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Abstract—Chaos-based communications can be applied to high-
speed vehicular information transmissions thanks to the anti-
jamming and anti-interference capabilities of chaotic transmis-
sions. In traditional practical chaotic systems, reference chaotic
signals are required to be delivered to remove complex chaotic syn-
chronization circuits. However, the direct transmission of reference
signals will degrade the security performances, while interferences
and noises imposed on the reference signals due to imperfect
channel conditions will deteriorate the reliability performances.
In order to enhance the reliability and security performances over
vehicular channels such as the railway channel and the channels
undergoing fast fadings, in this paper, we propose a deep learning
(DL) aided intelligent OFDM-DCSK transceiver. In this design, no
reference chaotic signals are delivered, and we propose to utilize
the time-delay neural network (TDNN) to learn the chaotic maps,
followed by the long short-term memory (LSTM) units to extract
and exploit the correlations between chaotic modulated signals,
and multiple fully connected layers (FCLs) to estimate the user
bit data. With the aid of the constructed deep neural network
(DNN), after the offline neural network training, the receiver can
recover the transmitted information with lower bit error rate (BER)
and enhance security performances. Theoretical performance is
then analyzed for the proposed intelligent transceiver. Simulation
results validate the proposed design, and demonstrate that the
intelligent DL-based OFDM-DCSK system can achieve better BER
and security performances over fast fading and railway channels
compared with the benchmark systems.
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I. INTRODUCTION

O
WING to the non-periodic, noise-like and initial value

sensitive characteristics of chaotic sequences, chaos-

based communications have been widely applied to provide

secure and anti-jamming transmissions for wireless systems. For

instance, the aperiodic chaotic sequences have been applied to

modulate user data in practical systems such as ultra-wide-band

(UWB) communication systems and power line communication

systems [1], [2] to enhance security and reliability performances.

In recent years, empowered by the sixth-generation mobile

communication system (6G), high-speed vehicular communi-

cations have been proposed to be applied in higher data rate

applications, such as on-board and wayside high definition (HD)

video surveillance, on-board real-time high-data-rate connec-

tivity, and train operation information transmission, etc., to

promote the development of intelligent transportation [3]. How-

ever, the vehicular information transmissions have to combat

complicated time changing fadings induced by the mobility of

users, which can be well modeled by fast fading channels such

as Rayleigh fading channel [4] or Rician fading channel [5], [6].

Besides, due to the broadcasting property of vehicular channels,

the mobile users might suffer from eavesdropping or malicious

attacks.

Chaos-based transmissions can effectively mitigate the inter-

ferences and improve the security performances, which provide

the promising solutions for reliable and secure high-speed ve-

hicular information transmissions. Chaotic modulation meth-

ods can be classified into coherent and non-coherent schemes.

Since non-coherent systems do not require the complicated

synchronization circuit that is difficult to be implemented in

practical systems, they have attracted more research interests

than coherent systems. Among non-coherent chaotic modulation

schemes, differential chaos shift keying (DCSK) [7] has been

widely studied, which can provide reliable transmissions with

low complexity. However, since half of the symbol duration is

used to transmit reference chaotic sequences, DCSK systems

suffer from the low spectrum efficiency and require delay lines.
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To improve the efficiency and remove the delay line, the

orthogonal frequency division multiplexing (OFDM) has been

applied in DCSK systems to compose the OFDM-DCSK

scheme [8]. In OFDM-DCSK systems, the reference chaotic sig-

nals are delivered via specific one or more subcarriers. Due to the

naturally broadcasting property of wireless channels, malicious

users or eavesdroppers might retrieve the data, and thus the direct

delivery of chaotic signals will degrade the security of chaotic

communication systems. Moreover, multicarrier interferences

will increase due to the delivery of real-valued chaotic signals,

which lead to reliability degradations [9], especially over fast

fading channels.

In order to enhance the reliability and the security perfor-

mances of chaotic systems, research works have been performed

to improve the transceiver structures. For example, in [10]

and [11], the chaotic sequences were scrambled in the time

domain to enhance the security performances of the DCSK

systems. However, the delay line circuits are still required for

the demodulation, thus the practicality is weak. Besides, [12]

proposed to scramble the chaotic sequences in the frequency

domain instead of the time domain, but it suffers from low spec-

trum efficiency since only half of spectrum bands are exploited

to transmit the information-bearing symbols. In addition, the

chaotic sequences are cyclic shifted in [13] to enhance the system

security. Besides, in [14], the information bits are transmitted

by specific indices of selected Walsh codes implicitly, thus no

reference chaotic signal is required and the energy efficiency can

be improved. In our recent research works, we exploited the fre-

quency hopping to scramble the chaotic modulated sequences to

increase the security and the reliability performances [15]. Fur-

thermore, in [16], we utilized chaotic sequences to implement

the position modulation without transmitting reference chaotic

signals, thus both the efficiency and the security performances

can be improved.

However, most of these improved chaotic modulation

schemes still require to deliver reference chaotic signals. For

those few schemes [14], [16] dispensing with the reference

signals, they need to add signal processing modules to guarantee

the reliability performances, which increase the complexity

and hardware cost. Our objective is to remove the require-

ment of the delivery of chaotic signals with high adaptability

to existing schemes, and then to improve both the security

and the reliability performances. Different from the traditional

chaotic transceivers, we propose to remove the delivery of

reference chaotic signals at the transmitter, then we propose

a deep neural network (DNN) architecture to intelligently ex-

tract the characteristics of reference chaotic signals embed-

ded in received chaotic modulated signals, which are deliv-

ered via multiple subcarriers. Thus the received signals can be

recovered intelligently with enhanced reliability and security

performances.

