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ABSTRACT

In recent work we developed a fast and sample-efficient gra-
dient descent (GD) solution to the following “Low Rank
column-wise Compressive Sensing (LRcCS)”: recover an
n × q, rank-r matrix X∗ from measurements yk = Akx

∗
k,

k = 1, 2, . . . , q when each yk is an m-length vector with
m < n, and the rank r ≪ min(n, q). Accelerated dy-
namic MRI is a key application where this problem occurs.
In this work, we show the power of our approach (and of
its modification for the MRI setting) for four very different
highly undersampled dynamic MRI applications. Without
any application-specific parameter tuning, in most settings,
our approach outperforms the state-of-the-art MRI methods,
while also being significantly faster in all settings.

Index Terms— low-rank, compressed sensing, MRI

1. INTRODUCTION
Dynamic Magnetic Resonance Imaging (MRI) is a powerful
imaging modality to non-invasively image time evolving phe-
nomena in the human body. Some example applications in-
clude capturing the motion of the beating heart, motion of vo-
cal tract during speaking, dynamics of contrast uptake in brain
or cardiac perfusion MRI. However, a long standing challenge
in MRI is its slow imaging speed which restricts its full po-
tential in the achievable spatial or temporal resolution or slice
coverage. From a signal processing standpoint, in MRI, one
measures the 2D discrete Fourier transform (FT) of the un-
known image (to be reconstructed), one FT coefficient (or one
row of coefficients) at a time. This is what makes the imaging
slow. Accelerated dynamic imaging involves the design of al-
gorithms to accurately reconstruct the image sequence from
undersampled sampled k-space (frequency domain) data.

1.1. Existing work and our contribution
MRI literature: LR or sparse model approaches. Since
the work on compressive sensing in the early 2000s there has
been extensive work on exploiting sparsity of the image or
of the sequence in different dictionaries and bases in order to
enable accelerated MR imaging in various applications, e.g.,
see [1, 2] and follow-up work. For settings where joint recon-
struction of a set of similar images is needed, a low rank (LR)
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assumption on the matrix formed by arranging the images as
its columns is a much more flexible model since it does not
require knowledge of the sparsifying basis or dictionary. MR
images change slowly over time and hence are well-modeled
as being approximately LR. There has been prior work in the
MRI literature on accelerating dynamic or joint MRI using the
LR assumption [3, 4, 5, 6, 7]. In this paper, we refer to this
problem as LR column-wise Compressive Sensing (LRcCS).
The LRcCS solutions can be classified into two categories:
(a) methods which enforce the LR constraint in an explicit
manner (e.g. via explicit estimation of the temporal subspace
from low spatial but high temporal resolution training data
(e.g.,[4, 5]), or (b) methods that enforce the LR constraint in
an implicit manner (e.g., via the nuclear norm or Schatten-
p norm regularization with p < 1 as in k-t-SLR [6]). The
implicit methods like k-t-SLR are useful because they offer
more flexibility in handling arbitrary sampling patterns [6].
A challenge with all these methods is the need of tuning the
regularization parameters, and other hyper-parameters associ-
ated with the iterative optimization algorithm. Moreover, the
iterative optimization algorithms used in k-t-SLR and similar
methods are known to be very slow when applied for large
matrix dimensions, e.g., it takes several minutes for recon-
structing typical datasets with 50-100 temporal frames. There
is another line of work inspired by the robust PCA literature
[8] that models the matrix formed by the MRI sequence as
being LR plus sparse (L+S), e.g., see [9] (L+S-Otazo), and
follow-up work, e.g., [10, 11]. Similar to k-t-SLR, two chal-
lenges with this line of work are (i) the need of tuning the pa-
rameters for different MRI applications, and (ii) the long com-
putation times needed for the iterative solvers for the nuclear
norm min based (or similar) optimization programs. Besides
the above works, there has been extensive work on motion
estimation and compensation before imposing the structural
assumptions [12, 13, 14, 2, 15, 16]. While these handle mo-
tion better, these schemes also share both of the above chal-
lenges: each MRI application needs parameter tuning, and
these methods are even slower.

