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Abstract— We apply computer vision pose estimation tech-
niques developed expressly for the data-scarce infant domain to
the study of torticollis, a common condition in infants for which
early identification and treatment is critical. Specifically, we use
a combination of facial landmark and body joint estimation
techniques designed for infants to estimate a range of geometric
measures pertaining to face and upper body symmetry, drawn
from an array of sources in the physical therapy and ophthal-
mology research literature in torticollis. We gauge performance
with a range of metrics and show that the estimates of most
these geometric measures are successful, yielding strong to
very strong Spearman’s ρ correlation with ground truth values.
Furthermore, we show that these estimates, derived from pose
estimation neural networks designed for the infant domain,
cleanly outperform estimates derived from more widely known
networks designed for the adult domain1.

I. INTRODUCTION
Torticollis is a common condition in infants and children,

characterized by a persistent neck tilt or twist to one side. Its
most common form, congenital muscular torticollis (CMT),
has an estimated incidence of 3.9% to 16% [11]. Early treat-
ment is critical: outcomes are best when CMT is diagnosed
and physical therapy treatment started before the infant is
three months old, and conversely, if untreated or treated
later, CMT can lead to face, skull, or spine deformities,
pain and limited motion, and the need for invasive interven-
tions and surgery [17]. Screening, diagnosis, and monitoring
during treatment for CMT require laborious professional
assessments, so with the recent onset of computer vision
technology specifically studying infant face and body poses
for health and developmental applications [4], [8], [10], [13],
[20], it is natural to wonder whether algorithmic techniques
can help enable remote monitoring or automated screening
and diagnosis to augment clinical expertise. In this paper, as
a first step towards such applications, we explore viability of
using computer vision techniques to assess a set of geometric
measures of symmetry in the face and upper body, previously
identified in the medical literature as being relevant to CMT
or the similarly presenting (non-congenital) ocular torticollis
condition, purely from casual photographs of infants in their
natural environments.

The geometric symmetry measures we consider are il-
lustrated in Fig. 1. We carefully researched and selected

1Code and data available at https://github.com/ostadabbas/Infant-Upper-
Body-Postural-Symmetry. 979-8-3503-4544-5/23/$31.00 ©2023 IEEE

Fig. 1. We study the effectiveness of using deep learning computer vision
techniques to assess a range of geometric facial and upper body measures of
symmetry—illustrated schematically here—which are drawn from medical
research literature on torticollis in infants and children. The assessments
employ recent advances in infant-domain estimation of facial and upper
body landmarks—also illustrated faintly—and we demonstrate that this
yields better results than landmark estimation methods largely trained on
adult data.

these from among measures studied by physical therapy and
ophthalmology researchers to enable qualitative assessment
of changes over time and in response to treatments [1], [6],
[14], [22], including specifically to quantify outcomes after
surgery [3]. In [15], the authors even study the reliability
of the procedure of extracting such measurements from
still photographs itself. The general contention is not, of
course, that measurements from individual still photographs
are fully determinative of torticollis conditions, but rather
that aggregated over time they can be employed alongside
other tools as part of its detection and treatment. We hope
that by establishing the viability of algorithmic assessments
of these geometric measurements of symmetry from still
photographs, we will open the door to future applications in
automated monitoring and screening, including from videos.

The technical tools that we employ for this proof-of-
concept experiment are based in computer vision pose es-
timation from still images, and in particular, face and body
landmark estimation. Mature solutions to these tasks exist but
are generally based in deep learning from primarily adult
faces and bodies. As alluded earlier, specialized methods
tailored for the unique faces and bodies of infants have
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only begun to crop up in recent years, in recognition of
the significant domain gap between infant and adults from
the point of view of computer vision representations. In this
paper, we employ an infant face landmark estimation model
from [20] together with a infant body landmark estimation
model from [8], both of which employ domain adaptation
techniques to tune existing adult-focused models to the infant
domain. We work with a subset of the InfAnFace dataset
from [20], and compare the values of our six geometric
symmetry measures derived from both predicted and ground
truth landmarks. We propose modifications of these measures
from their original definitions in the literature to enable
compatibility with the landmarks used in pose estimation
techniques.

Our findings show that predictions derived from the recent
infant-domain pose models exhibit “strong” or “very strong”
Spearman’s ρ ranked correlation with the ground truth values
on a precisely labeled test set of infant faces in the wild, with
best performance on the gaze angle (ga) between the line
connecting the outer corners of the eyes and the midsternal
plumb line, and on the habitual head deviation (hhd), the
angle between the eye line and the acromion process (shoul-
der) line. Predictions of three other measurements (including
non-angles) were strong, but we found only moderate success
in the predictions of the orbit slopes angle (osa), the angle
between the lines connecting the outer and inner corners of
the eyes—this being arguably the most subtle metric. Based
on this and our further analysis involving more performance
metrics in Section V, we conclude that computer vision
infant pose estimation techniques can successfully measure
a range of quantities pertaining to torticollis.

