995), the state-space representation of the radiation convolution
integral reads as

Üxr(t) = Arxr(t) + Br Üz(t)

 

t

0
K
r
(t * ⌧) Üz(⌧)d⌧ ˘ Crxr(t), (7)

in which xr À Rnrù1, Ar À Rnrùnr , Br À Rnrù1, Cr À R1ùnr , and n
r
= 3

is the approximation order of the radiation force used in this work.
The viscous drag force acting on the cylinder is linearized around the
current velocity of the cylinder Üz0(t) and is approximated as

F
v
(t) ˘ *� Û

Û

Üz0Û
Û

Üz0 + 2� Û
Û

Üz0Û
Û

Üz, (8)

in which � = * 1
2⇢wCd⇡R

2
cyl. Using Eqs. (6)–(8), a continuous-time,

linear state-space form governing the dynamics of the WEC device is
obtained as

ÜXc (t) = AcXc (t) + Bc
�

u
c
(t) + v

c
(t) * � Û

Û

Üz0Û
Û

Üz0
�

, (9)

Zc (t) = CcXc (t), (10)

in which the subscript c denotes the continuous-time quantities and

Ac =
b

f

f

f

d

0 1 0
* kstiff

(m+mÿ)
2�

Üz0(t)

(m+mÿ) * Cr
(m+mÿ)

0 Br Ar

c

g

g

g

e

À R(nr+2)ù(nr+2),

Bc =
b

f

f

d

0
1
0

c

g

g

e

À R(nr+2)ù1,

Cc =
4

1 0 0
0 1 0

5

À R2ù(nr+2), Xc (t) =
b

f

f

d

z(t)
Üz(t)
xr(t)

c

g

g

e

À R(nr+2)ù1,

Zc (t) =
4

z(t)
Üz(t)

5

À R2ù1
.

Let us note that except for the linearized drag coefficient, all entries of
matrices Ac and Bc are time invariant. Therefore, the dynamical system
described by Eqs. (9) and (10) is quasi linear time invariant (QLTI).
The dynamical system is reduced to an LTI one if the drag coefficient
is linearized around a fixed point, e.g., around the mean equilibrium
position of the device.

2.2. Model predictive control of WECs

Having discussed the control-oriented dynamical model of the WEC
device, we now focus our attention on model predictive control for
WECs. Its basic principles are straightforward. For each control se-
quence, the controller uses the dynamical model of the plant to predict
the plant’s future trajectory over a prediction horizon (time period) of
T
h
. Out of a large set of possible outcomes, MPC selects the control

sequence which extremizes (maximizes or minimizes) a predefined ob-
jective function. The extremization of the objective function is typically
achieved by solving an optimization problem numerically. The first
part/signal of the optimal control sequence is used to control the plant,
while the rest is discarded. This process is repeated again and again
by receding/moving the prediction horizon forward. With WECs, the
control objective is to maximize the device’s energy output. Thus, to
implement MPC for WECs, we require:

1. A discrete-time dynamical model of the device to predict the
future dynamics over a finite time horizon T

h
. In this work we

use the first order hold (FOH) method of Cretel et al. (2011)
to obtain the discrete-time model (Franklin et al., 1998) from
the continuous-time Eqs. (9) and (10). More specifically, if �t
denotes the discrete time step size and k À N denotes the
(discrete) time index, then the current state Xd(k) is advanced
to the next time level Xd(k + 1) as

Xd(k + 1) = AdXd(k) + Bd�ud (k + 1) + Fd�vd (k + 1), (11)

Zd(k) = CdXd(k), (12)

in which the subscript d denotes the discrete-time quantities and

Ad =
b

f

f

d

�(�t) ⌥ ⌥
0 1 0
0 0 1

c

g

g

e

À R(nr+4)ù(nr+4),

Bd =
b

f

f

d

⇤
1
0

c

g

g

e

À R(nr+4)ù1, Fd =
b

f

f

d

⇤
0
1

c

g

g

e

À R(nr+4)ù1,

Cd =
b

f

f

d

1 0 0 ... 0 0 0
0 1 0 ... 0 0 0
0 0 0 ... 0 1 0

c

g

g

e

À R3ù(nr+4),

Xd(k) =
b

f

f

d

Xc (k�t)
u
d
(k)

v
d
(k)

c

g

g

e

À R(nr+4)ù1, Zd(k) =
4

Zc (k�t)
u
d
(k)

5

À R3ù1
. (13)

Here, Xc and Zc denote the possibility of initializing data from
a continuous-time solver at the beginning of the time step k.
For example, in many cases presented in this work, we use the
continuous-time multiphase IB solver that sends the device state
Xc (k�t) to the MPC algorithm. In the matrices defined above, the
following definitions are used:

�(�t) = e
�tAc À R(nr+2)ù(nr+2),

⌥ = A*1
c (�(�t) * I)Bc and ⇤ = 1

�t
A*1
c

�

⌥ * �tBc
�

À R(nr+2)ù1,

u
c
(t) = u

d
(k) +

⇠

t * k�t
�t

⇡

�u
d
(k + 1),

v
c
(t) = v

d
(k) +

⇠

t * k�t
�t

⇡

�v
d
(k + 1),

�u
d
(k + 1) = u

d
(k + 1) * u

d
(k), �v

d
(k + 1) = v

d
(k + 1) * v

d
(k).
(14)
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2. A receding strategy in which only the first part/signal of the
optimal control sequence is used for actuating the device, and
the prediction horizon is moved forward in time to compute
the next optimal control sequence (by taking into account the
latest device state and wave measurements). We use a prediction
horizon of one wave period in this work, unless stated otherwise.
Assuming that a N

p
-step prediction horizon is employed, i.e.,

T
h

= N
p
� �t

p
, the output vector, Zd(k), is obtained from

the discrete-time model by time marching Eqs. (11) and (12)
through the prediction horizon as Cretel et al. (2011), Franklin
et al. (1998)

Zd(k) = PXd(k) + J u �ud(k) + J v �vd(k). (15)

In the equation above

Zd(k) =

b

f

f

f

f

f

d

Zd(k + 1k)
Zd(k + 2k)

.

.

Zd(k +Np
k)

c

g

g

g

g

g

e

À R(3Npù1),

J u =

b

f

f

f

f

f

d

CdBd 0 ... 0
CdAdBd CdBd ... 0

. . . .

. . . .

CdA
(Np*1)
d Bd CdA

(Np*2)
d Bd ... CdBd

c

g

g

g

g

g

e

À R3NpùNp ,

P =

b

f

f

f

f

f

d

CdAd
CdA2

d
.

.

CdA
Np

d

c

g

g

g

g

g

e

À R3Npù(nr+4),

J v =

b

f

f

f

f

f

d

CdFd 0 ... 0
CdAdFd CdFd ... 0

. . . .

. . . .

CdA
(Np*1)
d Fd CdA

(Np*2)
d Fd ... CdFd

c

g

g

g

g

g

e

À R3NpùNp

(16)

Section 2.3 describes the methods for obtaining the future wave
excitation force values stored in the vector �vd(k). Note that the
(WSI) solver time step size �t is generally different from the MPC
time step size �t

p
. In many of the examples presented in this

work, we employ a continuous-time CFD solver with a much
smaller time step of �t than �t

p
in order to accommodate the

convective Courant–Friedrichs–Levy (CFL) number restriction.
3. An objective function to determine the optimal control sequence
over the prediction horizon. Here, the goal is to maximize the
amount of energy absorbed by the WEC device, which can be
expressed by the relation

J0 = *(m + mÿ)  

t+Th

t

u(⌧) � Üz(⌧)d⌧. (17)

The negative sign in the objective function indicates the flow of
energy from the device to the power grid. Using the trapezoidal
rule to evaluate the definite integral of Eq. (17), we obtain

J0 = *(m + mÿ)�t
p

ù
`

r

r

p

1
2 ud (k) Üz(k) +

k+Np*1
…

i=k+1
u
d
(ik) Üz(ik)

+ 1
2 ud (k +Np

k) Üz(k +N
p
k)

a

s

s

q

(18)

For purposes of extremization of J0, we can remove the constant
pre-factor and the known term at time level k (u

d
(k) Üz(k)) from

the discrete summation and redefine the objective function to be

J1(k) =
k+Np*1
…

i=k+1
u
d
(ik) Üz(ik) + 1

2 ud (k +Np
k) Üz(k +N

p
k) (19)

Since the (constant) negative pre-factor *(m + mÿ)�t
p
has been

dropped from J0 to obtain J1, the initial maximization problem
is now a minimization problem. Moreover, the objective function
can be expressed in terms of the output vector as follows:

J1(k) =
1
2Z

T

d (k) Q Zd(k), (20)

in which

Q =

b

f

f

f

f

d

M
7

M
1
2M

c

g

g

g

g

e

À R3Npù3Np and M =
b

f

f

f

d

0 0 0
0 0 1
0 1 0

c

g

g

g

e

À R3ù3

By substituting Eq. (15) into Eq. (20) and expanding the terms,
we get

J1 =
1
2�ud

TJ T

uQJ u�ud + �udTJ T

uQ(PXd + J v�vd)

+ 1
2 (PXd + J v�vd)TQ(PXd + J v�vd) (21)

The minimization of J1 with respect to the unknown control
sequence �ud yields the optimal control �ud? for the entire
prediction horizon. Observe that the last term of Eq. (21) does
not contribute to the evaluation of �ud? and can be safely
dropped. Therefore, the objective or in this case the cost function
to minimize reads as

J1 =
1
2�ud

TJ T

uQJ u�ud + �udTJ T

uQ(PXd + J v�vd). (22)

The cost function J1 is quadratic in �ud and is assumed to be
positive semi-definite. We use the quadratic programming (QP)
methods available in MATLAB (MATLAB, 2019) to obtain the
optimal control sequence �ud?. The objective functions J0 and
J1 assume that the PTO is ideal with no mechanical to electrical
conversion losses. Thus, the conversion efficiency " is taken to
be 100%, i.e., " = 1. Readers are referred to Tona et al. (2015),
who formulated a MPC problem with " < 1 and investigated how
a non-ideal PTO affects device dynamics and absorbed power.3

2.2.1. Including device/path constraints in MPC
In general, if the cost function J1 is minimized as is, the device

displacement, velocity, or actuator force will exceed the physical limits.
An unconstrained control force could, for instance, cause the device to
overshoot the free surface and slam into water with large impact forces.
This can be avoided by using the following path/device constraints in
MPC (Cretel et al., 2011; Wang, 2009; Faedo et al., 2017):

z
min f z(k) f z

max
,

Üz
min f Üz(k) f Üz

max
,

u
min f u(k) f u

max
. (23)

Constraints written in Eq. (23) are first expressed in the form Zmin
d f

Zd f Zmax
d , which is then recast as Zmin

d f PXd(k) + J u �ud(k) +J v �vd(k) f Zmax
d using Eq. (15). As both Xd(k) and �vd(k) are known

inputs to the quadratic program, the latter form of the inequality allows
extraction of the constraint relationship for the variable of interest �ud .

3 Although we have taken " = 1 for all the cases in this work, our code
(available at https://github.com/IBAMR/cfd-mpc-wecs) can also simulate the
controlled dynamics of the WEC device with " < 1. The non-ideal PTO problem
is handled separately because it requires a sequential quadratic programming
solver.

https://github.com/IBAMR/cfd-mpc-wecs
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2.2.2. Regularizing the MPC objective function
The cost function J1 of Eq. (22) is further modified by adding two

additional quadratic penalty terms:

J2(k) = J1(k) + �1Ò�udÒ22, (24)

J3(k) = J2(k) + �2ÒuÒ22. (25)

Adding the �1Ò�udÒ22 term to J1 reduces the aggressiveness of the
controller, i.e., J2 results in smoother control force variation over time
than the original cost function J1 (Cretel et al., 2011). The non-negative
parameter �1 in Eq. (24) has the dimensions of time. It is important
to keep �1 positive in order to maintain or enhance J1’s convexity. A
smaller magnitude of �1 ensures that J1 and J2 are not too far apart.

