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Provable Compressed Sensing With Generative
Priors via Langevin Dynamics

Thanh V. Nguyen , Gauri Jagatap , and Chinmay Hegde , Senior Member, IEEE

Abstract— Deep generative models have emerged as a powerful
class of priors for signals in various inverse problems such as
compressed sensing, phase retrieval and super-resolution. In this
work, we consider the compressed sensing problem and assume
the unknown signal to lie in the range of some pre-trained
generative model. A popular approach for signal recovery is
via gradient descent in the low-dimensional latent space. While
gradient descent has achieved good empirical performance, its
theoretical behavior is not well understood. We introduce the use
of stochastic gradient Langevin dynamics (SGLD) for compressed
sensing with a generative prior. Under mild assumptions on the
generative model, we prove the convergence of SGLD to the true
signal. We also demonstrate competitive empirical performance
to standard gradient descent.

Index Terms— Compressed sensing, generative models,
Langevin dynamics.

I. INTRODUCTION

WE CONSIDER the familiar setting of inverse problems
where the goal is to recover an n-dimensional signal x∗

that is indirectly observed via a linear measurement operation
y = Ax∗. The measurement vector can be noisy, and its
dimension m may be less than n. Several practical applications
fit this setting, including super-resolution [2], in-painting,
denoising [3], and compressed sensing (CS) [4], [5].

Since such an inverse problem is ill-posed in general,
the recovery of x∗ from y often requires assuming a
low-dimensional structure or prior on x∗. Choices of good
priors have been extensively explored in the past three decades,
including sparsity [6], [7], structured sparsity [8], end-to-
end training via convolutional neural networks [5], [9], pre-
trained generative priors [10], as well as untrained deep image
priors [11], [12].
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In this paper, we focus on a powerful class of priors based
on deep generative models. The setup is the following: the
unknown signal x∗ is assumed to lie in the range of some
pre-trained generator network, obtained from (say) a genera-
tive adversarial network (GAN) or a variational autoencoder
(VAE). That is, x∗ = G(z∗) for some z∗ in the latent
space. The task is again to recover x∗ from (noisy) linear
measurements.

Such generative priors have been shown to achieve high
empirical success [5], [10], [13]. However, progress on the
theoretical side for inverse problems with generative priors
has been much more modest. On the one hand, the seminal
work of [10] established the first statistical upper bounds (in
terms of measurement complexity) for compressed sensing
for fairly general generative priors, which was later shown
in [14] to be nearly optimal. On the other hand, provable
algorithmic guarantees for recovery using generative priors
are only available in very restrictive cases. The paper [15]
proves the convergence of (a variant of) gradient descent for
shallow generative priors whose weights obey a distributional
assumption. The paper [16] proves the convergence of pro-
jected gradient descent (PGD) under the assumption that the
range of the (possibly deep) generative model G admits a
polynomial-time oracle projection. To our knowledge, the most
general algorithmic result in this line of work is by [17].
There, the authors show that under rather mild and intuitive
assumptions on G, a linearized alternating direction method of
multipliers (ADMM) applied to a regularized mean-squared
error loss converges to a (potentially large) neighborhood
of x∗.

The main barrier for obtaining guarantees for recovery algo-
rithms based on gradient descent is the non-convexity of the
recovery problem induced by the generator network. There-
fore, in this paper we sidestep traditional gradient descent-style
optimization methods, and instead show that a very good
estimate of x∗ can also be obtained by performing stochastic
gradient Langevin Dynamics (SGLD) [18]–[21]. We show that
this dynamics amounts to sampling from a Gibbs distribution
whose energy function is precisely the reconstruction loss.

As a stochastic version of gradient descent, SGLD is simple
to implement, although care must be taken in constructing the
additive stochastic perturbation to each gradient update step.
Nevertheless, the sampling viewpoint enables us to achieve
finite-time convergence guarantees for compressed sensing
recovery. To the best of our knowledge, this is the first
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such result for solving compressed sensing problems with
generative neural network priors. Moreover, our analysis suc-
ceeds under (slightly) weaker assumptions on the generator
network than those made in [17].

Our specific contributions are as follows:
1) We propose a provable compressed sensing recovery algo-

rithm for generative priors based on stochastic gradient
Langevin dynamics (SGLD).

2) We prove polynomial-time convergence of our proposed
recovery algorithm to the true underlying solution, under
assumptions of smoothness and near-isometry of G. These
are technically weaker than the mild assumptions made
in [17]. We emphasize that these conditions are valid for
a wide range of generator networks.

3) We provide several empirical results and demonstrate
that our approach is competitive with existing (heuristic)
methods based on gradient descent.

II. PRIOR WORK

We briefly review the literature on compressed sensing
with deep generative models. For a thorough survey on deep
learning for inverse problems, see [22].

In [10], the authors provide sufficient conditions under
which the solution of the inverse problem is a minimizer of
the (possibly non-convex) program:

min
x=G(z)

‖Ax − y‖2
2. (II.1)

Specifically, they show that if A satisfies the so-called set-
Restricted Eigenvalue Condition (REC), then the solution
to (II.1) equals the unknown vector x∗. They also show that if
the generator G has a latent dimension k and is L-Lipschitz,
then a matrix A ∈ R

m×n populated with i.i.d. Gaussian entries
satisfies the REC, provided m = O(k log L). However, they
propose gradient descent as a heuristic to solve (II.1), but do
not analyze its convergence. In [16], the authors show that
projected gradient descent (PGD) for (II.1) converges at a
linear rate under the REC, but only if there exists a tractable
projection oracle that can compute arg minz ‖x − G(z)‖ for
any x. The recent work [23] provides sufficient conditions
under which such a projection can be approximately computed.
In [17], a provable recovery scheme based on ADMM is
established, but guarantees recovery only up to a neighborhood
around x∗.

Note that all the above works assume mild conditions on
the weights of the generator, use variations of gradient descent
to update the estimate for x, and require the forward matrix
A to satisfy the REC over the range of G. [15] showed
global convergence for gradient descent, but under the (strong)
assumption that the weights of the trained generator are
Gaussian distributed.

Generator networks trained with GANs are most commonly
studied. However, more recently, [24], [25] have advocated
using invertible generative models, which use real-valued non-
volume preserving (NVP) transformations [26]. An alternate
strategy for sampling images consistent with linear forward
models was proposed in [27] where the authors assume an
invertible generative mapping and sample the latent vector z
from a second generative invertible prior.

Our proposed approach also traces its roots to Bayesian
compressed sensing [28], where instead of modeling the
problem as estimating a (deterministic) sparse vector, one
models the signal x to be sampled from a sparsity promoting
distribution, such as a Laplace prior. One can then derive
the maximum a posteriori (MAP) estimate of x under the
constraint that the measurements y = Ax are consistent. Our
motivation is similar, except that we model the distribution of
x as being supported on the range of a generative prior.

III. RECOVERY VIA LANGEVIN DYNAMICS

In the rest of the paper, x∧y denotes min{x, y} and x∨y for
max{x, y}. Given a distribution μ and set A, we denote μ(A)
the probability measure of A with respect to μ. ‖μ− ν‖TV is
the total variation distance between two distributions μ and ν.
Finally, we use standard big-Oh notation, with tildes over the
big-Oh denoting poly-logarithmic factors.