II. BACKGROUND: TORTICOLLIS AND INFANT
DEVELOPMENT

A. Quantifying torticollis
While there is a large corpus of research and established

methodology in the diagnosis and treatment of torticollis, it
is largely based on in-person physical assessments by experts
and follow-ups with imaging or other deeper techniques [11].
By contrast, our work is inspired by a smaller cluster of
papers dealing explicitly with measuring signs and symptoms
of torticollis geometrically from still images.

We start with congenital muscular torticollis (CMT). The
author in [14] studied the effectiveness of a specific ther-
apeutic intervention for CMT by comparing changes in
an infant’s “habitual head deviation” (also “head tilt”) as
measured by hand from still photographs. The same author
later studied the reliability of this photograph-based method
itself, in [15]. Separately, [3] measured the “gaze angle”
and “transformational deformity” of child subjects, again
from still photographs, to gauge improvement in response
to surgical intervention. Measurements from photographs
offer researchers a repeatable, objective way to quantify the
change in severity of torticollis after an intervention.

Sometimes torticollis is not congenital (present from birth)
but rather acquired, as is the case with ocular torticollis,
where the abnormal head posture is adopted to compensate

for a defect in vision. In such cases, diagnoses often occur
only in adulthood, and can be informed by examination of
head pose in childhood photographs. Correspondingly, oph-
thalmologists have also studied the quantification of facial
asymmetry via geometric measurements from still images.
An overview of such methods and quantities is given in [1],
who in turn cite [6] for definitions of facial measurements
such as the “orbit slopes angle,” “relative face size,” and
“facial bulk mass,” and [22] for definitions of the “facial
angle” and the “nasal tip deviation.” These measurements are
studied not as a means to quantify the effect of interventions,
but as part of a more comprehensive study on the differential
diagnosis of ocular torticollis and other conditions related to
facial asymmetries, especially superior oblique palsy [1].

B. Computer vision for infant health and development
We are not aware of prior computer vision research

intended to detect torticollis or gauge head asymmetry in
infants. The closest in spirit might be a pair of related papers,
[19], [24], in which researchers employ computer vision
to analyze head posture and tremor with a view towards
algorithmic understanding of cervical dystonia (also known
as spasmodic torticollis), with incidence largely in the adult
population. Accordingly, those studies can take advantage
of far more mature adult-focused head pose estimation
techniques like OpenFace 2.0 [2], whereas our efforts are
highly constrained by data scarcity in the infant domain. In
the infant domain, there is prior work on bodies but not
faces: [4] develops an infant-specific body pose estimation
deep network to extract body motion information from infant
videos, in an attempt to assess infant neuromotor risk; and
[10] uses 3D infant pose estimation techniques to assess
infant body symmetry, with a view towards applications in
infant development and torticollis, but without a specific im-
plementation of such. As mentioned, all of this work comes
in the context of recent attention in computer vision to the
small data domain problem of infant pose comprehension,
for both faces [20] and bodies [7], [8], [9], [13].

III. CONCEPTS: MEASUREMENTS OF
SYMMETRY

From the sources cited in Section II-A, we identified all
clearly defined geometric symmetry measures used by re-
searchers in the study of torticollis and facial asymmetries—
six in all. We altered the definitions to base them explicitly
on the 68 facial landmark coordinates and two body joint
(shoulder) coordinates used by our pose estimators, as illus-
trated and enumerated in Fig. 2, which also enables more
consistent comparisons. The final measures are defined in
Table I and illustrated in Fig. 1. In the rest of this section,
we clarify and discuss these definitions.