J2 is further modified to J3 by adding the quadratic penalty term
�2ÒuÒ22 (Eq. (25)). The objective is to reduce the flow of power from
the grid to the device, referred to as reactive power in wave energy
literature (Korde and Ringwood, 2016; Faedo et al., 2017). Even though
reactive power aligns the device velocity with wave excitation forces
to provide a higher overall energy output, it can lead to large in-
stantaneous positive and negative powers in the PTO unit (Korde and
Ringwood, 2016). The two-way power flow complicates the design of a
PTO system and increases its cost. The goal of J3 is to enforce the one-
way power flow condition in the PTO machinery (Cretel et al., 2011).
As with �1, �2 should also be positive, smaller in magnitude, and has
the dimensions of time.

2.3. Linear potential theory-based wave excitation/Froude–Krylov forces

The wave excitation forces acting on the body according to the
LPT are the sum of effects coming from undisturbed incident waves
(assuming that the body is removed from the path of the waves) and
diffracted waves (which assumes the body is held stationary at its mean
position). Wave excitation forces are also known as Froude–Krylov (FK)
forces. FK forces can be computed using the undisturbed flow and
diffracted wave potentials, �

I
and �

D
, respectively, as

FFK(t) = F
I
(t) + F

D
(t) = * 

Sb

(p
I
(t) + p

D
(t)) n dS

b
, (26)

in which S
b
is the wetted surface area of the body, n is the unit outward

normal to the surface, p
I

= *⇢
w

)�I

)t
is the pressure due to incident

waves, and p
D

= *⇢
w

)�D

)t
is the pressure due to diffracted waves. It

should be noted that the hydrostatic pressure p
H
(t) = *⇢

w
gz(t) and the

radiation pressure p
R
(t) = ⇢

w

)�R

)t
are accounted for in the calculations

of F
h
(t) and F

r
(t), respectively in Eq. (1). Additionally, in Eq. (1), Fexc

is the z-component of FFK.

2.3.1. Linear Froude–Krylov (LFK) forces: Up-wave measurements and
future wave predictions

If the pressure integral of Eq. (26) is evaluated while the body is
stationary at its mean equilibrium position, the Froude–Krylov forces
are linear with respect to free surface elevation and are called linear
Froude–Krylov forces (LFK). The LFK forces can be computed more
efficiently as a convolution integral between the wave impulse response
function (WIRF) and water surface elevation at the device location
x
B
: Fexc(t) = î ÿ

*ÿ Ke(⌧)⌘wave(t * ⌧; x
B
)d⌧ (repeated from Eq. (4) for

convenience). Assuming that the sea surface is calm prior to the start
of the simulation at t = 0, i.e., ⌘wave(t < 0;≈x) = 0, the upper limit of the
convolution integral K

e
< ⌘wave can be terminated at the current time t.

In Fig. 2 we show the non-causal WIRF Ke(t) as a black line. WIRF is
the inverse Fourier transform of the frequency-domain excitation force
öF(!) = öF

I
(!) + öF

D
(!) that we obtain using ANSYS AQWA software:

K
e
(t) = 1

2⇡  

ÿ

*ÿ
öF(!)e(i!t) d!. (27)

In practice, the incident wave forces öF
I
and the diffracted wave forces

öF
D
can only be computed for discrete frequencies {!

i
}, and a suitable

Fig. 2. Wave impulse response function (WIRF) for a vertical cylindrical in heave
motion. The original WIRF K

e
(t) is shown in black and the right shifted WIRF K

es
(t) is

shown in red. The dashed part of the curves represents the truncated region where the
WIRF is close to zero.

numerical interpolation is required to evaluate the inverse Fourier
transform. From Fig. 2, it can be seen that when t > t

f1 or t < *t
f2,

K
e
(t) ô 0. Truncated K

e
(t) is shown as a dashed line in Fig. 2. The

finite positive time interval where Ke(t) ë 0 requires ⌘wave data only
until t* t

f1 in the past to determine the convolution integral. Also, the
finite negative time interval where Ke(t) ë 0 implies that ⌘wave data is
only required up to t+ t

f2 into the future. The convolution integral of
Eq. (4) can therefore be performed efficiently as

Fexc(t) =  

tf

*tf
K
e
(⌧)⌘wave(t * ⌧; xB) d⌧, (28)

in which t
f
= max

⌅

t
f1, tf2

⇧

. It follows that (with reasonable accuracy)
Fexc at the current time t can be computed if the wave surface elevation
data at the device location is available from t * t

f
to t + t

f
.

It is unrealistic to measure the undisturbed wave elevation at the
device location since the incident waves cannot pass through the de-
vice. Furthermore, the waves near the body are altered by FSI and do
not remain undisturbed in reality. Therefore, we need to find another
way to estimate ⌘wave at the device location xB . We can take advantage
of the fact that wave propagation is a hyperbolic phenomenon, which
means that waves passing an up-wave location x

A
will arrive at the

device at a later time. In order to locate a convenient up-wave location,
we change the variable ⌧ to ⌧® * t

f
in Eq. (28):

Fexc(t) =  

tf

*tf
K
e
(⌧)⌘wave(t * ⌧; xB) d⌧

=  

2tf

0
K
e
(⌧® * t

f
)⌘wave(t + tf * ⌧®; x

B
) d⌧®

=  

2tf

0
K
es
(⌧®)⌘wave(t * ⌧®; xA) d⌧®.

Here, K
es
is the shifted WIRF obtained by shifting the original WIRF

to the right side on the time-axis by an amount t
f
. Symbolically,

the time shift can be expressed by the relation K
es
(t) = K

e
(t * t

f
).

The shifted WIRF is shown as a red line in Fig. 2. For the integral
transformation above, we defined the up-wave location x

A
so that the

waves leaving this location reach the device after an additional time of
t
f
. Therefore, the water surface elevation at the device location at the

present time t is related to the up-wave elevation at the previous time
t * t

f
, i.e., ⌘(t + t

f
; x

B
) = ⌘(t; x

A
). The distance of the up-wave point

from the device is calculated by using the wave velocity (!_) as

d
f
= !


� t
f
, (29)

in which ! is the wave frequency and  is the wave number. In our
CFD model, x

A
is chosen to be a point in the wave generation zone. See
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Fig. 3. NLFK force calculation using implicit signed distance functions � and  . (a) A 3D schematic showing the instantaneous wetted surface area S
b
(t) of a vertical heaving

cylinder interacting with the undulatory water surface. (b) A 2D schematic showing the stair-step representation of the immersed body on the Cartesian grid and the identification
of the grid faces for evaluating the pressure integral using the body SDF  .

Fig. 7 for a visual representation. In summary, the convolution integral
of Eq. (28) is equivalent to

Fexc(t) =  

2tf

0
K
es
(⌧)⌘wave(t * ⌧; xA) d⌧. (30)

It can be seen from Eq. (30) that the wave excitation forces acting
on the device at the present instant t can be calculated from the ⌘wave
data recorded at the up-wave location between the period [t * 2t

f
, t]

for which no prediction or time-series estimation is needed. Wave
forecasting is still necessary for MPC even if all the surface elevation
data is obtained/measured at a nearby up-wave location. The reason is
that for a prediction horizon of T

h
, FK forces acting on the device are

necessary between the period [t, t+ T
h
] (to fill the entries of the vector

�vd in Eq. (15) or Eq. (22)). Accordingly, at the up-wave location xA,
⌘wave data is required in the interval [t * 2t

f
, t + T

h
]. In this study,

we use the auto-regressive (AR) model for time series forecasting, one
of the many techniques available to predict the future behavior of a
time-series based on its past behavior. Detailed information about the
implementation of an AR model for wave forecasting can be found in
the thesis by Gieske (2007). A typical AR model is calibrated for a
particular sea state and requires (manual) re-tuning to make accurate
predictions in a different sea state. Section 9.4 describes the capability
of MPC to adapt to changing sea states in which different AR models are
used for different sea states. Considering the importance of wave exci-
tation force prediction, other methods of prediction are also described
in the literature, including the recursive least squares filter (Ling and
Batten, 2015), the Kalman and extended Kalman filters (Bonfanti et al.,
2020; Zou and Abdelkhalik, 2020; Garcia-Abril et al., 2017; Fusco and
Ringwood, 2010; Hals et al., 2010), and neural networks (Bonfanti
et al., 2020; Fusco and Ringwood, 2010; Li et al., 2019). In practice,
some of these techniques may be easier to implement than AR.

2.3.2. Non-linear Froude–Krylov (NLFK) forces: A novel static grid ap-
proach based on implicit surfaces

A significant amount of modeling accuracy can be achieved by
considering the FK forces to be non-linear. The NLFK force is calculated
by integrating the incident wave pressure p

I
(t) over the instantaneous

wetted surface area S
b
(t) of the body; see Eq. (26) and Fig. 3(a). The

computation of NLFK forces for practical control of WECs is considered
prohibitively expensive in the wave energy literature. It is because
such forces are typically computed using dynamic meshes, in which
the computational domain is re-meshed to account for the relative mo-
tion between the body and the waves. Nevertheless, computationally-
efficient approaches have recently been developed for calculating NLFK
forces. In Giorgi and Ringwood (2017), Giorgi et al. presented an
analytical method for evaluating the pressure integral for axisymmetric
WECs. Though the method described in Giorgi and Ringwood (2017)

is computationally attractive, it can only be applied to WEC devices
that are geometrically solids of revolution. An alternative approach
is presented in this section based upon the level set/signed distance
function (SDF) that can effectively model the instantaneous wave–
structure interaction of WECs on a static Cartesian grid. Moreover,
the proposed technique can be applied to arbitrarily complex-shaped
bodies because the SDF can be computed using efficient computational
geometry algorithms within a narrow band of grid cells (Bærentzen
and Aanaes, 2005). Further, the level-set methodology is an embar-
rassingly parallel algorithm that is amenable to both distributed- and
shared-memory parallelism.

First, we define a rectangular box region R = R
w
(t) ‰ R

a
(t)

around the WEC, which is discretized on a static Cartesian grid with
rectangular cells. The grid cells are enumerated using the integer tuple
(i, j, k). The static region R should be a minimal one, covering only
the wave amplitude and maximum displacement of the body expected
in the simulation for computational efficiency. Next, define two level
set functions  (x, t) and �(x, t) over the entire box x À R that describe
the signed distance to the WEC surface and the undulatory air–water
interface, respectively. We take  to be negative (positive) inside (out-
side) the body and � to be negative (positive) inside the water region
R
w
(t) (air region R

a
(t)). Zero-contours of  and � implicitly define

the WEC-fluid and the air–water interface, respectively. Section 4.2
provides more details on level set methodology, where we describe our
multiphase CFD solver that is also based on the level set technique. The
motion of the waves and the device is captured by redefining SDFs on
the static grid,4 which completely eliminates the need to re-mesh the
computational domain R. The wave incident pressure p

I
is defined on

the cell centers x
i,j,k

of the static Cartesian grid in order to compute the
NLFK force as

p
I
(x
i,j,k

, t) = 0, �(x, t) > 0,

p
I
(x
i,j,k

, t) = ⇢
w
g
H
2
cosh((d + �)) � cos(x * !t)

cosh(d) , �(x, t) f 0, (31)

in which H is the wave height,  is the wavenumber, d is the depth of
water above the sea floor, and ! is the wave frequency. The integral of
p
I
over the wetted surface can be performed numerically as

F
I
(t) =

…

f

*p
I
(x
f
, t)n

f
�A

f
. (32)

The discrete summation in Eq. (32) is carried over the Cartesian grid
faces that provide a stair-step representation of the body on the Carte-
sian grid. This is shown in Fig. 3(b). The set of the Cartesian grid faces

4 SDF of a vertical cylinder can be prescribed analytically using constructive
solid geometry operators, such as min/max acting on SDFs of primitive shapes.
SDF of the air–water interface can also be prescribed analytically from the
known surface elevation function ⌘wave(x, t).
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f can be easily identified by examining the sign change of �. The n
f

and �A
f
variables in the equation above represent the unit normal

vector and the area of the cell face, respectively. The incident wave
pressure p

I
(x
f
, t) on the cell face (where � is taken to be zero) is the

weighted average of the neighboring cell center pressures, where the
distance to the WEC surface �(x

i,j,k
, t) is used as the weights. In the

heave direction, calculating F
I
(t) requires summing only over z-faces.