A. Preliminaries

We focus on the problem of recovering a signal x∗ ∈ R
n

from a set of linear measurements y ∈ R
m where

y = Ax∗ + ε.

To keep our analysis and results simple, we consider zero
measurement noise, i.e., ε = 0.1 Here, A ∈ R

m×n is a matrix
populated with i.i.d. Gaussian entries with mean 0 and variance
1/m. We assume that x∗ belongs to the range of a known
generative model G : D ⊂ R

d → R
n; that is,

x∗ = G(z∗) for some z∗ ∈ D.

Following [10], we restrict z to belong to a d-dimensional
Euclidean ball, i.e., D = B(0, R). Then, given the measure-
ments y, our goal is to recover x∗. Again following [10], we do
so by solving the usual optimization problem:

min
z∈D

F (z) � ‖y − AG(z)‖2. (III.1)

Hereon and otherwise stated, ‖ · ‖ denotes the �2-norm. The
most popular approach to solving (III.1) is to use gradient
descent [10]. For generative models G(z) defined by deep
neural networks, the function F (z) is highly non-convex, and
as such, it is impossible to guarantee global signal recovery
using regular (projected) gradient descent.

We adopt a slightly more refined approach. Starting from
an initial point z0 ∼ μ0, our algorithm computes stochastic
gradient updates of the form:

zk+1 =zk−η∇zF (z)+
√

2ηβ−1ξk, k=0, 1, 2, . . . (III.2)

where ξk is a unit Gaussian random vector in R
d, η is the

step size and β is an inverse temperature parameter. This
update rule is known as stochastic gradient Langevin dynamics
(SGLD) [18] and has been widely studied both in theory and
practice [19], [20]. Intuitively, (III.2) is an Euler discretization
of the continuous-time diffusion equation:

dZ(t) = −∇zF (Z(t))dt +
√

2β−1dB(t), t ≥ 0, (III.3)

1We note in passing that our analysis techniques succeed for any vector ε
with bounded �2 norm.
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Algorithm 1 CS-SGLD
Input: step size η; inverse temperature parameter β, radius
r and Lipschitz constant L of F (z).
Draw z0 from μ0 = N (0, 1

2Lβ I) truncated on D.
for k = 0, 1, . . . , do

Randomly sample ξk ∼ N (0, I).
zk+1 = zk − η∇zF (zk) +

√
2η/βξk

if zk+1 �∈ B(zk, r) ∩ D then
zk+1 = zk

end if
end for
Output: ẑ = {zk}.

where Z(0) ∼ μ0. Under standard regularity conditions on
F (z), one can show that the above diffusion has a unique
invariant Gibbs measure.

We refine the standard SGLD to account for the bounded-
ness of z. Specifically, we require an additional Metropolis-
like accept/reject step to ensure that zk+1 always belongs to
the support D, and also is not too far from zk of the previous
iteration. We study this variant for theoretical analysis; in
practice we have found that this is not necessary. Algorithm 1
(CS-SGLD) shows the detailed algorithm. Note that we can
use stochastic (mini-batch) gradient instead of the full gradient
∇zF (z).

We wish to derive sufficient conditions on the convergence
(in distribution) of the random process in Algorithm 1 to the
target distribution π, denoted by:

π(dz) ∝ exp(−βF (z))1(z ∈ D), (III.4)

and study its consequence in recovering the true signal x∗.
This leads to the first guarantees of a stochastic gradient-like
method for compressed sensing with generative priors. In order
to do so, we make the following three assumptions on the
generator network G(z).
(A.1) Boundedness. For all z ∈ D, we have that ‖G(z)‖ ≤

B for some B > 0.
(A.2) Near-isometry. G(z) is a near-isometric mapping if

there exist 0 < ιG ≤ κG such that the following holds
for any z, z� ∈ D:

ιG‖z − z�‖ ≤ ‖G(z) − G(z�)‖ ≤ κG‖z − z�‖.

(A.3) Lipschitz gradients. The Jacobian of G(z) is
M -Lipschitz, i.e., for any z, z� ∈ D, we have

‖∇zG(z) −∇zG(z�)‖ ≤ M‖z − z�‖,

where ∇zG(z) = ∂G(z)
∂z is the Jacobian of the mapping

G(·) with respect to z.
Before proceeding, we briefly justify each of the above

assumptions.
Assumption (A.1) is reasonable due to the boundedness of

the domain D and for well-trained generative models G(z)
whose target data distribution is normalized.

Assumption (A.2) appears somewhat restrictive, and was
first proposed in [17]. However, this property is a nonlinear
extension of the ubiquitous restricted isometry property (RIP)

that is a standard tool in compressed sensing analysis [29].
The lower bound condition requires that G is injective, so that
under the mapping G the images of faraway points in D should
also be far away.

Do generative models in practice actually satisfy Assump-
tion (A.2)? We provide some empirical evidence in the affir-
mative below. We also restate a result from [17] below that just
as how random Gaussian matrices satisfy the RIP, generative
network models with random weights satisfy this property,
mirroring the assumptions of [15].2

Assumption (A.3) is required so that the loss function F (z)
(over which we perform the Langevin dynamics) is eventually
smooth. This assumption of Lipschitz gradients is a standard
tool in analyzing gradient descent (or its many variants).

Next, we introduce a new concept of smoothness for gener-
ative networks. This concept is a weaker version of a condition
on G(·) introduced in [17].

Definition III.1 (Strong Smoothness): The generator net-
work G(z) is (α, γ)-strongly smooth if there exist α > 0 and
γ ≥ 0 such that for any z, z� ∈ D, we have

〈G(z) − G(z�),∇zG(z)(z − z�)〉 ≥ α‖z − z�‖2 − γ. (III.5)

Following [17] (Assumption 2), we call this property
“strong smoothness”. However, our definition of strong
smoothness requires two parameters instead of one, and is
weaker since we allow for an additive slack parameter γ ≥ 0.

Definition III.1 can be closely linked to the following
property of the loss function F (z) that turns out to be crucial
in establishing convergence results for CS-SGLD.

Definition III.2 (Dissipativity [30]): A differentiable func-
tion F (z) on D is (α, γ)-dissipative around z∗ if for constants
α > 0 and γ ≥ 0, we have

〈z − z∗,∇zF (z)〉 ≥ α‖z − z∗‖2 − γ. (III.6)

It is straightforward to see that (III.6) essentially recovers
the strong smoothness condition (III.5) if the measurement
matrix A is assumed to be the identity matrix. In compressed
sensing, it is often the case that A is a (sub)Gaussian matrix
and that given a sufficient number of measurements as well as
Assumptions (A.1), (A.2) and (A.3), the dissipativity of F (z)
for such an A can still be established.

Once F is shown to be dissipative, the machinery of
[19]–[21] can be adapted to show that the convergence of
CS-SGLD. The majority of the remainder of the paper is
devoted to proving this series of technical claims.

B. Main Results

We first show that a very broad class of generator networks
satisfies the assumptions made above. The following proposi-
tion is an extension of a result in [17].