In this design, we utilize the powerful optimization and

classification capabilities of DNN to determine the estimates

for received data. Different from the DNN applied for the

channel estimation [17], modulation recognition [18], demod-

ulation [19], and end-to-end communication [20], and differ-

ent from our recent work on the DNN aided chaotic receiver

design [21], in this paper, we propose a DNN architecture

constituted by one time-delay neural network (TDNN) [22],

two recursive long short-term memory (LSTM) units [23] and

multiple fully-connected layers (FCLs). The TDNN consists of

three one-dimensional convolutional layers (1D-CLs), which

aim to find the mapping pattern of chaotic sequences and to

extract the features. Then LSTM units are utilized to find and

exploit the correlation relationship between the received chaotic

modulated signals. Subsequently, the estimates can be recovered

and output from FCLs.

For the proposed intelligent chaotic transceiver without deliv-

ery of reference chaotic signals, at the training stage, the DNN

will gradually learn to extract the chaotic sequence features

and to formulate an optimized demodulation mapping. Then,

at the online deployment stage, with the configured trainable

parameters, the user data can be reliably recovered in real time

from the received signals with no use of reference chaotic

signals. Since no reference chaotic sequences are transmitted,

both the efficiency and the security can be improved. Moreover,

thanks to the powerful learning and generalization capabilities

of DNN, the proposed design can adapt to complicated time

changing conditions, thus better reliability performances can be

obtained over fast fading channels.

Briefly, the main contributions include the following:

1) We propose an intelligent deep learning (DL)-based

OFDM-DCSK transceiver with no need of delivery of

reference chaotic sequences to improve the efficiency, reli-

ability and security performances over vehicular channels

such as the railway channel.

2) We construct the DNN architecture for demodulations

with considerations of the chaotic modulation character-

istics. In the proposed architecture, the TDNN is applied

to learn and extract the features of the mapping pattern of

generating the chaotic sequences, while the LSTM units

are utilized to find and exploit the correlation relationship

between the received chaotic modulated signals to recover

the received user data.

3) We propose the hyperparameter selection criterion. Then

theoretical performances including the spectrum effi-

ciency, the energy efficiency, the security performance

and the complexity are analyzed. Moreover, we provide

the data set collection method considering the fairness of

performance comparisons.

This paper is organized as follows. Section II presents

the transceiver structure of the DNN-based OFDM-DCSK

transceiver. Then, in Section III, we describe the architecture

of the proposed DNN and the operating principle of each layer,

while the hyper-parameter selection criterion is also provided.

Next, Section IV analyzes the spectrum efficiency, energy ef-

ficiency and security performances of the proposed system.

Subsequently, the data set generation is discussed in Section V,

followed by the simulation results for analysis of BER, security

and robustness performances. Finally, Section VI concludes our

findings.

II. DL-BASED OFDM-DCSK TRANSCEIVER

In this section, we will present the structure of the proposed

DL-based OFDM-DCSK transceiver.
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Fig. 1. The proposed transmitter structure.

A. The Transmitter Structure

Fig. 1 illustrates the transmitter structure of the proposed

system. The user data are modulated by the binary phase shift

keying (BPSK) at first. In the meantime, considering that the

second-order Chebyshev polynomial function (CPF) possesses

complex dynamic properties and low computational complex-

ity [24], we apply the CPF to generate the chaotic sequence x

of length K. The generated chaotic sequence is expressed as

xk = 1 − 2x2
k−1, 0 ≤ k ≤ K − 1, (1)

where xk denotes the kth chip of x and is in a range of −1 to 1,

while the initial value x−1 is uniformly distributed between −1

and 1.

Then, after the serial to parallel (S/P) conversion, at the kth

chip time slot, the nth BPSK symbol is modulated by the kth

chaotic chip as

cn,k = dnxk, (2)

where dn represents the nth BPSK user data symbol with 0 ≤
n ≤ N − 1.

Subsequently, the inverse fast Fourier transform (IFFT) op-

erations are performed on the chaotic modulated symbols c0,k

to cN−1,k to modulate the information-bearing symbols onto N
available subcarriers, then we have

si,k =
1√
N

N−1∑

n=0

cn,ke
j 2πn

N
i, (3)

where si,k is the resultant ith OFDM symbol at the kth chip

time slot with 0 ≤ i ≤ N − 1, j is the imaginary unit with

j2 = −1. After the IFFT operations and the parallel to serial

(P/S) conversion, a copy of the tail of OFDM-DCSK modulated

signal s, named as the cyclic prefix (CP), is added in front

of s to mitigate the possible inter-symbol interference (ISI).

Subsequently, the signals are transmitted over the channel.

Notably, different from the traditional OFDM-DCSK trans-

mitter [8], all subcarriers are used to deliver chaotic modulated

signals, and no reference chaotic sequences are transmitted.

Thus both the efficiency and the security performances can be

improved.

Fig. 2. The intelligent DNN-aided receiver structure.

B. The Receiver Structure

At the receiver side, as shown in Fig. 2, after the CP removal,

the equalization is performed to suppress the inter symbol inter-

ference, and zero-forcing and time domain equalizers are applied

in this paper. Subsequently, the serially received signal at the

kth chip time slot are converted to parallel information subsets

r0,k to rN−1,k. Then, fast Fourier transform (FFT) operations are

performed to extract the information-bearing chaotic modulated

symbols in the frequency domain, which is expressed as

c′n,k =
1√
N

N−1∑

i=0

ri,ke
−j 2πi

N
n, (4)

where c′n,k denotes the recoverednth chaotic modulated symbol

at the kth chip slot.