Reconstruction algorithm speed is an important concern
in applications needing low latency such as real-time interac-
tive MRI, interventional MRI, or biofeedback imaging.
MRI literature: Deep Learning (DL) methods. The ap-
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Fig. 1. Example image recon from various reconstruction methods on the PINCAT perfusion dataset from retrospective under-
sampled data having 4 radial lines per frame. Each inset shows a spatial frame and an image time series along a horizontal
cross section through the heart. The error numbers are also shown. Both k-t-SLR and L+S-Otazo schemes show residual alias
artifacts (see yellow arrows). In contrast, altGDmin-MRI depict good image quality with minimal artifacts and blurring.

proaches described above are drastically different from DL
based reconstruction schemes, e.g., [17, 18]. DL models need
a large number of fully sampled training data points. Such
data are easily available for static imaging applications. How-
ever, it is not straightforward to acquire sufficient number
of fully sampled image sequences for dynamic imaging ap-
plications, and definitely not for high time resolution ones.
For this reason, a majority of DL models have been used to
perform reconstruction frame by frame; this approach does
not fully exploit redundancies along the temporal dimension.
On the other hand, our approach, and also all the approaches
mentioned above, exploit both spatial and temporal redundan-
cies, do not need any training data, and consequently also do
not need the expensive training phase that DL models need.
DL model learning/training can be very computationally, and
hence energy-wise, expensive.
Provable solutions with only simulation experiments.
There are three existing provable solutions to LRcCS. The
first is an Alternating Minimization solution that solves the
harder magnitude-only generalization of LRcCS (LR Phase
Retrieval) [19, 20]. The second (parallel work) studies a con-
vex relaxation called mixed norm min [21]. The third [22] is
a gradient descent (GD) based provable solution to LRcCS,
that we called altGDmin. The convex solution is very slow,
has bad experimental performance even for data simulated
using the authors’ model, and has a worse sample complexity
than altGDmin [22, Table 1]. The AltMin solution is faster
than the convex one, but still significantly slower than alt-
GDmin [22]. Also, since it is designed for a harder problem,
its sample complexity guarantee for LRcCS is sub-optimal
compared to that of altGDmin. All guarantees are for Gaus-
sian measurements but, as in case of (sparse) compressive
sensing, the qualitative implications remain true also for MRI
(random Fourier measurements).
Contributions. In this work, we explore the utility of the alt-
GDmin approach for fast and highly-undersampled dynamic
MR imaging. We develop an improved version of the basic
altGDmin algorithm to address the specific issues that occur
when trying to recover real dynamic MRI sequences. We
show via extensive experiments on four very different dy-
namic MRI applications that, without any application-specific
parameter tuning, altGDmin and altGDmin-MRI outperform
both k-t-SLR and L+S-Otazo in most settings, while also be-

ing significantly faster than both; see Table 1, Fig. 1.

1.2. Problem setting and notation
LRcCS. We would like to recover an n × q rank-r matrix
X∗ = [x∗

1,x
∗
2, . . . ,x

∗
q ], with r ≪ min(q, n), from

yk = Akx
∗
k, k = 1, 2, . . . , q,

when yk is an m-length vector. In accelerated dynamic MRI,
x∗
k is the k-th vectorized image; thus the matrix X∗ corre-

sponds to the entire (unknown) image sequence.The m × n
measurement matrices Ak are random Fourier with m < n
for accelerated imaging. The exact form of Ak is decided by
the specific random sampling trajectory (specified in Sec. 3).

Everywhere, ∥.∥F denotes the Frobenius norm, ∥.∥
without a subscript denotes the (induced) l2 norm, and
⊤ denotes (conjugate) transpose. For two n × r matrices
U1,U2 with orthonormal columns, we use SD(U1,U2) :=
∥(I−U1U1

⊤)U2∥F as the Subspace Distance (SD) between
the subspaces spanned by their columns. This takes values
between 0 and

√
r. Also, we let X∗ SVD

= U∗Σ∗B∗ denote
its reduced (rank r) SVD, and κ := σ∗

max/σ
∗
min the condition

number of Σ∗. Notice here the non-standard form of writing
the SVD: here U∗ and B∗⊤ are tall matrices with orthonor-
mal columns and rows respectively, U∗ is n × r and B∗ is
r × q. We let B̃∗ := Σ∗B∗.
Approx-LRcCS for dynamic MRI. MR image sequences
are not exactly LR. Also, all images in the sequence have a
certain common component that we can denote by x̄∗. Thus,
the model x∗

k = x̄∗ + z∗
k + e∗k, with Z∗ = [z∗

1 , z
∗
2 , . . . , z

∗
q ]

being LR, and e∗k being small residual error in this model, is
more practically valid. We explain this point in Sec. 2.2.