Proposition III.1: Suppose G(z) : D ⊂ R
d → R

n is a
feed-forward neural network with layers of non-decreasing

2To be more precise, we expect that random weights (plus certain expansiv-
ity factors) should imply near-isometry and strong smoothness, but the reverse
implication should not hold. We are not aware of formal separation results
between these two sets of assumptions. A careful theoretical treatment of this
matter is an interesting avenue for future work.
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sizes and compact input domain D. Assume that the non-linear
activation is a continuously differentiable, strictly increasing
function. Then, G(z) satisfies Assumptions (A.2) & (A.3)
with constants ιG, κG, M , and if 2ι2G > MκG, then strong
smoothness as in Definition III.1 holds almost surely with
respect to the Lebesgue measure.

This proposition merits a thorough discussion. First, archi-
tectures with increasing layer sizes are common; many gen-
erative models (such as GANs) assume architectures of this
sort. Observe that the non-decreasing layer size condition is
much milder than the expansivity ratios of successive layers
assumed in related work [15], [25].

Second, the compactness assumption of the domain of G
is mild, and traces its provenance to earlier related works
[10], [17]. Moreover, common empirical techniques for train-
ing generative models (such as GANs) indeed assume that the
latent vectors z lie on the surface of a sphere [31].

Third, common activation functions such as the sigmoid,
or the Exponential Linear Unit (ELU) are continuously dif-
ferentiable and monotonic. Note that the standard Rectified
Linear Unit (ReLU) activation does not satisfy these con-
ditions. Bypassing the differentiability to establish similar
convergence results for compressive sensing with generative
ReLU networks is an interesting avenue for future work,
and will likely involve a careful re-thinking of the SGLD
framework.

The key for our theoretical analysis, as discussed above,
is Definition III.1, and establishing this requires Proposi-
tion III.1. Interestingly however, in Section V below we
provide empirical evidence that strong smoothness holds for
generative adversarial networks with ReLU activation trained
on the MNIST and CIFAR-10 image datasets.

We now obtain a measurement complexity result by deriving
a bound on the number of measurements required for F to be
dissipative.

Lemma III.1: Let G(z) : D ⊂ R
d → R

n be a feed-forward
neural network that satisfies the conditions in Proposition III.1.
Let κG be its Lipschitz constant. Suppose the number of
measurements m satisfies:

m = Ω
(

d

δ2
log(κG/γ)

)
,

for some small constant δ > 0. If the elements of A are drawn
according to N (0, 1

m ), then the loss function F (z) is (1−δ, γ)-
dissipative with probability at least 1 − exp(−Ω(mδ2)).

The above result can be derived using covering number
arguments, similar to the treatment in [10]. Observe that the
number of measurements scales linearly with the dimension of
the latent vector z instead of the ambient dimension, keeping
in line with the flavor of results in standard compressed
sensing. Recent lower bounds reported [14] also have shown
that the scaling of m with respect to d and log L might be tight
for compressed sensing recovery in several natural parameter
regimes.

We need two more quantities to readily state our con-
vergence guarantee. Both definitions are widely used in the
convergence analysis of MCMC methods. The first quantity

defines the goodness of an initial distribution μ0 with respect
to the target distribution π.

Definition III.3 (λ-warm Start, [21]): Let ν be a distribution
on D. An initial distribution μ0 is λ-warm start with respect
to ν if

sup
A:A⊆D

μ0(A)
ν(A)

≤ λ.

The next quantity is the Cheeger constant that connects
the geometry of the objective function and the hitting time
of SGLD to a particular set in the domain [20].

Definition III.4 (Cheeger Constant): Let μ be a probability
measure on D. Then μ satisfies the isoperimetric inequality
with Cheeger constant ρ if for any A ⊂ D,

lim inf
h→0+

μ(Ah) − μ(A)
h

≥ ρ min
{
μ(A), 1 − μ(A)

}
,

where Ah = {u ∈ K : ∃v ∈ A, ‖u − v‖2 ≤ h}.
Let us briefly comment on the nature of the Cheeger

constant ρ. As discussed in [21], for the case of several
families of measures, the best known bounds for the Cheeger
constant are exponentially small in d. For example, using
Buser’s inequality [32], the Cheeger constant can be lower
bounded by Ω(d−1/2cP ) where cP is the Poincaré constant
of μ; however, this leads to ρ � e−Õ(d) in the worst case [33].

However, one can obtain improved lower bounds on the
Cheeger constant with additional conditions on the probability
measure. For example, for log-concave distributions μ, the
lower bound can be improved to become ρ � poly(1/d).
Moreover, specialized bounds are known in other cases;
see [34] and several references therein. The remainder of
our results will implicitly assume that the Cheeger constant
ρ is (inversely) polynomial in the dimension.

Putting all the above ingredients together, our main the-
oretical result describing the convergence of Algorithm 1
(CS-SGLD) for compressed sensing recovery is given as
follows.

Theorem 1 (Convergence of CS-SGLD): Assume that the
generative network G satisfies Assumptions (A.1) – (A.3)
as well as the strong smoothness condition. Consider a sig-
nal x∗ = G(z∗), and assume that it is measured with m
(sub)Gaussian measurements such that m = Ω(d log κG/γ).
Choose an inverse temperature β > d and precision parameter
� > 0. Then, after k iterations of SGLD in Algorithm 1,
we obtain a latent vector zk such that

E [F (zk)] ≤ � + O

(
d

β
log

(
β

d

))
, (III.7)

provided the step size η and the number of iterations k are
chosen such that:

η = Õ

(
ρ2�2

d2β

)
, and k = Õ

(
d3β2

ρ4�2

)
.

In words, if we choose a high enough inverse temperature
and appropriate step size, CS-SGLD converges (in expecta-
tion) to a signal estimate with very low loss within a polyno-
mial number of iterations. Note that β trades off between the
error and the convergence: increasing the inverse temperature
leads to a slower convergence.
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C. Implications

Let us parse the above result further. First, observe that
the right hand side of (III.7) consists of two terms. The first
term can be made arbitrarily small (at the cost of greater
computational cost since η decreases ). The second term
represents the irreducible expected error of the exact sampling
algorithm on the Gibbs measure π(dz), which is worse than
the optimal loss obtained at z = z∗.

Second, suppose the right hand side of (III.7) is upper
bounded by ��. Once SGLD finds an ��-approximate minimizer
of the loss, in the regime of sufficient compressed sensing
measurements (as specified by Lemma III.1), we can invoke
Theorem 1.1 in [10] along with Jensen’s inequality to imme-
diately obtain a recovery guarantee, i.e.,

E [‖x∗ − G(zk)‖] ≤
√

��.

Third, the convergence rate of CS-SGLD can be slow.
In particular, SGLD may require a polynomial number of iter-
ations to recover the true signal, while linearized ADMM [17]
converges within a logarithmic number of iterations up to a
neighborhood of the true signal. Obtaining an improved char-
acterization of CS-SGLD convergence (or perhaps devising a
new linearly convergent algorithm) is an important direction
for future work. Additionally, we note that the Cheeger con-
stant ρ plays an important role in governing the convergence
rate of CS-SGLD, and using a rough lower bound via the
Poincare constant, the number of iterations may be exponential
in d.