Next, c′0,k to c′N−1,k are buffered, and then they are con-

catenated with the chaotic modulated symbols in the whole K
chip slots to constitute the information-bearing sequences yn =
[c′n,0, . . . , c′n,k, . . . , c′n,K−1] (0 ≤ n ≤ N − 1). After that, yn

acts as the inputs to the proposed intelligent DNN-based de-

modulator to attain the data estimates. Note that as mentioned

above, with the proposed DNN, the received data can be recov-

ered intelligently and reliably. More details about the proposed

DNN-aided intelligent demodulator are presented as follows.

III. LSTM-BASED DEEP LEARNING DEMODULATOR

In this section, we present the DNN architecture of the

proposed DNN-aided demodulator, and describe the operation

principle of each layer. Subsequently, the training procedure and

the hyper-parameter configurations for the DNN are introduced.

A. Architecture of DNN-Aided Demodulator

Fig. 3 illustrates the proposed architecture of the DNN em-

ployed in the DNN-aided demodulator. The DNN is composed

of three 1D-CLs, two recursive LSTM units, two FCLs, and

one batch normalization (BN) layer. As mentioned above, at the

receiver, after buffering and concatenating the recovered chaotic

modulated symbols c′n,k in K chip time slots, the resultant

recovered information-bearing chaotic sequences y0 to yN−1,

which contain the information of N data bits, are input to the

DNN for the data recovery.

To be more explicit, the input vector yn is first processed

by the TDNN consisting of three 1D-CLs to find the mapping

pattern and extract the features of chaotic sequences. The reason

why we select the TDNN is that the TDNN is capable of

processing one-dimension data, while most convolutional neural

networks are proposed to process two-dimensional data. With
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Fig. 3. The neural network architecture of the DNN-aided demodulator.

the aid of the TDNN, the proposed DNN aided demodulator

is able to capture the temporal features of chaotic modulated

sequences having the property of one dimension. Owing to

the powerful temporal dynamic behavior capture capability,

the TDNN can intelligently formulate the chaotic dynamics

characteristics. The resultant feature vector y′
n is then input to

the following bi-directional LSTM layer.

As shown in Fig. 3, the bi-directional LSTM layer includes

one forward LSTM unit and one backward LSTM unit, which

respectively perform the forward and backward recursive non-

linear operations on the feature vectors in turn to capture the

correlations between chaotic modulated sequences. By exploit-

ing the memory cells in the LSTM unit, the features of the

strong correlations between the input feature vectors which

are correlated to the same reference chaotic sequence can be

extracted while the noises can be suppressed.

Next the output feature vectors [aF,n,aB,N ] of the forward

and backward LSTM units are concatenated and sent to the

subsequent two FCLs to determine the estimates of information-

bearing vectors, while one BN layer is applied between them

to mitigate the vanishing and exploding gradient effects and

accelerate the convergence. After multiple linear and nonlinear

operations are conducted, the probability of data bit will be

calculated and the probability vectorp′
n will be generated. Note

that p′
n contains two elements p′n,0 and p′n,1, which separately

denote the probability that the nth transmitted bit data is 0 or 1.

Then according to the index of the largest element of p′
n, the

proposed DNN can provide the estimate of the user data bits.

More details about the operations conducted in DNN layers are

presented as follows.

B. Operations Conducted in DNN Layers

1) 1D-CL: In this paper, we apply three 1D-CLs to com-

pose a TDNN similar to [22], where Cout means the output

Fig. 4. The structure of the TDNN.

feature dimension. Note that in our proposed DNN, we use

Cout = 4, 8, 16. As shown in Fig. 4, each convolution kernel

will process α adjacent elements of the input along the time

axis in turn to capture the temporal dynamic behavior within

α time slot, which matches the characteristics that most chaotic

sequences are generated from difference or differential equations

and have specific temporal features. Besides, the 1D-CL in the

higher layer of the employed TDNN will apply convolution

kernels with larger quantity and width. Therefore, both the

short-term and long-term temporal behaviors ofyn will be learnt

and exploited to compress the time dimension and enlarge the

feature dimension. Finally, the output matrix is reshaped to

a one-dimensional feature vector y′
n and sent to the follwing

LSTM units.

To be specific, as shown in Fig. 4, in the TDNN, the inputs of

a 1D-CL are usually two-dimensional matrices which consist of

a time axis and a feature axis, and the convolution kernels in the

1D-CL will sequentially perform the convolutional operations

on each adjacent elements of the input along the time axis.

For brevity, in this paper, the row denotes the feature axis

and the column represents the time axis. Notably, the width in

the time axis of a convolution kernel is decided by the user while

the height in the feature axis is always the same as the feature

dimension of the inputs. Let m denote the input of 1D-CL and

m′ represent the output, then each element m′
i,j of m′ can be

calculated as

m′
i,j = σm′

(
Cin−1∑

v=0

α−1∑

u=0

w
(i)
CK,v,umv,j+u + bm,′i,j

)
, (5)

where m′
i,j denotes the element of ith row and jth column of

m′ and mv,j+u represents the element of vth row and (j + u)th

column ofm,w
(i)
CK,v,u is the element of vth row and uth column

of the ith convolution kernel, bm,′i,j means the bias of m′
i,j , α
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Fig. 5. The structure of an LSTM unit.

denotes the width in time axis of the convolution kernel, Cin

represents the feature dimension of the input, and σm′(·) is the

activation function applied in the 1D-CL. Notably, w
(i)
CK,v,u and

bm,′i,j are the trainable parameters that can be learnt and adjusted

through the neural network training. Besides, the rectified linear

unit (ReLU) activation function is applied in all three 1D-CLs to

enable complicated nonlinear mappings and mitigate vanishing

gradient effects [25], which is expressed as

ReLU(χ) = max(0, χ), (6)

Because of the convolution operations, the width of m′ will

be smaller than that of m as long as α > 1. Thus as shown

in (5), one convolution kernel will exploit the whole feature

dimension and compress the time dimension of the input, and

then output a vector with smaller time dimension value and

feature dimension value equaling to 1. It is worth mentioning

that since one convolution kernel generates one vector along the

time axis, we can compress the output feature dimension, i.e.

the maximum value of i, by using fewer convolution kernels, or

enlarge it by applying more convolution kernels.