The diffraction component of NLFK forces remains linear. This is
due to the assumption that the body is stationary when computing the
diffraction forces. Similarly to LFK forces, the z-component of F

D
(t) can

be computed as a convolution integral between the diffraction impulse
response function (DIRF) K

d
(t) in the heave direction and the water

surface elevation as

F
D
(t) = K

d
< ⌘wave =  

ÿ

*ÿ
K
d
(⌧)⌘wave(t * ⌧) d⌧

=  

tf

*tf
K
d
(⌧)⌘wave(t * ⌧; xB) d⌧. (33)

DIRF is the inverse Fourier transform of frequency-domain diffraction
force data öF

D
(!) that we obtain using ANSYS AQWA.

We remark that the technique described in this section can be
easily modified to model nonlinear buoyancy forces for varying cross-
sectional WEC devices. This is achieved by replacing p

I
by p

H
=

*⇢
w
gz(t) in Eq. (32).

3. Wave dynamics

This section describes the Stokes theory of regular and irregular
water waves.

3.1. Regular waves

First-order Stokes waves, or regular waves, are simple harmonic
waves of height H, time period T , and wavelength � (Journée and
Massie, 2001; Holthuijsen, 2007). Assuming that the waves travel in
the positive x-direction, the wave elevation ⌘(x, t) from the still water
surface at a depth of d above the sea floor is

⌘(x, t) = H
2 cos(x * !t), (34)

in which  = 2⇡_� is the wavenumber and ! = 2⇡_T is the angular
wave frequency. The first-order Stokes wave satisfies the dispersion
relation given by

!
2 = g tanh (d), (35)

which relates the wave frequency ! to wavenumber  and water depth
d. Eq. (35) is a transcendental equation that requires an iterative
procedure to calculate  for given !, or vice versa. Instead, we use an
explicit relationship between these quantities that is accurate enough
for practical purposes at all water depths (Fenton, 1988):

d ˘ � + �2 (cosh �)*2

tanh � + � (cosh �)*2
, (36)

in which � = � (tanh� )*
1
2 and � = !

2
d_g.

As the waves travel along the ocean or sea surface, they carry kinetic
and potential energy — this energy is partially absorbed by the WEC
device. The time-averaged wave power per unit crest width carried by
the regular waves in the direction of propagation is given by Journée
and Massie (2001)

Pwave =
1
8⇢wgH

2
c
g
, (37)

in which c
g
is the group velocity of the waves, i.e., the velocity with

which wave energy is transported and it is given by the relation

c
g
= 1

2
�

T

0

1 + 2d
sinh(2d)

1

. (38)

In the deep water limit, where d > �_2 and d ô ÿ, Eqs. (35) and (38)
become

!
2 = g or � = gT 2

2⇡ and c
g
= �

2T . (deep water limit)

(39)

Substituting Eq. (39) into Eq. (37), the wave power per unit crest width
in the deep water limit is expressed as

Pwave =
⇢
w
g
2H2T
32⇡ ˘ H2T kW/m, (deep water limit) (40)

in which the constant numerical factor ⇢
w
g
2_32⇡ ˘ 103 when all

quantities are evaluated in SI units.

3.2. Irregular waves

A realistic sea state consists of irregular waves. Mathematically,
an irregular wave can be described as a linear superposition of a
large number of (first-order) regular wave components. Using the su-
perposition principle, the sea surface elevation can be expressed as

⌘(x, t) =
Nw
…

i=1
a
i
cos(

i
x * !

i
t + ✓

i
), (41)

in which N
w
is the number of (regular) wave components. Each wave

component has its own amplitude a
i
= H

i
_2, angular frequency !

i
,

wavenumber 
i
, and a random phase ✓

i
. Each component also satisfies

the dispersion relation between 
i
and !

i
given by Eq. (35). The random

phase ✓
i
follows the uniform distribution in the interval [0, 2⇡].

The linear superposition of first-order waves implies that the total
energy carried by the irregular wave is the sum of wave energy carried
by the individual wave components. To describe the energy content
of irregular waves, a continuous wave spectral density function S(!)
is used, wherein the number of wave components N

w
tend to infinity

and an infinitesimal small frequency bandwidth d! separates the wave
components. The area under the S(!) versus ! curve gives the total
energy of the irregular wave, modulo the factor ⇢

w
g. Discretely, the

wave frequencies are chosen at an equal interval of �! and the wave
spectral density function S(!) approaches zero for frequencies outside
the narrow bandwidth. In this work, we consider only singly-peaked
wave spectra with S(!) peaking at a particular frequency !

p
. Each wave

component of an irregular wave has a wave amplitude that is related
to the spectral density function by

a
i
=
˘

2 � S(!
i
) � �!. (42)

We consider the two-parameter Bretschneider spectrum (Journée
and Massie, 2001), which is suited for open seas where our WEC device
is considered to be located. Specifically, the Bretschneider spectrum
S(!) is based on the significant wave height H

s
and the peak wave

time period T
p
and it reads as

S(!) =
173 �H2

s

T 4
p

� !*5 � exp
H

*692
T 4
p

� !*4
I

. (43)

The peak wave time period T
p
is the time period with the highest

spectral density; see Fig. 4.
For irregular waves the mean wave power per unit crest width is

calculated as

Pwave = ⇢
w
g

0

 

ÿ

0
S(!) d!

1

c
g
˘ ⇢

w
g

H

Nw
…

i=1

1
2a

2
i

I

c
g

(44)

in which the group velocity c
g
is calculated from Eq. (38) using the

significant wavelength and peak time period of the spectrum. In the
deep water limit, Eq. (44) becomes

Pwave ˘ 0.49H2
s Tp kW/m. (deep water limit) (45)
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Fig. 4. The Bretschneider wave spectrum obtained using H
s
= 0.15 m and T

p
= 1.7475

s (!
p
= 2⇡_T

p
= 3.5955 rad/s).

4. Numerical model based on the incompressible Navier–Stokes
equations

This section begins with a description of continuous equations of
motion solved by the fictitious domain Brinkman penalization (FD/BP)
method (Bhalla et al., 2020; Khedkar et al., 2021). Following this, we
discuss the multiphase interface tracking technique. Afterwards, the
spatiotemporal discretization, the overall solution methodology, and
the time-stepping scheme are briefly discussed. Next, the numerical
wave tank setup for performing fully-resolved and control-informed
multiphase WSI simulations is discussed. A time-averaged kinetic en-
ergy equation is also derived to describe how power transfers from
waves to the PTO system.

4.1. Continuous equations of motion

Let ⌦ œ Rd with d = 3 represent a fixed three-dimensional region
in space. The incompressible Navier–Stokes (INS) equations govern the
dynamics of the coupled multiphase fluid–structure system occupying
this domain:
)⇢u(x, t)

)t
+ ( � (⇢u(x, t)‰ u(x, t)) = *(p(x, t)

+ ( �
⌅

�
�

(u(x, t) + (u(x, t)T
�⇧

+ ⇢g + f
c
(x, t), (46)

( � u(x, t) = 0, (47)

which describe the momentum and incompressibility of a fluid with
velocity u(x, t) and pressure p(x, t) in an Eulerian coordinate system
x = (x, y, z) À ⌦. Eqs. (46) and (47) are written for the entire
computational domain ⌦. The domain ⌦ is further decomposed into
two non-overlapping regions, one occupied by the fluid ⌦

f
(t) œ ⌦ and

the other by an immersed body ⌦
b
(t) œ ⌦, so that ⌦ = ⌦

f
(t)‰⌦

b
(t). The

term f
c
(x, t) is the constraint force (density) that vanishes outside ⌦

b
(t)

and ensures a rigid body velocity u
b
(x, t) within the solid. The density

and viscosity fields vary spatiotemporally and are denoted ⇢(x, t) and
�(x, t), respectively. The location of the solid body is tracked using
an indicator function �(x, t), which is non-zero only within ⌦

b
(t). The

acceleration due to gravity is directed towards the negative z-direction:
g = (0, 0,*g). Fig. 6 shows the schematic representation of the domain
occupied by the three (air, water, and solid) phases.

The immersed body is treated as a porous region with vanishing
permeability 

p
~ 1. The Brinkman penalization constraint force is

given by

f
c
(x, t) = �(x, t)


p

�

u
b
(x, t) * u(x, t)

�

. (48)

The rigid body velocity u
b
(x, t) in the solid region ⌦

b
(t) is determined

by the combined actions of the hydrodynamic force (estimated by the
multiphase flow solver) and the control force FPTO (estimated by the
MPC). Section 4.5.5 explains this.

4.2. Interface tracking

Here, we briefly describe the interface tracking method for captur-
ing the air–water and fluid–solid interfaces; details on the implemen-
tation of the technique can be found in our prior works (Nangia et al.,
2019b,a). A scalar level set/signed distance function (SDF) �(x, t) is
used to demarcate the liquid (water) and the gas (air) regions, ⌦

l
œ ⌦

and ⌦
g
œ ⌦, respectively, in the computational domain. The zero-

contour of � defines the air–water interface � (t) = ⌦
l
„ ⌦g. Similarly,

the surface of the immersed body Sb(t) = )V
b
(t) is tracked using the

zero-contour of the level set function  (x, t); see Fig. 5(b). The indicator
function �(x, t) for the solid domain is computed based on the level set
function  . The two SDFs are advected using the local fluid velocity:
)�

)t
+ u � (� = 0, (49)

) 

)t
+ u � ( = 0. (50)

The density and viscosity in the entire computational domain is ex-
pressed as a function of �(x, t) and  (x, t) using the signed distance
property:

⇢(x, t) = ⇢(�(x, t), (x, t)), (51)

�(x, t) = �(�(x, t), (x, t)). (52)

To maintain their signed distance property, both level set functions
need to be reinitialized after each time step. To reinitialize �, we use
the relaxation approach of Sussman et al. (1994) to compute the steady-
state solution to the Hamilton–Jacobi equation.  , on the other hand,
is reinitialized directly because the SDF of a vertical cylinder can be
constructed analytically by using constructive solid geometry operators
(i.e., the min/max operators) on primitive shapes (Zhang et al., 2019).