Fourth, the above result is for noiseless measurements.
A rather similar result can be derived with noisy measurements
of bounded noise (says, ‖ε‖ ≤ σ). This quantity (times a
constant depending on A) will affect (III.7) up to an additive
term that scales with σ. This is precisely in line with most
compressed sensing recovery results and for simplicity we
omit such a derivation.

1) Comparison With Previous Results: Similar to [10],
we directly optimize the loss ‖y−AG(z)‖2 with respect to z
for compressive sensing with generative priors, using gradient
descent algorithms. The optimization itself can be seen as a
special case of the template considered by Latorre et al., [17]
in the absence of the non-smooth components. While [10]
only analyzes the statistical properties of the estimator and
do not establish a convergence rate, [17] proves the con-
vergence of linearized ADMM updates on both x and z
instead of the gradient updates. Specialized their updates
to gradient descent, the authors can achieve a convergence
rate only if the feasibility gap ‖xt − AG(zt)‖ vanishes,
which plateaus at the inverse of the Lagrangian penalty
weight.

We also compare against the concurrent work of [35],
which explores sampling posteriori distribution of x via a
modified Langevin dynamical update rule. The authors use
an additional annealing term in the Langevin sampling step to
improve convergence. Apart from this, the main objective of
the paper is to study the compressed sensing problem under
the assumption that the true signal belongs to an approximate
distribution R �= P (model mismatch), that is Wasserstein

close to distribution P of a generative model G(z). In contrast,
in our paper we assume that the signal to be reconstructed
belongs to P and do not consider model mismatch.

2) Choice of Activation Function: Our analysis only sup-
ports smooth activations (which ReLU does not satisfy).
However, smooth activations such as ELU have shown to
have comparable or even better performance to ReLU [36].
Moreover ELU activations have shown to have state of art
inception scores when used for generative modeling [37].
It is also important to note that, although ReLUs are popular
choice for initial layers, most generator architectures such as
DCGAN [38] use smooth activations such as tanh and sigmoid
for the final layer.

IV. PROOF OUTLINE

In this section, we provide a brief proof sketch of
Theorem 1, while relegating details to the appendix at the
end of the paper.

At a high level, our analysis is built upon the framework
of [20], [21] specialized to the problem of compressed sensing
recovery using generative priors. The basic ingredient in
the proof is the use of conductance analysis to show the
convergence of CS-SGLD to the target distribution in total
variation distance.

Let μk denote the probability measure of Zk generated by
Algorithm 1 and π denote the target distribution in III.4. The
proof of Theorem 1 consists of three main steps:

1) First, we construct an auxiliary Metropolis-Hasting
Markov process to show that μk converges to π in total
variation for a sufficiently large k and a “good” initial
distribution μ0.

2) Then, we show that there exists an initial distribution
μ0 that serves as a λ-warm start with respect to π.

3) Finally, we show that a random draw from π is a
near-minimizer of F (z), proving that CS-SGLD recovers
the signal to high fidelity.

We proceed with a characterization of the evolution of the
distribution of zk in Algorithm 1, which basically follows [21].

A. Construction of Metropolis-Hasting SGLD

Let g(z) = ∇zF (z), and u and w be the points before
and after one iteration of Algorithm 1; the Markov chain is
written as u → v → w, where v ∼ N (u − ηg(u), 2η

β I) with
the following density:

P (v|u) =
[

1
(4πη/β)d/2

exp
(
− ‖v−u + ηg(u)‖2

2

4η/β

)∣∣∣∣u]
.

(IV.1)

Without the correction step, P (v|u) is exactly the transition
probability of the standard Langevin dynamics. Note also that
one can construct a similar density with a stochastic (mini-
batch) gradient. The process of v → w is

w =

{
v v ∈ B(u, r) ∩ D;
u otherwise.

(IV.2)
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Let p(u) = Pv∼P (·|u)[v ∈ B(u, r) ∩ D] be the probability of
accepting v. The conditional density Q(w|u) is

Q(w|u) = (1 − p(u))δu(w)
+ P (w|u) · 1

[
w ∈ B(u, r) ∩ D

]
,

where δu(·) is the Dirac-delta function at u. Similar to [20],
[21], we consider the 1/2-lazy version of the above Markov
process, with the transition distribution

Tu(w) =
1
2
δu(w) +

1
2
Q(w|u), (IV.3)

and construct an auxiliary Markov process by adding an extra
Metropolis accept/reject step. While proving the ergodicity
of the Markov process with transition distribution Tu(w) is
difficult, the auxiliary chain does indeed converge to a unique
stationary distribution π ∝ e−βF (z) · 1(z ∈ D) due to the
Metropolis-Hastings correction step.

The auxiliary Markov chain is given as follows: start-
ing from u, let w be the state generated from Tu(·). The
Metropolis-Hasting SGLD accepts w with probability,

αu(w) = min
{

1,
Tw(u)
Tu(w)

· exp
[
− β

(
F (w) − F (u)

)]}
.

Let T �
u (·) denote the transition distribution of the auxiliary

Markov process, such that

T �
u (w) = (1 − αu(w))δ(u) + αu(w)Tu(w).

Below, we establish the connection between Tu(·) and T �
u (·),

as well as the convergence of the original chain in Algorithm 1
through a conductance analysis on T �

u (·).
Lemma IV.1: Under Assumptions, F (z) is L-smooth and

satisfies ‖∇zF (z)‖ ≤ D for z ∈ D. For r =
√

10ηd/β, the
transition distribution of the chain in Algorithm 1 is δ-close
the auxiliary chain, i.e., for any set A ⊆ D

(1 − δ)T �
u (A) ≤ Tu(A) ≤ (1 + δ)T �

u (A).

where δ = 10Ldη + 10LDd1/2β1/2η3/2.
In Appendix B, we show that F (z) is L-smooth with L =

(MB + κ2
G) and its gradient is bounded by D = κ2

G‖A�A‖.
One can verify that T �

u (·) is time-reversible [20]. Moreover,
following [39], [40], the convergence of a time-reversible
Markov chain to its stationary distribution depends on its
conductance, which is defined as follows:

Definition IV.1 (Restricted Conductance): The conductance
of a time-reversible Markov chain with transition distribution
T �

u (·) and stationary distribution π is defined by,

φ � inf
A:A⊆D,π(A)∈(0,1)

∫
A Tu(D\A)π(du)

min{π(A), π(D\A)} .

Using the conductance parameter φ and the closeness δ
between Tu(·) and T �

u (·), we can derive the convergence of
Tu(·) in total variation distance.

Lemma IV.2 ( [21]): Assume the conditions of
Lemma IV.1 hold. If Tu(·) is δ-close to T �

u (·) with
δ ≤ min{1 −

√
2/2, φ/16}, and the initial distribution

μ0 serves as a λ-warm start with respect to π, then

‖μk − π‖TV ≤ λ
(
1 − φ2/8

)k + 16δ/φ.

We will further give a lower bound on δ in order to establish
an explicit convergence rate.

