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Abstract—We study the following lesser-known low rank (LR)
recovery problem: recover an n × q rank-r matrix, X∗ =
[x∗

1,x
∗
2, ...,x

∗
q ], with r ≪ min(n, q), from m independent linear

projections of each of its q columns, i.e., from yk := Akx
∗
k, k ∈ [q],

when yk is an m-length vector with m < n. The matrices Ak are
known and mutually independent for different k. We introduce
a novel gradient descent (GD) based solution called AltGD-Min.
We show that, if the Aks are i.i.d. with i.i.d. Gaussian entries,
and if the right singular vectors of X∗ satisfy the incoherence
assumption, then ϵ-accurate recovery of X∗ is possible with
order (n+ q)r2 log(1/ϵ) total samples and order mqnr log(1/ϵ)
time. Compared with existing work, this is the fastest solution.
For ϵ < r1/4, it also has the best sample complexity. A simple
extension of AltGD-Min also provably solves LR Phase Retrieval,
which is a magnitude-only generalization of the above problem.

AltGD-Min factorizes the unknown X as X = UB where
U and B are matrices with r columns and rows respectively. It
alternates between a (projected) GD step for updating U , and a
minimization step for updating B. Its each iteration is as fast as
that of regular projected GD because the minimization over B
decouples column-wise. At the same time, we can prove exponential
error decay for it, which we are unable to for projected GD.
Finally, it can also be efficiently federated with a communication
cost of only nr per node, instead of nq for projected GD.

I. INTRODUCTION

This work develops a sample-efficient, fast, and
communication-efficient gradient descent (GD) solution,
called AltGD-Min, for provably recovering a low-rank (LR)
matrix from a set of mutually independent linear projections of
each of its columns. The communication-efficiency considers a
federated setting. This problem, which we henceforth refer to
as “Low Rank column-wise Compressive Sensing (LRcCS)”,
is precisely defined below. Unlike the other well-studied LR
problems – multivariate regression (MVR) [1], LR matrix
sensing [2] and LR matrix completion (LRMC) [3], [2]
– LRcCS has received little attention so far in terms of
approaches with provable guarantees. There are only two
existing provably correct solutions. (1) Its generalization
LR phase retrieval (LRPR), was studied in our recent
work [4], [5], [6] where we developed a provably correct
alternating minimization (AltMin) solution. Since LRPR is
a generalization, the algorithm also solves LRcCS. (2) In
parallel work, [7] developed and analyzed a convex relaxation
(mixed-norm minimization) for LRcCS. Both solutions are
much slower than GD-based methods, and, in most practical
settings, also have worse sample complexity.

LRcCS occurs in accelerated LR dynamic MRI [8], [9],
[10], and in distributed/federated sketching [11], [12], [7]. We
explain these in Sec. I-D. We show the speed and performance
advantage of AltGD-Min for dynamic MRI in [13].

A. Problem Setting, Notation, and Assumption

Problem definition. The goal is to recover an n× q rank-
r matrix X∗ = [x∗

1,x
∗
2, . . . ,x

∗
q ] from m linear projections

(sketches) of each of its q columns, i.e. from

yk := Akx
∗
k, k ∈ [q] (1)

where each yk is an m-length vector, [q] := {1, 2, . . . , q},
and the measurement/sketching matrices Ak are mutually
independent and known. The setting of interest is low-rank
(LR), r ≪ min(n, q), and undersampled measurements, m < n.
Our guarantees assume that each Ak is random-Gaussian: each
entry of it is independent and identically distributed (i.i.d.)
standard Gaussian.

We also study the magnitude-only measurements’ setting,
LRPR [4], [5], [6]. This involves recovering X∗ from

y(mag)k
:= |Akx

∗
k|, k ∈ [q].

Here |z| takes the entry-wise absolute value of entries of the
vector z.

Notation. Everywhere, ∥.∥F denotes the Frobenius norm,
∥.∥ without a subscript denotes the (induced) l2 norm (often
called the operator norm or spectral norm), ∥M∥max is the
maximum magnitude entry of the matrix M , ⊤ denotes matrix
or vector transpose, and |z| for a vector z denotes element-
wise absolute values. In (or sometimes just I) denotes the
n× n identity matrix. We use ek to denote the k-th canonical
basis vector, i.e., the k-th column of I . For any matrix Z, zk
denotes its k-th column.

We say U is a basis matrix if it contains orthonormal
columns. For basis matrices U1,U2, we use

SD(U1,U2) := ∥(I −U1U1
⊤)U2∥F

as the Subspace Distance (SD) measure. For two r-dimensional
subspaces, this is the l2 norm of the sines of the r principal
angles between span(U1) and span(U2). SD(U1,U2) is
symmetric when U1,U2 are both n× r basis matrices. Notice
here we are using the Frobenius SD, unlike many recent works
including our older work [5] that use the induced 2-norm
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one. This is done because it enables us to prove the desired
guarantees easily. We reuse the letters c, C to denote different
numerical constants in each use with the convention that c < 1
and C ≥ 1. The notation a ∈ Ω(b) means a ≥ Cb while
a ∈ O(b) means a ≤ Cb. We use 1statement to denote an
indicator function that takes the value 1 if statement is true
and zero otherwise.

For a vector w, we sometimes use w(k) to denote the k-th
entry of w. For a vector w and a scalar α, 1(w ≤ α) returns
a vector of 1s and 0s of the same length as w, with 1s where
(w(k) ≤ α) and zero everywhere else. We use ◦ to denote
the Hadamard product. Thus z := w ◦ 1(w ≤ α) zeroes out
entries of w larger than α, while keeping the smaller ones as
is.

For X∗ which is a rank-r matrix, we let

X∗ SVD
= U∗ Σ∗V ∗︸ ︷︷ ︸

B∗

:= U∗B∗

denote its reduced (rank r) SVD, i.e., U∗ and V ∗⊤ are matrices
with orthonormal columns (basis matrices), U∗ is n×r and V ∗

is r× q, and Σ∗ is an r× r diagonal matrix with non-negative
entries. We use κ := σ∗

max/σ
∗
min to denote the condition

number of Σ∗. This is not the condition number of X∗ (whose
minimum singular value is zero). We let B∗ := Σ∗V ∗ and
we use b∗k to denote its k-th column.

We use the phrase ϵ-accurate recovery to refer to
SD(U ,U∗) ≤ ϵ or ∥X −X∗∥F ≤ ϵ∥X∗∥F or both.

Assumption. Another way to understand (1) is as follows:
each scalar measurement yki (i-th entry of yk) satisfies

yki := ⟨aki,x
∗
k⟩, i ∈ [m], k ∈ [q]

with aki
⊤ being the i-th row of Ak. Observe that the

measurements are not global, i.e., no yki is a function of
the entire matrix X∗. They are global for each column (yki is
a function of column x∗

k) but not across the different columns.
We thus need an assumption that enables correct interpolation
across the different columns. The following assumption, which
is a slightly weaker version of incoherence (w.r.t. the canonical
basis) of right singular vectors suffices for this purpose.

Assumption 1.1 ((Weakened) Right Singular Vectors’ Incoher-
ence). Assume that

max
k
∥b∗k∥ ≤ σ∗

maxµ
√

r/q.

for a constant µ ≥ 1 (µ does not grow with n, q, r). Since
∥x∗

k∥ = ∥b∗k∥, this implies that maxk ∥x∗
k∥ ≤ σ∗

maxµ
√
r/q.

Also, since σ∗
min

√
r ≤ ∥X∗∥F , this also implies that

maxk ∥x∗
k∥ ≤ κµ∥X∗∥F /

√
q.

Right singular vectors incoherence is the assumption
maxk ∥v∗

k∥ ≤ µ
√

r/q. Since b∗k = Σ∗v∗
k, this implies that

the above holds. Incoherence of both left and right singular
vectors was introduced for guaranteeing correct “interpolation”
for the LRMC problem [3], [2].

B. Existing Work

Existing solutions for LRcCS and LRPR. Since it
is always possible to obtain magnitude-only measurements

y(mag)k
from linear ones yk as y(mag)k

= |yk|, a solution
to LRPR also automatically solves LRcCS under the same
assumptions. Hence the AltMin algorithm for LRPR from [4],
[5] is the first provably correct solution for LRcCS. Of course,
since LRcCS is an easier problem than LRPR, we expect a
direct solution to LRcCS to need weaker assumptions. As
we show in this paper, this is indeed true. A more recent
work [7] studied the noisy version of LRcCS and developed
a convex relaxation (mixed norm minimization) to provably
solve it. Its time complexity is not discussed in the paper,
however, it is well known that solvers for convex programs
are much slower when compared to direct iterative algorithms:
they either require number of iterations proportional to 1/

√
ϵ

or the per-iteration cost has cubic dependence on the problem
size (here ((n+ q)r)3) [2]. Thus, if q ≤ n, its time complexity
O(mqnr · min(1/

√
ϵ, n3r3)). In [6], we provided the best

possible guarantee for the AltMin algorithm for solving LRPR,
and hence LRcCS. We discuss these results in detail in Sec.
II-D and summarize them in Table I.

Other well-studied LR recovery problems. The multivari-
ate regression (MVR) problem, studied in [1], is our problem
with Ak = A. However this is a very different setting than
ours because, with Ak = A, the different yk’s are no longer
mutually independent. As a result, one cannot exploit law of
large numbers’ arguments over all mq scalar measurements
yki. Consequently, the required value of m can never be less
than n. The result of [1] shows that m of order (n + q)r is
both necessary and sufficient. LRMS involves recovering X∗

from yi = ⟨Ai,X
∗⟩, i = 1, 2, . . . ,mq with Ai being dense

matrices, typically i.i.d. Gaussian [2]. Thus all measurements
are i.i.d. and global: each contains information about the entire
quantity-of-interest, here X∗. Because of this, for LRMS,
one can prove a LR Restricted Isometry Property (RIP) that
simplifies the rest of the analysis. This is what makes it very
different from, and easier than, our problem.

LRMC, which involves recovering X∗ from a subset of its
observed entries, is the most closely related problem to ours
since it also involves recovery from non-global measurements.
The typical model assumed is that each matrix entry is observed
with probability p independent of others [3], [2]. Setting
unobserved entries to zero, this can be written as yjk = δjkX

∗
jk

with δjk
iid∼ Bernoulli(p). LRMC measurements are both row-

wise and column-wise local. To allow correct interpolation
across both rows and columns, it needs the incoherence
assumption on both its left and right singular vectors. For
our problem, the measurements are global for each column,
but not across the different columns. For this reason, only right
singular vectors’ incoherence is needed. In fact, because of
the nature of our measurements, even if left incoherence were
assumed, it would not help. This asymmetry in our measurement
model and the fact that our measurements are unbounded
(each yki is a Gaussian r.v) are two key differences between
LRMC and LRcCS that prevent us from borrowing LRMC
proof techniques for our work. Here symmetric means: if we
replace X∗ by its transpose, the probability distribution of the
set of measurements does not change. Bounded means that the
measurements’ magnitude has a uniform bound. This bound is
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∥X∗∥max for LRMC measurements.
Non-convex (iterative, not convex relaxation based) LRMC

algorithms with the best sample complexity are GD-based.
There are two common approaches for designing GD algorithms
in the LR recovery literature, and in particular for LRMC.
The first is to use standard projected GD on X (projGD-
X), also referred to as Iterative Hard Thresholding: at each
iteration, perform one step of GD for minimizing the squared
loss cost function, f̃(X), w.r.t. X , followed by projecting the
resulting matrix onto the space of rank r matrices (by SVD).
This was studied in [14], [15] for solving LRMC. This is
shown to converge geometrically with a constant GD step size,
while needing only Ω((n+ q)r2 log2 n log2(1/ϵ)) samples on
average.

The second is to let X = UB where U is n × r and B
is r × q and perform alternating GD for the cost function
f(U ,B) := f̃(UB), i.e., update B with one step of GD for
minimizing f(U ,B) while keeping U fixed at its previous
value, and then do the same for U with B fixed, and repeat.
Since the X = UB factorization is not unique, i.e., X =
UR−1RB for any invertible r×r matrix R, this approach can
result in the norm of one of U or B growing in an unbounded
fashion, while that of the other decreases at the same rate,
causing numerical problems. A typical approach to resolve
this issue, and one that was used for LRMC [16], [17], is to
change the cost function to minimize to f(U ,B)+λf2(U ,B)
where f2(U ,B) := ∥U⊤U−BB⊤∥F is the “norm-balancing
term” (helps ensure that norms of U and B remain similar).
We henceforth refer to this approach as altGDnormbal. The
sample complexity bound for this approach is similar to that
for projGD-X. But, it needs a GD step size of order 1/r or
smaller [16], [17]; making it r-times slower than projGD-X.

C. Contributions and Novelty
Contribution to solving LRcCS and LRPR. (1) This work

develops a novel GD-based solution to LRcCS, called AltGD-
Min, that is fast and communication-efficient. We show that,
with high probability (w.h.p.), AltGD-Min obtains an ϵ-accurate
estimate in order κ2 log(1/ϵ) iterations, as long as Assumption
1.1 holds, the matrices Ak are i.i.d., with each containing i.i.d.
standard Gaussian entries, mq ∈ Ω(κ6µ2(n+ q)r2 log(1/ϵ)),
and m ∈ Ω(max(log q, log n) log(1/ϵ)). Its time complexity
is O(mqnr · κ2 log(1/ϵ)) and its communication complexity
per node is O(nr · κ2 log(1/ϵ)). We provide a comparison
of our guarantee with those of other works in Table I. This
table also summarizes the guarantees for the two most sample-
efficient LRMC solutions: projGD-X and altGDnormbal. The
former is also the fastest LRMC solution, while the latter
is the most communication-efficient. As mentioned earlier,
LRMC is the most similar problem to ours that has been
extensively studied. Notice that, our sample complexity matches
that of the best results for LRMC algorithms that do solve
a convex relaxation. (2) We show that a simple extension
of AltGD-Min also provides the fastest provable solution to
LRPR, as long as the above assumptions hold and mq ∈
Ω(κ6µ2nr2(r+log(1/ϵ)). Its time complexity is the same too.
Contributions / Novelty of algorithm design and proof

techniques. As explained earlier, there are three commonly

used provably correct iterative algorithms for LR recovery
problems – altMin, projGD-X, and altGD (altGDnormbal
to be precise). AltMin is slower than GD-based methods
because, for updating both U and B, it requires solving a
minimization problem keeping the other variable fixed. For
our specific asymmetric problem, the min step for U is
the slow one. ProjGD-X and altGDnormbal are faster, but
it is not clear how to analyze them for LRcCS under the
desired sample complexity1. Our novel altGD-min approach
however resolves both issues: it is fast as projGD-X and it
can be analyzed. Moreover, its communication complexity for
a federated implementation (and its memory complexity) is
only nr per node per iteration, instead of nq for projGD-X. As
can be seen from Table I, treating κ, µ as numerical constants,
it has the best sample-, time-, and communication/memory-
complexity among all approaches for LRcCS and all fast
(iterative) approaches for LRMC as well. Because of this, an
AltGD-Min type algorithm may also be of interest for solving
LRMC in a fast, sample-efficient and communication-efficient
fashion. In fact, it can be also be useful for other bilinear
inverse problems such as blind deconvolution.

AltGDmin algorithm. The main idea is as follows. Express
X as X = UB and alternatively update U and B as follows:
(a) keeping B fixed at its previous value, update U by a GD
step for it for the cost function f(U ,B) followed by projecting
the output onto the space of matrices with orthonormal columns;
and (b) keeping U fixed at its previous value, update B by
minimizing f(U ,B) over it. Because of the column-wise
decoupled form of our measurement model, step (b) is as fast
as the GD step and thus the per-iteration time complexity of
AltGD-Min is equal to that of any other GD method such as
projGD-X or altGDnormbal. This decoupling (which means
that, given U , bk only depends on x∗

k, and not on the other
columns of X∗) also allows us to get the desired tight-enough
bound on maxk ∥bk − U⊤x∗

k∥ and hence on maxk ∥xk −
x∗
k∥. This, and the fact that we use the gradient w.r.t. U in

our algorithm, means that the summands in the gradient, and
in other error bound terms, are nice-enough sub-exponential
random variables (r.v.s): sub-exponential r.v.s whose maximum
sub-exponential norm is small enough (is proportional to (r/q)),
so that the summation can be bounded w.h.p. under the desired
sample complexity.

AltGDmin analysis. When we analyzed the AltMin
approach for LRPR [5], [6], we could directly modify proof
techniques from AltMin for LRMC [2] for getting a bound on
SD(U ,U∗) in terms of the bound on this distance from the
previous iteration. We cannot do this for AltGD-Min because
the algorithm itself is different from the two GD approaches
studied for solving LRMC. We instead analyze AltGD-Min by

1In order to show that a GD-based algorithm converges, one needs to be
able to bound the norm of the gradient and show that it goes to zero with
iterations. When studying both projGD-X and altGDnormbal, for different
reasons, the estimates of the different columns are coupled. Consequently, it
is not possible to get a tight enough bound on maxk ∥x∗

k − xk∥. But, due
to the form of the LRcCS measurement model, such a bound is needed to get
a tight enough bound on the 2-norm of the gradient of the cost function, and
show that it decreases sufficiently at each iteration, under the desired sample
complexity. Moreover, in case of projGD-X, even if one could somehow get
the desired bound, it would not suffice because the summands will still be too
heavy tailed. This point is explained in detail in Appendix A.
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Sample Comp. Time Comp. Communic. Comp. Holds for Column-wise
mq ≳ per node (predicted) all X∗? error bound?

Convex [7] nr 1
ϵ4

linear-time ·min
(

1√
ϵ
, n3r3

)
not clear yes no

AltMin [4], [5] nr4 log( 1
ϵ
) linear-time · r log2( 1

ϵ
) nr log( 1

ϵ
) · r log2( 1

ϵ
) no

AltMin [6] nr2(r + log( 1
ϵ
)) linear-time · r log2( 1

ϵ
) nr log( 1

ϵ
) · r log2( 1

ϵ
) no yes

altGD-Min nr2 log(1
ϵ
) linear-time · r log(1

ϵ
) nr · r log(1

ϵ
) no yes

(proposed)

Best sample LRMC algorithms among those that do not solve a convex relaxation

ProjGD-X max(n, q)r2 log2 n log2( 1
ϵ
) linear-time · r log(1

ϵ
) nq **

[15]

AltGDnormbal max(n,q)r2 logn linear-time · r2 log( 1
ϵ
) max(n,q)r

[16]

**The communication complexity of ProjGD-X would be nq because the gradient w.r.t. X computed at each node will need to be transmitted by the nodes to
the center. The gradient w.r.t. X is not low rank (LR), and hence one cannot transmit just its rank r SVD.

TABLE I: Existing work versus our work. For brevity, this table assumes q ≤ n and treats κ, µ as numerical constants. All approaches also
need m ≥ max(r, log q, log n). Column-wise error bound exists means maxk ∥x∗

k − xk∥/∥x∗
k∥ ≤ ϵ holds in addition to a similar bound on

matrix Frobenius norm error. Linear-time is the time needed to read all algorithm inputs. For LRcCS, this is yk,Ak for all k ∈ [q] and thus
linear-time is order mnq. For LRMC, this is the set of observed entries and their locations and thus linear-time is order mq. None of the
other algorithms have been studied in the federated context and hence the communication complexity (Comm. Comp.) listed in the fourth
column is based on our understanding of how one would federate the algorithm. Notice that AltGD-min has the best time and communication
complexities; and for ϵ4 < r, it also has the best sample complexity.

a novel use of the fundamental theorem of calculus [18] that,
along with other linear algebra tricks, helps us get a bound on
SD(U ,U∗) which has the desired property: the terms in it are
sums of nice-enough sub-exponentials. See Lemma 3.4 and its
proof. The use of this result is motivated by its use in [19],
and many earlier works, where it is used in a standard way: to
bound the Euclidean distance, ∥x− x∗∥, for standard GD to
solve the PR problem for recovering a single vector x∗. Thus,
at the true solution x = x∗, the gradient of the cost function
was zero. In our case, there are two differences: (i) we need to
bound the subspace distance error, and (ii) our algorithm is not
standard GD, and this means that ∇Uf(U

∗U∗⊤U ,B) ̸= 0.
We explain our approach in Sec. III-B.