4.3. Spatial discretization

The continuous equations of motion given by Eqs. (46)–(47) are dis-
cretized on a locally-refined staggered Cartesian grid. The grid covers
the domain ⌦ with N

x
ù N

y
ù N

z
rectangular cells. The grid spacing

in the three spatial directions are �x, �y, and �z respectively. Without
any loss of generality, the lower left corner of the domain is considered
the origin (0, 0, 0) of the coordinate system such that each cell center
of the grid has a position x

i,j,k
=

⇠

(i + 1
2 )�x, (j +

1
2 )�y, (k +

1
2 )�z

⇡

for
i = 0,… ,N

x
* 1, j = 0,… ,N

y
* 1, and k = 0,… ,N

z
* 1. The

location of a cell face which is half a grid cell away from x
i,j,k

in
the x-direction is at x

i* 1
2 ,j,k

=
⇠

i�x, (j + 1
2 )�y, (k +

1
2 )�z

⇡

. Similarly,
the location of a cell face that is half a grid cell away from x

i,j,k
in

the y-directions is x
i,j* 1

2 ,k
=

⇠

(i + 1
2 )�x, j�y, (k +

1
2 )�z

⇡

and in the z-

direction it is x
i,j,k* 1

2
=

⇠

(i + 1
2 )�x, (j +

1
2 )�y, k�z

⇡

. See Fig. 6(a). The
time at time step n is denoted by tn. The scalar quantities: level set
functions, pressure, and the material properties (density and viscosity)
are all approximated at cell centers and are denoted �n

i,j,k
˘ �

�

x
i,j,k

, t
n
�

,
 
n

i,j,k
˘  

�

x
i,j,k

, t
n
�

, pn
i,j,k

˘ p
�

x
i,j,k

, t
n
�

, ⇢n
i,j,k

˘ ⇢
�

x
i,j,k

, t
n
�

and �n
i,j,k

˘
�
�

x
i,j,k

, t
n
�

, respectively. See Fig. 6(b). Some of these scalar quantities
need to be interpolated onto the required degrees of freedom; see Nan-
gia et al. (2019a) for further details. The velocity degrees of freedom

are approximated on the cell faces as un
i* 1

2 ,j,k
˘ u

0

x
i* 1

2 ,j,k
, t
n

1

, vn
i,j* 1

2 ,k
˘

v

0

x
i,j* 1

2 ,k
, t
n

1

, and w
n

i,j,k* 1
2

˘ w

0

x
i,j,k* 1

2
, t
n

1

. The constraint force

density and the gravitational body force in the momentum Eq. (46) are
also approximated on cell faces. For all spatial derivatives, second-order
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Fig. 5. (a) Schematic of a two-dimensional slice through the computational domain ⌦ showing an immersed body interacting with an air–water interface. (b) Discretization of
the domain ⌦ on a Cartesian mesh and values of the indicator function �(x, t) used to differentiate the fluid and solid regions in the FD/BP method. Here, �(x, t) = 1 inside the
solid domain and �(x, t) = 0 in air and water domains. The air–water interface � (t) is tracked by the zero-contour of �(x, t), while the zero-contour of  (x, t) tracks the solid–fluid
interface Sb(t).

Fig. 6. Schematic representation of a 2D staggered Cartesian grid. (a) shows the coordinate system for the staggered grid. (b) shows a single grid cell with velocity components
u and v approximated at the cell faces (ô) and scalar variable pressure p approximated at the cell center (÷) at nth time step.

finite differences are used. A uniform grid spacing �x = �y = �z = h

is used for all simulations in this work, unless stated otherwise. For
readability, the discretized version of the differential operators are
denoted with a h subscript, e.g., ( ˘ (

h
. For further details on the

spatial discretization on a hierarchy of adaptively refined meshes, see
our prior works Nangia et al. (2019a), Cai et al. (2014), Griffith (2009),
Bhalla et al. (2013).

4.4. Numerical wave tank (NWT)

The fully-resolved and control-informed WSI of the device is sim-
ulated using a NWT, depicted in Fig. 7. In the tank, the converter
is located at position x

B
. Dirichlet boundary condition for the ve-

locity components is used to generate regular and irregular water
waves at the left boundary of the domain. The waves travel in the
positive x-direction and are reflected back from the right boundary
of the domain and the device surface. A reflected wave can cause
wave distortion and interference phenomena and reduce the quality of
waves reaching the device if it is not handled properly. A variety of
numerical techniques have been proposed in the literature to mitigate
these effects (Miquel et al., 2018; Windt et al., 2018, 2019), such as
the relaxation zone method (Jacobsen et al., 2012), the active wave
absorption method (Higuera et al., 2013; Frigaard and Brorsen, 1995;
Schäffer and Klopman, 2000), the momentum damping method (Choi

and Yoon, 2009; Ha et al., 2013), the viscous beach method (Ghasemi
et al., 2014), the porous media method (Dong and Zhan, 2009; Ja-
cobsen et al., 2015), and the mass-balance PDE method (Hu et al.,
2016). The relaxation zone method is used in this paper because of its
simplicity and effectiveness. To smoothly extend the Dirichlet velocity
boundary conditions into the wave tank, a relaxation zone called the
wave generation zone is added near the inlet boundary. The wave
generation zone reduces the interaction of the reflected waves (from
the device) with the inlet boundary. The wave generation zone being
relatively free of reflected waves, the up-wave point x

A
is also placed

inside this zone, which accurately records the wave elevation data
⌘wave(t; xA) and sends it to the MPC. Also sent to the controller are
the device’s displacement and velocity, z and Üz, computed from the
fully-resolved WSI. Near the outlet boundary, a second relaxation zone,
known as the wave damping zone, is located to smoothly dampen out
waves that reach the right end of the NWT. The length of the wave
damping zone is set to 1.5� in all simulations.

The top boundary of the NWT is a zero pressure boundary. To
dissipate the vortical structures reaching the top boundary, a vorticity
damping zone is implemented (see Fig. 7). The vortical structures
shed by the device (as a result of FSI) move freely in the air region
(which is taken to be small in order to reduce the computational cost
of the simulations) and interfere with the top boundary. In order to
implement the vorticity damping zone, a damping force f

d
is added to
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Fig. 7. Numerical wave tank (NWT) schematic showing wave generation, wave damping, and vorticity damping zones. The WEC device is placed in the working zone of length
3.145�.

the momentum equation, which reads as

f
d
= *g( Éz)u. (53)

Here, g( Éz) = ⇢
a
(cos(⇡ Éz) + 1)_(4�t) is the smoothed damping coefficient,

⇢
a
is the density of the air phase, �t is the time step size of the

multiphase flow solver, Éz = (z*zmax)_�d is the normalized z coordinate,
zmax = 2.2d, and �

d
is the vorticity damping zone width. In all our

simulations, �
d
is taken to be four (coarsest grid) cell size wide. More

details on the implementation of the relaxation zone method and the
level set-based NWT can be found in our prior work Nangia et al.
(2019b).

4.5. Solution methodology

The methodology to solve the discretized equations of motion in-
volves three major steps:

1. Specify the material properties, density ⇢(x, t) and viscosity �(x, t)
in the entire computational domain.

2. Calculate the Brinkman penalization rigidity constraint force
density f

c
(x, t) based on the vertical cylinder WEC dynamics.

3. Update the solutions for �,  , u, and p.

We briefly review the computations described above for a vertical
cylinder device with a single degree of freedom (in the z-direction). We
refer readers to Bhalla et al. (2020) and references therein for a general
FSI treatment.

4.5.1. Density and viscosity specification
To transition between the air–water interface � (t) and the fluid–

solid interface S
b
(t), a smoothed Heaviside function is used. ncells

grid cells are used on either side of the interface to smoothly vary
the material properties in the transition region. For example, a given
material property I, say density or viscosity, is prescribed throughout
the computational domain by first calculating the flowing phase (i.e., air
and water) property as

Iflow
i,j,k

= I
l
+ (I

g
*I

l
) õH flow

i,j,k
, (54)

and later correcting Iflow to account for the solid body by

Ifull
i,j,k

= I
s
+ (Iflow

i,j,k
*I

s
) õHbody

i,j,k
. (55)

Here, Ifull is the final scalar material property field throughout ⌦.
To specify the transition specified by Eqs. (54) and (55), the standard
numerical Heaviside functions are used:

õH
flow
i,j,k

=
h

n

l

n

j

0, �
i,j,k

< *ncells h,
1
2

⇠

1 + 1
ncells h

�
i,j,k

+ 1
⇡
sin

⇠

⇡

ncells h
�
i,j,k

⇡⇡

, �
i,j,k

 f ncells h,

1, otherwise.

(56)

õH
body
i,j,k

=
h

n

l

n

j

0,  
i,j,k

< *ncells h,
1
2

⇠

1 + 1
ncells h

 
i,j,k

+ 1
⇡
sin

⇠

⇡

ncells h
 
i,j,k

⇡⇡

,  
i,j,k

 f ncells h,

1, otherwise.

(57)

In all simulations performed in this study, the number of transition
cells ncells = 1 for both air–water and fluid–solid interfaces.

4.5.2. Time stepping scheme
The time stepping scheme employs a fixed-point iteration with

ncycles cycles per time step to evolve quantities from time level tn to
time level tn+1 = t

n + �t. To denote the cycle number of a fixed-point
iteration, a k superscript is used. At the beginning of every time step,
the solutions from the previous time step are used to initialize cycle
k = 0: un+1,0 = un, pn+

1
2 ,0 = p

n* 1
2 , �n+1,0 = �

n, and  n+1,0 =  
n. The

physical quantities at the initial time n = 0 are prescribed via initial
conditions. A larger number of cycles in the simulation allows a larger,
more stable time step size. In this work, we limit ncycles to 1 so that the
number of linear solves per time step is reduced for the computationally
expensive 3D simulations.

4.5.3. Level set advection
To evolve the two level set/signed distance functions � and  , we

use a standard explicit advection scheme as follows

�
n+1,k+1 * �n

�t
+Q

⇠

un+
1
2 ,k, �

n+ 1
2 ,k

⇡

= 0, (58)

 
n+1,k+1 *  n

�t
+Q

⇠

un+
1
2 ,k, 

n+ 1
2 ,k

⇡

= 0, (59)

in which Q(�, �) represents an explicit piecewise parabolic method
(xsPPM7-limited) approximation to the linear advection terms on cell
centers (Griffith, 2009; Rider et al., 2007).

4.5.4. Multiphase incompressible Navier–Stokes solution
The discretized form of the multiphase incompressible Navier–

Stokes Eqs. (46)–(47) in conservative form reads as

Ö⇢n+1,k+1un+1,k+1 * ⇢nun
�t

+ Cn+1,k = *(
h
p
n+ 1

2 ,k+1 +
�

L
�
u
�n+ 1

2 ,k+1

+}n+1,k+1g + fn+1,k+1
c

, (60)

( � un+1,k+1 = 0, (61)

in which Cn+1,k is the discretized version of the convective term
( � (⇢u ‰ u) and the density approximation Ö⇢n+1,k+1 is computed
using a consistent mass/momentum transport scheme. The consistent
mass/momentum transport scheme ensures the numerical stability of
cases involving high density contrast between various phases, such
as air, water, and the solid device. See previous works by Nangia
et al. (2019a) and Bhalla et al. (2020) for a detailed exposition of the
consistent mass/momentum transport scheme employed in this study.
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The viscous strain rate in Eq. (60) is handled using the Crank–
Nicolson approximation:

�

L
�
u
�n+ 1

2 ,k+1 = 1
2

⌧

�

L
�
u
�n+1,k+1 +

�

L
�
u
�n
�

, in

which
�

L
�

�n+1 = (
h
�
⌧

�
n+1 �(u + (uT

�n+1�. The newest approxima-
tion to the viscosity �n+1,k+1 is obtained using the two-stage process
described by Eqs. (54) and (55). The gravitational body force term
}g = ⇢flowg is calculated using the flow density field to avoid spurious
currents generated due to large density variations near the fluid–solid
interface (Nangia et al., 2019b).

4.5.5. Fluid–structure coupling
The Brinkman penalization term f

c
given by Eq. (48) is treated

implicitly in the discretized version of the momentum Eq. (60) and
computed as

fn+1,k+1
c

= õ�


p

⇠

un+1,k+1
b

* un+1,k+1
⇡

, (62)

in which the discretized indicator function is defined using the body
Heaviside function (see Eq. ) as õ� = 1 * õH

body; õ� = 1 inside
the solid region. A sufficiently small value of the permeability coef-
ficient 

p
Ì O(10*8) is shown to be effective in enforcing the rigidity

constraint (Bhalla et al., 2020; Gazzola et al., 2011).
The rigid body velocity u

b
in Eq. (62) can be expressed as the sum

of translational U
r
and rotational W

r
velocities:

u
b
= U

r
+W

r
ù
�

x * Xcom
�

, (63)

in which Xcom is the position of the center of mass of the body. In this
study, the WEC device is allowed to move only in the heave direction.
Hence, U

r
= (0, 0, Üz(t)) andW

r
= 0. The rigid body velocity is simplified

to

un+1,k+1
b

= Üz
n+1,k+1

öz. (64)

The heave velocity Üz resulting from the WSI can be computed using
Newton’s second law of motion as

m
d Üz
dt = m

Üz
n+1,k+1 * Üz

n

�t
= Fn+1,k

hydro * mg + F
n+1,k+1
PTO , (65)

in which Fhydro is the net hydrodynamic force (pressure and viscous)
in the heave direction and m is the mass of the cylinder (same as the
one used in Eq. (1)). The method that was previously described in
Section 2.3.2 to compute NLFK forces using the SDF  (see Eq. (32)
can be easily extended to include both pressure and viscous force
contributions. Following the SDF approach, the net hydrodynamic force
acting on the body is computed as

F n+1,k
hydro =

…

f

⇠

*pn+1,kn
f
+ �

f

⇠

(
h
un+1,k +

�

(
h
un+1,k

�T
⇡

� n
f

⇡

�A
f
. (66)

We remark that whereas Eq. (32) is evaluated using a simple and a
minimal box region R surrounding the device and the waves near it,
Eq. (66) is evaluated using the actual CFD grid that is distributed across
multiple processors. Lastly, the FPTO term of Eq. (65) is computed by
the MPC algorithm as discussed in Section 2.