2) LSTM Unit: As illustrated in Fig. 5, after obtaining the νth

external input vector y′
ν and the (ν − 1)th output vector aν−1,

the νth output vector aν of an LSTM unit is calculated as [23]

fν = sigmoid(Wf · [aν−1,y
′
ν ] + bf ), (7a)

γ̃ν = tanh(Wγ · [aν−1,y
′
ν ] + bγ), (7b)

iν = sigmoid(Wi · [aν−1,y
′
ν ] + bi), (7c)

γν = fν ⊙ γν−1 + iν ⊙ γ̃ν , (7d)

oν = sigmoid(Wo · [aν−1,y
′
ν ] + bo), (7e)

aν = oν ⊙ tanh(γν), (7f)

where [aν−1,y
′
ν ] is the concatenation of aν−1 and y′

ν and acts

as the νth input vector of the LSTM unit, and γν−1 denotes

the memory cell that stores the useful information in previous

operations. Meanwhile, fν , iν , oν are the Forget Gate, Input

Gate, Output Gate respectively and γ̃ν represents the optional

update value, all of which are generated from the νth input vector

and used to update the memory cell and generate the output

vector in the current iteration. To be more explicit, fν eliminates

the unnecessary parts of γν−1 and retains the valuable parts,

γ̃ν provides the useful information extracted from the νth input

vector, and iν controls the exploited parts in γ̃ν to update γν−1.

Then, as shown in (7d), the updated memory cell γν in this

iteration is calculated. After that, the νth output vector aν is

generated from tanh(γν) with the aid of oν that determines the

Fig. 6. The unfolded operations of the employed forward and backward LSTM
units.

output part of tanh(γν). At last, aν is also utilized to compose

the next input vector and calculate the output vector in (ν + 1)th
iteration.

Except for the forementioned symbols, Wf , bf , Wγ , bγ ,

Wi, bi, Wo, bo are all trainable parameters that are learnt

and adjusted through the neural network training, sigmoid(·)
represents the sigmoid activation function where sigmoid(χ) =

1
1+exp(−χ) , tanh(·) means the tanh activation function where

tanh(χ) = exp(χ)−exp(−χ)
exp(χ)+exp(−χ) , and ⊙ denotes the element-wise

product operation. To facilitate the illustration of the employed

bi-directional LSTM layer, we visualize and unfold the recursive

operations of the forward and backward LSTM units as Fig. 6. At

each iteration, one external input vector is concatenated with the

last output vector and acts as the input for the current iteration.

Then, the output vector is generated with the aid of the useful

information recorded in previous iterations and stored in the

inherited memory cell. Meanwhile, the memory cell is also

updated for the next iteration. Owing to the recursive working

procedure and the memory cell, the LSTM unit can exploit the

knowledge extracted in previous operations to better learn and

capture the dynamic behavior and the correlations between the

input vectors.

However, if only one LSTM unit is employed, less knowledge

can be utilized by the input. To address this issue, we apply two

LSTM units to process the external input vectors in different

directions. The operations conducted by the forward and the

backward LSTM units are the same as mentioned above, while

the only difference between them is the processing order for

the external input. As shown in Fig. 6, the first external input

vector of the backward LSTM unit is y′
N−1 and the last one

is y′
0, which is opposite to the forward LSTM unit. By this

means, all the input vectors can utilize complete knowledge

generated from the other external input vectors. Notably, both

the aF,−1 and aB,N are set to be 0 to compose the initial
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input vectors for the forward and the backward LSTM units

separately.

Besides, from Fig. 6, we can notice that the output feature

vector of the bi-directional LSTM layer is not only dependent

on the current external input vector, but also decided by the

information recorded in different iterations and stored in the

memory cells, which is in consistent with the characteristics of

the proposed OFDM-DCSK system that the information-bearing

chaotic sequences are correlated to each other owing to the

chaotic modulation with the same reference chaotic sequence

x. Therefore, with the aid of the bi-directional LSTM layer, the

correlation features between the recovered information-bearing

chaotic sequences can be extracted to enhance the reliability

performances.

3) Fcl: In the following two FCLs, the output vectors of the

LSTM units will be further processed to implement the data bit

estimation. Let β denote the index of the FCL, i.e., β = 1, 2,

then for the input vector zβ of the βth FCL, the output vector

z′β is calculated as

z′β = σβ(Wβ · zβ + bβ), (8)

where Wβ and bβ are the trainable parameters of the βth FCL

that will be learnt and adjusted through the neural network

training, and σβ(·) represents the activation function employed

in the βth FCL.

To be more explicit, when β = 1, the input vector z1 =
[aF,n,aB,n], which is the concatenation of the output feature

vectors of the forward and backward LSTM units, while the

output vector z′1 = a′n. Besides, no activation function is ap-

plied in this FCL, i.e., σ1(χ) = χ. Additionally, when β = 2,

the input vector z2 = pn, where pn is the standardized vector

from the BN layer which will be introduced later, while the

output vector z′2 = p′
n. It is worth mentioning that the softmax

activation function is applied in the 2nd FCL, which is expressed

as

softmax(χu) =
exp(χu)∑

χ
u′∈χ exp(χu′)

, (9)

where χu is the uth element of the vector χ. After processing by

the softmax activation function, the value of each element of p′
n

will be constrained between 0 and 1 while maintaining the sum

as 1. In other words, the softmax activation function applied in

the last FCL enables it to learn to calculate the probability of

the data bit carried by the information-bearing sequences, then

the generated probability vectorp′
n is exploited to determine the

estimates of the user data bits.