Lemma IV.3 ( [21]): Under the same conditions of
Lemma IV.1 and the step size η ≤ 1

30Ld ∧ d
25βD2 , there exists

a constant c0 such that

φ ≥ c0ρ
√

η/β.

B. Convergence to the Target Distribution

Armed with these tools, we formally establish the first step
of the proof.

Theorem 2: Suppose that the generative network G satisfies
Assumptions (A.1) – (A.3) as well as the strong smoothness
condition. Set η = O

(
d−1 ∧ ρ2β−1d−2

)
and r =

√
10ηd/β,

then for any λ-warm start with respect to π, the output of
Algorithm 1 satisfies

‖μk − π‖TV ≤ λ(1 − C0η)k + C1η
1/2,

where ρ is the Cheeger constant of π, C0 = Õ
(
ρ2β−1

)
, and

C2 = Õ
(
dβ1/2ρ−1

)
. In particular, if the step size and the

number of iterations satisfy:

η = Õ

(
ρ2�2

d2β

)
, and k = Õ

(
d2β2 log(λ)

ρ4�2

)
,

then ‖μk − π‖TV ≤ � for � > 0.
The convergence rate is polynomial in the Cheeger constant

ρ whose lower bound is difficult to obtain generally. A rough
bound ρ = e−Õ(d) can be derived using the Poincaré con-
stant of the distribution π, under the smoothness assumption.
See [33] for details.

Proof outline of Theorem 2: To prove the result, we find
a sufficient condition for η that fulfills the requirements of
Lemmas IV.1, IV.2 and IV.3 hold. For η ≤ d

25βD2 , we have

δ = 10Ldη + 10LDd1/2β1/2η3/2 ≤ 12Ldη.

Moreover, Lemma IV.2 requires δ ≤ min{1 −
√

2/2, φ/16},
while φ ≥ c0ρ

√
η/β by Lemma IV.3, so we can set

η = min
{

1
30Ld

,
d

25βD2
,

c2
0ρ

2

(156Ld)2β

}
for these conditions to hold. Putting all together, we obtain

‖μk − π‖TV ≤ λ
(
1 − φ2/8

)k +
16δ

φ

≤ λ(1 − C0η)k + C1η
1/2,

where C0 = c2
0ρ

2/8β, C1 = 156Ldβ1/2ρ−1/c0. Therefore,
we have proved the first part.

For the second part, to achieve �-sampling error, it suffices
to choose η and k such that

λ(1 − C0η)k ≤ �

2
, and C1η

1/2 ≤ �

2
.

Plugging in C0, C1 above, we can choose

η = O

(
ρ2�2

d2β

)
and k = O

(
log(λ/�)

C0η

)
= Õ

(
d2β2 log(λ)

ρ4�2

)
such that ‖μk − π‖TV ≤ �, which completes the proof.
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C. Existence of Warm Start Initial Distribution

Apart from the step size and the number of iterations,
the convergence depends on λ, the goodness of the initial
distribution μ0. In this part, we specify a particular choice
of μ0 in establish this.

Definition IV.2 (Set-Restricted Eigenvalue Condition, [10]):
For some parameters τ > 0 and o ≥ 0, A ∈ R

m×n is called
S-REC(τ, o) if for all z, z� ∈ D,

‖A(G(z) − G(z�))‖ ≥ τ‖G(z) − G(z�)‖ − o.

Lemma IV.4: Suppose that G(z) satisfies the near-isometry
property in Assumption A.2, and F (z) is L-smooth. If A
is S-REC(τ, 0), then the Gaussian distribution N (0, 1

2βLI)
supported on D is a λ-warm start with respect to π with
λ = eO(d).

Proof: Let μ0 denote the truncated Gaussian distribution
N (0, 1

2βLI) on D whose measure is

μ0(dz) = e−βL	z	2
21(z ∈ D)dz/Γ

where Γ =
∫
D e−βL	z	2

2dz is the normalization constant.
Along with the target measure π, we can easily verify that

μ0(dz)
π(dz)

≤
∫
D e−βF (z)dz

Γ
· e−βL	z	2

2+βF (z).

Our goal is to bound the right hand side. Using the smoothness
and the simple fact F (z∗) = 0, we have

F (z) ≤ L

2
‖z − z∗‖2

2 ≤ L‖z∗‖2
2 + L‖z‖2

2,

which implies that e−βL	z	2
2+βF (z) ≤ eβL	z∗	2

2 . To bound∫
D e−βF (z)dz, we use the S-REC property of A as well as

the near-isometry of G(z). Recall the objective function:

F (z) = ‖y − AG(z)‖2 = ‖A(G(z) − G(z∗)‖2

≥ τ2‖G(z) − G(z∗)‖2−o ≥ τ2ι2G‖z − z∗‖2

where we have dropped o for simplicity. Therefore,∫
D

e−βF (z)dz ≤
∫
D

e−βτ2ι2G	z−z∗	2
dz ≤

(
π

βτ2ι2G

)d/2

.

Putting the above results together, we can get

λ ≤ max
z∈K

μ0(dz)
π(dz)

≤
(

π

βτ2ι2G

)d/2
eβL	z∗	2

2

Γ
= eO(d),

and conclude the proof.

D. Completing the Proof

Proof of Theorem 1: Consider a random draw Ẑ from μk

and another Ẑ∗ from π. We have

E[F (Ẑ)] =
(
E[F (Ẑ)] − E[F (Ẑ∗)]

)
+ E[F (Ẑ∗)]

We will first give a crude bound for the second term E[F (Ẑ∗)]
following the idea from [19]:

E[F (Ẑ∗)] =
∫
D

F (z)π(dz) ≤ O
(

d

β
log

β

d

)
.

The detailed proof is given in Appendix B.

The first term is related to the convergence of μk to π in total
variation shown in Theorem 2. Notice that F (z) ≤ 2R‖A‖κG

for all z ∈ D due the Lipschitz property of the generative
network G. Moreover, by Theorem 2, we have ‖μk−π‖TV ≤
�� for any �� > 0 and a sufficiently large k. Hence, the first
term is upper bounded by∣∣∣∣∫D

F (z)μk(dz) −
∫
D

F (z)π(dz)
∣∣∣∣

≤ 2R‖A‖κG

∣∣∣∣∫D
μk(dz) −

∫
D

π(dz)
∣∣∣∣ ≤ 2R‖A‖κG��.

Given the target error �, choose �� = �/(2R‖A‖κG).
By Lemma IV.4, we have λ = eO(d). Then, for

η = Õ

(
ρ2�2

d2β

)
, and k = Õ

(
d3β2

ρ4�2

)
, we have

E[F (Ẑ)] ≤ � + O
(

d

β
log

(
d + γβ

αβ2

))
.

Therefore, we complete the proof of our main result.

V. EXPERIMENTAL RESULTS

While we emphasize that the primary focus of our paper
is theoretical, we conclude our paper with representative
experimental results on standard benchmark datasets such as
MNIST and CIFAR-10.

A. Validation of Strong Smoothness

As mentioned above, our theory relies on the assump-
tion that the following condition holds for some constants
α > 0, γ ≥ 0 and ∀z, z� ∈ R

d:

〈G(z) − G(z�),∇zG(z)(z − z�)〉 ≥ α‖z − z�‖2 − γ.