A. Assumptions and context
Since we work with both ground truth and estimated land-

mark coordinates in two dimensions, we generally assume
that every infant is facing forward into the camera, so that the
infant’s face plane is roughly parallel with the camera image
plane. In principle, all of the measurements we consider are



TABLE I
GEOMETRIC MEASURES OF FACE AND UPPER BODY SYMMETRY PERTAINING TO TORTICOLLIS (DETAILS IN SECTION III)

Measure Code Description Definition Source

Orbit slopes angle osa Angle between outer cathnus (eye corner) line and inner
cathnus line

]
(−−−−→
P36P45,

−−−−→
P39P42

)
[1], [6]

Relative face size rfs Left divided by right outer-canthus-to-mouth-corner lengths
∥∥∥−−−−→P45P54

∥∥∥/∥∥∥−−−−→P36P48

∥∥∥ [1], [6]

Facial angle fa Angle between the eye line and mouth corners line ]
(−−−−−−−−→
Pµ36,39P

µ
42,45,

−−−−→
P48P54

)
[1], [22]

Gaze angle ga Angle between outer cathnus line and midsternal plumb line ]
(−−−−→
P36P45,⊥

−−−−→
P68P69

)
[3]

Translational deformity td Distance between chin and midsternal plumb line, normalized
by the distance between the outer cathnuses

∥∥∥P8,⊥
−−−−→
P68P69

∥∥∥/∥∥∥−−−−→P36P45

∥∥∥ [3]

Habitual head deviation hhd Angle between eye line and acromion process (shoulder) line ]
(−−−−−−−−→
Pµ36,39P

µ
42,45,

−−−−→
P68P69

)
[14], [15]

Fig. 2. Face and body (shoulder) landmarks available from ground truth
annotations, with index numbers for each landmark point in correspondence
with the definitions in Table I.

well-defined for three dimensional face and bodies, but we
do not have access to three dimensional face landmarks in
the infant domain, and thus we must assume this alignment
to ensure that these measurements are well-defined from the
two dimensional landmarks.

B. Symbols and functions
In Table I, ](u, v) represents the signed angle in degrees

between vectors u and v, relative to a fixed orientation (say,
clockwise)2. Furthermore, Pi denotes the ith landmark (with
i ∈ {0, . . . , 67} corresponding to facial landmarks and i ∈
{68, 69} the shoulders);

−−→
PQ denotes the vector between two

points P and Q, Pµi,j is the midpoint between Pi and Pj ;
⊥u is the perpendicular vector to u (say, taken clockwise);
‖·‖ is the L2 norm; and ‖P, u‖ is the L2 distance between
a point P and the line spanned by a vector u. (Distances
can are computed in pixels, but the final geometric measures

2We want to measure the signed angle because, for instance, we would
like a clockwise and a counterclockwise angles of equal magnitude to be
considered different, for the purposes of quantifying predictions. Note that
we have ](u, v) = −](v, u) for all u and v.

based on distance are unitless because they are normalized,
as described next.)

C. Definitional choices

The descriptions in Table I are lightly adapted from the
source texts for clarity and uniformity. These descriptions
were then formalized into the geometric definitions in Table I
by assigning face and body features to landmarks used in
our models (as in Fig. 2), with choices in specific cases as
follows:

• For facial angle (fa) and habitual head deviation (hhd),
the eye line is interpreted as being the line between the
midpoints of the eyes, as defined for each eye by the
midpoint of its corners, to ensure consistency regardless
of whether the eye is open or closed.

• For relative face size (rfs), [1] defines this to be the
greater divided by the lesser of the two outer-cathnus-
to-mouth-corner lengths, but we choose to remove the
extra “logical” qualifier and always divide the left length
by the right length to enable more precise evaluation of
predictions.

• For gaze angle (ga) and translational deformity (td), we
take the perpendicular bisector to the two shoulder joints
as the midsternal plumb line.

• For translational deformity (td), since we do not have
the luxury of standardized photograph sizes as in [3], we
normalize by the distance between the outer cathnuses
(eye corners), a relatively stable quantity.

D. Omissions

We do not include the following two measurements found
in our literature search. The “facial bulk mass” of one side
compared to the other from [6] is alluded to in [1] but not
precisely defined, and is perhaps not intended to be inferred
from photographs. The “nasal tip deviation” from [22] and
described in [1] is also not made fully precise, and was
deemed too difficult to model reliably. Note that we do not
exclude quantities simply because they cannot be accurately
measured algorithmically with our methods (and indeed, we
find that the orbit slopes angle (osa) cannot be).



TABLE II
CONFIGURATION OF OUR LANDMARK ESTIMATION MODELS

Model Task Backbone Training Data

HRNet [21] Adult Face HRNet 300-W Train [16]
DarkPose [23] Adult Body HRNet COCO [12]
HRNet-R90JT [20] Infant Face HRNet InfAnFace Train [20]
FiDIP [8] Infant Body DarkPose SyRIP [8]

IV. EXPERIMENTAL SETUP: INFANT DATA AND
POSE ESTIMATION

A. Selecting and annotating infant faces
As the testbed for our study, we work with the infant

annotated faces (InfAnFace) dataset [20], a comprehensive
dataset of 410 infant faces labeled with 68 facial landmark
coordinates and four binary pose attributes, designed specif-
ically to alleviate the shortage of annotated data in the infant
face domain. The images from the InfAnFace are captured
from internet image and video sources, and represent a
diverse range of infants in natural environments “in the wild.”
We manually select a subset of images from InfAnFace Test
satisfying the requirements from Section III-A that the infant
be fully front facing, leaving us with 36 images to work
with. We manually augment the ground truth facial landmark
labels with two additional labels for shoulder joints, to enable
us to apply the definitions in Table I.