4) BN Layer: A BN layer is employed between the two

FCLs to standardize the input vector for efficient neural network

training. As shown in Fig. 3, let a′n denote the input vector

of the BN layer and pn represent the output vector, then the

standardization process is expressed as [26]

pn,ζ = σBN

(
δ × a′n,ζ −mean(a′n,ζ)√

var(a′n,ζ) + ǫ
+ η

)
, (10)

where a′n,ζ and pn,ζ are the ζth elements of a′n and pn, while

mean(a′n,ζ) and var(a′n,ζ) represent the mean and variance of

the ζth element of the input vector a′n respectively, which are

learnt and estimated during the training stage and then directly

used at the deployment stage. In addition, ǫ = 10−5 is a small

constant applied to avoid the denominator from becoming zero,

σBN (·) is the activation function employed in the BN layer,

which is set as the ReLU activation funtion (6) in this paper, and

δ and η are the trainable scale and shift factors used for possible

distribution recovery if needed.

After performing standardizations, each element of the input

vector is normalized to the range with zero mean and unit

variance, wherein the activation functions applied in the DNN,

such as sigmoid, tanh and softmax, will have high gradients

when updating the trainable parameters by the back propagation

algorithm during the training. Therefore, the vanishing and ex-

ploding gradient problem can be alleviated and the convergence

process can be accelerated. However, the standardizations will

change the distributions of input vectors, leading to the loss

of information. To address this issue, we apply the scale and

shift factors to recover the original distributions, which can be

adjusted during the training, thus the strength of standardizations

can be controlled to achieve the trade off between convergence

acceleration and information preservation.

C. Neural Network Training of DNN

At the offline training stage, the training data set provides the

known input and output data for the DNN to learn and formulate

the parameter configurations for the performance optimization.

During the training, by using the back propagation algorithm,

the DNN calculates the derivatives of the differences between

the actual output and known knowledge with respect to trainable

parameters which are then utilized to update the parameters by

the selected optimization algorithm. Along with the iterative

updating of parameters, the differences will decrease gradually

and converge to a previously specified threshold.

Explicitly, in our design, the received chaotic sequencesyn =
[c′n,0, c′n,1, . . . , c′n,K−1], (0 ≤ n ≤ N − 1) are applied as the

training samples and the data bits d = [d1, d2, . . . , dN−1] act as

the known output. After the neural network training, we can

formulate and establish the mapping from yn to the estimates

d̂n with the aim of minimizing the differences between d and

d̂ = [d̂0, . . . , d̂n, . . . , d̂N−1], which can be evaluated by the loss

function. Here we generate the training data set and the test

data set via simulations. Thanks to the statistical randomness of

the noises and fading amplitudes, the data splitting and the data

augmentation are not required to enrich the data set. More details

about the data set generation used for simulations are discussed

in Section V-B.

D. Hyper-Parameter Selection

The hyper-parameter selections have great impacts on the

learning capability, the complexity, the convergence rate, etc.,

of the DNN. In this subsection, we select four typical hyper-

parameters for discussions of the influence of the hyper-

parameter selection on the performances.

1) Output Dimension of Each Layer: The output dimension

of each layer for the employed DNN is presented in Table I,
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TABLE I
OUTPUT DIMENSION OF EACH LAYER FOR THE PROPOSED DNN-AIDED

DEMODULATOR

TABLE II
NUMBER OF TRAINABLE PARAMETERS OF EACH LAYER FOR THE PROPOSED

DNN-AIDED DEMODULATOR

which are determined by the dimension of input vectors, the

learning capacity, the complexity and the convergence rate of the

DNN. When the dimension becomes larger, the learning capa-

bility can be enhanced and the DNN can learn more complicated

mappings. However, the computational complexity of the DNN

also increases, and the convergence time will be longer. With

the aim to get a better tradeoff between the learning capability

and the complexity, we train and test the proposed DNN with

different sets of output dimensions, including different output

feature dimensions Cout, convolution kernel widths α, etc., to

select the set to achieve the performances approaching to the

saturation with the lowest output dimensions.

2) Number of Trainable Parameters: The number of train-

able parameters of each layer is highly related with the output

dimension. Let I and O respectively represent the input and

output dimension, then, when using the PyTorch DL framework,

the number of trainable parameters can be calculated as IO +O
for the FCLs and 4(I +O)O + 8O for the LSTM units. On the

other side, the parameter numbers of 1D-CLs are decided by the

input and output feature dimensions and the width in the time

axis of the convolution kernel. In this paper, as shown in Tables I

and II, the output feature dimensions of the three 1D-CLs are

Cout = 4, 8, 16, while the convolution kernel widths of them

are α = 2, 4, 8. Then, the number of trainable parameters of

1D-CL can be calculated as Cout(Cinα+ 1). Besides, the BN

layer needs 2O trainable parameters to learn the scale and shift

factors for each element of the output vectors, and the parameter

number of the input layer is zero since it is applied only to receive

and group the input data.