4.6. Power transfer from waves to the PTO

Here, we mathematically describe the pathway of power transfer
from the sea waves to the PTO system. The relationships derived in
this section can also be used to quickly verify the accuracy of the CFD
simulations.

To begin, multiply the dynamical Eq. (65) by the heave velocity Üz

and rearrange the terms to obtain:

m
d
dt

0

Üz(t)2
2

1

= Fhydro(t) Üz(t) * mg Üz(t) + FPTO(t) Üz(t). (67)

Taking the time average of the above equation over one wave period
T and rearranging terms, we get

ÍFhydro(t) Üz(t)Î = Ím
Üz(t)2
2 Î + Ímg Üz(t)Î * ÍFPTO(t) Üz(t)Î, (68)

Table 2
Various WSI/MPC solver combinations considered in this work.

Solver MPC

1 BEM-LFK LFK
2 BEM-LFK NLFK
3 BEM-NLFK LFK
4 BEM-NLFK NLFK
5 CFD LFK
6 CFD NLFK

in which Í(�)Î = î t+T
t

(�) d⌧ represents the time-averaging operator. For
regular waves, contributions from the inertial and the gravity terms are
zero due to the time periodicity of the heave velocity. Hence, we have:

ÍFhydro(t) Üz(t)Î = *ÍFPTO(t) Üz(t)Î. (69)

The term ÍFhydro(t) Üz(t)Î describes the mechanical work done by the
waves to oscillate the converter and the term -ÍFPTO(t) Üz(t)Î describes
the power absorbed by the device. For irregular waves, the inertial
and gravity terms may not equal zero when averaged over an exact
wave period. Nevertheless, Eq. (68) remains valid. The power transfer
relationships are verified in Section 9.3.

5. WSI and MPC solvers

Sections 2 and 4 describe methods naturally suited to different types
of WSI and MPC solvers. There are two types of WSI solvers that can
be derived from Section 2: (1) BEM-LFK and (2) BEM-NLFK. Here, BEM
implies a WSI solver that solves Eq. (6), LFK implies the excitation
force is calculated using Eq. (28) (or Eq. (30)), and NLFK implies the
excitation force is calculated using Eqs. (32) and (33). MPC solvers can
also be divided into two types: (1) MPC-LFK and (2) MPC-NLFK, where
the excitation force vector �vd is computed linearly and non-linearly,
respectively. Lastly, based upon Section 4, we have a multiphase
IB/CFD solver that solves Eqs. (46)–(47). Table 2 shows six possible
WSI/MPC combinations. Note that it is computationally unfeasible (if
not impossible) to implement MPC using a CFD-based solver. Moreover,
results of Section 9.1 suggest that a higher fidelity hydrodynamical
model within MPC does not necessarily improve accuracy.

6. Software implementation

6.1. CFD solver

The FD/BP and the numerical wave tank methods presented here
are implemented within the IBAMR library (IBA), which is an open-
source C++ simulation software focused on immersed boundary meth-
ods with adaptive mesh refinement; the code is publicly hosted at
https://github.com/IBAMR/IBAMR. The C++ application/driver code
(main.cpp) and the MATLAB MPC routines link directly against the
compiled IBAMR library and are publicly hosted in a separate GitHub
repository at https://github.com/IBAMR/cfd-mpc-wecs. IBAMR relies
on SAMRAI (Hornung and Kohn, 2002; SAMRAI) for Cartesian grid
management and the AMR framework. Linear and nonlinear solver
support in IBAMR is provided by the PETSc library (Balay et al., 1997,
2015, 2021). All of the CFD cases in the present work made use of
distributed-memory parallelism using the Message Passing Interface
(MPI) library. Simulations were carried out on both the XSEDE Comet
cluster at the San Diego Supercomputer Center (SDSC) and the Fermi
cluster at San Diego State University (SDSU).

6.2. Communication layer between the CFD and MPC solvers

In this section, we present the custom communication layer be-
tween the CFD and MPC solvers. The ‘‘glue code’’ is written using

https://github.com/IBAMR/IBAMR
https://github.com/IBAMR/cfd-mpc-wecs
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Fig. 8. Schematic representation of the dynamic interaction between the MPC algorithm and multiphase IB solver.

PETSc (Balay et al., 2021), which provides a high-level communica-
tion channel between IBAMR (IBA) and MATLAB (MATLAB, 2019).
As discussed in Section 2, MPC requires quadratic programming (QP)
and autoregressive models (AR). Although there are several compiled
language implementations of QP (e.g., QuadProg++ (Qua)) and AR
(e.g., Cronos (Cro)) techniques, we implement the MPC algorithm
in MATLAB, which has built-in support for QP and AR techniques.
MATLAB is probably the most widely used programming environment
for dynamical systems modeling and control in academia and industry,
so our current implementation can easily be adapted to integrate other
optimal control strategies for WECs into a different CFD code of choice,
e.g., OpenFOAM.

In the following, we describe the interaction between the CFD and
MPC solver codes as a three-part algorithm. Fig. 8 shows this inter-
action pictorially. Communication between the CFD and MPC codes
is handled by the PETScMatlabEngine object provided by the PETSc
library. Details on the PETSc functions and objects can be found in its
user manual (Balay et al., 2015).

1. Accessing the MATLAB workspace: Algorithm 1 is called to-
wards the beginning of the driver code to create the PETScMat-
labEngine object ‘mengine’ on MPI (Message Passing Interface)
rank 0. This is achieved by calling the PETSc function Petsc-
MatlabEngineCreate() on line 2 of the algorithm, in which
‘PETSC_COMM_SELF’ is the MPI communicator containing the
single MPI rank 0. Next, the MATLAB workspace is cleared for
any data already present and the path to the ‘MPC_matlab_code’
directory is added to MATLAB’s standard search path. The di-
rectory ‘MPC_matlab_code’ contains all the MPC code scripts and
related functions. The PETSc function to achieve this is called on
line 3 of Algorithm 1. Then, various wave (H, T

p
, !, , d) and

device parameters (m, Rcyl, Lcyl) are loaded into the workspace
by calling the PETSc function PetscMatlabEngineEvalu-

ate() on line 4, wherein a MATLAB variable ‘var’ is created
with the numerical value of var_value. Next, the BEM data is
read and loaded into the workspace by executing the MATLAB
script ‘load_mpc_parameters.m’. This includes the added mass
of the cylinder mÿ and the impulse response functions K

e
(t)

and K
d
(t). The script also sets various MPC parameters (�t

p
,

T
h
, N

p
, n

r
, t
f
), device constraints (zmin/max, Üzmin/max, umin/max),

wave type (regular or irregular), and the method of wave ex-
citation force calculation (LFK or NLFK). The coefficients of

the quadratic penalty terms �1 and �2 and the MPC solver
options (maximum iterations, solver tolerance, etc.) are also
set by the same script ‘load_mpc_parameters.m’. Since the CFD
solver sends the device and wave elevation data to the MPC
code, it needs to know the MPC time step size �t

p
and the

next time to synchronize data with the controller tnext-sync. The
values from the MATLAB workspace are obtained by calling
the function PetscMatlabEngineGetArray(). Finally, the
remaining CFD parameters and variable values (�t,Xcom, xB, and
xA) that could not be added to the workspace earlier (on line 4)
are loaded to the workspace on line 8.

Algorithm 1: Creating and initializing the MATLAB workspace.
1 if (MPI_rank == 0) then
2 PetscMatlabEngineCreate(PETSC_COMM_SELF, NULL,

&(mengine)); // Create a MATLAB engine on MPI rank

0.

3 PetscMatlabEngineEvaluate(mengine, ‘‘clc; clear all;
close all; addpath(‘./MPC_matlab_code’)"); // Execute

MATLAB commands and add the MPC code directory

path to the standard search path.

4 PetscMatlabEngineEvaluate(mengine,‘‘var = %f",
var_value); // Load the wave and device parameters

into the MATLAB workspace.

5 PetscMatlabEngineEvaluate(mengine,
‘‘load_mpc_parameters"); // Execute the script to

read and load the BEM data and MPC parameters

into the MATLAB workspace.

6 PetscMatlabEngineGetArray(mengine, ...); // Load

the values of the MATLAB variables into the CFD

code.

7 ……… // Code to do CFD related setup and

calculations.

8 PetscMatlabEngineEvaluate(mengine, ...); // Load

the remaining CFD variables into the workspace

that were not available/calculated earlier.

9 end

2. The main time loop: Algorithm 2 describes the time-loop inter-
action between the CFD and MPC solvers. First, the MPI rank
0 updates the MATLAB workspace with the CFD solver time
tCFD = t

n+1 and the device displacement and velocity data, as
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shown on line 4 of the algorithm. Next, the algorithm checks
if the CFD solver time is greater than or equal to the con-
troller synchronization time tnext-sync. If the statement evaluates
to true, then a new set of MPC matrices P , J u, and J v are
calculated and the radiation damping vector xr is advanced in
time using the MATLAB scripts ‘calculate_mpc_matrices.m’ and
‘calculate_radiation_damping_xr.m’, respectively. To enable the
calculation of wave excitation forces over a prediction horizon of
T
h
, the CFD solver sends the past up-wave surface elevation data

(from the NWT) to the MATLAB workspace. Using the updated
matrices, vectors, and FK forces, the MPC solver predicts the
optimal control sequence for the entire prediction horizon on
line 9. The first signal of the optimal control sequence is sent
to the CFD solver, which is then interpolated to time tCFD using
Eq. (14). Note that since the CFD solver time step size �t is
typically smaller than the MPC solver time step size �

p
, line 13

of Algorithm 2 ensures that FPTO is computed at the correct time
level in the case the if block is not executed. Lastly, both tnext-sync
and tCFD are updated and the time level is moved to n + 2.

Algorithm 2: Time-loop interaction between the CFD and MPC
solvers.
1 Initialize the MATLAB workspace and load the BEM data and

MPC parameters. // See Algorithm 1.

2 while (tCFD f tend) do
3 if (MPI_rank == 0) then
4 PetscMatlabEngineEvaluate (mengine,

‘‘tCFD = %f ; �t = %f ; z = %f ; Üz = %f ;" , tCFD, �t, z,
Üz); // Send the latest CFD and device data to

MATLAB workspace.

5 if (tCFD g tnext-sync) then
6 PetscMatlabEngineEvaluate(mengine,

‘‘calculate_mpc_matrices;
calculate_radiation_damping_xr;"); // Execute

the MATLAB scripts to update the

discrete-time dynamical matrices.

// Send the past up-wave surface elevation

data to the MATLAB workspace.

7 PetscMatlabEnginePutArray(mengine,
tpast.size(), 1, &(tpast[0]),‘‘tpast");

8 PetscMatlabEnginePutArray(mengine,
⌘A.size(), 1, &(⌘A[0]),‘‘⌘Apast ");

9 PetscMatlabEngineEvaluate(mengine,
‘‘calculate_control_force;"); // Compute the

optimal control sequence using

Algorithm 3.