B. Face and body landmark estimation
To study the effectiveness of algorithmic assessment of

our geometric measures, we perform experiments with two
sets of pose estimation models, the first established models
trained largely on adult data, and the second recent models
designed specifically for the infant domain. The models and
training data are summarized in Table II.

In the adult domain, for facial landmark estimation, we
employ the high-resolution network (HRNet) [18], [21], an
influential multi-resolution convolutional neural network de-
signed to maintain high-resolution representations through-
out inference, which is handy for landmark estimation for
high-resolution images. For body joint estimation, we use
DarkPose [23], which modifies the standard convolutional
heatmap regression approach to landmark estimation to alle-
viate bias in coordinate representation arising from arbitrary
pixel quantization during encoding and decoding. Specifi-
cally, we adopt a DarkPose model with an HRNet backbone.

In the infant domain, for facial landmark estimation, we
use the HRNet-R90JT model from [20], also built on HRNet
and adapted to the infant domain via fine-tuning and data
augmentation directed at the unique features of infant faces.
Finally, for body joint estimation, we use the fine-tuned
domain-adapted infant pose (FiDIP) model from [8], which
uses synthetic data and domain adversarial methods to adapt
body landmark estimation (in this case, the HRNet-backed
DarkPose model) to the infant domain.

V. RESULTS: PERFORMANCE AND ANALYSIS
A. Performance metrics

Often in machine learning, metrics are chosen to enable
robust comparison of ever-improving models over time,

TABLE III
ESTIMATION PERFORMANCE OF GEOMETRIC MEASURES OF SYMMETRY

FROM INFANT AND ADULT-BASED MODELS

Metric Models osa rfs fa ga td hhd

Spearman’s ρ ↑
Infant 0.36 0.61 0.60 0.79 0.53 0.80

∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗
Adult -0.10 0.58 0.53 0.78 0.36 0.78

∗∗∗ ∗∗∗ ∗∗∗ ∗ ∗∗∗

BCA (%) ↑ Infant 50.0 77.8 75.0 80.6 88.9 77.8
Adult 41.7 75.0 66.7 77.8 69.4 77.8

MAE ↓ Infant 1.98 0.04 2.18 2.29 0.06 2.63
Adult 4.73 0.07 4.51 5.25 0.08 4.71

RMSE ↓ Infant 2.70 0.05 3.38 3.28 0.09 3.51
Adult 12.88 0.17 11.27 15.61 0.12 11.71

Measure type ◦ ratio ◦ ◦ ratio ◦

Ground truth mean 0.80 1.00 -0.34 87.64 0.11 -2.62

∗ p ≤ 0.05, ∗∗ p ≤ 0.01, ∗∗∗ p ≤ 0.001; best performance in bold

on large datasets serving as public benchmarks. In our
case, because of the relative novelty of the techniques,
estimation task, and test set, and because of our interest
in immediate medical applications, we rely on a range of
more interpretable metrics to give us a sense of absolute
performance without needing comparisons. In particular, we
will evaluate performance using Spearman’s ρ correlation
coefficient, the binary classification accuracy of predicting
whether a quantity is above or below the mean, and the mean
absolute error. We do also report the root mean squared error,
for purposes of robust future comparison.

Spearman’s ρ rank correlation coefficient between two
variables is defined as the Pearson’s r correlation between
the internal rankings for each variable. In the context of
deep learning tools trained and tested on imprecise labels and
small data domains, high Pearson’s r correlations between
predictions and ground truth is too much to ask for, but
adopting Spearman’s ρ allows us to relax the requirement
for pinpoint accuracy and focus on the relative ranked
correctness of the predictions, which is fully compatible with
our goal of enabling screening or diagnosis of torticollis. In
a similar vein, we assess the binary classification accuracy
(BCA) of a set of predictions (ỹi)i∈I relative to the ground
truth (yi)i∈I of a given variable, defined simply as the
proportion of i in the sample index I for which ỹi >
µ ⇐⇒ yi > µ, where µ = µ

(
(yi)i∈I

)
is the ground

truth sample mean. This coarse measure gauges how often
predictions accurately determine whether a quantity is greater
or less than the ground truth mean (so unlike Spearman’s ρ,
it is not purely relative), and its simplicity allows for ease
of interpretation. We also measure the mean absolute error
(MAE) and the root mean squared error (RMSE)—the former
being more interpretable, and the latter being more robust for
subsequent comparisons.