3) Eb/N0: When applying DL methods to communication

applications, the energy per bit to noise power spectral density

ratio (Eb/N0) of the simulated channel environment at the offline

training stage is a key hyper-parameter, which can significantly

affect the detection performances of the DNN. Excessively high

value of the training Eb/N0 will induce the overfitting problem,

while the too small value of Eb/N0 will induce the underfitting

problem [27]. To address this issue, we can apply the optimiza-

tion algorithm, such as the simulated annealing optimization

algorithm, to select the value ofEb/N0 for the DNN training with

the objective of maximizing the learning efficiency. For fairness

of performance comparisons to be presented in the following

section, the value of Eb/N0 is uniformly set as 20 dB for the fast

Rayleigh fading channel and 17 dB for the high-speed railway

channel at the training stage.

4) Loss Function and Optimization Algorithm Selection: For

the DNN, the loss function can quantitatively evaluate the dif-

ference between the actual DNN output and the known output,

while the optimization algorithm can formulate the trainable

parameter configurations with the aid of the gradients calcu-

lated by the back prorogation algorithm. Obviously, appropriate

loss function and optimization algorithm helps to improve the

convergence rate and the accuracy of the DNN. In our design,

considering that the chaotic demodulation process is equiva-

lent to solve a classification problem, we propose to apply

the categorical cross-entropy loss function, which can provide

a reliable measure of the difference between two probability

distributions [28], to act as the loss function and to solve this

classification problem [29]. Besides, in order to efficiently ad-

just the trainable parameters in DNN according to the mea-

sured loss value and the corresponding derivatives, the Adam

algorithm [30] is selected as the optimization algorithm due

to the invariance to diagonal rescaling of the gradients, high

computational efficiency and low memory requirements. At the

training stage, we set the disturbance term and exponential decay

rates for the Adam algorithm the same as those given in [30],

and the batch size is set as 50 to mitigate the oscillation effect

while maintaining satisfactory generalization capacity [31]. Ad-

ditionally, with the objective to guarantee the learning efficiency

without losing the convergence stability, we first set the learning

rate of the Adam algorithm as 0.01, and then gradually lower

the learning rate till 10−5 if the training loss does not decrease

in an epoch [32].

IV. THEORETICAL ANALYSIS

In this section, we will analyze and compare the spectrum

efficiency, energy efficieny, security performances and com-

plexity of the proposed DL-based OFDM-DCSK system with

the benchmark traditional OFDM-DCSK system [8], [9], the

OFDM code shifted DCSK (OFDM-CS-DCSK) system [33]

and the frequency-and-time hybrid-interleaving OFDM-DCSK

(FH-OFDM-DCSK) system [15].

A. Spectrum Efficiency Analysis

The spectrum efficiency is defined as the ratio of the bit rate

to the total bandwidth [34]. Let TOFDM denote the duration of

one OFDM symbol, and BOFDM represent the occupied band-

width of one OFDM symbol. Then, as presented in Section II,

since one OFDM-DCSK symbol is composed of K modulated

OFDM symbols, the duration of one OFDM-DCSK symbol is

expressed as T = KTOFDM . For the traditional OFDM-DCSK
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TABLE III
SPECTRUM EFFICIENCY COMPARISONS

TABLE IV
ENERGY EFFICIENCY COMPARISONS

system and the FH-OFDM-DCSK system, N − 1 bits will be

transmitted by a modulated symbol, while our proposed sys-

tem can transmit N bits in one symbol. Meanwhile, for the

OFDM-CS-DCSK system, the interval of each subcarrier are set

as the same as the forementioned three systems for comparison

fairness, thus the occupied bandwidth will be KBOFDM and

the duration will be TOFDM , and the number of transmitted bits

will be M with 1 ≤ M ≤ N − 1.

Subsequently, we can evaluate the spectrum efficiency of

the proposed system and benchmark systems. As shown in

Table III, since no reference chaotic sequences are transmitted

by any subcarrier, we can notice that the proposed DL-based

OFDM-DCSK system achieves higher spectrum efficiency than

the benchmark systems, especially when the number of exploited

subcarriers N is small.

B. Energy Efficiency Analysis

Let Eb denote the transmitted energy for each bit, Edata

and Eref respectively represent the energy of the data and

the reference signals. Then, the energy efficiency is defined as

the data-energy-to-bit-energy-ratio (DBR) Edata

Eb

[15]. Table IV

presents and compares the energy efficiency of the proposed

design and benchmark schemes.

For the DCSK system, since one modulated symbol is

the concatenation of one reference chaotic sequence and one

information-bearing chaotic sequence, we have Edata = Eref

and Eb = Edata + Eref = 2Edata, thus the energy efficiency

will be 1
2
. While in the traditional OFDM-DCSK system and the

FH-OFDM-DCSK system, one reference sequence is shared by

N − 1 information-bearing sequences, thusEref = 1
N−1

Edata.

Without loss of generality, we neglect the energy cost of CP, the

energy efficiency is calculated as Edata

Eb

= Edata

Edata+
1

N−1
Edata

=

N−1
N

, which is higher than that of the DCSK system as presented

in Section I. In the OFDM-CS-DCSK system, M information-

bearing sequences share one reference chaotic signal, thus the

energy efficiency will be M
M+1

, where 1 ≤ M ≤ N − 1. Finally,

for the proposed DL-based OFDM-DCSK system, since no

reference sequences are needed to be transmitted, we have Eb =
Edata and the energy efficiency will be 1, which demonstrates

the superiority of the efficiency of our design, especially when

N has small value in some vehicular Internet of Things (IoT).