This is difficult to verify in practice since we cannot check
the above condition for infinitely many pairs of points z, z�.
However, we demonstrate through numerical experiments that
the constants in the relevant smoothness conditions are rea-
sonably small for realistic datasets by evaluating the above
inequality for a finite number of sampled pair of points.

To confirm this, we generate i.i.d. normal pairs of latent
vectors z and z�. Next, we compute the terms

u(z, z�) = 〈G(z) − G(z�),∇zG(z)(z − z�)〉,
v(z, z�) = ‖z − z�‖2.

The two terms are scatter-plotted against each other in Figure 3
in the Appendix for generative models G trained on the
MNIST and CIFAR datasets, and the optimal α and γ are
computed by a simple linear program. For the compressed
sensing case, we also evaluate αA and γA such that the
following inequality is satisfied:

〈A(G(z) − G(z�)), A∇zG(z)(z − z�)〉 ≥ αA‖z − z�‖2 − γA

where m = 0.1n and we also produce 5 different instanti-
ations of the measurement matrix A. The results from both
experiments are in Figure 3 in the Appendix . Again, we find
that the dissipativity constant α is positive in all cases.
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Fig. 1. Comparing the recovery performance of SGLD and GD at m = 0.2n measurements.

TABLE I

MEAN SQUARED ERROR (MSE), m = 0.2 n, HYPERPARAMETER SEARCH

OVER INVERSE TEMPERATURE β−1 AND LEARNING RATE η (β−1 = 0
CORRESPONDS TO SIMPLE GRADIENT DESCENT). BEST MSE FOR

EACH INVERSE TEMPERATURE β−1 IS HIGHLIGHTED. β−1 = 1
(STOCHASTIC VARIANT) HAS BETTER MSE PERFORMANCE

THAN β−1 → 0 (NON-STOCHASTIC VARIANT)

B. Comparison of SGLD Against GD

We test the SGLD reconstruction by using the update rule
in (III.2) and compare against the updates of z using standard
gradient descent as in [10]. For all experiments, we use a
pre-trained DCGAN generator, with network configuration
described as follows: the generator consists of four different
layers consisting of transposed convolutions, batch normaliza-
tion and RELU activation; this is followed by a final layer
with a transposed convolution and tanh activation [38].

We display the reconstructions on MNIST in Figure 1. Note
that the implementation in [10] requires 10 random restarts for
CS reconstruction and they report the results corresponding to
the best reconstruction. This likely suggests that the standard
implementation is likely to get stuck in bad local minima or
saddle points. For the sake of fair comparison, we fix the same
random initialization of latent vector z for both GD and SGLD

with no restarts. We select m = 0.2n. In Figure 1 we show
reconstructions for the 16 different examples, which were all
reconstructed at once using same k = 2000 steps, learning
rate of η = 0.02 and the inverse temperature β = 1 for both
approaches. The only difference is the additional noise term
in SGLD (Figure 1 part (d)). Notice that this additional noise
component helps achieve better reconstruction performance
overall as compared to simple gradient descent.

For a more thorough inspection of experimental perfor-
mance, we perform a hyperparameter search over two para-
meters: inverse temperature β (β−1 and convergence rate η,
and repeat 3 runs of the experiments, where each run has a
different random initialization of latent vector z. We choose
m = 0.2 n Gaussian samples for this experiment. Each run
is refined over k = 2000 iterations for 16 MNIST digits. The
final pixel-wise mean-squared errors are reported in Table I.

The corresponding original and reconstructed images are
presented in Figure 2.

Phase transition plots scanning a range of compression
ratios m/n as well as example reconstructions on CIFAR-10
images can be found in the supplement. More thorough
empirical comparisons with PGD-based approaches [16], [41]
are deferred to future work.

APPENDIX

A. Validation of Strong Smoothness

We wish to verify whether the following condition holds for
some α > 0 and γ ≥ 0:

〈∇zG(z)�(G(z) − G(z�)), z − z�〉 ≥ α‖z−z�‖2−γ (A.1)

where z and z� are all possible pairs of latent vectors.
To estimate these constants, we generate samples z and z�

from N (0, I). To establish α and γ, we perform experiments
on two different datasets (i) MNIST (Net1) and (ii) CIFAR10
(Net2). For both datasets, we compute the terms u(z, z�) =
∇zG(z)�(G(z)−G(z�)), z− z�〉 and v(z, z�) = ‖z− z�‖2 for
500 different instantiations of z and z�. We then plot these
pairs of (αv − γ, u) samples for different z’s and z�’s and
tune the values of α and γ such that u ≥ αv − γ. We do this
experiment for a DCGAN (Net1) generator trained on MNIST
(Figure 3 (a)) as well as DCGAN (Net2) generator trained on
CIFAR10 (Figure 3 (c)).

Similarly, we also derive values αA and γA, where a
compressive matrix A acts on the output of the generator G.

Authorized licensed use limited to: New York University. Downloaded on February 06,2023 at 20:40:08 UTC from IEEE Xplore.  Restrictions apply. 



7418 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

Fig. 2. Original images and best reconstructions using m = 0.2n measurements using a hyperparameter scan over inverse temperature β−1 and learning
rate η corresponding to Table I.

Fig. 3. [MNIST] selected base digit G(z∗), evaluating (a) (A.1) (b) (A.2), [CIFAR] selected base image G(z∗), evaluating (c) (A.1) (d) (A.2).

Here we have picked m = 0.1n. This is encapsulated in the
following equation:

〈∇z(AG(z))�(AG(z) − AG(z�)), z − z�〉 ≥ αA‖z − z�‖2

− γA,

(A.2)

for all possible Gaussian matrices A and different instanti-
ations of z and z�. Here, we capture the left side of the
inequality in u(z, z�) = 〈∇z(AG(z))�(AG(z) − AG(z�)),
z − z�〉. We similarly plot points (αAv − γA, u). The scatter
plot generated for 50 different instantiations of z and z� and
5 different instantiations of A. We do this experiment for a
DCGAN (Net1) generator trained on MNIST (Figure 3 (b))
as well as DCGAN (Net2) generator trained on CIFAR10
(Figure 3 (d)).

B. Reconstructions for CIFAR10

We display the reconstructions on CIFAR10 in Figure 4.
As with the implementation for MNIST, for the sake of
fair comparison, we fix the same random initialization of

latent vector z for both GD and SGLD with no restarts.
We select m = 0.3n. In Figure 4 we show reconstructions
for the 16 different examples from MNIST, which were all
reconstructed at once using same k = 2000 steps, learning
rate of η = 0.05 and the inverse temperature β = 1 for both
approaches. The only difference is the additional noise term
in SGLD (Figure 1 part (d)). Similar to our experiments on
MNIST we notice that this additional noise component helps
achieve better reconstruction performance overall as compared
to simple gradient descent.

Next, we plot phase transition diagrams by scanning the
compression ratio f = m/n = [0.2, 0.4, 0.6, 0.8, 1.0] for the
MNIST dataset in Figure 5. For this experiment, we have
chosen 5 different instantiations of the sampling matrix A for
each compression ratio f . In Figure 5 we report the average
Mean Square Error (MSE) of reconstruction ‖x̂ − x‖2 over
5 different instances of A.