10 PetscMatlabEngineGetArray(mengine, 1, 1,
&(u),‘‘u"); // Get the first signal of the

optimal control sequence from MPC for the

CFD solver.

11 tnext-sync } tnext-sync + �t
p
// Update the

synchronization time.

12 end
13 Interpolate FPTO } (m + mÿ)u to tCFD using Eq. (14).
14 end
15 MPI_Bcast(FPTO); // Broadcast the value of the PTO

force to all processors.

16 Solve the FSI problem using the multiphase IB solver.
17 tCFD } tCFD + �t
18 end

3. The MPC routine: Algorithm 3 describes the AR predictions and
the LFK and NLFK force calculations required by the MPC to
compute an optimal control force sequence. This algorithm is
executed by the MATLAB script ‘calculate_control_force.m’. First,

line 1 calculates the discrete time instants over the prediction
horizon at a uniform interval �t

p
. Next, the algorithm checks if

AR predictions are to be used or not. If the value of the variable
AR_start_time is set to a large number (larger than the simulation
end time), then the if condition on line 2 always evaluates to
true. In this case, the algorithm computes the LFK or the NLFK
force based on the analytical expression of the wave elevation.
In the case AR_start_time is set to the controller/MPC start time,
the if condition on line 2 evaluates to false when tCFD becomes
equal or larger than the MPC start time. In that case, the wave
elevation data over the prediction horizon is calculated using AR
predictions; see line 16. The wave excitation force is computed
using the convolution integral given by Eq. (30) based on the
AR predictions of wave elevation. Next, other necessary terms
like the viscous force, the state vector Xd , etc., are calculated on
lines 19–21. Finally, the QP functionality of MATLAB is used to
compute the optimal control force sequence �ud considering the
necessary device constraints and penalty terms.

7. Validation of BEM and MPC solvers and motivation behind this
work

While MPC has been used in the process industries (chemical plants
and oil refineries) since the 1980s, its formulation for the wave en-
ergy conversion application was first suggested by Gieske (2007) in
2007. The study involved optimizing the control of the Archimedes
wave swing (AWS) device modeled as a second-order linear system. In
2010, Cretel et al. (2010) implemented a zero-order hold (ZOH) method
based MPC for a half-submerged heaving vertical cylinder A later study
published by Cretel et al. (2011) suggested using the first-order hold
(FOH) method, which yielded better results than ZOH-based MPC. The
BEM-LFK solver was used in all the aforementioned studies.

In order to validate our (FOH-based) BEM-LFK solver and MPC im-
plementations, we consider the same half-submerged vertical cylinder
case as Cretel et al. (2011). The cylinder has a radius of Rcyl = 5 m
and an upright length of Lcyl = 16 m. Regular waves of height H = 2
m and time period T = 7 s are used. This corresponds to a small have
height case and the BEM solvers are expected to be accurate in this
wave regime. The BEM parameters mÿ and K

e
(t) are obtained using

ANSYS AQWA by performing frequency domain WSI simulations. The
MPC parameters are taken to be �t

p
= 0.1 s, N

p
= 60 (and consequently

a prediction horizon of T
h

= 6 s), �1 = 2 s, and �2 = 0 s. There
are no device constraints included, and J2 cost function is used in
the MPC to match Cretel et al.’s setup. Fig. 9 shows the temporal
evolution of the heave velocity and excitation forces and compares it
against the steady-state results of Cretel et al. (2011). Both studies agree
very well. The steady-state time-averaged power P PTO absorbed by the
device is 353.5301 kW, which is also close to the value of 395.08 kW
reported in Cretel et al. (2011). We conclude from these results that
our BEM-LFK solver and MPC implementations are correct.

Next, we compare the predictions of the BEM and CFD solvers for a
1:20 scaled-down version of the device (using Froude scaling). We do
this to reduce the computational cost of CFD simulations, as the full-
scale WEC device requires a larger computational domain and a higher
mesh resolution to resolve the high Reynolds number flow. For further
details on the Froude scaling of the device and wave characteristics (H
and T ), the readers are referred to Khedkar et al. (2021). The size of
the domain, grid resolution, and time step size of the CFD simulation
are determined by the spatial–temporal simulation performed in the
next Section 8. Both solvers use regular waves of height H = 0.1 m
and time period T = 1.5652 s and the MPC parameters are N

p
= 60,

�t
p
= 0.0223 s, T

h
= 1.3415 s, �1 = 2 s, and �2 = 0 s. Fig. 10 compares

the predictions of the two solvers. Fig. 10(a) clearly shows that the
wave excitation force of the CFD simulation is much larger than that
of the BEM-LFK simulation. A similar discrepancy is observed using
the BEM-NLFK solver whose results are closer to the BEM-LFK solver
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Fig. 9. Temporal evolution of (a) the heave velocity and (b) wave excitation forces acting on the heaving vertical cylinder. Results are compared against Cretel et al. (2011) for
first-order regular waves of height H = 2 m and time period T = 7 s. The MPC parameters are �t

p
= 0.1 s, T

h
= 6 s, �1 = 2 s, and �2 = 0 s.

Fig. 10. Temporal evolution of (a) wave excitation force, (b) control force, and (c) instantaneous power absorbed for vertical cylinder WEC device heaving on the sea surface for
first order regular wave of H = 0.1 m and T = 1.5652 s. The MPC parameters are N

p
= 60, �t

p
= 0.0223 s, T

h
= 1.3415 s, �1 = 2 s, and �2 = 0 s. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this article.)

(data not shown for brevity). Since this is a low wave amplitude case,
we attribute the discrepancy between the CFD and BEM solvers to the
non-linear WSI caused by the controller. To confirm this hypothesis an
additional CFD simulation is conducted, in which hydrodynamic loads
are calculated on a vertical cylinder that has the same dimensions, but
is fixed at equilibrium. The case is represented by the green curve in
Fig. 10(a). It is clear that both solvers (CFD and BEM-LFK) estimate
the same hydrodynamic force on the stationary cylinder. Furthermore,
an uncontrolled dynamics case is simulated in the next Section 8,
where the BEM and CFD solvers’ predictions match for the same wave
conditions of this section. These additional tests confirm our hypothesis

that even in calm sea conditions, the controller can cause a mismatch
between the solvers’ predictions.

Figs. 10(b) and 10(c) compare the MPC control force and the in-
stantaneous power absorbed by the heaving device (respectively) using
the BEM-LFK and CFD solvers. The comparison shows that, while the
BEM-LFK solver estimates the power produced by the device at 10.6
W.5 during its steady-state operation, the CFD solver predicts a large

5 Using Froude scaling, this value corresponds to 10.6ù(20)
7
2 = 379.2 kW for

the full-scale device, which is close what is predicted earlier in this section.
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Algorithm 3: MATLAB-based MPC routine.
1 time_horizon = tCFD + (0:N

p
) ù�t

p
; // Calculate the

discrete time horizon.

2 if (tCFD f AR_start_time) then
3 if (strcmp(Fexc-type, ‘LINEAR_FK’)) then
4 Fexc }

calculate_excitation_force(time_horizon);
// Calculate Fexc using Eq. (28). ⌘wave is

calculated using Eq. (34) for regular and

Eq. (41) for irregular waves.

5 else
6 zpredicted } AR_prediction(zpast, tpast, Np

, AR_order,
�t
p
); // Predict the device displacement using

the AR model based on past data.

7 F
D
}
calculate_diffraction_force(time_horizon);
// Calculate the wave diffraction force using

Eq. (33). ⌘wave is calculated using Eq. (34)

for regular and Eq. (41) for irregular waves.

8 for (m = 1 to (N
p
+ 1)) do

9  } calcu-

late_level_set_for_cylinder(zpredicted(m),
Rcyl, Lcyl); // Compute the level set for the

cylinder on a static grid region R.
10 � } calcu-

late_level_set_for_wave(time_horizon(m));
// Compute the level set for the

undulatory air--wave interface.

11 F
I
(m) } calculate_NLFK_force( , �,
time_horizon(m)); // Calculate the incident

wave force using Eq. (32).

12 end
13 Fexc } F

D
+ F

I
// Compute Fexc for

≈t À time_horizon.

14 end
15 else
16 ⌘Apredicted } AR_prediction(⌘Apast , tpast, Np

, AR_order,
�t
p
);

17 Calculate the future N
p
values of Fexc for ≈t À time_horizon

using Eq. (30).
18 end
19 Calculate the first term in the linearized form of the viscous

force F
v
given in Eq. (8).

20 Calculate the vectors Xd and �vd .
21 Calculate J T

uQJ u and J T

uQ(PXd + J v�vd) terms of Eq. (21).
22 Minimize the cost function J3 (with constraints) using the QP

functionality of MATLAB to obtain the optimal control
sequence �ud .

withdrawal of power from the grid (*43.8 W). The power results of
the BEM-NLFK solver are close to those of the BEM-LFK solver (data not
presented). There was only a small effect of changing the penalty term
�1 on the power results of the two solvers. The results presented in this
section, therefore, suggest that the BEM solvers may not always provide
a reliable estimate of the power production capability of the WEC
device under certain operating/controlled conditions. Furthermore, it
can also be appreciated that it is necessary to include the �2 term in the
objective function to eliminate or mitigate the large negative powers.
This section summarizes the motivation for the work conducted here,
which is to investigate why the performance of various types of solvers
differs and to compare them under different operating conditions. Due
to the reasons noted above, we compare the performance of various

solvers using J3 instead of J2 in the results and discussion Section 9
The case of this section is also repeated (Case 2 of Table 4) using the
J3 cost function because it is more suitable for the model predictive
control of WECs.

Before proceeding to the main results Section 9, we first perform a
grid convergence study for the CFD solver in the next section.

8. Spatial and temporal resolution tests

In this section, we perform a grid convergence study on the heaving
WEC device using the CFD solver. Convergence tests are performed
without the MPC. In WSI simulations, both regular and irregular waves
are considered. The spatial resolution study is based on three spatial
resolutions listed in Table 3, while the temporal resolution study is
based on three values of the time step size �t for irregular waves. In
all tests, the maximum Courant–Friedrichs–Levy (CFL) number is less
than or equal to 0.5. Simulations are performed on locally refined grids
in order to reduce computational costs.

The computational domain for regular waves is ⌦ = [0, 3.145�]
ù [0, 12Rcyl] ù [0, 2.2d], whereas for irregular waves it is ⌦ = [0,
3.176�] ù [0, 12Rcyl] ù [0, 2.2d]. The domain size is large enough to
eliminate boundary effects. This is based on our previous experience
modeling WSI of WEC devices (Dafnakis et al., 2020; Khedkar et al.,
2021). The origin of the domain is located at the bottom left corner; see
Fig. 7. The initial center of mass of the device is located at Xcom = (�+
5Rcyl, 6Rcyl, d). Rcyl = 0.25 m and Lcyl = 0.8 m, which is a 1:20 scaled-
down version of the one presented in Cretel et al. (2011). The cylinder
is half-submerged in its equilibrium position. The quiescent water depth
is d = 2 m, acceleration due to gravity is g = 9.81 m/s2 (directed in
the negative z-direction), density of water is ⇢

w
= 1025 kg/m3, density

of air is ⇢
a
= 1.225 kg_m3, viscosity of water is �

w
= 10*3 Pa�s, and

viscosity of air is �
a
= 1.8 ù 10*5 Pa�s. At this scale, surface tension at

the air–water interface has no effect on WEC dynamics and is therefore
ignored. All of the CFD simulations in this work, including those of the
previous Section 7 use the same material properties and computational
domain setup. Fig. 11 shows the grid layout and typical wave–structure
interactions of the device in the NWT.

8.1. Grid convergence study

Here, a grid convergence study is performed to determine the
optimal mesh spacing for the CFD simulations. Three grid sizes are
used to conduct the grid convergence test: coarse, medium, and fine
(see also Table 3). The coarse mesh size corresponds to 5 cells per
radius of the cylinder (CPR), the medium mesh size is 10 CPR, and
the fine mesh size is 15 CPR. The computational mesh consists of a
hierarchy of l grid levels. The coarsest grid level is discretized into
N
x
ùN

y
ùN

z
grid cells and covers the entire computational domain ⌦.