C. Security Evaluation

Furthermore, we evaluate the security performances of the

proposed intelligent transceiver in terms of the information

leakage rate and the secrecy capacity. Without loss of generality,

we assume that the probabilities of transmitting 0 and 1 are equal,

then the information leakage Λ is calculated as [15]

İE,n(RE , S)

= Hn(RE)−Hn(RE |S)
= 1 + ρE,n log2(ρE,n) + (1 − ρE,n) log2(1 − ρE,n), (11)

Λ =
1

N

N−1∑

n=0

İE,n(RE , S), (12)

where İE,n denotes the mutual information between the trans-

mitted data S and the data retrieved by the eavesdroppers RE at

the nth subcarrier, Hn(·) represents the entropy operation, and

ρE,n denotes the BER at thenth subcarrier for the eavesdropping

receivers.

Based on the information leakage rate given by (12), the

secrecy capacity of legitimate users can be derived as

Csecrecy =
1

N

N−1∑

n=0

İL,n(RL, S)− Λ

= Hn(RL)−Hn(RL|S)− Λ

= 1 + ρL,n log2(ρL,n)

+ (1 − ρL,n) log2(1 − ρL,n)− Λ, (13)

where İL,n denotes the mutual information between the trans-

mitted data S and the data retrieved by the legitimate users RL

at the nth subcarrier, and ρL,n indicates the BER at the nth

subcarrier for the legitimate receivers.

Notably, if the potential eavesdroppers have known the key

features of signals such as the number of subcarriers, the symbol

duration and the symbol starting points, they can easily retrieve

the user data from the traditional OFDM-DCSK modulated sym-

bols with the aid of transmitted reference chaotic sequences. On

the other side, since no reference chaotic sequences are directly

transmitted in our design, the eavesdroppers can not utilize them

to retrieve the user data. Hence it becomes difficult for the

eavesdroppers to crack the chaotic modulated signals through

brute force methods thanks to the non-periodic, noise-like and

initial value sensitive characteristics of chaotic sequences. As a

result, the BER of the eavesdropping receivers will be high in

the proposed system, and lower information leakage and higher

secrecy capacity can be guaranteed by applying our design,

which will be demonstrated in the following Section V.

D. Complexity Analysis

Finally, we analyze the computational complexity of the

DL-based OFDM-DCSK system. In this paper, for fairness of
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TABLE V
COMPUTATIONAL COMPLEXITY COMPARISONS

comparisons, we apply the same complexity evaluation method

as that used in [15], [20]. Explicitly, the computational com-

plexity is defined as the total number of operations per symbol

conducted at both transmitters and receivers [15], [20], which

is expressed in terms of the asymptotic upper bound O(·). Sim-

ilar to the computational complexity analysis presented in [20]

and [35], considering that the DNN training is carried out offline,

we only evaluate the complexity at the online deployment stage

at which the proposed design is applied for the real time detection

of signals.

Let Cout,θ and αθ respectively denote the output feature

dimension and the convolution kernel width of the θth 1D-CL,

where θ = 1, 2, 3 and Cout,0 = 1, LLSTM represent the output

dimension of the LSTM unit, and LFC,1 represent the output

dimension of the first FC layer, then we evaluate the compu-

tational complexity of the proposed DL-based OFDM-DCSK

system and the benchmarks as provided in Table V.

For the OFDM systems, the computational complexity of

IFFT or FFT is O(N log2 N), and K times IFFT operations

are needed to generate an OFDM-DCSK symbol. For the pro-

posed transmitter, to generate an OFDM-DCSK symbol, the

computational complexity of IFFT or FFT is at the order of

O(N log2 N), and K times IFFT operations are needed. At

the receiver, N ×K multiplications are carried out to per-

form the channel equalization, and K times FFT operations

are required to recover the chaotic modulated sequences from

the received signals. Therefore, the complexity of modula-

tion, equalization and information-bearing chaotic sequences

recovery of the proposed DL-based OFDM-DCSK system

is O(2NK log2 N) +O(NK) = O(NK log2 N). Next, the

chaotic demodulation is conducted to recover the user data from

information-bearing chaotic modulated sequences without using

reference sequences.

After recovering the chaotic modulated sequences, they are

input to the proposed DNN for chaotic demodulation. The

number of operations of the θth 1D-CL has the complexity

of O(NKCout,θ−1Cout,θαθ), the complexity of the LSTM

unit is O(NKCout,3LLSTM ) +O(NL2
LSTM ), the complexity

of the first FCL is O(NLLSTMLFC,1), the complexity of

the BN layer is O(NLFC,1), and the complexity of the

second FCL is O(NLFC,1). Summing the computational

complexity of modulation, equalization, information-bearing

chaotic sequences recovery and DNN operations, we

can obtain the complexity of the proposed system as

O(
∑3

θ=1 NKCout,θ−1Cout,θαθ) +O(NKCout,3LLSTM ) +
O(NL2

LSTM ) +O(NLLSTMLFC,1) +O(NK log2 N).

Notably, at the online deployment stage, the dimension of each

layer remains invariant. Thus we can see that the complexity of

the proposed design is at the same level as that of the traditional

OFDM-DCSK system and the FH-OFDM-DCSK system.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to demonstrate

superior reliability and security performances of the proposed

intelligent OFDM-DCSK transceiver over vehicular channels

including fast fading channels and railway channels. Moreover,

the robustness of our design is also analyzed.

A. Simulation Settings

Considering that vehicles have high mobility, in the simula-

tions, the single-path fast Rayleigh fading channel, the multi-

path fast Rayleigh fading channel and the high-speed railway

channel are taken into account of simulated performance anal-

ysis.