We conclude that SGLD gives improved reconstruction
quality as compared to GD.

Proposition .1: Suppose G(z) : D ⊂ R
d → R

n is a
feed-forward neural network with layers of non-increasing
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Fig. 4. [CIFAR10] Comparing the recovery performance of SGLD and GD at m = 0.3n measurements.

Fig. 5. Phase transition plots representing average MSE of reconstructed
image using gradient descent and stochastic gradient Langevin dynamics.

sizes and compact input domain D. Assume that the non-linear
activation is a continuously differentiable, strictly increasing
function. Then, G(z) satisfies Assumptions (A.2) & (A.3)
with constants ιG, κG, M , and if 2ι2G > MκG, the strong
smoothness in Definition III.1 also holds almost surely with
respect to the Lebesgue measure.

Proof: The proof proceeds similar to [17], Appendix B.
Since G(z) is a composition of linear maps followed by
C1 activation functions, G(z) is continuously differentiable.
As a result, the Jacobian ∇zG is a continuous matrix-valued
function and its restriction to the compact domain D ⊆ R

d is
Lipschitz-continuous. Therefore, there exists M ≥ 0 such that

‖∇zG(z)−∇zG(z�)‖≤M‖z − z�‖, ∀z, z� ∈ D. (A.3)

Thus, Assumption (A.3) holds. Assumption (A.2) is also
satisfied according to [17], Lemma 5. To show the strong
smoothness, we use the fundamental theorem of calculus with
the Lipchitzness of G(z) obtained by Assumption (A.2). For
every z, z� ∈ D, and u(t) = tz + (1 − t)z�:

〈G(z) − G(z�),∇zG(z)(z − z�)〉
= ‖G(z) − G(z�)‖2 − 〈G(z) − G(z�), G(z) − G(z�)
−∇zG(z)(z − z�)〉

= ‖G(z) − G(z�)‖2−∫ 1

0

〈G(z)−G(z�),
(
∇zG(u(t))−∇zG(z)

)
(z−z�)〉dt

≥ ι2G‖z − z�‖2 − κGM‖z − z�‖2

∫ 1

0

(1 − t)dt

= (ι2G − κGM

2
)‖z − z�‖2,

where in the last step we use the near-isometry and the
Lipschitzness of ∇zG(z) we have obtained. Consequently,
G(z) is (ι2G − κGM

2 , 0)-strongly smooth, if ι2G > κGM
2 .

Lemma .1 (Measurement Complexity): Let G(z) : D ⊂
R

d → R
n be a feed-forward neural network that satisfies the

conditions in Proposition III.1. Let L be its Lipschitz constant.
If the number of measurements m satisfies:

m = Ω
(

d

δ2
log(κG/γ)

)
,

for some small constant δ > 0. If the elements of A are drawn
according to N (0, 1

m ), then the loss function F (z) is (α −
δκ2

G, γ)-dissipative with probability at least 1−exp(−Ω(mδ2).
Proof: Using Proposition .1, it follows that there exist

α > 0 and γ ≥ 0 such that G(z) is strongly smooth. Now,
note that the left hand side of (III.6) is simplified as

〈z − z∗,∇zF (z)〉 = 〈A(G(z) − G(z∗)), A∇zG(z)(z − z∗)〉 ,

(A.4)

Denote u = G(z) − G(z∗) and v = ∇zG(z)(z − z∗), then

〈z − z∗,∇zF (z)〉 = 〈Au, A v〉 = 〈u, v〉 − 〈(I − A�A)u, v〉.

Using standard result in random matrix theory, we can get
P (‖I − A�A‖ ≥ δ) ≤ exp(−mδ2). Also, ‖u‖, ‖v‖ ≤ κG‖
z − z�‖. Therefore,

〈z − z∗,∇zF (z)〉 ≥ 〈u, v〉 − δ‖z − z�‖2.

For m = Ω
(

d
δ2 log(κG/γ)

)
, then

〈z − z∗,∇zF (z)〉 ≥ (α − δ)‖z − z�‖ − γ,

with probability at least 1−exp(−Ω(mδ2). Therefore, the loss
function F (z) is (α − δκ2

G, γ)-dissipative with probability at
least 1 − exp(−Ω(mδ2).

In this part, we establish some key properties of the loss
function F (z). We use Assumptions (A.1) – (A.3) on the
boundedness, Lipschitz gradient and near-isometry to obtain
an upper bound of ‖∇zF (z)‖ and the smoothness of F (z).

Lemma .2 (Lipschitzness of F (z)): We have ‖∇zF (z)‖ ≤
κ2

G‖A�A‖‖z − z∗‖ for any z ∈ D ⊂ R
d.
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Proof: Recall the gradient of F (z):

∇zF (z) = −(∇zG(z))�A�(y − AG(z))

= −(∇zG(z))�A�A(G(z∗) − G(z))

It follows from the Lipschitz assumption (A.2) that
‖G(z∗)−G(z)‖ ≤ κG‖z − z∗‖, and hence ‖∇zG(z)‖ ≤ κG.
Therefore,

‖∇zF (z)‖ ≤ κ2
G‖A�A‖‖z − z∗‖.

Lemma .3 (Smoothness of F (z)): For any z, z� ∈ D ⊂ R
d,

we have

‖∇zF (z) −∇zF (z�)‖ ≤ (MB + κ2
G)‖A�A‖‖z − z�‖.

Proof: We use the assumptions on G(z) to derive the
bound: ‖G(z∗)‖ ≤ B.

‖∇zF (z) −∇zF (z�)‖
≤ ‖(∇zG(z�) −∇zG(z))�A�AG(z∗)‖

+ ‖(∇zG(z))�A�A(G(z) − G(z�))‖
+ ‖(∇zG(z) −∇zG(z�))�A�AG(z�)‖

Then, using the boundedness, Lipschitzness and smoothness,
we arrive at:

‖∇zF (z) −∇zF (z�)‖ ≤ (MB + κ2
G)‖A�A‖.

Therefore, F (z) is L-smooth, with L = (MB + κ2
G)

‖A�A‖.
In this section, we provide the proofs of Lemma IV.1

and IV.3 based on the conductance analysis laid out in [20]
and similarly in [21]. The proof of IV.2 directly follows from
Lemma 6.3 of [21].

Proof of Lemma IV.1: We use the same idea in Lemma 3
from [20] (and similarly in Lemma 6.1 from [21].) The main
difference of our proof is that we use full gradient ∇zF (z) in
Algorithm 1, instead of stochastic mini-batch gradient, which
simplifies the proof of this lemma a little.

We consider two cases for each u: u �∈ A and u ∈ A.
As long as we can prove the first case, the second case easily
follows, by splitting A into {u} and A\{u} and using the
result of the first case. For a detailed treatment of the latter
case, we refer the reader to the proof of Lemma 6.1 in [21].

Now that u /∈ A, we have

T �
u (A) =

∫
A∩B(u,r)

T �
u (w)dw =

∫
A∩B(u,r)

αu(w)Tu(w)dw.