AltGDmin initialization. The standard LR spectral initial-
ization approach cannot be used because its summands are sub-
exponential r.v.s that are not nice-enough. We give a detailed
explanation in Appendix A. We address this issue by borrowing
the truncation idea from the PR literature [20], [21], [5]. But, in
our case, truncation is applied to a non-symmetric matrix. Thus
the sandwiching arguments developed for symmetric matrices
in [20], and modified in [21], [5], cannot be borrowed. We
need a different argument which is used for proving Lemma
B.2 and is briefly explained in Sec. III-D.

D. Applications

The LRcCS and LRPR problems occur in projection imaging
applications involving sets of images, e.g., dynamic MRI [8],
[9], [10], federated LR sketching [11], [7], and dynamic Fourier
ptychography (LRPR) [22]. In MRI, Fourier projections of the
region of interest, e.g., a cross-section of the brain or the heart,
are acquired one coefficient at a time, making the scanning

(data acquisition) quite slow. Hence, reduced sample complexity
enables accelerated scanning. Since medical image sequences
are usually slow changing, the LR model is a valid assumption
for a time sequence [8], [9], [10]. In our notation, x∗

k is the
vectorized version of the k-th image of the sequence and there
are a total of q images. The matrices Ak are random Fourier,
i.e., Ak = HkF where F is the n × n matrix that models
computation of the 2D discrete Fourier transform as a matrix-
vector operation, and Hk is an m×n random sampling “mask”
matrix that models the frequency selection. In [13], we have
shown the power of AltGD-Min for fast undersampled dynamic
MRI of medical image sequences. It is both much faster, and
in most cases, also provides better reconstructions, than many
existing solutions from the MRI literature.

Large scale usage of smartphones results in large amounts
of geographically distributed data, e.g., images. There is a need
to compress/sketch this data before storing it. Sketch refers
to a compression approach where the compression end is low
complexity, usually simple linear projections [11], [7]. Consider
the setting where different subsets of columns of X∗ (each
column corresponds to one vectorized image) are available at
each of the ρ ≤ q nodes. The goal is to sketch them so that
they can be correctly recovered using a federated algorithm.
We can store the sketches yk := Akx

∗
k with Ak’s being i.i.d.

Gaussian. This way we store a total of only mq scalars, with
mq of order roughly just (n+ q)r2. Traditional LR sketching
approaches, e.g., [23], are designed for centralized settings and
will not be efficient in a distributed setting.

E. Organization
In Sec. II, we develop AltGD-Min, give its guarantee for

solving LRcCS, and compare it with existing results. We state
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and prove the two theorems that help prove our main result in
Sec. III. This section also contains brief proof outlines before
the actual proofs. The lemmas used in these proofs are proved
in Sec. IV. The extension for solving LRPR is developed, and
its guarantee is stated and proved, in Sec. V. We discuss the
limitations of our results in Sec. VI. Simulation experiments
are provided in Sec. VII. We conclude in Sec. VIII.

II. THE PROPOSED ALTGD-MIN ALGORITHM AND
GUARANTEE

A. The AltGD-Min algorithm

We would like to design a fast GD algorithm to find
the matrix X that minimizes the squared-loss cost function
f̃(X) :=

∑q
k=1 ∥yk −Akxk∥2. For reasons described earlier,

we decompose X = UB and develop an alternating GD-min
(AltGD-Min) approach for the squared loss function,

f(U ,B) := f̃(UB) =
∑
k

∥yk −AkUbk∥2.

Starting with a careful initialization for U explained below,
AltGD-Min proceeds as follows. At each new iteration,

• Min-B: update B by solving B ← argminB̃ f(U , B̃).
Since bk only occurs in the k-th summand of f(U ,B),
this decouples to a much simpler column-wise least
squares (LS) problem: bk ← argminb̃k

∥yk −AkUb̃k∥2.
This is solved in closed form as bk = (AkU)†yk for
each k; here M † := (M⊤M)−1M⊤.

• ProjGD-U: update U by one GD step for it, Û+ ← U−
η∇Uf(U ,B), followed by projecting Û+ onto the space
of matrices with orthonormal columns to get the updated
U+. We get U+ by QR decomposition: Û+ QR

= U+R+.
Notice that, because of the decoupling for B, the min step
only involves solving q r-dimensional Least Squares (LS)
problems, in addition to also first computing the matrices,
AkU . Computing the matrices needs time of order mnr, and
solving one LS problem needs time of order mr2. Thus, the
LS step needs time O(qmax(mnr,mr2)) = O(mqnr) since
r ≤ n. This is equal to the time needed to compute the gradient
w.r.t. U ; and thus, the per-iteration cost of AltGD-Min is only
O(mqnr). The QR decomposition of an n × r matrix takes
time only nr2.

Since f(U ,B) is not a convex function of the unknowns
{U ,B}, a careful initialization is needed. Borrowing the
spectral initialization idea from LRMC and LRMS solutions,
we should initialize U0 by computing the top r singular vectors
of

X0,full =
1

m
[(A⊤

1 y1), (A
⊤
2 y2), . . . , (A

⊤
k yk), . . . (A

⊤
q yq)]

Clearly the expected value of the k-th column of this matrix
equals x∗

k and thus E[X0,full] = X∗. But, as we explain next,
it is not clear how to prove that this matrix concentrates around
X∗. Observe that it can also be written as

X0,full :=
1

m

q∑
k=1

m∑
i=1

akiykiek
⊤

Its summands are independent sub-exponential r.v.s with
maximum sub-exponential norm maxk ∥x∗

k∥ ≤ µ
√
r/qσ∗

max.

This is too large and does not allow us to bound ∥X0,full−X∗∥
under the desired sample complexity; see Appendix A. To
resolve this issue, we borrow the truncation idea from earlier
work on PR [20], [5] and initialize U0 as the top r left singular
vectors of

X0 :=
1

m

q∑
k=1

m∑
i=1

akiykiek
⊤
1{y2

ki≤α}

=
1

m

q∑
k=1

A⊤
k yk,trunc(α)e

⊤
k (2)

where α := C̃
∑

ki(yki)
2

mq and yk,trunc(α) := yk ◦ 1(|yk| ≤√
α). We set C̃ in our main result. Observe that we are

summing over only those i, k for which y2
ki is not too large

(is not much larger than its empirically computed average
value). This truncation filters out the too large (outlier-like)
measurements and sums over the rest. Theoretically, this con-
verts the summands into sub-Gaussian r.v.s which have lighter
tails than the un-truncated ones. This allows us to prove the
desired concentration bound. Different from the above setting,
in [20], [5], truncation was applied to symmetric positive
definite matrices and was used to convert summands that were
heavier-tailed than sub-exponential to sub-exponential.

We summarize the complete algorithm in Algorithm 1. This
uses sample-splitting which is a commonly used approach
in the LR recovery literature [2], [14], [15] as well as in
other compressive sensing settings. It helps ensure that the
measurement matrices in each iteration for updating U and
B are independent of all previous iterates. This allows one to
use concentration bounds for sums of independent r.v.s. We
provide a detailed discussion in Sec. VI-A.

1) Practical algorithm and setting algorithm parameters:
First, when we implement the algorithm, we use Algorithm 1
with using the full set of measurements for all the steps (no
sample-splitting). The algorithm has 4 parameters: η, T , C̃
and the rank r. According to the theorem below, we should
set η = c/σ∗

max
2 with c < 0.5. But σ∗

max is not known. The
initialization matrix X0 provides an approximation to X∗ and
hence we can set η = c/∥X0∥2. Consider C̃. The theorem
requires setting C̃ = 9κ2µ2, however κ, µ are functions of X∗

which is unknown. Using the definition of µ from Assumption
1.1, we can replace κ2µ2 by an estimate of its lower bound:
q · maxk ∥̂x∗

k∥2/∥̂X∗∥2F with ∥̂x∗
k∥2 = (1/m)

∑
i y

2
ki and

∥̂X∗∥2F = (1/m)
∑

k

∑
i y

2
ki. To set the total number of

algorithm iterations T , we can use a large maximum value
along with breaking the loop if a stopping criterion is satisfied.
A common stopping criterion for GD is to stop when the
iterates do not change much. One way to do this is to stop
when SD(Ut,Ut−1) ≤ 0.01

√
r for last few iterations.

As explained in [13], we can use the following constraints
to set the rank. We need our choice of rank, r̂, to be
sufficiently small compared to min(n, q) for the algorithm
to take advantage of the LR assumption. Moreover, for the LS
step for updating bk’s (which are r-length vectors) to work
well (for its error to be small), we also need it to also be small
compared with m. One approach that is used often is to use
the “b% energy threshold” on singular values. Thus, one good
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heuristic that respects the above constraints is to compute the
“b% energy threshold” of the first min(n, q,m)/10 singular
values, i.e. compute r̂ as the smallest value of r for which

r∑
j=1

σj(X0)
2 ≥ (b/100) ·

min(n,q,m)/10∑
j=1

σj(X0)
2

for a b ≤ 100. In our MRI experiments in [13], we used b = 85.
We also realized from the experiments that the algorithm is
not very sensitive to this value as long as r̂ ≪ min(n, q,m).

2) Federating the algorithm: Suppose that our sketches yk

are geographically distributed across a set of L nodes. Each
node ℓ stores a subset, denoted Sℓ, of the yks with |Sℓ| = qℓ.
These subsets are mutually disjoint so that

∑
ℓ qℓ = q. Typically

L≪ q. Privacy constraints dictate that we cannot share the yks
with the central server; although summaries computed using the
yks can be shared at each algorithm iteration. This will be done
as follows. Consider the GDmin steps of Algorithm 1 first. Line
13 (Update bks, xks) is done locally at the node that stores the
corresponding yk. For line 14 (Gradient w.r.t U ), the partial
sums over k ∈ Sℓ are computed at node ℓ and transmitted to the
center which adds all the partial sums to obtain ∇Uf(U ,B).
Line 15 (GD step) and line 16 (projection via QR) are done at
the center. The updated U is then broadcast to all the nodes
for use in the next iteration. The per node time complexity
of this algorithm is thus mnrqℓ at each iteration. The center
only performs additions and a QR decomposition (an order
nr2 operation) in each iteration. Thus, the time complexity of
the federated solution is only mnr(maxℓ qℓ)T per node.

The initialization step can be federated by using the Power
Method (PM) [24], [25] to compute the top r eigenvectors
of X0X0

⊤. Any PM guarantee helps ensure that its output
is close in subspace distance to the span of the top r
eigenvectors of X0X0

⊤ after a sufficient number of iterations.
The communication complexity of the federated implementation
is thus just nr per node per iteration (need to share the partial
gradient sums). Observe also that the information shared with
the center is not sufficient to recover X∗ centrally. It is only
sufficient to recover span(U∗). The recovery of the columns
of B, b∗k, is entirely done locally at the node where the
corresponding yk is stored, thus ensuring privacy.

B. Main Result

We can prove the following result.

Theorem 2.1. Consider Algorithm 1. Let mt denote the
number of samples used in iteration t. Set C̃ = 9κ2µ2,
η = c/σ∗

max
2 with a c ≤ 0.5, and T = Cκ2 log(1/ϵ). Assume

that Assumption 1.1 holds and that the Aks are i.i.d. and each
contains i.i.d. standard Gaussian entries. If

m0q ≥ Cκ6µ2(n+ q)r2,

and mt for t ≥ 1 satisfies

mtq ≥ Cκ4µ2(n+q)r2 log κ and mt ≥ Cmax(r, log q, log n)

then, with probability (w.p.) at least 1− tn−10, for all t ≥ 0,

SD(Ut,U
∗) ≤

(
1− (ησ∗

max
2)0.4

κ2

)t

δ0

Algorithm 1 The AltGD-Min algorithm. Let M† :=
(M⊤M)−1M⊤.

1: Input: yk,Ak, k ∈ [q]
2: Parameters: Multiplier in specifying α for init step, C̃;

GD step size, η; Number of iterations, T
3: Sample-split: Partition the measurements and measure-

ment matrices into 2T + 1 equal-sized disjoint sets: one
set for initialization and 2T sets for the iterations. Denote
these by y

(τ)
k ,A

(τ)
k , τ = 0, 1, . . . 2T .

4: Initialization:
5: Using yk ≡ y

(0)
k ,Ak ≡ A

(0)
k , set

6: α = C̃ 1
mq

∑
ki

∣∣yki

∣∣2,
7: yk,trunc(α) := yk ◦ 1{|yk| ≤

√
α}

8: X0 := (1/m)
∑
k∈[q]

A⊤
k yk,trunc(α)e

⊤
k

9: Set U0 ← top-r-singular-vectors of X0

10: GDmin iterations:
11: for t = 1 to T do
12: Let U ← Ut−1.
13: Update bk,xk: For each k ∈ [q], set (bk)t ←

(A
(t)
k U)†y

(t)
k and set (xk)t ← U(bk)t

14: Gradient w.r.t. U : With yk ≡ y
(T+t)
k ,Ak ≡ A

(T+t)
k ,

compute ∇Uf(U ,Bt) =
∑

k A
⊤
k (AkU(bk)t−yk)(bk)

⊤
t

15: GD step: Set Û+ ← U − (η/m)∇Uf(U ,Bt).
16: Projection step: Compute Û+ QR

= U+R+.
17: Set Ut ← U+.
18: end for

with δ0 = 0.09/κ2. Thus, with T = Cκ2 log(1/ϵ) and η =
0.5/σ∗

max
2, w.p. at least 1− (T + 1)n−10,

SD(UT ,U
∗) ≤ ϵ, ∥(xk)T − x∗

k∥ ≤ ϵ∥x∗
k∥, for all k ∈ [q],

∥XT −X∗∥F ≤ 1.4ϵ∥X∗∥

Sample complexity The sample complexity (total number
of samples needed to achieve ϵ-accurate recovery) is mtot =∑T

τ=0 mτ ≥ m0 + T mint≥1 mt. From the above result, this
needs to satisfy mtotq ≥ Cκ6µ2(n+ q)r2 log(1/ϵ) log(κ) and
mtot > Cκ2 max(r, log q, log n) log(1/ϵ).

Time complexity Let m ≡ mt. The initialization step needs
time mqn for computing X0; and time of order nqr times
the number of iterations used in the r-SVD step. Since we
only need a δ0-accurate initial estimate of span(U∗), with
δ0 = c/κ2, order log(κ) number of iterations suffice for this
SVD step. Thus the complexity is O(nq(m + r) · log κ) =
O(mqn · log κ) since m ≥ r. One gradient computation needs
time O(mqnr). The QR decomposition needs time of order nr2.
The update of columns of B by LS also needs time O(mqnr)
(explained earlier). As we prove above, we need to repeat
these steps T = O(κ2 log(1/ϵ)) times. Thus the total time
complexity is O(mqn log κ+max(mqnr, nr2,mqnr) · T ) =
O(κ2mqnr log(1/ϵ) log κ).

Communication complexity The communication complexity
per node per iteration for a federated implementation is just
order nr. Thus, the total is O(nr · κ2 log(1/ϵ)).
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Thus, we have the following corollary.

Corollary 2.2 (AltGD-Min). In the setting of Theorem 2.1, if
Assumption 1.1 holds, and if

mtotq ≥ Cκ6µ2(n+ q)r2 log(1/ϵ) log(κ)

and mtot > Cκ2 max(r, log q, log n) log(1/ϵ), then, w.p. at
least 1− (Cκ2 log(1/ϵ))n−10, ∥X −X∗∥F ≤ 1.4ϵ∥X∗∥ and
∥xk − x∗

k∥ ≤ ϵ∥x∗
k∥ for all k ∈ [q]. The time complexity is

Cκ2mqnr log(1/ϵ) log κ and the communication complexity is
O(nr · κ2 log(1/ϵ)).

Observe that the above results show that after T =
Cκ2 log(1/ϵ) iterations, SD(UT ,U

∗) ≤ ϵ, ∥xk − x∗
k∥ ≤

ϵ∥x∗
k∥, and ∥XT − X∗∥F ≤ 1.4ϵ∥X∗∥. The RHS in the

third bound does indeed contain ∥X∗∥ (the induced 2-norm).
This is correct because, SD(., .) is a Frobenius norm subspace
distance. We explain this in Sec. III-B.

C. Discussion and comparison with the best LRMC results

An algorithm is called linear time if its time complexity
is the same order as the time needed to load all input data.
In our case, this is O(mqn). Treating κ as a constant, the
AltGD-Min complexity is worse than linear-time by a factor
of only r log(1/ϵ). As can be seen from Table I, the same is
also true for the fastest LRMC solution, projGD-X [15]. For
LRMC, linear time is O(mq). To our best knowledge, this is
the case for the fastest algorithms for all LR problems.

Consider the sample complexity. The degrees of freedom
(number of unknowns) of a rank-r n× q matrix are (n+ q)r.
A sample complexity of Ω((n+ q)r) samples (or, sometimes
this times log factors) is called “optimal”. Thus, ignoring the
log factors, our sample complexity of mtotq ≳ (n + q)r2 is
sub-optimal only by a factor of r. As can also be seen from
Table I, this suboptimality matches that of the best results
for LRMC solutions that are not convex relaxation based [15],
[16], [17]. The need for exploiting incoherence while obtaining
the high probability bounds on the recovery error terms is
what introduces the extra factor of r for both LRMC and
LRcCS. LRMC has been extensively studied for over a decade
and there does not seem to be a way to obtain an (order-
) optimal sample complexity guarantee for it except when
studying convex relaxation solutions (which are much slower).

In addition, we also need m ≳ max(r, log q, log n). This is
redundant except for very large q, n. This is needed because, the
recovery of each column of B∗ is a decoupled r-dimensional
LS problem. We analyze this step in Lemma 3.3; notice that
the bound on the recovery error of column k holds w.p. at least
1−exp(r−cm). By union bound, it holds for all q columns w.p.
at least at least 1− q exp(r− cm) = 1− exp(log q+ r− cm).
This probability is at least 1− n−10 = 1− exp(−10 log n) if
m ≳ max(r, log q, log n).

D. Detailed comparison with existing LRcCS results

There are two existing solutions for LRcCS – AltMin
[4], [5], [6] and the convex relaxation (mixed norm min-
imization) [7]. Mixed norm is defined as ∥X∥mixed :=
inf{U ,V :UV =X} ∥U∥F maxk∈[q] ∥vk∥, where U is n× r and

V := [v1,v2, . . .vq] is an r×q matrix. In our notation, for the
noise-free case (σ = 0), their main result states the following.

Proposition 2.3 (Convex relaxation (mixed norm min) in the
σ = 0 (noise-free) setting [7]). Consider a matrix X∗ ∈ {X∗ :
maxk ∥x∗

k∥2 ≤ α2, ∥X∗∥mixed ≤ R ≤ α
√
r}. Then, w.p.