2. SOLVING LRCCS AND APPROX-LRCCS
Another way to understand our problem is as follows: each
scalar measurement yki (i-th entry of yk) satisfies yki :=
⟨aki,x

∗
k⟩, i ∈ [m], k ∈ [q] with aki

⊤ being the i-th row
of Ak. Observe that the measurements are not global, i.e.,
no yki is a function of the entire matrix X∗. The measure-
ments are global for each column but not across the differ-
ent columns. We thus need to the following incoherence as-
sumption to enable correct interpolation across the different
columns [19]. This was introduced in [23] for LR matrix
completion (LRMC) which is another LR problem with non-
global measurements, but its model is symmetric across rows
and columns.



Dataset (# radial lines) k-t-SLR L+S-Otazo altGDmin altGDmin-MRI
Vocal tract (4) 0.6328 (267.4) 0.4037 (6.2) 0.2270 (1.2) 0.2006 (5.2)
Vocal tract (8) 0.4272 (277.7) 0.2388 (5.7) 0.2099 (0.9) 0.1310 (2.9)
Vocal tract (16) 0.2423 (271.0) 0.1162 (3.7) 0.1570 (0.9) 0.1023 (2.1)

PINCAT (4) 0.2264 (441.1) 0.1328 (3.8) 0.1035 (1.3) 0.0293 (2.3)
PINCAT (8) 0.0924 (688.3) 0.0475 (2.6) 0.0467 (1.4) 0.0197 (2.0)

PINCAT (16) 0.0477 (393.8) 0.0223 (2.6) 0.0334 (1.5) 0.0145 (1.8)
Cardiac (4) 0.38694 (1318.9) 0.30685 (25.6) 0.4274(5.1) 0.23814 (12.8)
Cardiac (8) 0.30164 (1185.3) 0.16623 (25.7) 0.3159 (5.0) 0.15602 (10.6)
Cardiac (16) 0.23116 (1162.0) 0.10561 (26.4) 0.2220 (5.4) 0.13705 (8.1)

Brain (4) 0.03887 (216.0) 0.02441 (3.5) 0.0445 (0.5) 0.02214 (0.6)
Brain (8) 0.01754 (193.7) 0.01055 (1.8) 0.0277 (0.5) 0.01139 (0.7)

Brain (16) 0.00574 (169.2) 0.00549 (1.3) 0.0191 (0.5) 0.00704 (0.7)

Table 1. Comparing k-t-SLR, L+S-Otazo, altGDmin, altGDmin-MRI for 4 dynamic MRI sequences: Brain (n = 16384, q =
24), Cardiac (n = 31104, q = 80), PINCAT (n = 16384, q = 50), Vocal tract (n = 10000, q = 59). Each is recovered from
golden-angle sampled measurements with 4, 8, 16 radial lines. c radial lines means (128/c)-times acceleration roughly. We
report Error (Time) with Error defined in Sec. 3. In each row, the smallest error and the 2 smallest times are shown in bold.

Assumption 2.1 (Right singular vectors’ incoherence) We
assume that maxk ∥b∗k∥ ≤ µ

√
r/q. Treating κ as a con-

stant, up to constants, this is equivalent to requiring that
maxk ∥x∗

k∥2 ≤ µ̃
∑q

k=1 ∥x∗
k∥2/q.

This assumption assumes that the “energy” (squared 2-norm)
of the different columns x∗

k is similar so that so that the max-
imum energy is within a constant factor of its average value.
This is valid for medical image sequences for which large en-
ergy changes across the sequence cannot happen.

2.1. The basic altGDmin algorithm (altGDmin-basic)
We would like to design a GD based solution to find the ma-
trix X that minimizes f(X) :=

∑q
k=1 ∥yk − Akx

∗
k∥2 sub-

ject to the constraint that its rank is r or less. There are
two commonly used GD approaches in LR recovery litera-
ture. The first is to use projected GD on X: at each itera-
tion, perform one step of GD w.r.t. X , followed by project-
ing the resulting matrix onto the space of rank r matrices (by
SVD) [24]. The second is to write X = UB where U is
n × r and B is r × q and do alternating GD on U and B
for a cost function that contains the data term, f(UB), plus a
term that helps ensure that norms of U and B remain similar
[25, 26]. Because of the specific asymmetric nature of the LR-
cCS measurement model, we need to be able to show that the
column-wise error, maxk(∥x̂k − x∗

k∥/∥x∗
k∥), decreases suf-

ficiently with each algorithm iteration. As explained in detail
in [22], this is not possible to show for either of the above ap-
proaches and hence neither will work for LRcCS. Moreover,
even for LRMC where these ideas do work, the first approach
is memory-intensive; while the second needs a GD step size
that is 1/r or smaller [25, 26], making it r-times slower than
GD with a constant step size.