A sub-region of the coarsest level is then locally refined (l * 1) times
by an integer refinement ratio of nref. The local refining is done in such
a way that the device and the air–water interface remains embedded
on the finest grid level throughout the simulation. The grid spacing on
the finest grid level is calculated as: �x = �x0_nl*1ref , �y = �y0_nl*1ref , and
�z = �z0_nl*1ref , in which �x0, �y0, and �z0 are the grid spacings on the
coarsest grid level.

First-order regular waves of height H = 0.1 m and time period
T = 1.5652 s enter from the left side of the domain and interact
with the 3D vertical cylinder. The temporal evolution of the device
displacement and velocity using three mesh resolutions are shown in
Figs. 12(a) and 12(b), respectively. The average percentage change in
the peak values of the heave displacement between two consecutive
grid resolutions is calculated from t = 20 s to 30 s. The average
percentage change between the coarse and medium grids is 6%, and
between the medium and fine grids is 2.7%. For heave velocity these
values are 3.6% and 2.5%, respectively. Fig. 13 shows the air–water
interface and the vortical structures arising from the WSI using the
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Fig. 11. (a) Locally refined Cartesian mesh with two levels of mesh refinement for the 3D NWT. Representative WSI of the 3D WEC model at t = 37.5 s: (b) for regular waves
and (c) for irregular waves.

medium grid (CPR10) resolution. It can be observed that both these
fluid dynamical quantities are adequately resolved by the CPR10 grid.
From Figs. 12 and 13, it can be concluded that the medium grid
resolution is able to capture the WSI dynamics with good accuracy and
hence is used for the rest of the CFD simulations.

The device dynamics are also simulated using the BEM-LFK solver,
which solves Eqs. (9)–(10) of Sec. 2. Since the present test simulates
the WSI without MPC, the device undergoes a small motion from its
mean equilibrium position under the action of first-order Stokes waves.
Therefore, the CFD results are expected to match the BEM results in this
situation. Indeed, this can be confirmed from the results of Figs. 12(a)
and 12(b).

8.2. Temporal resolution study

In this section, we conduct a time step size study to find the
step size �t that adequately resolves the energy content of irregular
waves. Specifically, �t should be such that the high-frequency wave
components that carry a considerable amount of energy are adequately

Table 3
Grid refinement parameters used for the grid convergence study.
Parameters Coarse Medium Fine

nref 4 4 4
l 2 2 2
N
x

60 120 180
N
y

15 30 45
N
z

22 44 66
�x0 = �y0 = �z0 (m) 0.2 0.1 0.0667
�x = �y = �z (m) 0.05 0.025 0.0166
�t (s) 5 ù 10*3 2.5 ù 10*3 1.5 ù 10*3

represented in the simulation. Irregular waves of height H = 0.15 m,
peak time period T

p
= 1.7475 s, and N = 50 wave components are

generated at the left end of the NWT. We use three different time step
sizes for the temporal convergence study: �t = 2.5 ù 10*3 s, 1.25 ù 10*3

s, and 7 ù 10*4 s. The medium grid resolution (CPR10) of the previous
section is used here. The temporal evolution of the heave displacement
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Fig. 12. Temporal evolution of the heave (a) displacement and (b) velocity of the uncontrolled WEC device using BEM-LFK (—–, black) and CFD solvers. Three grid resolutions
of CPR5 (—–, red), CPR10 (—–, green), and CPR15 (—–, yellow) are used for the CFD solver. The first-order regular wave characteristics are: H = 0.1 m, T = 1.5652 s, and � =
3.8144 m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Wave–structure interaction of the 3D vertical cylinder WEC device (here shown in the x * *z plane) at t = 22 s using the medium grid resolution (CPR10). A locally
refined mesh with l = 2 and nref = 4 is used. The air–water interface and the vortical structures resulting from the WSI are plotted.

and velocity of the device are compared in Fig. 14. With smaller �t
values, we are able to resolve the amplitudes of the heave displacement
and velocity more accurately, as seen in Fig. 14(a) and Fig. 14(b),
respectively. The average percentage change in the peak values of the
heave displacement and velocity between two consecutive time step
sizes is calculated from t = 20 s to 40 s. The average percentage change
for the heave displacement between �t = 2.5ù10*3 s and �t = 1.25ù10*3
s is 15.06% and between �t = 1.25 ù 10*3 s and �t = 7 ù 10*4 s is
9.89%. For velocity, the percentage changes are 14.68% and 5.45%,
respectively. According to these results, �t = 1.25 ù 10*3 s is sufficient
to model WSI with irregular waves.

Based on the tests of this section, we hereafter use the medium
grid spatial resolution with �t = 2.5 ù 10*3 s for regular waves and
�t = 1.25 ù 10*3 s for irregular waves.

9. Results and discussion

Section 7 motivates us to investigate the following questions:

1. At various sea states, how do the predictions of different WSI
and MPC solvers compare?

2. In the case of the predictions of the solvers differing widely, what
is the main reason for this?

3. How do AR predictions affect MPC performance?
4. By using CFD simulations, can the wave-to-PTO power transfer
relationships be adequately captured?

5. How well does the MPC adapt to changing sea states?

We perform MPC-integrated WSI simulations of the cylindrical WEC
device operating in different sea states to answer these questions. CFD
simulations are conducted in a computational domain described in
Section 8. The following MPC parameters are used in all simulations,
unless stated otherwise: �t

p
= 0.05 s, T

h
= T (or T

p
), N

p
= ‰

Th
�tp

Â, �1 = 2
s, and �2 = 0.2 s. Here, ‰�Â is the nearest-integer/ceil function. The
controller is activated at t = 10 T (or 10 T

p
), i.e., when the device starts

oscillating steadily. We do this to avoid the possibility of creating a
large PTO force at the start of the simulation, which could destabilize
it.

9.1. Comparing the predictions of different solvers

This section compares the predictions of various WSI and MPC
solvers listed in Table 2. The results presented here are not based on the
AR model, but on analytical expressions to predict the wave elevation
data. We discuss the effect of AR predictions on MPC performance
separately in Section 9.2. Table 4 lists the sea states and the PTO force
limits. In order to simplify the discussion, constraints on the device
displacement and velocity are not included in the MPC. Furthermore,
preliminary testing showed that adding the displacement and velocity
constraints (along with the PTO force constraint) did not significantly
alter the results of this section (data not shown for brevity).

9.1.1. Comparing the predictions with regular waves
Here, the controlled heave dynamics of the WEC device operating

in regular sea conditions are compared. As listed in Table 4, Cases 1
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Fig. 14. Temporal evolution of (a) the heave displacement and (b) heave velocity for three different time step sizes: �t = 2.5 ù 10*3 s (—–, black), �t = 1.25 ù 10*3 s (—–, red),
and �t = 7 ù 10*4 s (—–, green). Irregular water waves are generated with Hs = 0.15 m, T

p
= 1.7475 s, and N = 50 wave components, with wave component frequencies in the

range 1.6 rad/s to 20 rad/s distributed uniformly. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Cases considered for comparing results for various solvers and MPC methodologies.
Case Wave type Wave height (m) Control force (FPTO) constraint (N)

1 First-order regular 0.1 ± 25
2 First-order regular 0.1 ± 100
3 First-order regular 0.5 ± 25
4 First-order regular 0.5 ± 100
5 First-order regular 0.5 ± 300
6 Irregular 0.15 ± 25
7 Irregular 0.15 ± 100
8 Irregular 0.3 ± 25
9 Irregular 0.3 ± 100

Table 5
Time-averaged power output using different WSI and MPC solvers for Cases 2, 5, 7,
and 9 of Table 4.

Solver MPC Time-averaged power (W)

Case 2 Case 5 Case 7 Case 9

1 BEM-LFK LFK 5.4458 138.9282 3.9463 12.6718
2 BEM-LFK NLFK 5.674 142.7581 3.8786 12.1793
3 BEM-NLFK LFK 5.4766 40.9436 3.726 13.0561
4 BEM-NLFK NLFK 5.5401 36.9532 3.7235 12.8456
5 CFD LFK 3.7216 34.2936 2.4871 7.9284
6 CFD NLFK 3.7407 34.4263 2.7513 9.0553

and 2 consider regular waves of small height H = 0.1 m and time
period T = 1.5652 s, with control force limits of ±25 N and ±100 N,
respectively. Cases 3, 4, and 5 consider regular waves of large height
H = 0.5 m and (the same) time period T = 1.5652 s, with control
force limits of ±25 N, ±100 N, and ±300 N, respectively. Allowing a
larger control force in MPC leads to a higher heave amplitude of the
device. However, this puts more strain on the actuator system, which
can damage the hardware or negatively impact the actuator efficiency
(actuator efficiency is not considered in this work).

Figs. 15(a) and 15(b) compare the heave displacement, 15(c) and
15(d) compare the optimal control force, and 15(e) and 15(f) compare
the instantaneous power absorbed by the device using different WSI
and MPC solvers for Case 2 and 5, respectively. The time-averaged
power of the device for Cases 2 and 5 is listed in Table 5. The time-
averaged power is calculated between t = 30 s to 40 s when the device
dynamics become steady. Other simulations produce similar trends,
which for brevity are not shown. Instead, the time-averaged powers
are shown in Fig. 17(a).

From the results presented in Fig. 15 and Table 5, it is observed that
for the small wave height Case 2, the BEM-LFK solver results are close
to those of BEM-NLFK and CFD solvers. In contrast, for the large wave
height Case 5, the dynamics and the power absorbed by the WEC device
are largely over-predicted. Another important observation from Table 5

and Fig. 17(a) is that the MPC-LFK and MPC-NLFK solvers produce
almost the same time-averaged powers, when used either with the BEM
or the CFD solver. It can also be observed that the BEM-NLFK and CFD
solver results are in good agreement.

The results of this section provide two meaningful insights: (1)
the main cause of discrepancy between the BEM-LFK and the CFD
(or the BEM-NLFK) solver is the manner in which wave excitation
forces are computed; and (2) there is a little advantage to increasing
the complexity of the hydrodynamical model within MPC. The latter
also implies that the simpler and computationally faster LFK model is
sufficiently accurate for the model predictive control of WECs.

One can also note that by using �2 = 0.2 s, the negative part of
the power cycle is largely eliminated for all WSI solvers. This can be
verified from the instantaneous power curves of Figs. 15(e) and 15(f).
Similar observation can be made for the irregular wave cases that are
presented in the next section.

9.1.2. Comparing the predictions with irregular waves
Next, the controlled heave dynamics of the WEC device operating

in irregular sea conditions are compared. Cases 6 and 7 in Table 4 are
of irregular waves of small significant wave height H

s
= 0.15 m and

peak time period T
p
= 1.7475 s, with control force limits of ±25 N,

and ±100 N, respectively. Cases 8 and 9 concern irregular waves of
moderate significant wave height H

s
= 0.3 m and (the same) peak time

period T
p
= 1.7475 s, with control force limits of ±25 N and ±100 N,

respectively.
Fig. 16 presents the WEC dynamics for Cases 7 and 9. Results for

Cases 6 and 8 are not presented for brevity, as they show similar trends.
Figs. 16(a) and 16(b) compare the heave dynamics, 16(c) and 16(d)
compare the optimal control force, and 16(e) and 16(f) compare the
instantaneous power absorbed by the device using different WSI and
MPC solvers for Case 7 and 9, respectively. The time-averaged power
of the device is listed in Table 5 and is calculated between t = 30 s to
40 s when the device dynamics become steady. Simulations of the other
cases produce similar trends and are not shown for brevity. Instead, the
time-averaged powers are plotted in Fig. 17(b).