1−exp(−c2nR2/α2), ∥X−X∗∥2
F

∥X∗∥2
F
≤ c1

α2

∥X∗∥2
F /q

√
(n+q)r log6 n

mtotq

Under our Assumption 1.1, maxk ∥x∗
k∥2 ≤ µ2(r/q)σ∗

max
2 =

(µ2κ2)(r/q)σ∗
min

2 ≤ (κ2µ2)∥X∗∥2F /q, i.e. α2

∥X∗∥2
F /q

=

(κ2µ2). Thus, the above result can also be stated as:
For all matrices X∗ that satisfy Assumption 1.1 and for

which ∥X∗∥mixed ≤
√
r · κµ∥X∗∥F /

√
q, if

mtotq ≥ C1κ
4µ4(n+ q)r log6 n · 1

ϵ4
,

then, w.p. at least 1 − exp(−c2n), ∥X −X∗∥F ≤ ϵ∥X∗∥F .
The time complexity is Cmqnrmin( 1√

ϵ
, n3r3) (explained

earlier in Sec. I-B).

Notice that both the sample and the time complexity of
the convex solution depend on powers of 1/

√
ϵ: the sample

complexity grows as 1/ϵ4 while the time complexity grows as
1/
√
ϵ. However, its sample complexity has an order-optimal

dependence on r. For AltGD-Min, both sample and time
complexities depend only logarithmically on ϵ only as log(1/ϵ).
But its sample complexity depends sub-optimally on r, it grows
as r2. In summary, the time complexity of the convex solution
is always much worse, its sample complexity is worse when a
solution with accuracy level ϵ < 1/r1/4 is needed. A second
point to mention is that our result for AltGD-Min provides a
column-wise error bound (bounds ∥x∗

k−xk∥/x∗
k∥). The convex

result only provides a bound on the Frobenius norm of the
entire matrix. Thus it is possible that some columns have much
larger recovery error than others. This can be problematic
in applications such as dynamic MRI where each column
corresponds to one signal/image of a time sequence and where
the goal is to ensure accurate-enough recovery of all columns.
On the other hand, the advantage of the convex guarantee
is that it holds w.h.p. for all matrices X∗ in the specified
set, where as our result only holds w.h.p. for a matrix X∗

satisfying Assumption 1.1. The reason for these last two points
and the reason that we cannot avoid using sample-splitting is
the same: the update of B is a column-wise LS problem. We
explain the reasoning carefully in Sec. VI-A where we discuss
the limitations of our approach. A second advantage of the
convex result is that it directly studies the noisy version of the
LRcCS problem. This should be possible for AltGD-Min too,
we postpone it to future work.

The best result for AltMin is from [6], it states the following.

Proposition 2.4 (AltMin [6]). Under Assumption 1.1, if

mtotq ≥ Cκ8µ2nr2(r+log(1/ϵ)) and mtot > max(r, log q, log n),

then, w.p. at least 1− (log(1/ϵ))n−10, ∥X −X∗∥ ≤ ϵ∥X∗∥
and ∥xk − x∗

k∥ ≤ ϵ∥x∗
k∥ for all k ∈ [q]. The time complexity

is Cmqnr log2(1/ϵ).

Treating κ as a numerical constant, compared with the above
result for AltMin, the sample complexity of AltGD-Min is
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either better by a factor of r or is as good. It is better when
r > log(1/ϵ). Also, the time complexity is always better by
a factor log(1/ϵ). As a function of κ, the AltGD-Min sample
complexity is better by a factor of κ2, but its time is worse by
a factor of κ2 compared to that of AltMin. The reason is that
its error decays as (1− c/κ2)t. For AltMin the error decays
as ct. Experimentally, GD is usually much faster than AltMin
because the constants in its time complexity are also lower.

III. PROVING THEOREM 2.1

A. Two key results for proving Theorem 2.1 and its proof

Theorem 2.1 is an almost immediate consequence of the
following two results.

Theorem 3.1 (Initialization). Pick a δ0 < 0.1. If mq ≥
Cκ4µ2(n+ q)r2/δ20 , then w.p. at least 1− exp(−c(n+ q)),

SD(U∗,U0) ≤ δ0.

Proof: See Sec. III-E (simpler proof with sample-splitting
for α) or Appendix B (proof without sample-splitting). Proof
outline is given in Sec. III-D.

Theorem 3.2 (GD Descent). If, at each iteration t, mq ≥
Cκ4µ2(n + q)r2 log κ and m > Cmax(log q, log n); if
SD(U∗,U0) ≤ δ0 = c/κ2 for a c ≤ 0.1/1.1; and if
η ≤ 0.5/σ∗

max
2, then w.p. at least 1− (t+ 1)n−10,

SD(U∗,Ut+1) ≤ δt+1 :=
(
1− (ησ∗

max
2) 0.4κ2

)t+1

δ0.

If η = 0.5σ∗
max

2, this simplifies to SD(U∗,Ut+1) ≤ (1 −
0.2/κ2)t+1δ0.

Also, with the above probability,

∥(1/m)∇Uf(Ut,Bt+1)∥ ≤ 1.6δtσ
∗
max

2.

with δt defined in the SD(U∗,Ut+1) bound above.

Since δt decays exponentially with t, the same is also true
for the gradient norm at iteration t, ∥(1/m)∇Uf(Ut,Bt+1)∥.

Proof: See Sec. III-C. Proof outline is given in Sec. III-B.

Proof of Theorem 2.1: The SD(.) bound is an immediate
consequence of Theorems 3.1 and 3.2. To apply Theorem 3.2,
we need δ0 = c/κ2. By Theorem 3.1, if mq ≥ Cκ6µ2(n +
q)r2, then, w.p. at least 1− n−10, SD(U∗,U0) ≤ δ0 = c/κ2.
With this, if, at each iteration, mq ≥ Cκ4µ2(n + q)r2 log κ
and m ≥ Cmax(log q, log n), then by Theorem 3.2, w.p. at
least 1 − (t + 1)n−10, the stated bound on SD(U∗,Ut+1)
holds. By setting T = Cκ2 log(1/ϵ) in this, we can guarantee(
1− c1

κ2

)T ≤ ϵ. This proves the SD(UT ,U
∗) bound. The

bounds on ∥xk−x∗
k∥ and ∥X −X∗∥F follow by Lemma 3.3

given in Sec. III-C.

B. Proof outline (and novelty) for Theorem 3.2

For proving exponential error decay, we need to show this:
at iteration t, if SD(U ,U∗) ≤ δt with δt < δ0 = c/κ2. Then,
SD(U+,U∗) ≤ cδt for a c < 1. We explain how to do this next.
Suppose that, at iteration t, SD(U ,U∗) ≤ δt < δ0 = 0.1/κ2.

Analyzing the minimization step for updating B (Lemma
3.3). Recall from Algorithm 1 that bk = (AkU)†yk,
xk = Ubk, and x∗

k = U∗b∗k. Using standard results from
[26], we can show that the estimates bk satisfy ∥bk −
U⊤x∗

k∥ ≤ 0.4∥(I − UU⊤)U∗b∗k∥. This then implies that
(i) bk’s are incoherent, i.e., ∥bk∥ ≤ 1.1µσ∗

max

√
r/q; and (ii)

∥xk−x∗
k∥ ≤ 1.4∥(I−UU⊤)U∗b∗k∥ ≤ 1.4δt maxk ∥x∗

k∥, i.e.,
we can get the desired column-wise error bound. Also (iii)
∥X −X∗∥F ≤ 1.4δtσ

∗
max (notice this bound does not contain

r). We get this as follows:

∥X −X∗∥F =

√∑
k

∥xk − x∗
k∥2

≤
√
1.42

∑
k

∥(I −UU⊤)U∗b∗k∥2

= 1.4∥(I −UU⊤)U∗B∗∥F
≤ 1.4∥(I −UU⊤)U∗∥Fσ∗

max

Similarly, ∥B − U⊤X∗∥F ≤ 0.4δtσ
∗
max. (iv) Using Weyl’s

inequality and δt < 0.1/κ2, this then implies that σmax(B) ≤
1.1σ∗

max and σmin(B) ≥ 0.9σ∗
min.

Bounding SD(U+,U∗) by a novel use of fundamental
theorem of calculus (Lemma 3.4). Recall from Algorithm
1 that Û+ = Û − (η/m)∇Uf(U ,B) and Û+ QR

= U+R+.
We bound SD(U+,U∗) using the fundamental theorem of
calculus [18, Chapter XIII, Theorem 4.2],[19], summarized in
Theorem 4.2. The use of this result is motivated by its use in
[19], and many earlier works, where it is used in a standard
way: to bound the Euclidean norm error ∥x−x∗∥ for standard
GD to solve the PR problem for recovering a single vector
x∗. Thus, at the true solution x = x∗, the gradient of the cost
function was zero. In our case, there are two differences: (i)
we need to bound the subspace distance error, and (ii) our
algorithm is not standard GD; in particular, this means that
∇Uf(U

∗U∗⊤U ,B) ̸= 0.
To deal with (i) and (ii), we proceed as follows. We

first bound ∥(I − U∗U∗⊤)Û+∥F . To do this, we apply
Theorem 4.2 on vectorized ∇Uf(U ,B) with the pivot being
vectorized ∇Uf(U

∗U∗⊤U ,B), and use this in the equation
for Û+. Next, we project both sides of this expression
orthogonal to U∗ followed by some careful linear algebra.
Notice here that ∇Uf(U

∗U∗⊤U ,B) ̸= 0, because B ̸= B∗.
Because of this, we get an extra term, Term2 := (I −
U∗U∗⊤)∇Uf(U

∗U∗⊤U ,B), in our bound other than the
usual term containing the Hessian. We are able to bound it
by ϵδtσ

∗
max

2 for any constant small enough ϵ, by realizing
that E[Term2] = 0 (conditioned on past measurements), and
that its summands are nice-enough subexponentials. Next, we
bound SD(U∗,U+) by using

SD(U∗,U+) ≤ ∥(I −U∗U∗⊤)Û+∥F ∥(R+)−1∥

=
∥(I −U∗U∗⊤)Û+∥F

σmin(Û+)

and σmin(Û
+) = σmin(U − (η/m)∇Uf(U ,B)) ≥ 1 −

(η/m)∥∇Uf(U ,B)∥.
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Bounding the terms in the SD(U∗,U+) bound (Lemma
3.5). Consider ∥∇Uf(U ,B)∥. Using Lemma 3.3, it can
be shown that, for unit vectors w, z, the maximum sub-
exponential norm of any summand of w⊤∇Uf(U ,B)z is
bounded by ∥xk − x∗

k∥ · ∥bk∥ ≤ 1.1µ2σ∗
max

2δt(r/q). Ob-
serve that we get this (sufficiently small) bound because
of the extra b⊤k term in the summands of ∇Uf(U ,B)
compared to those in ∇X f̃(X). This, along with using
the sub-exponential Bernstein inequality [26] followed by
a standard epsilon-net argument, and bounding ∥E[∇Uf ]∥
using ∥E[∇Uf ]∥ = ∥m(X − X∗)B⊤∥ ≤ mδtσ

∗
max

2 (by
Lemma 3.3), helps guarantee that ∥∇Uf∥ ≲ 2mδtσ

∗
max

2

w.h.p. as long as mq ≳ (n + q)r2. We bound ∥Term2∥F
using similar ideas and the key fact that E[Term2] = 0.
This is true because of sample-splitting. We upper and lower
bound the eigenvalues of the Hessian, Hess, using similar
ideas and the following: for a unit vector w of length nr and
its rearranged unit Frobenius norm matrix W of size n× r,
E[w⊤Hess w] = E[

∑
ki(aki

⊤Wbk)
2] = m∥WB∥2F . Using

the bounds on σi(B) from Lemma 3.3, this can be upper and
lower bounded.

C. Lemmas for proving GD descent Theorem 3.2 and its proof

Let U ≡ Ut, B ≡ Bt+1. The proof follows using the
following 3 lemmas.

Lemma 3.3 (Error bound on B and its implications). Let
U ≡ Ut, B ≡ Bt+1, and

gk := U⊤x∗
k.

Assume that SD(U∗,Ut) ≤ δt with δt < δ0 = c/κ2 (this
bound on δt is needed for the second part of this lemma).
Then, w.p. ≥ 1− q exp(r − cm),

1)

∥gk − bk∥ ≤ 0.4∥
(
In −UU⊤)U∗b∗k∥ (3)

2) This in turn implies all of the following.

a) ∥xk − x∗
k∥ ≤ 1.4∥

(
I −UU⊤)U∗b∗k∥

b) ∥G − B∥F ≤ 0.4δtσ
∗
max and ∥X∗ − X∥F ≤√

1.16δtσ
∗
max,

c) ∥gk − bk∥ ≤ 0.4δt∥b∗k∥ and ∥xk − x∗
k∥ ≤

1.4δt∥x∗
k∥,

d) ∥U∗⊤Ubk − b∗k∥ ≤ 2.4δt∥b∗k∥,
e) ∥bk∥ ≤ 1.1µσ∗

max

√
r/q.

f) σmin(B) ≥ 0.9σ∗
min and σmax(B) ≤ 1.1σ∗

max,

Proof: See Sec. IV-D.

Lemma 3.4. Let U ≡ Ut, B ≡ Bt+1. Let ⊗ denote the
Kronecker product. We have

SD(Ut+1,U
∗)

≤ ∥Inr − (η/m)Hess∥ · SD(U∗,U) + (η/m)∥Term2∥F
1− (η/m)∥GradU∥

,

where,

GradU := ∇Uf(U ,B) =
∑
ki

(yki − aki
⊤Ubk)akibk

⊤

Term2 := (I −U∗U∗⊤)∇Uf((U∗U∗⊤U),B)

= (I −U∗U∗⊤)
∑
ki

(yki − aki
⊤U∗U∗⊤Ubk)akibk

⊤

Hess :=
∑
ki

(aki ⊗ bk)(aki ⊗ bk)
⊤

Proof: See Sec. IV-B

Lemma 3.5. Assume SD(U∗,U) ≤ δt < δ0 = c/κ2. Then,
1) w.p. at least 1−exp((n+r)−cmqϵ21/rµ

2)−exp(log q+
r − cm),

∥GradU∥ ≤ 1.5(1.1 + ϵ1)mδtσ
∗
max

2;

2) w.p. at least 1 − exp(nr − cmqϵ22/rµ
2) − exp(log q +

r − cm),

∥Term2∥F ≤ 1.1mϵ2δtσ
∗
max

2;

3) w.p. at least 1 − exp(nr log κ − cmqϵ23/rκ
4µ2) −

exp(log q + r − cm),

m(0.65− 1.2ϵ3)σ
∗
min

2 ≤ λmin(Hess)

≤ λmax(Hess) ≤ m(1.1 + ϵ3)σ
∗
max

2
.

Proof: See Sec. IV-C.
Proof of Theorem 3.2: The proof follows by induction.

Base case for t = 0 is true by assumption. Induction assump-
tion: Assume that, w.p. at least 1− tn−10, SD(U∗,Ut) ≤ δt
with δt ≤ δ0 = c0/κ

2.
Set ϵ1 = 0.1, ϵ3 = 0.01, ϵ2 = 0.01/1.1κ2 and, c0 =

0.1/1.5(1.1 + 0.1).
The upper bound on λmax(Hess) and using η ≤

0.5/σ∗
max

2 implies that λmin(Inr − (η/m)Hess) = 1 −
(η/m)λmax(Hess) ≥ 1 − 0.5(1.1+0.01)mσ∗

max
2

mσ∗
max

2 > 1 −
0.555 > 0 i.e. Inr − (η/m)Hess is positive definite. Thus,
∥Inr − (η/m)Hess∥ = λmax(Inr − (η/m)Hess) = 1 −
(η/m)λmin(Hess) ≤ 1 − (η/m)m(0.65 − 1.2ϵ3)σ

∗
min

2 ≤
1− (ησ∗

max
2)0.63/κ2.

By Lemma 3.4, Lemma 3.5, and the above, w.p. at least
1−tn−10−exp((n+q)−cmq/rµ2)−exp(nr−cmq/rκ4µ2)−
exp(nr log κ− cmq/rκ4µ2)− exp(log q + r − cm),

SD(U∗,Ut+1)

≤ (1− (ησ∗
max

2)0.63/κ2) · δt + (η/m)1.1mϵ2σ
∗
max

2δt
1− (η/m)1.5(1.1 + ϵ1)mδtσ∗

max
2

≤
(
1− (ησ∗

max
2)0.63/κ2 + (ησ∗

max
2)0.01/κ2

1− (ησ∗
max

2)0.1/κ2

)
δt

≤
(
1− (ησ∗

max
2)
0.42

κ2

)
δt

The second inequality substituted the values of ϵj’s and used
δt < δ0 = 0.1/(1.5(1.1 + 0.1)κ2) for its denominator term.
The third inequality used (1 − (ησ∗

max
2)0.1/κ2)−1 ≤ (1 +

(ησ∗
max

2)0.2/κ2) (for 0 < x < 1, 1/(1− x) ≤ 1 + 2x).
By plugging in the epsilon values in the probability, the

above holds w.p. ≥ 1− tn−10−0.2 exp((n+q)−cmq/rµ2)−
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0.2 exp(nr−cmq/rµ2κ4)−0.2 exp(nr log κ−cmq/rµ2κ4)−
exp(log q + r − cm) . If mq ≥ Cκ4(n + q)r2 log κ and
m ≥ Cmax(r, log q, log n) for a C large enough, then,
this probability is ≥ 1 − tn−10 − 0.2 exp(−c(n + q)) −
0.4 exp(−cnr)− n−10 > 1− (t+ 1)n−10.

D. Proof outline (and novelty) for Initialization Theorem 3.1

Recall that we compute U0 as the top r left singular vectors
of X0 defined in (2) and that this is a truncated version of
X0,full. As noted there, we cannot use X0,full because its
summands are not nice-enough sub-exponentials. Truncation
converts the summands into sub-Gaussian r.v.s. For these, we
can use the sub-Gaussian Hoeffding inequality [26, Chap 2]
which needs a small enough bound on only the squared sum
of the sub-Gaussian norms of the mq summands, and not
on their maximum value (as needed by the sub-exponential
Bernstein inequality). This is an easier requirement that gets
satisfied for our problem. Of course, truncation also means
that the summands of X0 are not mutually independent (each
summand depends on the truncation threshold α which is
computed using all measurements yki) and that E[X0] ̸= X∗.
There are two ways to resolve this issue. The first and simpler
approach, but one that assumes more sample-splitting is given
below in Sec III-E. This assumes that α is a computed using a
different independent set of measurements than those used to
define the rest of X0. With this, E[X0|α] = X∗D(α), where
D is a diagonal matrix defined below in Lemma 3.6 and the
summands are independent conditioned on α. Thus, we can
apply Wedin’s sinΘ theorem [27], [28] (given in Proposition
4.1) on X0 and E[X0|α] to bound SD(U0,U

∗), followed by
subGaussian Hoeffding and a standard epsilon-net argument,
to bound the terms in this bound.

To avoid sample-splitting for α, we need to significantly
modify the sandwiching arguments from [20], [5] for our
setting. This is done in Appendix B. In the previous works,
sandwiching was used for a symmetric positive definite (p.d.)
matrix. Here we need such an argument for a non-symmetric
matrix. Briefly, we do this as follows. We define a matrix X+

that is such that the span of top r left singular vectors of its
expected value equals that of U∗ and that can be shown to be
close to X0. X+ is X0 with α replaced by C̃(1+ϵ)∥X∗∥2F /q.
We bound ∥X0−E[X+]∥ by bounding ∥X+−X0∥ and ∥X+−
E[X+]∥. Bounding the latter is simple. Bounding ∥X+ −
X0∥ requires bounding w⊤(X+−X0)z for unit vectors w, z
and this is not straightforward because its summands are not
mutually independent. To deal with this, we first bound each
summand by its absolute value, and then bound the indicator
function term to get a new one that is non-random so that the
summands of this new term are mutually independent. But,
its summands are no longer zero mean (because of taking the
absolute values), and hence more work is needed to get the
desired small enough bound on the expected value of this term.