The following modification of alternating GD, that we dub
altGDmin, removes all the above limitations: it is not mem-
ory intensive, it works with a constant step size, and it helps
guarantee the desired column-wise error bound decay. Con-

sider f(UB) :=
∑

k ∥yk − AkUbk∥2. We use projected
GD for updating U (one GD step w.r.t. U followed by pro-
jecting onto the space of orthonormal matrices by QR). For
each new estimate of U , we solve for B by minimizing over
it while keeping U fixed at its current value. Because of the
specific asymmetric nature of our model, the minimization
is decoupled for the different columns of B; consequently,
it only involves solving q r-dimensional Least Squares (LS)
problems, in addition to also first computing the matrices,
AkU , for use in the LS step. Thus the time needed is only
O(qmr2 + qmnr) = O(mqnr). This is equal to the time
needed to compute the gradient w.r.t. U ; and thus, the per-
iteration cost of altGDmin is only O(mqnr). We summarize
the algorithm in Algorithm 2.1.

Since for m < n, our problem is not strongly convex, we
need a carefully designed initialization. We obtain an initial
estimate of U by computing the top r left singular vectors of
the matrix X0 defined in Algorithm 2.1.

2.2. Approx-LRcCS and altGDmin-MRI
MR image sequences are not exactly LR. Also, since MR im-
ages are very slow changing, there is a certain “common”
component in all the image frames in the sequence. In other
words, the average of all the MR images in the sequence has a
large magnitude compared to the largest singular value of the
matrix formed by subtracting this common component out.
Consequently κ for the latter matrix is much lower than if this
common component were not subtracted out. Thus the fol-
lowing is a more appropriate model for dynamic MRI image
sequences:

x∗
k = x̄∗ + z∗

k + e∗k, for all k ∈ [q],

where x̄∗ is the vectorized average image, the z∗
k’s form

a rank r matrix Z∗ := [z∗
1 , z

∗
2 , . . . , z

∗
q ], e∗k is the un-

structured residual signal component and we assume that
∥e∗k∥ ≪ ∥z∗

k∥ ≪ ∥x̄∗∥.



Algorithm 1 altGDmin-basic
Input: yk,Ak, k ∈ [q]
Parameters: rank r, GD step size η, Number of iterations,
T , threshold multiplier C̃ in initialization

Initialization. U0 ← top-r-singular-vectors of X̂0 :=
1

m

∑
ki

akiykiek
⊤
1{

y2
ki

≤C̃

∑
ki y2

ki
mq

}
for t = 1 to T do

Let U ← Ut−1.
for k = 1 to q do

(bk)t ← (AkU)†yk. Here M† := (M⊤M)−1M⊤.
(x̂k)t ← U(bk)t

end for
Gradient: ∇Uf(UBt)←

∑
k A

⊤
k (AkU(bk)t − yk)(bk)

⊤
t

GD step: Û+ ← U − η∇Uf(UBt)

Projection (using QR): Û+ QR
= U+R+. Set Ut ← U+.

end for
Output: X̂T := [(x̂1)T , (x̂2)T , . . . , (x̂q)T ].

We used ground truth data to verify the validity of the
above model. For most of our sequences, the condition num-
ber of the first r singular values of X∗ is much larger than
that for Z∗. For example, for the PINCAT sequence, it de-
creases from 17.1 to 3.4 after subtracting the average image,
while for the vocal tract sequence it decreases from 8.8 to 2.5.
Lower condition number means a smaller value of m suffices
to get an accurate reconstruction (the sample complexity for
random Gaussian measurements depends on κ4).

Under the above assumption, we can estimate x̄∗ by solv-
ing the following LS problem: minx̄

∑q
k=1 ∥yk − Akx̄∥2.