(A.5)

where αu(w) is the acceptance ratio of the Metropolis-
Hasting. If suffices to show that αu(w) ≥ 1 − δ/2 for all
w ∈ K ∩ B(u, r), which implies

(1 − δ/2)Tu(A) ≤ T �
u (A) ≤ Tu(A).

The right hand side is obvious by the definition of αu(w)
while we can ensure δ ≤ 1/2 with a sufficiently small η.
What remains is to show that

Tw(u)
Tu(w)

· exp(−β(F (w) − F (u))) ≥ 1 − δ/2. (A.6)

The left hand side is simplified by definition of Tu(w) as

exp
(
‖w−u + ηg(u)‖2

2

4η/β
− ‖u−w + ηg(w)‖2

2

4η/β

)
× exp(−β(F (w) − F (u))) ≥ 1 − δ/2.

Note that g(z) = ∇zF (z). Simplify the first exponent and
combine with the second one gives the following form:

− β

(
F (w) − F (u) − 1

2
〈w − u,∇zF (w) + ∇zF (u)〉

)
+

ηβ

4
(‖∇zF (u)‖2 − ‖∇zF (w)‖2). (A.7)

To lower bound the left hand side, we appeal to the smoothness
of F (z). Specifically, by Lemmas .2 and .3, we have F is
L-smooth and ‖∇zF (z)‖ ≤ D with L = (MB + κ2

G) and
D = κ2

G‖A�A‖. Then,

F (w) ≤ F (u) + 〈w − u,∇F (u)〉 +
L‖w − u‖2

2

2
,

F (u) ≥ F (w) + 〈u − w,∇F (w)〉 − L‖w − u‖2
2

2
.

This directly implies that∣∣F (w) − F (u) − 〈w − u,
1
2
∇F (w) + F (u)〉

∣∣ ≤ L‖w − u‖2
2

2
.

(A.8)

Moreover,∣∣‖∇zF (u)‖2
2 − ‖∇zF (w)‖2

2

∣∣
≤ ‖∇F (u) −∇F (w)‖2 · ‖∇F (u) + ∇F (w)‖2

≤ 2LD‖w − u‖2. (A.9)

Combining (A.8) and (A.9) in (A.7), and together with w ∈
B(u, r) with r =

√
10ηd/β,

LHS of (A.7) ≥ −Lβ‖w − u‖2

2
− ηβLD‖w − u‖

2
≥ −5Ldη − 5LGd1/2β−1/2η3/2.

Pick δ/2 = 5Ldη + 5LDd1/2β−1/2η3/2, and use the fact
e−x ≥ 1 − x for x ≥ 0, then we have proved the result.

Next, we lower bound the conductance φ of T �
u (·) using

the idea in [21], [42], by first restating the following lemma:
Lemma .4 (Lemma 13 in [42]): Let T �

u (·) be a
time-reversible Markov chain on D with stationary distribution
π. Suppose for any u, v ∈ D and a fixed Δ > 0 such that
‖u− v‖2 ≤ Δ, we have ‖T �

u (·)−T �
v (·)‖TV ≤ 0.99, then the

conductance of T �
u (·) satisfies φ ≥ CρΔ for some constant

C > 0 and ρ is the Cheeger constant of π.
Proof of Lemma IV.3: To apply Lemma .4, we follow the

same idea of [21] and reuse some of their results without proof.
To this end, we prove that for some Δ, any pair of u, v ∈ D
such that ‖u−v‖2 ≤ Δ, we have ‖T �

u (·)−T �
v (·)‖TV ≤ 0.99.

Recall the distribution of the iterate z after one-step standard
SGLD without the accept/reject step in (IV.1) is

P (z|u) =
1

(4πη/β)d/2
exp

(
− ‖z−u + ηg(u)‖2

2

4η/β

)
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Since Algorithm 1 accepts the candidate only if it falls in the
region D ∩ B(u, r), the acceptance probability is

p(u) = Pz∼P (·|u)

[
z ∈ D ∩ B(u, r)

]
.

Therefore, the transition probability T �
u (z) for z ∈ D∩B(u, r)

is given by

T �
u (z) =

2 − p(u) + p(u)(1 − αu(z))
2

δu(z)

+
αu(z)

2
P (z|u) · 1[z ∈ D ∩ B(u, r)].

Take u, v ∈ D and let Su = D ∩ B(u, r) and Sv = D ∩
B(v, r). By the definition of the total variation, there exists a
set A ∈ D such that

‖T �
u (·) − T �

v (·)‖TV = |T �
u (A) − T �

v (A)|

≤max
u,z

[
2− vp(u)+p(u)(1−αu(z))

2

]
︸ ︷︷ ︸

I1

+
1
2

∣∣∣∣∫
z∈A

αu(z)P (z|u)1(z∈Su)−αv(z)P (z|v)1(z∈Sv)dz

∣∣∣∣︸ ︷︷ ︸
I2

.

Using the mini-batch size that is exactly the same as the
number of samples, we can reuse the bounds of I1 and I2 in
Lemmas C.4 and C.5 of [21]. Consequently,

‖T �
u (·)−T �

v (·)‖TV ≤ I1+I2/2≤0.85+0.1δ+
√

β‖u−v‖2√
2η

.

By Lemma IV.1, we have δ = 10Ldη+10LDd1/2β1/2η3/2 ≤
12Ldη if η ≤ d

25βD2 . Thus if

η ≤ 1
25βD2

∧ 1
30Ldη

and ‖u − v‖2 ≤
√

2η

10
√

β
≤ 0.1 r,

we have ‖T �
u (·) − T �

v (·)‖TV ≤ 0.99. As the result of
Lemma .4, we prove a lower bound on the conductance φ
of T �

u (·)

φ ≥ c0ρ
√

η/β,

and complete the proof.

Proposition .2: For D = B(0, R), we have∫
D

F (z)π(dz) ≤ O
(

d

β
log

βL

d

)
.

Proof: Let p(z) = e−βF (z)/Λ denote the density of π.
Λ �

∫
D e−βF (z)dz is the partition function. We start by

writing ∫
D

F (z)π(dz) =
1
β

(h(p) − log Λ) , (A.10)

where

h(p)=−
∫
D

p(z) log p(z)dz=−
∫

K

e−βF (z)

Λ
log

e−βF (z)

Λ
dz

is the differential entropy of p. To upper-bound h(p), we use
the fact that the differential entropy of a probability density
with a finite second moment is upper-bounded by that of a

Gaussian density with the same second moment. Moreover,
since p has the support in the Euclidean ball with radius R, its
second moment is simply bounded by R2. Therefore, we have

h(p) ≤ h(N (0, R2I)) =
d

2
log

2πR2

d
. (A.11)

Next, we give a lower bound on the second term, log Λ. We use
the smoothness of F (z) and the fact that z∗ is the minimizer
of F . We have F (z) ≤ L

2 ‖z − z∗‖2 for z ∈ D. As such,

log Λ = log
∫
D

e−βF (z)dz

≥ log
∫
D

e−βL	z−z∗	2/2dz � O

(
d

2
log

2π

βL

)
.

(A.12)

Using (A.11) and (A.12) in (A.10) and simplifying, we prove
the result.
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