E. Simpler proof of Theorem 3.1 that assumes independent
measurements used for computing α

For the simpler proof given here, assume that we use a
different independent set of measurements for computing α

than those used for the rest of X0, i.e., let

α = C̃

∑
ki(y

nrmX
ki )2

mq

with ynrmX
ki independent of {A(0)

k ,y
(0)
k }. With this change, it

is possible to compute E[X0|α] easily. But, it does not affect
the sample complexity order and so it does not change our
theorem statement. The proof follows by combining the two
lemmas and facts given next.

Lemma 3.6. Conditioned on α, we have the following
conclusions.

1) Let ζ be a scalar standard Gaussian r.v.. Define

βk(α) := E[ζ21{∥x∗
k∥2ζ2≤α}].

Then,

E[X0|α] = X∗D(α),

where D(α) := diagonal(βk(α), k ∈ [q]) (4)

i.e. D(α) is a diagonal matrix of size q×q with diagonal
entries βk defined above.

2) Let E[X0|α] = X∗D(α)
SVD
= U∗Σ̌∗V̌ be its r-SVD.

Then,

SD(U0,U
∗) ≤

√
2max

(
∥(X0 − E[X0|α])⊤U∗∥F , ∥(X0 − E[X0|α])V̌ ⊤∥F

)
σ∗
min mink βk(α)− ∥X0 − E[X0|α]∥

(5)

as long as the denominator is non-negative.

Proof: See Sec. IV-F
Define the set E as follows

E :=

{
C̃(1− ϵ1)

∥X∗∥2F
q

≤ α ≤ C̃(1 + ϵ1)
∥X∗∥2F

q

}
. (6)

The following fact is an immediate consequence of sub-
exponential Bernstein inequality for bounding |α−∥X∗∥2F /q|.

Fact 3.7. Pr(α ∈ E) ≥ 1 − exp(−c̃mqϵ21) := 1 − pα. Here
c̃ = c/C̃ = c/κ2µ2.

The next lemma bounds the terms of Lemma 3.6.

Lemma 3.8. Fix 0 < ϵ1 < 1. Then,
1) w.p. at least 1 − exp

[
(n+ q)− cϵ21mq/µ2κ2

]
, condi-

tioned on α, for an α ∈ E ,

∥X0 − E[X0|α]∥ ≤ 1.1ϵ1∥X∗∥F

2) w.p. at least 1 − exp
[
qr − cϵ21mq/µ2κ2

]
, conditioned

on α, for an α ∈ E ,

∥ (X0 − E[X0|α])⊤U∗∥F ≤ 1.1ϵ1∥X∗∥F

3) w.p. at least 1 − exp
[
nr − cϵ21mq/µ2κ2

]
, conditioned

on α, for an α ∈ E ,

∥ (X0 − E[X0|α]) V̌ ⊤∥F ≤ 1.1ϵ1∥X∗∥F .

Proof: See Sec. IV-G
We also need to the following fact.
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Fact 3.9. For any ϵ1 ≤ 0.1,

mink E

[
ζ21{

|ζ|≤C̃

√
1−ϵ1∥X∗∥F√

q∥x∗
k
∥

}
]
≥ 0.92.

Proof of Theorem 3.1: Set ϵ1 = 0.4δ0/
√
rκ. Define

p0 = 2 exp((n+q)−cmqδ20/rκ
2)+2 exp(nr−cmqδ20/rκ

2)+
2 exp(qr− cmqδ20/rκ

2). Recall that Pr(α ∈ E) ≥ 1−pα with
pα = exp(−c̃mqϵ21) = exp(−cmqδ20/rµ

2κ2).
Using Lemma 3.8, conditioned on α, for an α ∈ E ,
• w.p. at least 1 − p0, ∥X0 − E[X0|α]∥ ≤
1.1ϵ1∥X∗∥F = 0.44δ0σ

∗
min, and

max
(
∥(X0 − E[X0|α])⊤U∗∥F , ∥(X0 − E[X0|α])V̌ ⊤∥F

)
≤

0.44δ0σ
∗
min

• mink βk(α) ≥ mink E

[
ζ21

{|ζ|≤C̃

√
1−ϵ1∥X∗∥F√

q∥x∗
k
∥ }

]
≥ 0.9

The first inequality is an immediate consequence of α ∈ E
and the second follows by Fact 3.9.

Plugging the above bounds into (5) of Lemma 3.6, condi-
tioned on α, for any α ∈ E , w.p. at least 1−p0, SD(U0,U

∗) ≤
0.44δ0

0.9−0.44δ0
< δ0 since δ0 < 0.1. In other words,

Pr (SD(U0,U
∗) ≥ δ0|α) ≤ p0 for any α ∈ E . (7)

Since (i) Pr(SD(U0,U
∗) ≥ δ0) ≤ Pr(SD(U0,U

∗) ≥
δ0 and α ∈ E) + Pr(α /∈ E), and (ii) Pr(SD(U0,U

∗) ≥
δ0 and α ∈ E) ≤ Pr(α ∈ E)maxα∈E Pr(SD(U0,U

∗) ≤
δ0|α), thus, using Fact 3.7 and (7), we can conclude that

Pr (SD(U0,U
∗) ≥ δ0) ≤ p0(1− pα) + pα ≤ p0 + pα

Thus, for a δ0 < 0.1, SD(U0,U
∗) < δ0 w.p. at least 1 −

p0 − pα = 1 − 2 exp((n + q) − cmqδ20/rκ
2) − 2 exp(nr −

cmqδ20/rκ
2)−2 exp(qr−cmqδ20/rκ

2)−exp(−cmqδ20/rµ
2κ4).

This is ≥ 1− 5 exp(−c(n+ q)) if mq > Cκ2µ2(n+ q)r2/δ20 .
This finishes our proof.

IV. PROOFS OF ALL THE LEMMAS

A. Basic tools used

Our proofs use the following results and definitions:

Theorem 4.1 (Wedin sinΘ theorem for Frobenius norm
subspace distance [27], [28][Theorem 2.3.1). ] For two n1×n2

matrices M∗, M , let U∗,U denote the matrices containing
their top r singular vectors and let V ∗⊤,V ⊤ be the matrices
of their right singular vectors (recall from problem definition
that we defined SVD with the right matrix transposed). Let
σ∗
r , σ

∗
r+1 denote the r-th and (r+1)-th singular values of M∗.

If ∥M −M∗∥ ≤ σ∗
r − σ∗

r+1, then

SD(U ,U∗)

≤
√
2max(∥(M −M∗)⊤U∗∥F , ∥(M −M∗)⊤V ∗⊤∥F )

σ∗
r − σ∗

r+1 − ∥M −M∗∥

Theorem 4.2 (Fundamental theorem of calculus [18][Chapter
XIII, Theorem 4.2). , [19]] For two vectors z0, z

∗ ∈ ℜd, and
a differentiable vector function g(z) ∈ ℜd2 ,

g(z0)− g(z∗) =

(∫ 1

τ=0

∇g(z(τ))dτ
)
(z0 − z∗),

where
z(τ) = z∗ + τ(z0 − z∗).

Observe that ∇zg(z) is a d2 × d matrix.

Definition 4.3. For any n× r matrix Z, let Zvec denote the
nr length vector formed by arranging all r columns of Z one
below the other. Thus, for n-length and r-length vectors a and
b,

• (ab⊤)vec = a⊗ b with ⊗ being the Kronecker product;
• a⊤Ub = trace(a⊤Ub) = trace(ba⊤U) =
⟨(ab⊤),U⟩ = ⟨a⊗ b,Uvec⟩;

f(Uvec,B) =
∑

ki((aki ⊗ bk)
⊤Uvec − yki)

2 and

(∇Uf(U ,B))vec = ∇Uvecf(Uvec,B) (8)

Definition 4.4. At various places, ∇f(U ,B) is short for
∇Uf(U ,B) =

∑
ki akibk

⊤(aki
⊤Ubk − yki) and similarly

∇f(Uvec,B) is short for ∇Uvec
f(Uvec,B) =

∑
ki(aki ⊗

bk)((aki ⊗ bk)
⊤Uvec − yki).

Definition 4.5. For any vector w, we use w(k) to denote its
k-th entry.

Definition 4.6. Everywhere we use Snr to denote both the
set of matrices {W ∈ ℜn×r : ∥W ∥F = 1} and the set of
these matrices vectorized {w ∈ ℜnr : ∥w∥ = 1}. We also
switch between the two sometimes. In the entire writing below,
w = Wvec.

All the high probability bounds for initialization use sub-
Gaussian Hoeffding inequality, while those for GD lemmas
use the sub-exponential Bernstein inequality, both are from
[26]. In addition, these lemmas also use the following results
to “epsilon-net” extend a bound holding for a fixed unit norm
W (or w) to all unit norm W s (or ws)

Proposition 4.7 (Epsilon-netting for bounding
maxw∈Sn,z∈Sr

|w⊤Mz|). For an n × r matrix M
and fixed vectors w, z with, w ∈ Sn and z ∈ Sr, suppose
that |w⊤Mz| ≤ b0 w.p. at least 1 − p0. Consider an
ϵnet net covering Sn and Sr, S̄n, S̄r Then w.p. at least
1− (1 + 2/ϵnet)

n+rp0,
• maxw∈S̄n,z∈S̄r

|w⊤Mz| ≤ b0 and
• maxw∈Sn,z∈Sr

|w⊤Mz| ≤ 1
1−2ϵnet−ϵ2net

b0.

Using ϵnet = 1/8, this implies the following simpler conclu-
sion:
W.p. at least 1 − 17n+rp0 = 1 − exp((log 17)(n + r)) · p0,
maxw∈Sn,z∈Sr

|w⊤Mz| ≤ 1.4b0.

Proof: The proof follows that of Lemma 4.4.1 of [26]

Proposition 4.8 (Epsilon-netting for bounding
maxW∈Snr

⟨M ,W ). For an n × r matrix M and a
fixed n × r matrix W ∈ Snr (unit Frobenius norm
matrix), suppose that ⟨M ,W ⟩ ≤ b0 w.p. at least 1 − p0.
Consider an ϵnet net covering Snr, S̄nr. Then w.p. at least
1− (1 + 2/ϵnet)

nrp0,
• maxW∈S̄nr

⟨M ,W ⟩ ≤ b0 and
• maxW∈Snr

⟨M ,W ⟩ ≤ 1
1−ϵnet

b0.
Using ϵnet = 1/8, this implies the following simpler conclu-
sion:
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w.p. at least 1 − 17nrp0 = 1 − exp((log 17)(nr)) · p0,
maxW∈Snr ⟨M ,W ⟩ ≤ 1.2b0.

Proof: The proof follows exactly as that of Exercise 4.4.3
of [26]

Proposition 4.9 (Epsilon-netting for upper and lower bounding∑
ki⟨Mki,W ⟩2 over all W ∈ Snr). For an n × r matrices

Mki and a fixed W ∈ Snr, suppose that, w.p. at least 1− p0,

b1 ≤
∑
ki

⟨Mki,W ⟩2 ≤ b2

Consider an ϵnet net covering Snr, S̄nr. Then, w.p. at least
1− (1 + 2/ϵnet)

nrp0,

max
W∈Snr

∑
ki

⟨Mki,W ⟩2 ≤
1

1− ϵ2net − 2ϵnet
b2

and

min
W∈Snr

∑
ki

⟨Mki,W ⟩2 ≥ b1 − 2ϵnet ·
1

1− ϵ2net − 2ϵnet
b2

Picking ϵnet = b1/(8b2) guarantees that the above lower
bound is non-negative. In particular, it implies the following:
w.p. at least 1− (24b2/b1)

nrp0 = 1− exp(Cnr log(b2/b1)) ·
p0, 0.8b1 ≤ minW∈Snr

∑
ki⟨Mki,W ⟩2 ≤

maxW∈Snr

∑
ki⟨Mki,W ⟩2 ≤ 1.4b2

Proof: By union bound, for all W̄ ∈ S̄nr, b1 ≤∑
ki⟨Mki, W̄ ⟩2 ≤ b2 holds w.p. at least 1− (1+2/ϵnet)

nrp0.
Proof for the upper bound: Let γ∗ =

maxW∈Snr

∑
ki⟨Mki,W ⟩2. Writing W = W̄ + (W − W̄ )

where W̄ is the closest point to W on S̄nr, we have∑
ki⟨Mki,W ⟩2 =

∑
ki⟨Mki, W̄ ⟩2 +

∑
ki⟨Mki, (W −

W̄ )⟩2 + 2
∑

ki⟨Mki, W̄ ⟩ ·
∑

ki⟨Mki, (W − W̄ )⟩ and
∥(W − W̄ )∥F ≤ ϵnet.

Rewriting (W−W̄ ) = (W−W̄ )·(W−W̄ )/∥(W−W̄ )∥F
and using the fact that (W − W̄ )/∥(W − W̄ )∥F ∈ Snr and
∥(W −W̄ )∥F ≤ ϵnet and using Cauchy-Schwarz for the third
term in the above expression, we have

γ∗ ≤ b2 + ϵ2netγ
∗ + 2

√
γ∗ · ϵ2netγ∗ = b2 + ϵ2netγ

∗ + 2ϵnetγ
∗

Thus, γ∗ ≤ 1/(1− ϵ2net − 2ϵnet) · b2.
Proof for the lower bound: Let β∗ =

minW∈Snr

∑
ki⟨Mki,W ⟩2. Proceeding as above, we

have
β∗ ≥ b1 − 2

√
γ∗ · ϵ2netγ∗ = b1 − 2ϵnetγ

∗

B. Proving GD iterations’ lemmas: Proof of Lemma 3.4
(algebra lemma)

Recall that Uvec denotes the vectorized U . We use this so
that we can apply the simple vector version of the fundamental
theorem of calculus [18, Chapter XIII, Theorem 4.2],[19,
Lemma 2 proof] (given in Theorem 4.2) on the nr length
vector ∇f(Uvec,B), and so that the Hessian can be expressed
as an nr × nr matrix.

We apply Theorem 4.2 with z0 ≡ Uvec, z∗ ≡
(U∗U∗⊤U)vec, and g(z) = ∇f(z,B). Thus d = d2 = nr

and ∇g(z) is the Hessian of f(z,B) computed at z. Let
U(τ) := U∗U∗⊤U + τ(U − U∗U∗⊤U). Applying the
theorem,

∇f(Uvec,B)−∇f((U∗U∗⊤U)vec,B)

= (

∫ 1

τ=0

∇2
Uvec

f(U(τ)vec,B)dτ)(Uvec − (U∗U∗⊤U)vec)

(9)

where

∇2
Uvec

f(U(τ)vec,B) =
∑
ki

(aki ⊗ bk)(aki ⊗ bk)
⊤ := Hess

(10)

This is an nr×nr matrix. Because the cost function is quadratic,
the Hessian is constant w.r.t. τ . Henceforth, we refer to it as
Hess . With this, the above simplifies to

∇f(Uvec,B)−∇f((U∗U∗⊤U)vec,B)

= Hess (Uvec − (U∗U∗⊤U)vec) = Hess (PU)vec (11)

with
P := I −U∗U∗⊤

denoting the n × n projection matrix to project orthogonal
to U∗. This proof is motivated by a similar approach used
in [19, Lemma 2 proof] to analyze GD for standard PR.
However, there the application was much simpler because
f(.) was a function of one variable and at the true solution
the gradient was zero, i.e., ∇f(x∗) = 0. In our case
∇f(U∗U∗⊤U ,B) ̸= 0 because B ̸= B∗. But we can show
that E[(I −U∗U∗⊤)∇f(U∗U∗⊤U ,B)] = 0 and this helps
us get the final desired result.

From Algorithm 1, recall that Û+ = U − (η/m)∇f(U ,B).
Vectorizing this equation, and using (11), we get

(Û+)vec = Uvec − (η/m)∇f(Uvec,B)

= Uvec − (η/m) Hess (PU)vec

− (η/m)∇f((U∗U∗⊤U)vec,B)) (12)

We can prove our final result by using (8) and the following
simple facts:

1) For an n× n matrix M , let big(M) := Ir ⊗M . be an
nr × nr block diagonal matrix with M in the diagonal
blocks. For any n× r matrix Z,

big(M)Zvec = (MZ)vec (13)

2) Since P is idempotent, P = P 2. Also, because of its
block diagonal structure, big(M2) = (big(M))2. Thus,

big(P ) = big(P 2) = (big(P ))2 = big(P ))Inr(big(P )
(14)

Left multiplying both sides of (12) by big(P ), and using
(13), (14), and (8),

big(P )(Û+)vec = big(P )Uvec − (η/m)big(P ) Hess (PU)vec

− (η/m)big(P )∇f((U∗U∗⊤U)vec,B)

= big(P )Inrbig(P )Uvec − (η/m)big(P ) Hess big(P )Uvec

− (η/m)big(P )∇f((U∗U∗⊤U)vec,B)

= big(P )(Inr − (η/m) Hess)big(P )Uvec

− (η/m)big(P )∇f((U∗U∗⊤U)vec,B).
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Thus, using ∥big(P )∥ = ∥P ∥ = 1, (13), and (8),

∥(PÛ+)vec∥ ≤ ∥Inr − (η/m) Hess ∥ ∥(PU)vec∥
+ (η/m)∥(∇f((U∗U∗⊤U),B))vec∥ (15)

Converting the vectors to matrices, using ||Mvec|| = ||M ||F ,
and substituting for P ,

∥(I −U∗U∗⊤)Û+∥F
≤ ∥Inr − (η/m) Hess ∥ ∥(I −U∗U∗⊤)U∥F

+ (η/m)∥(I −U∗U∗⊤)∇f((U∗U∗⊤U),B)∥F

Since Û+ QR
= U+R+ and since ∥M1M2∥F ≤ ∥M1∥F ∥M2∥,

this means that

SD(U∗,U+) ≤ ∥(I −U∗U∗⊤)Û+∥F ∥(R+)−1∥.

Since ∥(R+)−1∥ = 1/σmin(R
+) = 1/σmin(Û

+), using
Û+ = U − (η/m)∇f(U ,B),

∥(R+)−1∥ = 1

σmin(U − (η/m)∇f(U ,B))

≤ 1

1− (η/m)∥∇f(U ,B)∥
where we used σmin(U − (η/m)∇f(U ,B)) ≥ σmin(U) −
(η/m)∥∇f(U ,B)∥ = 1 − (η/m)∥∇f(U ,B)∥ for the last
inequality. Combining the last three equations above proves
our lemma.

C. Proof of GD iterations’ lemmas: Proof of Lemma 3.5
1) Upper and Lower bounding the Hessian eigenvalues and

hence HessTerm: First assume the event that implies that the
conclusions of Lemma 3.3 hold.

Recall from (10) that Hess := ∇2
Ũvec

f(Ũvec;B) =∑
ki(aki ⊗ bk)(aki ⊗ bk)

⊤. Since Hess is a positive semi-
definite matrix, λmin ( Hess ) = minw∈Snr w

⊤ Hess w
and λmax ( Hess ) = maxw∈Snr

w⊤ Hess w. For a fixed
w ∈ Snr,

w⊤ Hess w =
∑
ki

(aki
⊤Wbk)

2

where W is an n × r matrix with ∥W ∥F = 1. Clearly
(aki

⊤Wbk)
2 are mutually independent sub-exponential ran-

dom variables (r.v.) with sub-exponential norm Kki ≤
∥Wbk∥2. Also, E[(aki

⊤Wbk)
2] = ∥Wbk∥2 and thus

E[
∑

ki(aki
⊤Wbk)

2] = m∥WB∥2F . Applying the sub-
exponential Bernstein inequality, Theorem 2.8.1 of [26], for a
fixed W ∈ Snr yields

Pr

{∣∣∣∑
ki

∣∣aki
⊤Wbk

∣∣2 −m∥WB∥2F
∣∣∣ ≥ t

}

≤ exp

[
−cmin

(
t2∑

ki K
2
ki

,
t

maxki Kki

)]
.