B. Results and discussion
Table III tabulates estimation performance of our geomet-

ric measures of symmetry, as gauged by the aforementioned
metrics, for both the infant- and adult-based models. See
Table IV for a guideline for interpreting Spearman’s ρ scores,
from the often cited [5].

On the whole, our results show that the infant pose estima-



TABLE IV
INTERPRETATION OF SPEARMAN’S ρ, FROM [5]

Spearman’s ρ Correlation

≥ 0.70 Very strong relationship
0.40–0.69 Strong relationship
0.30–0.39 Moderate relationship
0.20–0.29 Weak relationship
0.01–0.19 No or negligible relationship

Descriptions apply to both positive and negative values

tion models yield predictions of five of the six measures—all
except the orbit slopes angle (osa)—with a high degree of
fidelity. Spearman’s ρ correlations are generally strong or
very strong and binary classification accuracies high (75.0–
88.9%). Mean absolute errors are within 3◦ for angles and 0.1
for ratios, and root mean squared errors are low as well. The
predictions of the remaining quantity, the orbit slopes angle
(osa), only moderately correlate with the ground truth, with
ρ = 0.36. For the orbit slopes angle, the BCA is no better
than random guessing at 50%, but the low MAE and RMSE
values suggest the poor classification accuracy may be due
to miscalibration. Geometrically, the orbit slopes angle is
quite subtle, measuring slight differences between the line
connecting the outer cathnuses (eye corners) and the inner
cathnuses, and it appears that this distinction is too fine to be
reliably measured with the infant landmark estimation model.

Turning to the adult pose estimation models, Table III
shows that for every geometric symmetry measure and every
prediction performance metric, the predictions from the adult
models fare worse than those from the infant models, with
the exception of one tie. Note that this superiority is not
maintained when cross-comparing performances of different
measures—for instance, the infant model prediction of face
angle (fa) has lower Spearman’s ρ and BCA scores than
the adult prediction of gaze angle (ga). Indeed, the adult
model predictions of half of the measurements—the relative
face size (rfs), gaze angle (ga), and habitual head deviation
(hhd)—can be considered to be successful under Spearman’s
ρ and BCA, although their absolute errors (MAE and RMSE)
are still high.

To complement the summary statistics from Table III, we
include full scatter plots of predicted vs ground truth values
for all six measures under both sets of models, in Fig. 3.
The scale of these scatter plots is chosen to highlight the
presence of major outlier mis-predictions from the adult
models, and the subtler performance differences between
measurements revealed by Table III are harder to perceive.
Finally, a visualization of ground truth and predictions the
geometric elements involved in the computation of our six
measures of interest can be found Fig. 4. The predictions
from the infant model appear to be fairly accurate, but since
it is hard to visually determine angles and ratios at a glance, it
is difficult to make definitive conclusions about performance
on this qualitative basis alone. What such figures and the
performance scatter plots do make it clear, though, is that
a major cause of poor performance from the adult pose
estimation models stems from a handful of instances of failed
facial landmark estimation.

VI. CONCLUSION

Motivated by applications to the detection and treatment
of torticollis in infants, we have studied the extent to
which recent deep learning based computer vision algorithms
designed specifically for the infant domain can measure a
set of geometric facial and upper-body symmetry measures
previously defined by torticollis researchers, from still im-
ages alone. After carefully crafting a test set of infant faces
and honing the definitions to line up with standard facial
landmarks, we found that most of these measurements can be
successfully predicted by pose estimation models designed
for infants. We also showed that these models outperform
corresponding models designed for and trained on adult
data, demonstrating the importance of using tailored neural
network models in the data-scarce infant domain.

One possible next step for computer vision research into
torticollis would be to use these predicted geometric mea-
surements as features in machine learning algorithms for
screening or diagnosis of torticollis, on clinical subjects
or subjects “in the wild,” supervised by assessments from
medical experts. The underlying data could take the form
of either still images or videos. Another potential direction
would be to develop these estimation techniques for infants
in wider range of poses, not restricted to those clearly
facing forward. This would likely require advances in infant
pose estimation, especially three-dimensional infant facial
landmark estimation, which is currently out of reach.
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