Denote the solution by ˆ̄x. Next, we estimate Z∗ by using
the measurement residuals ỹk := yk − Ak ˆ̄x as the input to
altGDmin-basic. Denote its output by Ẑ. The last step is
to estimate the unstructured component e∗k by using the new
measurement residuals ˜̃yk := yk−Ak ˆ̄x−Akẑk and solving
mine ∥˜̃yk−Ake∥2 for each k, while imposing the assumption
that ∥e∥2 is small. An indirect way to enforce this while also
getting a fast algorithm is to run only a few iterations of GD
to solve this minimization problem. The complete algorithm
is summarized in Algorithm 2.

Algorithm 2 altGDmin-MRI

1. Solve minx̄
∑q

k=1 ∥yk−Akx̄∥2; denote solution by ˆ̄x.
2. Compute ỹk := yk − Ak ˆ̄x, k ∈ [q] and use these as

inputs for Algorithm 2.1 (altGDmin-basic). Denote its
output by Ẑ.

3. For each k ∈ q, compute ˜̃yk := yk − Ak ˆ̄x − Akẑk
and run 3 iterations of GD to solve mine ∥˜̃yk−Ake∥2.
Denote the output by êk.

Output X̂ := [x̂1, x̂2, . . . , x̂q] with x̂k = ˆ̄x+ ẑk + êk.

2.3. Setting parameters automatically
Since the matrices X∗ are only approximating LR, there is
no one correct choice of rank r to use. One approach used
often is to use the “b% energy threshold” on singular val-
ues of the initialization matrix X̂0 (which is an approxima-
tion of X∗). In addition, one always needs r̂ to be suffi-
ciently smaller than min(n, q) for the algorithm to take ad-
vantage of the LR assumption. A good heuristic is to set
r = min(r̂b%,min(n, q)/10). Since the number of frames, q,
is pretty small in all our datasets (ranges from 24 to 80), q/10
becomes the limiting factor in deciding the rank. Computing
r̂b% is expensive because it requires computation of all the q
nonzero singular values. Thus, in all our experiments in this
paper, we use r = ⌊min(n, q)/10⌋ = ⌊q/10⌋. We set the GD
step size η = 0.14/∥∇Uf(U

0B0)∥ where U0,B0 are the
initial estimates and we use C̃ = 6 in the initialization step.
To decide T (maximum number of iterations), we stop the GD
loop when SD(Ut−1,Ut) < 0.01

√
r while setting Tmax =

70 so that no more than 70 iterations are run. For altGDmin-
MRI, we use the CGLS code https://web.stanford.
edu/group/SOL/software/cgls/ (with at most 10 it-
erations or tolerance of 10−36) to compute ˆ̄x.

For datasets for which both n and q are large, one can set r
using the “b% energy threshold” on the first min(n/10, q/10)
singular values. We are using this approach in ongoing work
when dealing with longer sequences.

3. EXPERIMENTS
Experiments were performed by retrospectively under-sampling
fully sampled datasets in four dynamic MRI applications: (i)
Brain perfusion MRI [27], (ii) Ungated free breathing cardiac
perfusion MRI [12], (iii) PINCAT perfusion phantom [6], and
(iv) Vocal tract MRI during speech production. The random
sampling scheme is borrowed from [28]: it is a pseudo-radial
trajectory where the polar coordinates were interpolated onto
a Cartesian grid. The angular increment between successive
radial spokes were determined by the golden angle (111.25
degrees). All experiments were conducted in MATLAB on
the same PC. AltGDmin-MRI was compared with altGDmin-
basic, k-t-SLR, L+S-Otazo. For the latter two, we used author
provided code and parameters (the authors had tuned the pa-
rameters for cardiac imaging). The error value that we report
is as follows [6]. Let dist2(x∗, x̂) = ∥x∗− x̂ x̂⊤x∗

∥x∗∥2 ∥2 denote
the scale invariant distance between two vectorized images
with “scale” being a complex number (the reconstructed im-
ages can be complex-valued). We report the Monte Carlo
(MC) average of (

∑q
k=1 dist

2(x∗
k, x̂k))/∥X∗∥2F over 5 MC

iterations. The MC is over different realizations of Aks. In
Table 1, we report results as Error (Time); Time is the time
taken by the algorithm in seconds. As can be seen, in most
cases, altGDmin-MRI has lower error than the other methods,
and it is much faster, than both k-t-SLR and L+S-Otazo. We
show a visual comparison in Fig. 1.
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