We set t = ϵ3mσ∗
min

2. By Lemma 3.3, ∥bk∥2 ≤
1.1µ2σ∗

max
2(r/q) = 1.1κ2µ2σ∗

min
2(r/q). Thus,

t2∑
ki K

2
ki

≥ ϵ23m
2σ∗

min
4∑

ki ∥Wbk∥4
≥ ϵ23mσ∗

min
4

maxk ∥bk∥2
∑

k ∥Wbk∥2

≥ ϵ23mσ∗
min

4

µ2σ∗
max

2(r/q)1.1.σ∗
max

2 = cϵ23mq/rµ2κ4

Here we used
∑

k ∥Wbk∥2 = ∥WB∥2F ≤ ∥W ∥F ∥B∥2 ≤
1.1.σ∗

max using the bound on ∥B∥2 from Lemma 3.3. Also,

t

maxki Kki
≥ ϵ3mσ∗

min
2

maxki ∥Wbk∥2
≥ ϵ3mσ∗

min
2

1.1µ2σ∗
max

2(r/q)

= cϵ3mq/rµ2κ2.

Therefore, for a fixed W ∈ Snr, w.p. 1−exp
[
−cϵ23mq/rµ2κ4

]
we have∣∣∣∑

ki

∣∣aki
⊤Wbk

∣∣2 −m∥WB∥2F
∣∣∣ ≤ ϵ3mσ∗

min
2. (16)

and hence, by Lemma 3.3, w.p. 1− exp
[
−cϵ23mq/rµ2κ4

]
,∑

ki

∣∣aki
⊤Wbk

∣∣2 ≤ m∥WB∥2F + ϵ3mσ∗
min

2

≤ m∥B∥2 + ϵ3mσ∗
min

2 ≤ m(1.1 + ϵ3/κ
2)σ∗

max
2. (17)

and∑
ki

∣∣aki
⊤Wbk

∣∣2 ≥ m∥WB∥2F − ϵ3mσ∗
min

2

≥ 0.9mσ∗
min

2 + ϵ3mσ∗
min

2 ≥ m(0.9− ϵ3)σ
∗
min

2. (18)

To extend these bounds to all W ∈ Snr we apply
Proposition 4.9 with b1 ≡ m(0.9 − ϵ3)σ

∗
min

2 and b2 ≡
m(1.1+ϵ3/κ

2)σ∗
max

2. Applying it we can conclude that, given
the event that the claims of Lemma 3.3 holds, w.p. at least
1− exp(nr log κ− cmqϵ23/rµ

2κ4),

m(0.7− 1.2ϵ3)σ
∗
min

2 ≤ λmin( Hess )

≤ λmax( Hess ) ≤ m(1.1 + ϵ3)σ
∗
max

2

Using the probability from Lemma 3.3, the above bound holds
w.p. at least 1− exp(nr log κ− cmqϵ23/rµ

2κ4)− exp(log q +
r − cm).

2) Bounding the GradU Term: We have ∥∇f(U ,B)∥ =
maxz∈Sn,w∈Sr z

⊤∇f(U ,B)w. For a fixed z ∈ Sn,w ∈ Sr
we have

z⊤ (∇f(U ,B)− E[∇f(U ,B)])w

=
∑
ki

[(
aki

⊤Ubk − yki

) (
aki

⊤z
) (

w⊤bk
)
− E[.]

]
where E[.] is the expected value of the first term. Clearly, the
summands are independent sub-exponential r.v.s with norm
Kki ≤ C∥xk − x∗

k∥∥bk∥. We apply the sub-exponential Bern-
stein inequality, Theorem 2.8.1 of [26], with t = ϵ1δtmσ∗

max
2.

To apply this, we use bounds on ∥bk∥, ∥X∗ − X∥F and
∥xk − x∗

k∥ from Lemma 3.3 to show that

t2∑
ki K

2
ki

≥ c
ϵ21δ

2
tm

2σ∗
max

4

mmaxk ∥bk∥2
∑

k ∥xk − x∗
k∥2

≥ c
ϵ21δ

2
tmσ∗

max
4

Cµ2σ∗
max

2(r/q)∥X −X∗∥2F

≥ c
ϵ21δ

2
tmqσ∗

max
4

Cµ2σ∗
max

2rδ2t σ
∗
max

2 = cϵ21
mq

rµ2
.

and

t

maxki Kki
≥ c

ϵ1δtmσ∗
max

2

Cδtσ∗
max

2µ2(r/q)
≥ cϵ1

mq

rµ2
.
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Therefore, for a fixed z ∈ Sn,w ∈ Sr w.p. 1 −
exp(−cϵ21mq/rµ2),

z⊤ (∇f(U ,B)− E[∇f(U ,B)])w ≤ ϵ1δtmσ∗
max

2

Since ∇f(U ,B) =
∑

ki akiaki
⊤(xk − x∗

k)bk
⊤,

E[∇f(U ,B)] = m
∑
k

(xk − x∗
k)bk

⊤ = m (X −X∗)B⊤.

Using the bounds on ∥X∗ −X∥F and ∥B∥ from Lemma 3.3,

∥E[∇f(U ,B)]∥ = m∥(X −X∗)B⊤∥
≤ m∥X −X∗∥ ∥B∥
≤ m∥X −X∗∥F ∥B∥
≤ 1.1mδtσ

∗
max

2

Hence, for a fixed z ∈ Sn,w ∈ Sr w.p. 1−exp
[
−cϵ21mq/rµ2

]
we have

|z⊤∇f(U ,B)w| ≤ (1.1 + ϵ1)mδtσ
∗
max

2.

Applying Proposition 4.7, this implies that, w.p. 1− exp((n+
r)(log 17) − cϵ21mq/rµ2), maxz∈Sn,w∈Sr

z⊤∇f(U ,B)w ≤
1.4(1.1 + ϵ1)mδtσ

∗
max

2.
3) Bounding Term2: First, since Term2 =

(I − U∗U∗⊤)
∑

ki aki(aki
⊤U∗(U∗⊤Ubk − b∗k))bk

⊤,
and E[akiaki

⊤] = I ,

E[Term2] = 0

We have

∥(I −U∗U∗⊤)∇f((U∗U∗⊤U),B)∥F
= max

W∈Snr

⟨(I −U∗U∗⊤)∇f((U∗U∗⊤U),B), W ⟩

For a fixed n× r matrix W with unit Frobenius norm,

⟨(I −U∗U∗⊤)∇f((U∗U∗⊤U),B), W ⟩

=
∑
ki

(
aki

⊤U∗(U∗⊤Ubk − b∗k)
) (

aki
⊤(I −U∗U∗⊤)Wbk

)
Observe that the summands are independent, zero mean,
sub-exponential r.v.s with sub-exponential norm Kki ≤
C∥U∗⊤Ubk − b∗k∥∥(I − U∗U∗⊤)Wbk∥ ≤ ∥U∗⊤Ubk −
b∗k∥∥Wbk∥. We can now apply the sub-exponential Bernstein
inequality Theorem 2.8.1 of [26]. Let t = ϵ2δtmσ∗

max
2. Using

the bound on ∥U∗⊤Ubk − b∗k∥ from Lemma 3.3 followed by
Assumption 1.1 (right incoherence), and also the bound on
∥B∥ from Lemma 3.3,

t2∑
ki K

2
ki

≥ ϵ22δ
2
tm

2σ∗
max

4

δ2t σ
∗
max

2µ2(r/q)
∑

ki ∥Wbk∥2

≥ ϵ22m
2σ∗

max
2

Cµ2(r/q)m∥WB∥2F
≥ ϵ22m

2σ∗
max

2

µ2(r/q)mσ∗
max

2

≥ cϵ22mq/rµ2,

and
t

maxki Kki
≥ ϵ2δtmσ∗

max
2

Cδtκ2µ2σ∗
max

2(r/q)
≥ cϵ2mq/(rκ2µ2).

Thus, by the sub-exponential Bernstein inequality, for a fixed
W ∈ Snr, w.p. 1− exp(−cϵ22mq/rκ2µ2),

⟨(I −U∗U∗⊤)∇f((U∗U∗⊤U),B), W ⟩ ≤ ϵ2δtmσ∗
max

2.

Applying Proposition 4.8, w.p. at least 1 −
exp(nr − cϵ22mq/rκ2µ2), maxW∈Snr ⟨(I −
U∗U∗⊤)∇f((U∗U∗⊤U),B),W ⟩ ≤ 1.2ϵ2δtmσ∗

max
2.

D. Proof of GD iterations’ lemmas: Proof of Lemma 3.3, all
parts other than the first part

Recall that gk = U⊤x∗
k = U⊤U∗b∗k, and G = U⊤U∗B∗.

Using the SD bound and the first part, ∥gk − bk∥ ≤
0.4δt∥b∗k∥.

Since x∗
k −xk = Ugk + (I −UU⊤)x∗

k −Ubk = U(gk −
bk) + (I −UU⊤)x∗

k, using (3),

∥x∗
k − xk∥ ≤ ∥gk − bk∥+ ∥(I −UU⊤)U∗b∗k∥ ≤ 1.4δt∥b∗k∥.

∥U∗⊤Ubk−b∗k∥ = ∥U∗U∗⊤Ubk−U∗b∗k∥ = ∥Ubk−(I−
U∗U∗⊤)Ubk−U∗b∗k∥ = ∥xk− (I−U∗U∗⊤)Ubk−x∗

k∥ ≤
∥xk − x∗

k∥+ ∥(I −U∗U∗⊤)Ubk∥ ≤ 2.4δt∥b∗k∥
Bounding ∥G − B∥F and ∥X∗ − X∥F : Since∑
k ∥Mb∗k∥2 = ∥MB∗∥2F ≤ ∥M∥2F ∥B∗∥2 = ∥M∥2Fσ∗

max
2,

we can use the first bound from (3) to conclude that

∥G−B∥2F =
∑
k

∥gk − bk∥2

≤ 0.42
∑
k

∥(I −UU⊤)U∗b∗k∥2

= 0.42∥(I −UU⊤)U∗B∗∥2F ≤ 0.42δ2t σ
∗
max

2

and, similarly,

∥X∗ −X∥2F ≤
∑
k

∥gk − bk∥2 +
∑
k

∥(I −UU⊤)U∗b∗k∥2

≤ (0.42 + 12)δ2t σ
∗
max

2

Incoherence of bk’s: Using the bound on ∥bk − gk∥, and
using ∥gk∥ ≤ ∥b∗k∥ and the right incoherence assumption,

∥bk∥ = ∥(bk − gk + gk)∥ ≤ (1 + 0.4δt)∥b∗k∥ ≤ 1.04σ∗
max

√
r/q.

Lower and Upper Bounds on σi(B)): Using the bound on
∥G−B∥F and using SD(U ,U∗) ≤ δt < c/κ,

σmin(B) ≥ σmin(G)− ∥G−B∥
≥ σmin(U

⊤U∗)σmin(B
∗)− ∥G−B∥F

≥
√
1− ∥U∗⊥⊤U∥2σ∗

min − 0.4δtσ
∗
max

≥
√

1− δ2t σ
∗
min − 0.4δtσ

∗
max ≥ 0.9σ∗

min

since we assumed δt ≤ δ0 < 0.1/κ. Similarly,

∥B∥ = σmax(B) ≤ σmax(U
⊤U∗)σmax(B

∗) + ∥G−B∥F
≤ σ∗

max + 0.4δtσ
∗
max ≤ 1.1σ∗

max
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E. Proof of GD iterations’ lemmas: Proof of Lemma 3.3, first
part

We bound ∥gk − bk∥ here. Recall that gk = U⊤x∗
k. Since

yk = Akx
∗
k = AkUU⊤x∗

k +Ak(I −UU⊤)x∗
k, therefore

bk =
(
U⊤Ak

⊤AkU
)−1

(U⊤Ak
⊤)AkUU⊤x∗

k

+
(
U⊤Ak

⊤AkU
)−1

(U⊤Ak
⊤)Ak(I −UU⊤)x∗

k,

=
(
U⊤Ak

⊤AkU
)−1 (

U⊤Ak
⊤AkU

)
U⊤x∗

k

+
(
U⊤Ak

⊤AkU
)−1

(U⊤Ak
⊤)Ak(I −UU⊤)x∗

k,

= gk +
(
U⊤Ak

⊤AkU
)−1

(U⊤Ak
⊤)Ak(I −UU⊤)x∗

k.

Thus,

∥bk − gk∥ ≤ ∥
(
U⊤Ak

⊤AkU
)−1 ∥

× ∥U⊤Ak
⊤Ak(I −UU⊤)x∗

k∥. (19)

Using standard results from [26], one can show the following:
1) W.p. ≥ 1 − q exp (r − cm), for all k ∈ [q],

minw∈Sr

∑
i

∣∣aki
⊤Uw

∣∣2 ≥ 0.7m and so

∥
(
U⊤Ak

⊤AkU
)−1 ∥ = 1

σmin (U⊤Ak
⊤AkU)

=
1

minw∈Sr

∑
i⟨U⊤aki,w⟩2

≤ 1

0.7m

2) W.p. at least 1− q exp(r − cm), for all k ∈ [q],

∥U⊤Ak
⊤Ak(I−UU⊤)x∗

k∥ ≤ 0.15m∥(I−UU⊤)x∗
k∥

Combining the above two bounds and (19), w.p. at least 1−
2 exp(log q + r − cm), for all k ∈ [q],

∥gk − bk∥ ≤ 0.4∥
(
In −UU⊤)U∗b∗k∥.

This completes the proof. We explain next how to get the above
two bounds.

The first bound above follows by a restatement of The-
orem 4.6.1 of [26]. Or, it follows more directly by using
E[
∑

i

∣∣aki
⊤Uw

∣∣2] = m, applying the sub-exponential Bern-
stein inequality [29, Theorem 2.8.1] to bound the deviation from
this mean, and then applying Proposition 4.9 with n ≡ 1, r ≡ r
(epsilon net argument).

The second bound is obtained as follows. Notice that

∥U⊤Ak
⊤Ak(I −UU⊤)x∗

k∥
= max

w∈Sr

w⊤U⊤Ak
⊤Ak(I −UU⊤)x∗

k

= max
w∈Sr

∑
i

(aki
⊤Uw)(aki

⊤(I −UU⊤)x∗
k)

Clearly E
[
U⊤Ak

⊤Ak(I −UU⊤)x∗
k

]
= U⊤(I −

UU⊤)x∗
k = 0. Moreover, the summands are products

of sub-Gaussian r.v.s and are thus sub-exponential. Also,
the different summands are mutually independent and
zero mean. Applying sub-exponential Bernstein with
t = ϵ0m∥(I −UU⊤)x∗

k∥ for a fixed w ∈ Sr,

|
∑
i

(aki
⊤Uw)(aki

⊤(I−UU⊤)x∗
k)| ≤ ϵ0m∥(I−UU⊤)x∗

k∥

w.p. at least 1− exp(−cϵ20m). Setting ϵ0 = 0.1, this implies
that the above is bounded by 0.1m∥(I −UU⊤)x∗

k∥ w.p. at
least 1−exp(−cm). By Proposition 4.8 with n ≡ 1, r ≡ r, the
above is bounded by 0.12m∥(I −UU⊤)x∗

k∥ for all w ∈ Sr
w.p. at least 1− exp(r − cm). Using a union bound over all
q columns, the bound holds for all q columns w.p. at least
1− q exp(r − cm).

F. Proof of Initialization lemmas/facts: Proof of Lemma 3.6

To see why (4) holds, it suffices to show that
E[(X0)k|α] = x∗

kβk(α) for each k. The easiest way to
see this is to express x∗

k = ∥x∗
k∥Qke1 where Qk is an

n × n unitary matrix with first column x∗
k/∥x∗

k∥; and to
use the fact that ãki := Q⊤

k aki has the same distribution
as aki, both are N (0, In). Using QkQ

⊤
k = I , (X0)k =

(1/m)
∑

i QkQ
⊤
k akia

⊤
ki∥x∗

k∥Qke11∥x∗
k∥|a

⊤
kiQke1|≤

√
α =

(1/m)
∑

i Qk∥x∗
k∥ãkiãki(1)1|ãki(1)|≤

√
α/∥x∗

k|. Thus
E[((X0)k] = (1/m)mQk∥x∗

k∥e1E[ζ21|ζ|<
√
α/∥x∗

k|]. This
follows because E[aa(1)1|a(1)|<β = e1E[a(1)21|a(1)|<β ].

Recall that C̃ = 9κ2µ2 and c̃ = c/C̃ for a c < 1. Recall
also that X∗ SVD

= U∗Σ∗V ∗ and E[X0|α]
SVD
= U∗Σ̌∗V̌ . Thus,

using (4), Σ̌∗ = Σ∗V ∗DV̌ ⊤. Hence,

σr(E[X0|α]) = σmin(Σ̌∗)

= σmin(Σ
∗V ∗DV̌ ⊤)

≥ σmin(Σ
∗)σmin(V

∗)σmin(D)σmin(V̌
⊤)

= σ∗
min · 1 · (min

k
βk(α)) · 1

Also, σr+1(E[X0]) = 0 since it is a rank r matrix. Thus,
using Wedin’s sinΘ theorem for the Frobenius norm subspace
distance SD [27], [28][Theorem 2.3.1, second row] (specified
in Theorem 4.1 above) applied with M ≡X0, M∗ ≡ E[X0]
we get (5).

G. Proof of Initialization lemmas and facts: Proof of Lemma
3.8

Proof of first part of Lemma 3.8: The proof involves an
application of the sub-Gaussian Hoeffding inequality, Theorem
2.6.2 of [26], followed by an epsilon-net argument. The
application of sub-Gaussian Hoeffding uses conditioning on α

for α ∈ E . For α ∈ E , α ≤
√

C̃(1 + ϵ1)∥X∗∥F /
√
q and this

helps get a simple probability bound. Since α is independent
of all aki,yki’s used in defining X0, the conditioning does not
change anything else in our proof. For example, the different
summands are mutually independent even conditioned on it.

We have,

∥X0 − E[X0|α]∥ = max
z∈Sn,w∈Sq

⟨X0 − E[X0|α], zw⊤⟩.

For a fixed z ∈ Sn,w ∈ Sq , we have

⟨X0 − E[X0|α], zw⊤⟩

=
1

m

∑
ki

w(k)yki(aki
⊤z)1{|yki|2≤α}

− E
[
w(k)yki(aki

⊤z)1{|yki|2≤α}
]
.
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The summands are mutually independent, zero mean sub-
Gaussian r.v.s with sub-Gaussian norm Kki ≤ C|w(k)|

√
α/m.

For α ∈ E , α ≤
√
C̃(1 + ϵ1)∥X∗∥F /m

√
q. Let t =

ϵ1∥X∗∥F . Then, for any α ∈ E ,

t2∑
ki K

2
ki

≥ ϵ21∥X∗∥2F∑
ki C̃(1 + ϵ1)w(k)2∥X∗∥2F /m2q

≥ ϵ21mq

Cµ2κ2

since
∑

k w(k)2 = ∥w∥2 = 1. Thus, for a fixed z ∈ Sn,w ∈
Sq , by sub-Gaussian Hoeffding, we conclude that, conditioned
on α, for any α ∈ E , w.p. at least 1− exp

[
−cϵ21mq/µ2κ2

]
,

⟨X0 − E[X0|α], zw⊤⟩ ≤ Cϵ1∥X∗∥F .