As shown in Fig. 16 and Table 5, all WSI and MPC solvers perform
almost the same, though the CFD solver predicts slightly lower power
for Case 9 than the BEM-LFK and BEM-NLFK solvers. This is not surpris-
ing since the wave heights considered in this section are relatively low.
At larger (significant) wave heights, we expect the differences between
BEM-LFK and CFD (or BEM-NLFK) solvers to increase; this is confirmed
in the next section. Waves with large significant wave heights are not
considered here, since the CFD solver requires very small time steps to
maintain the numerical stability. As a result, the 3D simulation will take
very long to run, which is something we cannot afford at the moment.
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Fig. 15. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC device with regular waves. Case 2 and Case 5 of Table 4 are considered here. The WSI
and MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black); BEM-LFK and MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and MPC-NLFK (—–,
mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–, orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

The results of Sections 9.1.1 and 9.1.2 suggest that the BEM-LFK
solver may give too optimistic results, especially when the hydro-
dynamic nonlinearities increase. Conversely, the CFD solver can re-
solve hydrodynamical non-linearities with high-fidelity, albeit at an
increased computational cost, and provides more realistic results. Be-
tween these two extremes is the BEM-NLFK solver, which yields some-
what optimistic power values, but not quite as large as the BEM-LFK
solver. In addition, either MPC-LFK or MPC-NLFK is equally effective
for a specific WSI solver since they give very close results. Since the
MPC-LFK technique is computationally faster than MPC-NLFK, it is
better suited for practical control of WEC devices.

9.1.3. Comparing the predictions with varying wave periods
This section compares the predictions of the BEM-LFK and BEM-

NLFK solvers for varying wave periods. Regular and irregular sea
conditions are considered. For the two WSI solvers, MPC-LFK is used.
Due to the high computational cost associated with simulating waves of
longer durations and wavelengths, CFD simulations are not performed
here.

Results compare the time-averaged power absorbed by the WEC
device for regular waves in Fig. 18(a) and for irregular waves in
Fig. 18(b). The regular waves have wave heights of H = 0.1 m, 0.3 m,
and 0.5 m, with time periods varying from 1.2 s to 4.6 s. The irregular
waves considered here have significant wave heights of H

s
= 0.1 m,

0.3 m, 0.5 m, and 1 m, with peak time periods varying from 1.2 s to
3.4 s.

The results show that the BEM-LFK solver over-predicts the time-
averaged power absorbed by the device for large waves; for regular
waves, H = 0.5 m and for irregular waves, H

s
= 1 m. Further,

for both regular and irregular waves, the difference between the two
solvers’ predictions is greater at smaller time periods than at larger time
periods. This is because the natural period of oscillation of the device
is 1.54 s, which falls in the small time period region, where the device
oscillates with large amplitude due to the waves and actuator induced
resonance. The BEM-LFK solver inherently violates the small motion
assumption used in its formulation near or at resonance, and therefore
provides inaccurate power estimates. A separate CFD simulation was
used to determine the natural period of oscillation of the device; those
simulation results are not discussed here for brevity.
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Fig. 16. Comparison of the controlled heave dynamics of the 3D vertical cylinder WEC device with irregular waves. Case 7 and Case 9 of Table 4 are considered here. The WSI
and MPC solver combinations are: BEM-LFK and MPC-LFK (—–, black), BEM-LFK and MPC-NLFK (—–, red), BEM-NLFK and MPC-LFK (—–, green), BEM-NLFK and MPC-NLFK (—–,
mustard), CFD and MPC-LFK (—–, blue), and CFD and MPC-NLFK (—–, orange). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 17. Comparison of time-averaged powers for cases given in Table 4.
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Fig. 18. Comparison of time-averaged power absorbed by the WEC device operating in (a) regular and (b) irregular sea conditions with varying wave periods and heights. The
BEM-LFK (BEM-NLFK) solver results are shown with solid (dashed) lines.

Fig. 19. AR model predictions (—–, green) of (a) regular and (b) irregular waves for one wave period into the future using the past two wave period elevation data (—–, red).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

9.2. CFD simulations with AR-enabled wave predictions

In this section, we examine the effect of AR predictions on MPC
performance. In this test, we use the MPC-LFK and CFD solvers with
regular waves of height H = 0.5 m and time period T = 1.5652 s,
and with irregular waves of significant wave height H

s
= 0.3 and

peak time period T
p
= 1.7475 s. We set AR_start_time equal to MPC

start time: t = 10 T (or 10 T
p
). Therefore, the controller and the AR

predictions will begin once the device exhibits steady-state oscillations
under the influence of incoming waves. MPC and NWT interaction
is schematically represented in Fig. 8. In particular, wave elevation
data at an up-wave probe point A (⌘

A
) for the past two wave periods

is collected and sent to the AR model to allow for wave elevation
prediction over one wave period into the future (at the same location
A). For predicting regular and irregular waves, we use AR models of
order 3 and 5, respectively. Figs. 19(a) and 19(b) illustrate that the
chosen AR models are sufficiently accurate for predicting regular and
irregular waves, respectively. Based on the past and predicted wave
data, the wave excitation force Fexc acting on the device is calculated
using Eq. (30).

As a test of the accuracy of the AR-integrated MPC solver, the results
are compared with those obtained using analytical forcing, which was
also used in Section 9.1. As for regular waves, Figs. 20(a), 20(c),
and 20(e) compare the heave displacement, control force, and the
instantaneous power absorbed by the device, respectively. Figs. 20(b),
20(d), and 20(f) compare these quantities for irregular waves. The
results show that the device dynamics are very close with or without the
AR predictions. The time-averaged power absorbed by the WEC device

subject to regular waves is 40.5546 W when the AR model is enabled.
The value of 41.0097 W obtained by analytical forcing agrees well with
this result. In the case of irregular waves, these values are 9.9799 W
and 7.9284 W, which also match fairly well. Further improvements can
be obtained for the irregular wave case by using a better method of
time-series forecasting or by fine-tuning the AR model.

We conclude from the results of this section that our technique of
collecting wave elevation data from an up-wave location in the NWT
and predicting future waves based on it (through an AR model) works
well with the CFD/MPC-LFK solver combination.

9.3. Power transfer from waves to the PTO system: Verifying the relation-
ships with CFD simulations

We re-analyze the AR-enabled CFD simulations of the previous
section to verify the power transfer relations in Section 4.6. In the
case of regular waves of height H = 0.5 m and time period T =
1.5652 s, the power transferred by the waves to the device (or the
work done by the hydrodynamic forces) is Pwavesôcyl = 38 W and
that absorbed by the PTO unit is P PTO = 39 W. A time average is
taken from t = 30 s to 31.5652 s, i.e., for one wave period. Based on
these power values, we conclude that the power transfer Eq. (69) is
verified in the case of regular waves. In the case of irregular waves,
we calculate the left and right sides of Eq. (68) separately. t = 30 s
to 40 s is chosen as the time interval for time-averaging the terms of
the equation. Accordingly, the two sides of the equation evaluate to
72.06 W and 71.47 W, respectively, which also match reasonably well.

Based on the results of this section, we conclude that our CFD
simulations satisfy the power transfer relationships of Section 4.6.
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Fig. 20. Comparison of the controlled heave dynamics of the 3D vertical cylinder with and without AR predictions. The WEC dynamics are simulated using the CFD and MPC-LFK
solver. For regular water waves of height H = 0.5 m and time period T = 1.5652 s results are compared for (a) heave displacement, (c) control force, and (e) instantaneous
power. For irregular water waves of significant wave height H

s
= 0.3 m and peak time period T

p
= 1.7475 s results are compared for (b) heave displacement, (d) control force,

and (f) instantaneous power. In all cases the control force limits are set to ± 100 N.

9.4. MPC adaptivity

To test the adaptive capability of MPC for WEC devices, we simulate
the dynamics of the 3D vertical cylinder subject to changing sea states.
Specifically, three consecutive sea states are considered within a single
CFD simulation: sea state 1 consisting of first-order regular waves of
height H = 0.1 m and time period T = 1.5652 s between t1 = 0 s to
t2 = 40 s, sea state 2 consisting of first-order regular waves of height
H = 0.2 m and time period T = 2 s between t2 = 40 s to t3 = 60 s, and
sea state 3 consisting of first-order regular waves of height H = 0.15 m
and time period T = 1.7475 s between t3 = 60 s to t4 = 120 s. The wave
elevation is smoothly varied from one sea state to the other using the
following expression:

⌘
i,i+1(t) = ⌘

i
(t) + (⌘

i+1(t)* ⌘i(t)) � (1 + tanh(t* (t
i+1 * thalf-interval)))_2, (70)

in which ⌘
i
(t) = (H

i
_2) cos(

i
x*!

i
t) and thalf-interval = 5 s is the transition

time between sea state i to i + 1. AR predictions are also enabled for
the CFD simulation. For MPC, each sea state uses a pre-configured
AR model that is optimized offline. While this is inconvenient, it is
necessary to allow accurate predictions of wave excitation forces.

Fig. 21 shows the temporal evolution of the heave displacement and
velocity. We compare the CFD results with three separate BEM-LFK
simulations for different sea states. Because all three sea states have
small amplitude waves, the BEM-LFK solver is expected to be accurate.
Indeed, it is observed that the adaptive CFD simulation agrees well with
the BEM-LFK solver results, which indicates that the MPC algorithm is
able to adapt according to the current sea state and produces an optimal
solution in each case.
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Fig. 21. Comparison of the (a) heave displacement and (b) velocity of the device subject to changing sea states using CFD and BEM-LFK solvers. The BEM-LFK solver solves the
three sea states separately, whereas the CFD solver considers them consecutively.

10. Conclusions

In this study, we simulated the controlled dynamics of a heaving 3D
vertical cylinder WEC device using BEM and multiphase IB solvers. A
MPC strategy was used to maximize the energy absorption capacity of
the WEC device under regular and irregular sea conditions.

We validated our BEM-LFK and MPC-LFK implementations by sim-
ulating a benchmarking case from Cretel et al. (2011) in Section 7. The
scaled-down version of the same device was then simulated using the
multiphase IB solver, and its wave excitation forces were significantly
greater than those predicted by the BEM solvers. A more surpris-
ing result was that the WEC device drew a large amount of power
from the grid instead of producing energy, as predicted by the BEM
solvers. Moreover, it was observed that J3 is a better choice for the
model predictive control of WECs compared to J2, as the latter can
provide misleading power output. To understand the main cause of
the discrepancy, we examined six different combinations of the WSI
and MPC solvers using J3 as the cost function. It is found that when
the sea state is calm and the wave height is small, the BEM solvers’
predictions match well with the CFD solver’s. However, in agitated
sea conditions, the BEM solvers over-predict the device performance,
which can be misleading to the device designer. On the other hand,
the CFD solver provides realistic results both in calm and agitated sea
conditions. It is evident that resolving the hydrodynamic non-linearities
associated with the WSI is essential to obtaining realistic estimates of
the device’s power. It is further confirmed by the results of the BEM-
NLFK solver, which are closer to those of the multiphase IB solver.
Therefore, we recommend using the BEM-NLFK solver to study the
controlled dynamics of WECs when computational resources are limited
to employing a CFD solver. In addition, it is straightforward to switch
to the BEM-NLFK solver by using the static grid technique described
in Section 2.3.2. Additionally, we found that the choice between MPC-
LFK or MPC-NLFK is irrelevant, as both algorithms give very similar
results. Nevertheless, MPC-LFK solver is computationally-efficient and
is proposed as a practical model-based control for WECs.

We also compared MPC-LFK performance with and without AR
predictions in Section 9.1. We found that the AR prediction strategy
worked well in both regular and irregular waves. The AR model can
be tuned further or a different time-series forecasting algorithm can be
used for further improvements. The pathway of energy transfer from
waves to the PTO unit for the heaving WEC device was also derived and
confirmed. By simulating three different sea states consecutively within
a single CFD simulation, we tested the adaptive capabilities of MPC of
WECs. The MPC is shown to adapt to different sea states and find the
optimal solution for each situation, thus living up to its reputation as
the ‘‘Tesla’’ of control approaches.
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