The rest of the proof follows by a standard epsilon net argument
summarized in Proposition 4.7. Applying it, conditioned on α,
for any α ∈ E , w.p. at least 1− exp

[
(n+ q)− cϵ21mq/µ2κ2

]
,

maxz∈Sn,w∈Sq
⟨X0 − E[X0|α], zw⊤⟩ ≤ 1.4Cϵ1∥X∗∥F .

Proof of second part of Lemma 3.8: We have

∥ (X0 − E[X0|α])⊤U∗∥F = max
W∈Sqr

⟨W , (X0 − E[X0|α])⊤U∗⟩

For a fixed W ∈ Sqr,

⟨W , (X0 − E[X0|α])⊤U∗⟩
= trace

(
W⊤ (X0 − E[X0|α])⊤U∗)

=
1

m

∑
ki

(
yki(aki

⊤U∗wk)1{|yki|2≤α} − E[.]
)

Conditioned on α, for an α ∈ E , the summands are independent
zero mean sub-Gaussian r.v.s with subGaussian norm Kki ≤√
α∥wk∥/m ≤

√
C̃(1 + ϵ1)∥X∗∥F ∥wk∥/m

√
q. Thus,∑

ki

K2
ki ≤ mC̃(1 + ϵ1)∥W ∥2F ∥X∗∥2F /m2q = C̃∥X∗∥2F /mq

Applying the sub-Gaussian Hoeffding inequality Theorem 2.6.2
of [26], for a fixed W ∈ Sqr, conditioned on α, for an α ∈ E ,
w.p. 1− exp

[
−ϵ21mq/Cµ2κ2

]
,

trace
(
W⊤ (X0 − E[X0|α])⊤U∗) ≤ ϵ1∥X∗∥F .

The rest of the proof follows by a standard
epsilon net argument summarized in Proposition 4.8.
Applying Proposition 4.8, conditioned on α, for an
α ∈ E , w.p. at least 1 − exp

[
qr − cϵ21mq/µ2κ2

]
,

maxW∈Sqr trace
(
W⊤ (X0 − E[X0|α])⊤U∗) <

1.2ϵ1∥X∗∥F .
Proof of third part of Lemma 3.8: We have

∥ (X0 − E[X0|α]) V̌ ⊤∥F = max
W∈Snr

⟨(X0 − E[X0|α]) V̌ ⊤, W ⟩.

For a fixed W ∈ Snr we have,

⟨(X0 − E[X0|α]) V̌ ⊤, W ⟩

=
1

m

∑
ki

(
yki(aki

⊤Wv̌k)1{|yki|2≤α} − E[.]
)

where E[.] is the expected value of the first term. Conditioned
on α, for an α ∈ E , the summands are independent, zero
mean, sub-Gaussian r.v.s with subGaussian norm Kki ≤
C
√
α∥Wv̌k∥ ≤ C

√
C̃(1 + ϵ1)∥X∗∥F ∥Wv̌k∥/m

√
q. Thus,

by applying the sub-Gaussian Hoeffding inequality Theorem
2.6.2 of [26], with t = ϵ1∥X∗∥F , and using ∥WV̌ ∥F = 1
(holds since V̌ contains orthormal rows which are right singular
vectors of E[X0|α]), conditioned on α, for an α ∈ E , we will
get that,

t2∑
ki K

2
ki

≥ m2ϵ21∥X∗∥2F∑
ki C̃(1 + ϵ1)∥X∗∥2F ∥Wv̌k∥2/q

=
mqϵ21
Cµ2κ2

,

w.p. 1 − exp
[
−cϵ21mq/(µ2κ2)

]
. Here we used the fact that

V̌ V̌ ⊤ = I and thus ∥WV̌ ∥2F = 1.

⟨(X0 − E[X0|α]) V̌ ⊤, W ⟩ ≤ Cϵ1∥X∗∥F .

Applying Proposition 4.8, conditioned on α, for an
α ∈ E , w.p. at least 1 − exp

[
nr − cϵ21mq/(µ2κ2)

]
,

maxW∈Snr ⟨(X0 − E[X0|α]) V̌ ⊤, W ⟩ ≤ 1.2Cϵ1∥X∗∥F .

H. Proof of Initialization lemmas and facts: Proof of Facts

Proof of Fact 3.7: Apply sub-exponential Bernstein.

Proof of Fact 3.9: Let γk =

√
C̃(1−ϵ1)∥X∗∥F√

q∥x∗
k∥

. Since

C̃ = 9µ2κ2 and ∥x∗
k∥2 ≤ µ2κ2∥X∗∥2F /q (Assumption 1.1)

thus
γk ≥ 3.

Now,

E
[
ζ21{|ζ|≤γk}

]
=1− E

[
ζ21{|ζ|≥γk}

]
≥1− 2√

2π

∫ ∞

3

z2 exp(−z2/2)dz

≥1− 2e−1/2

√
π

∫ ∞

3

z exp(−z2/4)dz

= 1− 2e−11/4

√
π
≥ 0.92.

The first inequality used γk ≥ 3. The second used the fact that
z exp(−z2/4) ≤

√
2e for all z ∈ ℜ.

In all the proofs above, notice that the only thing we used
about V̌ is the fact that its rows contain singular vectors and
thus V̌ V̌ ⊤ = I and so σr(V̌ ) = σ1(V̌ ) = 1. We never
required incoherence for it

V. EXTENSION TO LOW RANK PHASE RETRIEVAL (LRPR)

In LRPR, recall that, we measure y(mag)k
= |Akx

∗
k|. This

problem commonly occurs in dynamic phaseless imaging
applications such as Fourier ptychography. Because of the
magnitude-only measurements, we can recover each column
only up to a global phase uncertainty. We use dist(x∗,x) :=
minθ∈[−π,π] ∥x∗ − e−jθx∥ to quantify this phase invariant
distance [30], [21]. Also, for a complex number, z, we use z̄
to denote its conjugate and we use phase(z) := z/|z|.

A. AltGD-Min-LRPR algorithm

With three simple changes that we explain next, the AltGD-
Min approach also solves LRPR and provides the fastest exist-
ing solution for it. First, observe that because of the magnitude-
only measurements, we cannot use X0 with yki replaced by
y(mag)ki

for initialization. The reason is E[akiy(mag)ki
] = 0
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Algorithm 2 The AltGD-Min-LRPR algorithm.

1: Input: y(mag)k
,Ak, k ∈ [q]

2: Parameters: GD step size, η; Number of iterations, T
3: Sample-split: Partition the measurements and measure-

ment matrices into 2T + 1 equal-sized disjoint sets: one
set for initialization and 2T sets for the iterations. Denote
these by y(mag)k

(τ),A
(τ)
k , τ = 0, 1, . . . 2T .

4: Initialization:
5: Compute U0 as the top r singular vectors of YU :=

1
mq

∑
ki(y(mag)ki

)2akia
⊤
ki1{(y(mag)ki

)2≤C̃ 1
mq

∑
ki(y(mag)ki

)2}.

with y(mag)ki
≡ y(mag)ki

(0),aki ≡ a
(0)
ki .

6: GDmin Iterations:
7: for t = 1 to T do
8: Let U ← Ut−1.
9: Update bk,xk: For each k ∈ [q], set (bk)t ←

RWF(y(mag)k
(t), (U⊤A

(t)
k ), TRWF,t). Set (xk)t ←

U(bk)t
10: Estimate gradient w.r.t. U : With y(mag)ki

≡
y(mag)ki

(T+t),aki ≡ a
(T+t)
ki ,

• compute ŷki := y(mag)ki
ĉki with ĉki =

phase(aki
⊤xk) and

• compute ĜradU =
∑

ki(ŷki − aki
⊤xk)t)aki(bk)t

⊤

11: Set Û+ ← U − (η/m)ĜradU

12: Orthornormalize to get new U : Compute Û+ QR
=

U+R+. Set Ut ← U+.
13: end for

and so E[akiy(mag)ki
1y(mag)ki

≤
√
α] = 0 too. In fact, because

of this, it is not even possible to define a different matrix
X whose expected value can be shown to be close to X∗.
Instead, we have to use the initialization approach of [5]. This
is given in line 5 of Algorithm 2. The matrix YU is such that
its expected value is close to X∗X∗⊤ + cI . This fact is used
to argue that its top r singular vectors span a subspace that is
close to that spanned by columns of U∗.

Next, consider the GDmin iterations. We use the follow-
ing idea to deal with the magnitude-only measurements:
y(mag)ki

:= |yki|. Let cki := phase(aki
⊤x∗

k). Then, clearly,

yki = ckiy(mag)ki

and y(mag)ki
= c̄kiyki. We do not observe cki, but we can

estimate it using xk which is an estimate of x∗
k. Using the

estimated phase, we can get an estimate ŷki of yki. We replace
∇Uf(U ,B) by its estimate which uses ŷki = y(mag)ki

ĉki,
with ĉki = phase(aki

⊤xk), to replace yki. See line 10 of
Algorithm 2.

Lastly, because of the magnitude-only measurements, the
update step for updating bks is no longer an LS problem. We
now need to solve an r-dimensional standard PR problem:
minb ∥y(mag)k

− |AkUb|∥2. This can be solved using any of
the order-optimal algorithms for standard PR, e.g., Truncated
Wirtinger Flow (TWF) [20] or Reshaped WF (RWF) [21]. For
concreteness, we assume that RWF is used. We should point
out here that we only need to run TRWF,t iterations of RWF at
outer loop iteration t, with TRWF,t set below in our theorem

(we set this to ensure that the error level of this step is of order
δt). The entire algorithm, AltGD-Min-LRPR, is summarized
in Algorithm 2.

B. Main Result

We can prove the following result with simple changes to
the proof of Theorem 2.1.

Theorem 5.1. Consider Algorithm 2. Set η = c/σ∗
max

2, C̃ =
9κ2µ2, T = Cκ2 log(1/ϵ), and TRWF,t = C(t + c log r).
Assume that Assumption 1.1 holds. If

mq ≥ Cκ6µ2(n+ q)r2(r + log(1/ϵ) log κ)

and m ≥ Cmax(log q, log n) log(1/ϵ), then, w.p. 1 − n−10,
SD(U∗,UT ) ≤ ϵ, dist((xk)T ,x

∗
k) ≤ ϵ∥x∗

k∥ for all k ∈ [q],
and

∑
k dist

2((xk)T ,x
∗
k) ≤ ϵ2σ∗

max
2.

We prove this result in Sec. V-C. Notice the log(1/ϵ) in the
sample complexity of Theorem 2.1 is now replaced by (r +
log(1/ϵ)). The reason is because of the different initialization
approach which needs nr3 samples instead of nr2. This is
needed because PR is a more difficult problem: we cannot
define a matrix X0 for it for which E[X0] is close to X∗.

Observe that AltGD-Min-LRPR has the same sample com-
plexity as that for the AltMin solution from [6]. But its time
complexity is better by a factor of log(1/ϵ) making it the
fastest solution for LRPR. Also, we should mention here that,
for solutions to the two related problems – sparse PR (phaseless
but global measurements) and LRMC (linear but non-global
measurements) – that have been extensively studied for nearly
a decade, the best sample complexity guarantees for iterative
(and hence fast) algorithms are sub-optimal. The best sparse PR
guarantee [31] requires m to be of order s2 for the initialization
step. Here s is the sparsity level. LRPR has both phaseless and
non-global measurements. This is why its initialization step
needs two extra factors of r compared to the optimal. Once
initialized close enough to the true solution, it is well known
that a PR problem behaves like a linear one. This is true for
AltGD-Min-LRPR too.

Consider a comparison with use of a standard PR approach
to recover each column of X∗ individually. If TWF [20] or
RWF [21] were used for this, this would require m ≳ n. In
comparison, ignoring log factors, our solution for LRPR needs
m ≳ (n/q)r3. Thus, the use of altGD-min is a better idea
when the rank, r, of the matrix X∗ is small enough so that
q ≳ r3.

C. Proof of Theorem 5.1

For the initialization, we use the bound from [5].

Lemma 5.2 ([5]). Let SD2(U0,U
∗) = ∥(I − U∗U∗⊤)U0∥.

Pick a δinit < 0.1. Then, w.p. at least
1− 2 exp

(
n(log 17)− c

δ2initmq
κ4r2

)
− 2 exp

(
−c δ

2
initmq
κ4µ2r2

)
,

SD2(U0,U
∗) ≤ δinit and so SD(U0,U

∗) ≤
√
rδinit.

For the iterations, without loss of generality, as also done
in past works on PR, e.g., [30], [20], [21], [6], to make things
simpler, we assume that, for each k, x∗

k is replaced by z̄x∗
k
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where z = phase(⟨x∗
k,xk⟩). With this, dist(x∗

k,xk) = ∥x∗
k −

xk∥.
We modify Lemma 3.4 using the following idea. Let U = Ut

and B = Bt. For LRPR, the GD step uses an approximate
gradient w.r.t. the old cost function f(U ,B). Let

Err := ĜradU−GradU.

Here ĜradU =
∑

ki(ŷki − aki
⊤xk))akibk

⊤ and GradU =
∇Uf(U ,B) =

∑
ki(yki − aki

⊤xk))akibk
⊤ is the same as

earlier. Thus,

Err =
∑
ki

(ŷki − yki)akibk
⊤

=
∑
ki

(ĉki − cki)|a⊤
kix

∗
k|akibk

⊤

=
∑
ki

(ĉkic̄ki − 1)(a⊤
kix

∗
k)akibk

⊤

Proceeding as in the proof of Lemma 3.4, and using ∥(I −
U∗U∗⊤)Err∥F ≤ ∥Err∥F and ∥Err∥ ≤ ∥Err∥F , we can
conclude the following

SD(U∗,U+) ≤
∥(I − (η/m)Hess∥ · SD(U∗,U) + (η/m)∥Term2∥F + (η/m)∥Err∥F

1− (η/m)∥GradU∥ − (η/m)∥Err∥F

where the expressions for GradU,Term2,Hess are the same
as before with one change: bk is now obtained by solving a
noisy r-dimensional PR problem (instead of a LS problem)
using RWF [21]. Thus, to complete the proof, (i) we need to
bound

∥Err∥F = max
W∈Snr

∑
ki

(ĉkic̄ki − 1)(a⊤
kix

∗
k)(a

⊤
kiWbk)

and (ii) we need bounds on the three other terms that were
also bounded earlier for the linear case.

The term ∥Err∥F , is bounded in Lemma 4 of [6] . We repeat
the lemma below.

Lemma 5.3. Assume that SD(Ut,U
∗) ≤ δt with δt <

c/κ2. Then, w.p. at least 1 − 2 exp
(
nr log(17)− c

mqϵ22
µ2κr

)
−

exp(log q + r − cm),

∥Err∥F ≤ Cm(ϵ2 +
√
δt)δtσ

∗
max

2

Consider the other three terms: GradU,Term2,Hess. These
were bounded in Lemma 3.5 for the linear case. The statement
and proof of this lemma remain the same as earlier because
of the following reason. Its proof uses the bounds on bk, xk

from Lemma 3.3. The statement of this lemma also remains
the same with one change: we replace ∥x∗−x∥ by dist(x∗,x)
and ∥X∗ −X∥2F by

∑q
k=1 dist

2(x∗
k,xk), and the same for

b∗k, gk. The first part of Lemma 3.3 now follows by the first
part of [6, Lemma 3.3]. All the subparts of the second part of
Lemma 3.3 follow exactly as given in its proof in Sec. IV-D.

VI. LIMITATIONS OF OUR RESULTS

Our results have three limitations: (i) the algorithm that is
analyzed needs sample-splitting, even though, in numerical
experiments this is not needed; (ii) our bound holds w.h.p. for
a single matrix X∗ satisfying Assumption 1.1 (and not for
all such matrices); and (iii) for obtaining exactly zero error,
we need an infinite number of samples. We explain here the
reasons why we are unable to address these issues. We should
mention here that, since all computers are finite precision, (iii)
is entirely a theoretical curiosity. Also, many other results in
the LR recovery literature, e.g., [2], [14], [15], also have all
these limitations.

A. Need for sample-splitting

In Algorithm 1, sample-splitting (line 3) helps ensure that
the measurement matrices in each iteration for updating
each of U and B are independent of all previous iterates:
we split our sample set into 2T + 1 subsets, we use one
subset for initialization of U and one subset each for T
iterations of updating B and updating U . This helps prove
the desired error decay bound by applying the sub-exponential
Bernstein inequality [26] which requires the summands to be
mutually independent. This becomes true in our case because,
conditioned on past measurement matrices, the current set of
aki’s are independent of the last updated values of U ,B;
and the akis for different (i, k) are mutually independent by
definition. Thus, under the conditioning, the summands are
mutually independent. Since we prove convergence in order
log(1/ϵ) iterations, this only adds a multiplicative factor of
log(1/ϵ) in the sample complexity. Sample-splitting and the
above overall idea is a standard approach used in many older
works; in fact it is assumed for most of the LRMC guarantees
for solutions that do not solve a convex relaxation (are iterative
algorithms) [2], [14], [15]. An exception is [16].

There are a few commonly used approaches to avoid sample
splitting. (1) One is using the leave-one-out strategy as done in
[19]. But this means that the sample complexity dependence on
r worsens: the LRMC sample complexity with this approach is
(n+q)r3 times log factors. Also, it is not clear how to develop
this approach for alternating U ,B updates. (2) The second
is to try to prove error decay for all matrices that are close
enough to the true X∗ and that satisfy the other assumptions
of the guarantee. There are at least two different approaches to
doing this. (2a) The first, which was used in [16], works for
LRMC since its measurements are bounded and symmetric: the
authors are able to utilize i.i.d. Bernoulli sampling and left and
right singular vectors’ incoherence to prove key probabilistic
bounds for all matrices of the form UV with U ,V both
being incoherent. This does not work in our case because our
measurements are asymmetric and unbounded (which means
for example that yki times its estimate is heavier-tailed than
yki).

(2b) An alternative approach is the following overall idea,
which has been successfully used for analyzing standard PR
algorithms, e.g., see [20], [21], but does not always work for
other problems. In our setting, this means the following: At
iteration t+ 1, suppose that the previous estimate Ut satisfies
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SD(Ut,U
∗) ≤ δt. We need to try to show that, for all U

that are a subspace distance δt away from the true subspace,
the next iterate (which is a function of U and of the current
Ak,yk for all k) is a distance cδt away with a c < 1. To be
precise, for all U ∈ T := {U : U⊤U = I and SD(U ,U∗) ≤
δt}, we need U+(U) = orth(U − η∇Uf(U ,B)) to satisfy
SD(U+,U∗) ≤ cδt for a c < 1. Here orth(M) is a matrix
with orthonormal columns spanning the same subspace as those
of M . Also recall that the columns of B are bk := (AkU)†yk

for all k ∈ [q]. One can show this for all U ∈ T by covering
T by a net containing a finite number of points that are such
that any point in T is with a subspace distance 0.25δt of some
point in the net, and first proving that this bound holds for
all U in the net. The first step for proving such a bound is
to bound the error in the estimates bk for all U in this net.
Because of the decoupled column-wise recovery of the bk’s,
for one U in this net, the bound on ∥bk(U)−U⊤x∗

k∥ holds
w.p. ≥ 1− q exp(r− cm). This is proved in Lemma 3.3. If we
want this bound to hold for all U ’s in the net covering T , we
will need a union bound over all points in the net. The smallest
sized net to cover T with accuracy ϵnet = 0.25δt has size
upper bounded by Cnr [26]. With using this, the probability
lower bound becomes 1− exp(nr + log q + r − cm). For this
to even just be non-negative, we need m > Cnr which is too
large and makes our guarantee useless.

B. Why we cannot prove our result for all X∗

The inability to obtain a useful union bound over a net of
size Cnr explained above is also why we cannot do this.

C. Why sample complexity depends on the desired final
accuracy ϵ

Observe from our result that the number of samples required
to achieve a certain accuracy ϵ grows as log(1/ϵ). This means
that, for the algorithm to achieve zero error, we need an infinite
number of samples. We should mention that this problem is not
unique to our result. It is often seen for results that use sample-
splitting, e.g., [2], [15]. An exception is [14] for LRMC, where
the following basic idea is used: one tries to show that after
enough iterations, e.g., when the recovery error is ϵ0 = 1/n
or smaller, one can start reusing the same samples and still
prove error decay. This is also the idea used in [19]. Briefly,
the reason we are unable to circumvent this problem using a
similar idea to that of [14] is that our algorithm is not a regular
GD or projected GD method.

To use a similar idea in our setting, we would need to
proceed as follows. We use independent samples until the error
is below an ϵ0 that is small enough. Pick ϵ0 = 1/(κ2n2). This
happens after T (ϵ0) = Cκ2 log(n) log(κ) iterations. Consider
t = T +1. At this time, δt = ϵ0 = 1/(κ2n2). Thus, by Lemma
3.3, ∥bk−U⊤x∗

k∥ ≲ (1/(κ2n2))∥x∗
k∥ and all the other bounds

also hold with δt replaced by ϵ0. We try to show error decay
by applying Lemma 3.4. For this to work, we need to be
able to show all of the following without using independence
between U ,B and the Aks: (i) upper and lower bound the
eigenvalues of Hess =

∑
ki(aki ⊗ bk)(.)

⊤ as those proved
earlier, (ii) bound ∥∇Uf(U ,B)∥/m by c0σ

∗
min

2 for a small

constant c0 < 1 (in fact even in our main proof, such a bound
is sufficient since this term only appears in the denominator),
and (iii) bound ∥Term2∥F /m by (c2/κ

2)δtσ
∗
max

2 with a c2
sufficiently less than one.

As we explain next, (i) and (ii) can be obtained easily, but
(iii) cannot. We can obtain (i) by showing that Hess is close
to Hess∗ =

∑
ki(aki ⊗ (U⊤U∗b∗k))(.)

⊤; and Hess∗ can be
bounded almost exactly as done in our proof earlier since
Aks are independent of x∗

ks. The U in the expression for
Hess∗ does not matter because U⊤U∗ is an r × r rotation
matrix and one can take a maximum over all rotation matrices.
Using the loose bounds ∥aki∥ ≤ 5

√
n w.h.p., one can show

that ∥Hess∗ − Hess∥ ≤ mqmaxki[maxW∈Snr
|a⊤

kiWgk| ·
maxW∈Snr |a⊤

kiW (gk − bk)|] ≲ mq
√
nµ

√
r/qσ∗

max ·√
nϵ0µ

√
r/qσ∗

max ≤ mµ2(r/n)σ∗
min

2. Similarly, for (ii),∑
ki ∥akia

⊤
ki(x

∗
k − xk)b

⊤
k ∥ ≲ mq ·

√
n ·

√
n · ϵ0 ·

(µ2r/q)σ∗
max

2 = m(µ2r/n)σ∗
min

2. Using (µ2r/n) ≪ 1,
claims (i) and (ii) follow. However, proving (iii) seems to
be impossible without using the fact that E[Term2] = 0. But
this expected value is zero only when Aks are independent of
U ,B.

Possible ways to prove (iii). For bounding Term2 for times
t > T (ϵ0), we can try one of the following ideas. (1) Try to
use Cauchy-Schwarz in a way that the projection orthogonal
to U∗ is used. There does not seem to be a way to make this
work. (2) Try to use the leave-one-out strategy of [19] only
for t > T (ϵ0).

VII. NUMERICAL EXPERIMENTS

Our first experiment compares AltGD-Min with the mixed
norm minimization solution from [7] (mixed-norm-min) and
with the AltMin algorithm [4], [5], [6] modified for the
linear LRcCS problem (replace the PR step for updating
bk’s by a simple LS step). We implement this with using
two possible initializations: the initialization developed in
[4], [5], [6] for LRPR (AltMinLin-LRPRinit), and with the
initialization approach developed in this work (AltMinLin-
LRCSinit). For mixed norm min, we used the code down-
loaded from https://www.dropbox.com/sh/lywtzc0y9awpvgz/
AABbjuiuLWPy_8y7C3GQKo8pa?dl=0, which is provided
by the authors. For AltMin, we used the code from https:
//github.com/praneethmurthy/. We implemented AltGD-Min
with η = 0.4/∥X0∥2 and C̃ = 9. Also, we used one set of
measurements for all its iterations.

For chosen values of n, q, r and m, we simulated the
data as follows. We simulated U∗ by orthogonalizing an
n× r standard Gaussian matrix; and b∗ks were generated i.i.d.
from N (0, Ir). These were generated once. For each of 100
Monte Carlo runs, the measurement matrices Ak contained
i.i.d. standard Gaussian entries. We obtained yk = AkU

∗b∗k,
k ∈ [q]. For the LRPR experiment, we used y(mag)k

= |yk|
as the measurements. We plot the empirical average of
∥X−X∗∥F /∥X∗∥F at each iteration t on the y-axis (labeled
“Error-X” in the plots) and the time taken by the algorithm
until iteration t on the x-axis.

For our first experiment, shown in Fig. 1a, we used n =
600, q = 600, r = 4 and m = 80. In this case, mixed-norm-
min error decays to about 2-5% but does not reduce any further.

https://www.dropbox.com/sh/lywtzc0y9awpvgz/AABbjuiuLWPy_8y7C3GQKo8pa?dl=0
https://www.dropbox.com/sh/lywtzc0y9awpvgz/AABbjuiuLWPy_8y7C3GQKo8pa?dl=0
https://github.com/praneethmurthy/
https://github.com/praneethmurthy/
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(a) m = 80, n = q = 600, r = 4

(b) m = 50, n = q = 600, r = 4

(c) m = 30, n = q = 600, r = 4

(d) m = 90, n = 100, q = 120, r = 2

Fig. 1: Comparing the proposed algorithm with existing approaches
for solving LRcCS.

Fig. 2: Comparing the proposed algorithm with existing approach for
solving LRPR. We used n = 600, q = 1000, r = 4 and m = 250.

But, for our algorithm, AltGD-Min, and for both versions of
AltMin, the error decays to 10−15. Notice also that AltGD-Min
is much faster than all the other approaches. Fig. 1b reduced
m to m = 50. Here a similar trend is observed, except that
the error decays to only around 10−13 for AltGD-Min and

10−11 for the two AltMin approaches. Finally, for Fig. 1c, we
reduced m to m = 30. In this case, only AltGDmin and AltMin-
LRCSinit work, while mixed-norm-min and AltMin-LRPRinit
errors do not decrease at all. The reason is both these need a
higher sample complexity (see Table I). Finally, we also tried
an experiment with very large m: n = 100, q = 120, r = 2
and m = 0.9n = 90, see Fig. 1d. Even for such a large value
of m (compared to n), observe that the mixed-norm-min error
saturates at around 1-2%. The likely reason for this that, in
the guarantee for mixed-norm-min [7] (summarized for the
noiseless case in Proposition 2.3 given earlier), even for m = n,
the error is bounded by a multiplier (more than 1) times

√
r/q.

For the comparisons for the LRPR problem shown in Fig.
2, we need a much larger q and m since LRPR requires mq
to scale as nr3 both for initialization and for the GDmin
iterations and the multiplying constants are also much larger
for LRPR. We used n = 600, q = 1000, r = 4 and m = 250.
Notice that altGD-Min-LRPR is faster than AltMin-LRPR. We
implemented altGD-Min-LRPR with η = 0.9/∥X0∥2, C̃ = 9,
and TRWF,t = max(5+ t, 40) in the RWF code (code for [21],
downloaded from the specified site). Also, here again, we used
one set of measurements for all its iterations.

VIII. CONCLUSIONS

This work developed a sample-efficient and fast gradient
descent (GD) solution, called AltGD-Min, for provably re-
covering a low-rank (LR) matrix from mutually independent
column-wise linear projections. This problem, which we refer
to as “Low Rank column-wise Compressive Sensing (LRcCS)”,
frequently occurs in LR-based accelerated low rank dynamic
MRI and in federated sketching. If used in a federated setting,
AltGD-Min is also communication-efficient. The LRcCS prob-
lem has not received little attention in the theoretical literature
unlike the other well-studied LR recovery problems (matrix
completion, sensing, or multivariate regression).
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APPENDIX A
UNDERSTANDING WHY LRMC-STYLE GD APPROACHES

CANNOT BE EASILY ANALYZED FOR LRCCS

A. Gradient Descent

The iterates of a gradient descent (GD) algorithm converge
when the gradient approaches zero. Thus, in order to show
its convergence, one needs to be able to bound the norm of
the gradient and show that it goes to zero with iterations.
In order to show fast enough convergence (reach ϵ error in
order log(1/ϵ) iterations), one further needs to show that this
bound on the gradient norm decreases sufficiently with each
iteration. Consider projGD-X which was studied in [15] for
solving LRMC. ProjGD-X iterations involve computing X+ ←
Pr(X −∇X f̃(X)), here Pr(M) projects its argument onto
the space of rank-r matrices. To bound ∥∇X f̃(X)∥, we need
to bound |w⊤∇X f̃(X)z| for any unit norm vectors w, z.
We show the cost function f̃(X) and its gradient for both
LRMC and LRcCS in Table II. Observe that, for LRcCS,
w⊤∇X f̃(X)z is a sum of sub-exponential r.v.s with sub-
exponential norms bounded by Ke = maxk ∥w∥ · ∥x∗

k −xk∥ ·
|zk| ≤ maxk ∥x∗

k −xk∥. Thus, in order to get a small enough
bound on |w⊤∇X f̃(X)z| by applying the sub-exponential
Bernstein inequality [26], we need a small enough bound on
maxk ∥x∗

k − xk∥ (column-wise error bound). It is not clear
how to get this because the projection step introduces coupling
between the different columns of the estimated matrix X 2.

2Let H := X −X∗, H̃ := (X − η∇f(X))−X∗ = H − η∇f(X),
and H+ = X+−X∗ = Pr(X−∇f(X))−X∗ = Pr(X∗+H̃)−X∗.
To bound the LRMC projGD-X errors, one needs an entry-wise bound of the
form ∥H+∥max ≤ δt∥X∗∥max with δt decaying exponentially. We show
the expressions for H̃ in the table. For LRMC, notice that different summands
of H̃ are mutually independent and each depends on only one entry of H .
This fact is carefully exploited in [15, Lemma 1] and [14, Lemma 1]. By
borrowing ideas from the literature on spectral statistics of Erdos-Renyi graphs
[32], the authors are able to obtain expressions for higher powers of (H̃H̃⊤).
These expressions help them get the desired bound under the desired sample
complexity. For LRcCS, using the gradient expression, we need a bound on
maxk ∥h+

k ∥ in terms of ∥hk∥ in order to show its exponential decay. Since
the different entries of H̃ are not mutually independent and not bounded, the
LRMC proof approach cannot be borrowed.
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TABLE II: Understanding why LRMC style projected-GD on X does not work in our case.

LRMC Our Problem, LRcCS

f̃(X)

q∑
k=1

n∑
j=1

(yjk − δjkXjk)
2

q∑
k=1

m∑
i=1

(yki − a⊤
kixk)

2

δjk
iid∼ Bernoulli(p) aki

iid∼ N (0, In)

∇X f̃(X)

q∑
k=1

n∑
j=1

δjk(yjk − δjkXjk)eje
⊤
k

q∑
k=1

m∑
i=1

(yki − a⊤
kixk)akie

⊤
k

=

q∑
k=1

n∑
j=1

δjk(X
∗
jk −Xjk)eje

⊤
k =

q∑
k=1

m∑
i=1

a⊤
ki(x

∗
k − xk)akie

⊤
k

H̃ := H − η∇f(X)

q∑
k=1

n∑
j=1

(1−
δjk

p
)Hjkejek

⊤ 1

m

q∑
k=1

m∑
i=1

(I − akiaki
⊤)hkek

⊤

Moreover, even if we could somehow get such a bound, in the
best case, it would be proportional to δt maxk ∥x∗

k∥ with δt < 1
and decaying exponentially with t. Using Assumption 1.1, this
would then imply that Ke ≤ δt maxk ∥x∗

k∥ ≤ δtµ
√
r/qσ∗

max.
But, this is not small enough. We need it to be proportional to
δt(r/q) in order to be able to bound the gradient norm under
the desired sample complexity.

Consider altGDnormbal studied in [17], [16] for LRMC. In
this case again, the desired column-wise error bound cannot
be obtained because the update step for B involves GD w.r.t.
f(U ,B) + f2(U ,B). The gradient w.r.t f2 (norm-balancing
term) introduces coupling between the different columns of B,
and hence, also between columns of X = UB. Thus, once
again, it is not clear how to get a tight bound on maxk ∥x∗

k −
xk∥.

For AltGD-Min, because the min step for updating B is a
decoupled LS problem, it is possible to get the desired column-
wise error bound. Secondly, because we use GD w.r.t U , there
is an extra b⊤k term in the gradient summands. This makes the
gradient (and its deviation from its expected value), a sum of
nice-enough sub-exponential r.v.s as explained in Sec. III-B.

B. Initialization

The standard approach used for initializing iterative algo-
rithms for LRMC (as well as other linear LRR problems) is to
compute the top r left singular vectors of the matrix X0,full

that satisfies (X0,full)vec = A⊤(yall), where yall is the mq-
length vector of all measurements and A denotes the linear
mapping from (X∗)vec to yall. In case of LRMC and LRcCS,
this is computed is as given in Table III. It is not hard to see that,
in both cases, E[X0,full] = X∗. To show that this approach
works, one typically uses a sinΘ theorem, e.g., Davis-Kahan
or Wedin, to bound SD(U∗,U0) as a function of terms that
depend on H0 := X0,full−X∗. Thus a first requirement is to
bound ∥H0∥. For LRMC, this can be done easily since H0 is
a sum of the independent one-sparse random matrices shown
in the table with each matrix containing an i.i.d. Bernoulli r.v.
times X∗

jk (jk-th entry of X∗) as its nonzero entry. Using
the left and right singular vectors’ incoherence (assumed in all
LRMC guarantees), and X∗

jk = e⊤j X
∗ek, one can argue that,

for unit vectors w, z, each summand of |w⊤H0z| is of order
at most (1/p)σ∗

maxr/
√
nq. This bound, along with a bound on

the “variance parameter" needed for applying matrix Bernstein

[33],[26, Chap 5] helps show that ∥H0∥ ≤ cσ∗
max w.h.p.,

under the desired sample complexity bound. For LRcCS, the
summands of X0,full, and hence of H0, are sub-exponential
r.v.s. These can be bounded using the sub-exponential Bernstein
inequality [26, Chap 2]. This requires a bound on the maximum
sub-exponential norm of any summand. Denote this bound
by Ke. In order to show that ∥H0∥ ≤ cσ∗

max w.h.p, under
the desired sample complexity, we need Ke to be of order
(r/q) or smaller. However, for our summands, we can only
guarantee Ke ≤ (1/m)maxk ∥x∗

k∥ ≤ (1/m)µ
√
r/qσ∗

max.
This is not small enough, i.e., the summands are not nice-
enough subexponentials. It will require mq ≳ (n + q)r · √q
which is too large.

APPENDIX B
PROOF OF INITIALIZATION THEOREM 3.1 WITHOUT

SAMPLE-SPLITTING

Consider the initialization using X0 defined in (2). We we
want to bound the initialization error without sample-splitting.
This means that the threshold α is not independent of the
aki,yki used in the expression for X0 and thus, it is not clear
how to compute its expected value even if we condition on α.
However, the following slightly more complicated approach
can be used. Using Fact 3.7 and Assumption 1.1, it is possible
to show that X0 is close to a matrix, X+(ϵ1) given next for
which E[X+] is easily computed: Let

α+ := C̃(1 + ϵ1)
∥X∗∥2F

q

and define

X+(ϵ1) :=
1

m

∑
ki

akiykiek
⊤
1{y2

ki≤α+}. Then,

E[X+] = X∗D(ϵ1),

D := diagonal(βk(ϵ1)),

βk(ϵ1) := E

[
ζ21{

ζ2≤ α+

∥x∗
k
∥2

}
]

(20)

with ζ being a scalar standard Gaussian. Thus X+ is X0

with the threshold α replaced by α+ which is deterministic.
Consequently E[X+] has a similar form too and is obtained
as explained in the proof of Lemma 3.6 given in Sec. IV-F.

Next, recall that X∗ SVD
= U∗Σ∗V ∗ and C̃ = 9κ2µ2. Let

c̃ = c/C̃ for a c < 1. Clearly, the span of the top r singular
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TABLE III: Why the LRMC initialization approach cannot be directly borrowed?

LRMC Our Problem, LRcCS

X0,full =
∑
k

∑
j

δjk

p
yjkejek

⊤ 1

m

∑
k

∑
i

akiykiek
⊤

δjk
iid∼ Bernoulli(p) aki

iid∼ N (0, In)

H0 = X0,full −X∗
q∑

k=1

n∑
j=1

(1−
δjk

p
)X∗

jkejek
⊤ 1

m

q∑
k=1

m∑
i=1

(I − akiaki
⊤)x∗

kek
⊤

Each summand is nicely bounded by unbounded & sub-expo. norm∗∗ is
µ2σ∗

max(r/
√
nq) µσ∗

max

√
r/q (too large, need r/q)

Concen. ineq. Matrix Bernstein [33] Sub-expo Bernstein [26]
gives desired sample comp. does not give desired sample comp.

∗∗: “max sub-expo. norm": max sub-exponential norm of (aki
⊤w)(aki

⊤x∗
k)(e

⊤
k z) for any unit vectors w,z.

vectors of E[X+] = X∗D equals span(U∗) and it is rank r
matrix. Let,

E[X+] = X∗D
SVD
= U∗Σ̌∗V̌

be its r-SVD (here V̌ is an r×q matrix with its rows containing
the r right singular vectors). We thus have

σr(E[X+]) = σmin(Σ̌∗) = σmin(Σ
∗V ∗DV̌ ⊤)

≥ σmin(Σ
∗)σmin(V

∗)σmin(D)σmin(V̌
⊤)

= σ∗
min · 1 · (min

k
βk) · 1

Fact 3.9 given earlier shows that (mink βk) ≥ 0.9 and thus,

σr(E[X+]) ≥ 0.9σ∗
min

Also, σr+1(E[X+]) = 0 since it is a rank r matrix. Thus,
using Wedin’s sinΘ theorem for SD (summarized in Theorem
4.1) applied with M ≡X0, M∗ ≡ E[X+] gives

SD(U0,U
∗)

≤
√
2max

(
∥(X0 − E[X+])

⊤U∗∥F , ∥(X0 − E[X+])V̌
⊤∥F

)
0.9σ∗

min − ∥X0 − E[X+]∥
(21)

In the next three subsections, we prove a set of six lemmas
that help bound the three terms in the expression above. The
main new ideas over the proof given earlier in Sec III-E, are
in the proof of the first lemma, Lemma B.2 given below, and
in the proof of Claim B.1 that is used in this proof.

Claim B.1. Let x∗ ∈ ℜn, z ∈ ℜn be two deterministic vectors
and let α be a deterministic scalar. Let a ∼ N (0, In) be
a standard Gaussian vector and define y := a⊤x∗. For an
0 < ϵ < 1,

E
[
|y(a⊤z)|1{y2∈[1±ϵ]α}

]
≤ Cϵ∥z∥

√
α.

Combining Lemmas B.3 and B.2 and using Fact 3.7, and
setting ϵ1 = cδ0/

√
rκ, we conclude that, w.p. at least

1− 2 exp((n+ q)− c̃ϵ21mq)− exp(−c̃mqϵ21) ≥ 1− 2 exp((n+
q)− c̃mqδ20/rκ

2)− exp(−c̃mqδ20/rκ
2),

∥X0 − E[X+]∥ ≲ ϵ1∥X∗∥F ≲ cδ0σ
∗
min

By combining Lemmas B.4, B.5, B.6, and B.7 and using Fact
3.7, and setting ϵ1 = cδ0/

√
rκ, we conclude that, w.p. at least

1 − 2 exp(nr − c̃mqδ20/rκ
2) − 2 exp(qr − c̃mqδ20/rκ

2) −
exp(−c̃mqδ20/rκ

2),

max
(
∥(X0 − E[X+])

⊤U∗∥F , ∥(X0 − E[X+])V̌
⊤∥F

)
≲ cδ0σ

∗
min

Plugging these into (21) proves Theorem 3.1

A. Bounding the denominator term

By triangle inequality, ∥X0−E[X+]∥ ≤ ∥X+−E[X+]∥+
∥X0 −X+∥. The next two lemmas bound these two terms.
The lemmas assume the claim of Fact 3.7 holds, i.e., that
1

mq

∑
ki y

2
ki ∈ [1± ϵ1]C̃∥X∗∥2F /q where C̃ = 9µ2κ2.

Lemma B.2. Assume that 1
mq

∑
ki y

2
ki ∈ [1± ϵ1]C̃∥X∗∥2F /q

(claim of Fact 3.7 holds). Then, w.p. 1 − exp(C(n + q) −
ϵ21mq/µ2κ2),

∥X0 −X+∥ ≤ Cϵ1µκ∥X∗∥F .

Proof of Lemma B.2: We have

∥X+ −X0∥ = max
z∈Sn, w∈Sq

z⊤ (X+ −X0)w

= max
z∈Sn, w∈Sq

1

m

∑
ki

w(k)yki(aki
⊤z)

× 1{
C̃
mq

∑
ki y

2
ki≤y2

ki≤
C̃(1+ϵ1)

q ∥X∗∥2
F

}.
For the last expression above, we have used the assumption∑

ki y
2
ki/m ≤ C̃(1 + ϵ1)∥X∗∥2F . Consider the RHS for a

fixed unit norm z and w. The lower threshold of the indicator
function is itself a r.v.. To convert it into a deterministic bound,
we need the following sequence of bounding steps: To use
our assumption that

∑
ki y

2
ki/m ≥ (1− ϵ1)C̃∥X∗∥2F , we first

need to bound the summands by their absolute values. This is
done as follows:

|z⊤ (X+ −X0)w| ≤
1

m

∑
ki

∣∣w(k)yki(aki
⊤z)

∣∣
× 1{

C̃
mq

∑
ki y

2
ki≤|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

},
≤ 1

m

∑
ki

∣∣w(k)yki(aki
⊤z)

∣∣
× 1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

},
where in the last line we used our assumption that∑

ki y
2
ki/m ≥ (1 − ϵ1)C̃∥X∗∥2F . This final expression is
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a sum of mutually independent sub-Gaussian r.v.s with sub-

Gaussian norm Kki ≤ C|w(k)|
√

C̃(1 + ϵ1)∥X∗∥F /
√
q ≤√

C̃|w(k)|∥X∗∥F /
√
q. Thus, by applying the sub-Gaussian

Hoeffding inequality, Theorem 2.6.2 of [26],

Pr

{∣∣∣∑
ki

∣∣w(k)yki(aki
⊤z)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}

− E

[∑
ki

∣∣w(k)yki(aki
⊤z)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}
] ∣∣∣ ≥ t

}

≤ 2 exp

[
−c t2∑

ki K
2
ki

]
.

By setting t = ϵ1m∥X∗∥F ,

t2∑
ki K

2
ki

≥ m2qϵ21∥X∗∥2F∑
ki C̃∥X∗∥2F |w(k)|2

=
ϵ21mq

C̃
.

Since C̃ = 9µ2κ2, thus, w.p. 1 − exp(−cϵ21mq/µ2κ2), for a
fixed z and w,

z⊤ (X0 −X+)w ≤ ϵ1∥X∗∥F+E

[
1

m

∑
ki

∣∣w(k)yki(aki
⊤z)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}
]
.

By using Claim B.1 and |w(k)|∥z∥ = |w(k)| we have

E

[
1

m

∑
ki

∣∣yki(aki
⊤z)w(k)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}
]

≤
√

C̃(1 + ϵ1)ϵ1∥X∗∥F
∑
k

∣∣w(k)
∣∣/√q ≤ Cϵ1µκ∥X∗∥F ,

where in the last inequality we used Cauchy-Schwarz to show

that
∑

k

∣∣w(k)
∣∣/√q ≤ √∑

k

∣∣w(k)
∣∣2 ∑

k(1/q) = 1. Or this

also follows by ∥w∥1/
√
q ≤ ∥w∥ = 1. Also, we used

√
C̃ =

Cκµ.
Thus, w.p. 1 − exp(−cϵ21mq/µ2κ2), for a fixed z and w,

z⊤ (X0 −X+)w ≤ Cϵ1µκ∥X∗∥F .
By Proposition 4.8, maxz∈Sn, w∈Sq z⊤ (X0 −X+)w ≤

1.4Cϵ1µκ∥X∗∥F w.p. at least 1 − exp((n + q) log(17) −
cϵ21mq/µ2κ2).

Lemma B.3. Consider X+. Fix 1 < ϵ1 < 1. Then, w.p.
1− exp

[
C(n+ q)− cϵ21mq/µ2κ2

]
∥X+ − E[X+]∥ ≤ Cϵ1∥X∗∥F .

Proof of Lemma B.3: The proof involves an application of
the sub-Gaussian Hoeffding inequality followed by an epsilon-
net argument, both almost the same as those used in the proof
of Lemma B.2 given above. We have,

∥X+ − E[X+]∥ = max
z∈Sn,w∈Sq

⟨X+ − E[X+], zw⊤⟩.

For a fixed z ∈ Sn,w ∈ Sq , we have

⟨X+ − E[X+], zw⊤⟩

=
1

m

∑
ki

(
w(k)yki(aki

⊤z)1{
|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}

− E
[
w(k)yki(aki

⊤z)1{
|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}]) .

The summands are mutually independent, zero
mean sub-Gaussian r.v.s with norm Kki ≤
C|w(k)|

√
C̃(1 + ϵ1)∥X∗∥F /

√
q. We will again apply

the sub-Gaussian Hoeffding inequality Theorem 2.6.2 of [26].
Let t = ϵ1m∥X∗∥F . Then

t2∑
ki K

2
ki

≥ ϵ21m
2∥X∗∥2F∑

ki C̃(1 + ϵ1)∥X∗∥2F /q
≥ ϵ21mq

Cµ2κ2

Thus, for a fixed z ∈ Sn,w ∈ Sq , by sub-Gaussian Hoeffding,
we conclude that, w.p. at least 1− exp

[
−cϵ21mq/µ2κ2

]
,

⟨X+ − E[X+], zw⊤⟩ ≤ Cϵ1∥X∗∥F .

By Proposition 4.7, the above bound holds w.p. at least 1−
exp

[
(n+ q)− cϵ21mq/µ2κ2

]
.

B. Bounding the V̌ numerator term
We bound ∥(X0 − E[X+])V̌

⊤∥F in this section. By
triangle inequality. it is bounded by ∥ (X0 −X+) V̌

⊤∥F +
∥ (X+ − E[X+]) V̌

⊤∥F .

Lemma B.4. Assume that 1
m

∑
ki y

2
ki ∈ [1± ϵ1]∥X∗∥2F . Then,

w.p. 1− exp
[
nr − cϵ21mq/µ2κ2

]
,

∥ (X0 −X+) V̌
⊤∥F ≤ Cϵ1µκ∥X∗∥F .

Proof of Lemma B.4: The initial part of the proof is very
similar to the that of the proof of Lemma B.2. We have,
∥ (X0 −X+) V̌

⊤∥F = maxW∈Snr ⟨W , (X −X+) V̌
⊤⟩.

For a fixed W ∈ Snr,

⟨W , (X0 −X+) V̌
⊤⟩

=
1

m

∑
ki

yki(aki
⊤Wv̌k)1{

C̃
mq

∑
ki y

2
ki≤|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}
Proceeding as in the proof of Lemma B.2,
1

m

∑
ki

yki(aki
⊤Wv̌k)1{

C̃
mq

∑
ki y

2
ki≤|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}
≤ 1

m

∑
ki

∣∣yki(aki
⊤Wv̌k)

∣∣1{
C̃
mq

∑
ki y

2
ki≤|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

},
≤ 1

m

∑
ki

|yki||(aki
⊤Wv̌k)|1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

}.
The summands are mutually independent sub-Gaussian r.v.s

with norm Kki ≤ C
√
C̃(1 + ϵ1)∥Wv̌k∥∥X∗∥F /

√
q. Thus,

we can apply the sub-Gaussian Hoeffding inequality Theorem
2.6.2 of [26]. Set t = ϵ1m∥X∗∥F . Then we have

t2∑
ki K

2
ki

≥ ϵ21m
2∥X∗∥2F

(
∑

ki ∥Wv̌k∥2)C̃(1 + ϵ1)∥X∗∥2F /q
≥ ϵ21mq

Cµ2κ2
,

where we used the fact that V̌ V̌ ⊤ = I (V̌ ⊤ contains
right singular vectors of a matrix) and thus ∥WV̌ ∥F = 1.
Applying sub-Gaussian Hoeffding, we can conclude that, w.p.,
1− exp

[
−cϵ21mq/µ2κ2

]
1

m

∑
ki

∣∣yki(aki
⊤Wv̌k)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}
≤ ϵ1∥X∗∥F

+
1

m

∑
ki

E
[∣∣yki(aki

⊤Wv̌k)
∣∣1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

}] .
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We use Claim B.1 to bound the expectation term. Using this
lemma with α2 ≡ C̃(1 + ϵ1)∥X∗∥2F /q, z ≡Wv̌k

1

m

∑
ki

E
[∣∣yki(aki

⊤Wv̌k)
∣∣1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

}]
≤ 1

m

∑
ki

√
C̃(1 + ϵ1)ϵ1∥X∗∥F ∥Wv̌k∥/

√
q ≤ Cϵ1µκ∥X∗∥F .

where the last inequality used Cauchy-Schwarz on∑
k ∥Wv̌k∥/

√
q to conclude that

∑
k ∥Wv̌k∥(1/

√
q) ≤√∑

k ∥Wv̌k∥2
∑

k(1/q) =
√
∥WV̌ ∥2F · 1 = 1 since

∥WV̌ ∥F = 1.
By Proposition 4.8, the above bound holds for all W ∈ Snr,

w.p. at least 1− exp
[
nr log(1 + 2/ϵnet)− cϵ21mq/µ2κ2

]
.

Lemma B.5. Consider 0 < ϵ1 < 1. Then, w.p. 1 −
exp

[
nr − ϵ21mq/µ2κ2

]
∥ (X+ − E[X+]) V̌

⊤∥F ≤ Cϵ1∥X∗∥F .

Proof of Lemma B.5: The proof is quite similar to the
previous one. For a fixed W ∈ Snr we have,

⟨(X+ − E[X+]) V̌
⊤, W ⟩

=
1

m

∑
ki

(
yki(aki

⊤Wv̌k)1{
|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

} − E[.]
)

where E[.] is the expected value of the first term. The summands
are independent, zero mean, sub-Gaussian r.v.s with subGaus-

sian norm less than Kki ≤ C
√
C̃(1 + ϵ1)∥X∗∥F ∥Wbk∥/

√
q.

Thus, by applying the sub-Gaussian Hoeffding inequality Theo-
rem 2.6.2 of [26], with t = ϵ1m∥X∗∥F , and using ∥WV̌ ∥F =
1, we can conclude that, w.p. 1− exp

[
−ϵ21mq/(Cµ2κ2)

]
,

⟨(X+ − E[X+]) V̌
⊤, W ⟩ ≤ Cϵ1∥X∗∥F .

By Proposition 4.8, the above bound holds for all W ∈ Snr
w.p. 1− exp

[
nr − ϵ21mq/(Cµ2κ2)

]
.

C. Bounding the U* numerator term

We bound ∥(X0 − E[X+])
⊤U∗∥F here. By trian-

gle inequality, it is bounded by ∥ (X0 −X+)
⊤U∗∥F +

∥ (X+ − E[X+])
⊤U∗∥F .

Lemma B.6. Assume that 1
mq

∑
ki y

2
ki ∈ [1 ± ϵ1]∥X∗∥2F /q.

Then, w.p. 1− exp
[
qr − cϵ21mq/µ2κ2

]
∥ (X0 −X+)

⊤U∗∥F ≤ Cϵ1µκ∥X∗∥F .

Proof of Lemma B.6: The proof is similar to that of
Lemmas B.2 and B.4. We have, ∥ (X0 −X+)

⊤U∗∥F =
maxW∈Sqr

⟨W , (X −X+)
⊤U∗⟩. For a fixed W ∈ Sqr,

using the same approach as in Lemma B.2, and letting wk be
the k-th column of the r × q matrix W ,

⟨W , (X0 −X+)
⊤U∗⟩

≤ 1

m

∑
ki

∣∣yki(aki
⊤U∗wk)

∣∣1{
C̃
mq

∑
ki |yki|2≤|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

},
≤ 1

m

∑
ki

∣∣yki(aki
⊤U∗wk)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}.

The summands are now mutually independent sub-Gaussian

r.v.s with norm Kki ≤
√

C̃(1 + ϵ1)∥wk∥∥X∗∥F /
√
q. Thus,

we can apply the sub-Gaussian Hoeffding inequality Theorem
2.6.2 of [26], to conclude that, for a fixed W ∈ Sqr, w.p.
1− exp

[
−cϵ21mq/µ2κ2

]
,

1

m

∑
ki

∣∣yki(aki
⊤U∗wk)

∣∣1{
|yki|2∈[1±ϵ1]

C̃
q ∥X∗∥2

F

}

≤ ϵ1∥X∗∥F +
1

m

∑
k

E
[∣∣yki(aki

⊤U∗wk)
∣∣1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

}]
By Claim B.1, and using

∑
k ∥wk∥/

√
q ≤√∑

k ∥wk∥2
√∑

k 1/q = 1,

1

m

∑
k

E
[∣∣yki(aki

⊤U∗wk)
∣∣1{

|yki|2∈[1±ϵ1]
C̃
q ∥X∗∥2

F

}]
≤ 1

m

∑
ki

ϵ1∥wk∥
√
C̃(1 + ϵ1)/q∥X∗∥F ,

≤ Cϵ1µκ∥X∗∥F ,

By Proposition 4.8 (epsilon net argument), the bound holds
for all unit norm W w.p. 1− exp

[
qr − cϵ21mq/µ2κ2

]
.

Lemma B.7. Consider 0 < ϵ1 < 1. Then, w.p. 1 −
exp

[
qr − ϵ21/mqµ2κ2

]
∥ (X+ − E[X+])

⊤U∗∥F ≤ Cϵ1∥X∗∥F .

Proof of Lemma B.7: For fixed W ∈ Sqr,

trace
(
W⊤ (X+ − E[X+])

⊤U∗)
=

1

m

∑
ki

(
yki(aki

⊤U∗wk)1{
|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}

− E
[
yki(aki

⊤U∗wk)1{
|yki|2≤

C̃(1+ϵ1)
q ∥X∗∥2

F

}])
The summands are independent zero mean sub-Gaussian r.v.s

with norm less than Kki ≤
√
C̃(1 + ϵ1)∥X∗∥F ∥wk∥/

√
q.

Thus, by applying the sub-Gaussian Hoeffding inequality
Theorem 2.6.2 of [26], with t = ϵ1m∥X∗∥F , we can conclude
that, for a fixed W ∈ Sqr, w.p. 1− exp

[
−ϵ21mq/Cµ2κ2

]
,

trace
(
W⊤ (X+ − E[X+])

⊤U∗) ≤ ϵ1∥X∗∥F .

By Proposition 4.8 (epsilon net argument), the bound holds
for all unit norm W w.p. 1− exp

[
qr − ϵ21mq/Cµ2κ2

]
.

D. Proof of Claim B.1

Proof: We can write x∗ = ∥x∗∥Qe1 where Q is a unitary
matrix with first column proportional to x∗

k. We need to bound

E[∥x∗∥ · |(a⊤Qe1)(a
⊤QQ⊤z)|1{∥x∗∥2|a⊤Qe1|2∈[1±ϵ]α}]

= ∥x∗∥ · ∥z∥ · E[|ã(1)ã⊤z̄Q|1{|ã(1)|2∈[1±ϵ]β2}]

where z̄Q := Q⊤z/∥z∥, ã := Q⊤a and β :=
√
α/∥x∗∥.

Since Q is unitary and a Gaussian, thus ã has the same
distribution as a. Let ã(1) be its first entry and ã(rest) be the
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(n−1)-length vector with the rest of the n−1 entries and simi-
larly for z̄Q. Then, ã⊤z̄Q = ã(1) · z̄Q(1)+ ã(rest)⊤z̄Q(rest).
Since ã(1) and ã(rest) are independent,

E[|ã(1)ã⊤z̄Q|1|ã(1)|2∈[1±ϵ]β2 ]

≤ |z̄Q(1)|E[|ã(1)2|1|ã(1)|2∈[1±ϵ]β2 ]

+ E[|ã(rest)⊤z̄Q(rest)|] E[|ã(1)|1|ã(1)|2∈[1±ϵ]β2 ]

≤E[|ã(1)2|1|ã(1)|2∈[1±ϵ]β2 ] + 2E[|ã(1)|1|ã(1)|2∈[1±ϵ]β2 ]

≤ϵβ + 2ϵβ = 3ϵβ = Cϵ

√
α

∥x∗∥
.

The second inequality used the facts that (i) |z̄Q(1)| ≤ ∥z̄Q∥ =
1 by definition and (ii) ζ := ã(rest)⊤z̄Q(rest) is a scalar
standard Gaussian r.v. and so E[|ζ|] ≤ 2. The third one relies
on the following two bounds:

1)

E
[
|a(1)|21{|a(1)|2∈[1±ϵ]β2}

]
=

2√
2π

∫ √
1+ϵβ

√
1−ϵβ

z2 exp(−z2/2)dz,

≤ 2e−1/2

√
2π

∫ √
1+ϵβ

√
1−ϵβ

dz ≤ 2e−1/2

√
2π

ϵβ ≤ ϵβ/3

where we used the facts that z2 exp(−z2/2) ≤
exp(−1/2) for all z ∈ ℜ;

√
1− ϵ ≥ 1 − ϵ/2 and√

1 + ϵ ≤ 1 + ϵ/2 for 0 < ϵ < 1.
2) Similarly, we can show that

E
[
|a(1)|1{|a(1)|2∈[1±ϵ]β2}

]
=

2√
2π

∫ √
1+ϵβ

√
1−ϵβ

z exp(−z2/2)dz,

≤ 2e−1/2

√
2π

∫ √
1+ϵβ

√
1−ϵβ

dz =
2e−1/2

√
2π

ϵβ ≤ ϵβ/3

The claim follows by combining the two equations given above.
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