To be explicit, for the single-path fast Rayleigh fading chan-

nel, the received signal r is expressed by r = g ⊙ s+ ι, where

s denotes the transmitted signal, g represents the channel coef-

ficients, ι denotes the additive noise and ⊙ means the element-

wise product operation. In this channel model, g = ψ1 + jψ2,

where ψ1 and ψ2 are independent and identically distributed

Gaussian random vectors having zero mean and unit vari-

ance, thus the normalized amplitude |g| =
√

ψ2
1+ψ2

2

2
follows

the Rayleigh distribution. Note that considering the mobility in

high-speed vehicular communications, the channel coefficient

is assumed to change at each time slot to reflect the fast fading

property [4]. Besides, each channel coefficient in g is also

assumed to be mutually independent because of large spatial

and velocity variations in vehicular information transmissions.

Thus the single coefficient exponential correlation matrix is an

identity matrix and the correlation coefficient equals zero [36].

Next, for the multi-path fast Rayleigh fading channel, the

received signal is modelled as rξ =
∑G

ω=1 gξ,ωsξ−ωτ + ιξ, ξ =
1, 2, . . . , N ×K, where rξ and sξ−ωτ respectively denote the

ξth and (ξ − ωτ)th element of r and s, gξ,ω represents the

Rayleigh channel coefficient of the ωth path when causing rξ,

ιξ is the additive noise, G indicates the path number and τ
means the length of time delay. Besides, each channel path has

the average power of E{(g2
ξ,ω)} = exp(1 − ω)E{(g2

ξ,1)}, ω =
1, 2, . . . , G[15], where the summed average power of each path

equals 1, i.e.,
∑G

ω=1 E{(g2
ξ,ω)} = 1.

Subsequently, for the high-speed railway channel, existing

research works have demonstrated that the Rician distribu-

tion can better describe the channel conditions experienced by

users, In this case, g is composed of a constant component

caused by line-of-sight propagation and a Rayleigh component

caused by non-line-of-sight propagation, which is defined as

g =
√

KRician

KRician+1
+
√

1
KRician+1

(ψ1 + jψ2), where the nor-

malized amplitude |g| follows the Rician distribution. Besides,

KRician represents the Rician K-factor, which can be modeled
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as a double-slope linear function as [5]

KRician(dist) =

⎧
⎨
⎩
ς1×dist+ς2×dist,dist≤distBP

ς3×dist+ς4×dist,dist>distBP ,

(14)

where dist and distBP denote the transmitter to receiver

distance and the break point distance respectively. In this

paper, the suburban high-speed railway scenario is applied,

thus ς1 = −0.027dB, ς2 = 8.48dB, ς3 = −0.0023dB, ς4 =
4.024dB, distBP = 200m, and the mean value of statistical

Rician K-factor KRician = 2.83dB [5] is adopted.

Moreover, in the following simulations, the length of CP is

long enough to eliminate the ISI, while both perfect channel

state information (CSI) and imperfect CSI are considered for

the performance analysis of the reliability, the security and

the robustness. Besides, in this paper, we use Python 3.6.4 as

the programming software and apply PyTorch 1.0.0 as the DL

framework, and the Intel Core i5-7300HQ is used for computa-

tions.

B. Data Set Discussion

As mentioned above, the data set is generated via simulations.

For fairness of comparisons, different lengths of the chaotic

sequencesK, numbers of subcarriersN , numbers of pathsG and

lengths of time delay τ between each two adjacent paths over

multi-path channels are applied to generate the data. Besides,

typical vehicular channel conditions, such as the fast fading

channels and railway channels, are considered to compose the

data set.

To be explicit, with consideration of the mobility of vehi-

cles, we respectively construct the single-path fast Rayleigh

fading channel, the multi-path fast Rayleigh fading channel

and the high-speed railway channel, wherein the fading coef-

ficients are assumed to vary at each time slot. Besides, different

values of G and τ and different channel conditions of the

multi-path Rayleigh fading channel are considered. Moreover,

both tropospheric and ionospheric signal propagation effects,

as well as the urban environment, are also considered in the

Rayleigh fading channels [37], [4], and the multi-path trans-

mission, which typically exists in the coordinated multi-point

transmission/reception scenario, is also simulated in the multi-

path Rayleigh fading channel [38]. Furthermore, a fast Rician

fading channel with the Rician factor KRician = 2.83 dB is

applied to model the fading behavior in the suburban high-speed

railway scenario [5], [6]. In addition, in order to analyze the

performances, different modulation parameters, i.e., K and N
are applied to compose the different data set for performance

comparisons.

Then we set the system parameters to generate information

bits randomly. Explicitly, 50 thousand received signals are gen-

erated via simulations as the training set of one epoch, and

50 training epochs in total are used to implement the offline

training of the DNN. At the online deployment stage, similar

procedure is conducted to evaluate the performances for the

proposed intelligent transceiver with the configured DNN based

demodulator, and to compare with the benchmark schemes.

Fig. 7. BER performance comparisons over single-path fast Rayleigh fading
channels with different values of K and N . (a) Single-path fast Rayleigh fading,
N = 4. (b) Single-path fast Rayleigh fading, K = 16.

C. BER Performance Comparisons

1) BER Performances Over Different Channels: Figures 7 -

9 illustrate and compare the BER performances under different

channel conditions and modulation parameters over single-path

and multipath fast Rayleigh fading channels and high-speed

railway channels. In the comparisons, we consider two cases

that the transmitter delivers or does not deliver the reference

chaotic signals, which are respectively labelled as “w/ ref.”

and “w/o ref.”. Besides, we also compare the performances

of the benchmark traditional OFDM-DCSK system [8] and

the OFDM-BPSK system [39] with no chaotic interferences

induced.

It can be observed from Fig. 7 and 9 that the proposed intel-

ligent transceiver outperforms the OFDM-DCSK system [8] no

matter where the reference chaotic signal is delivered or not over

fast fading channels with different values of K and N . Besides,

we can notice that at higher Eb/N0, the BER performances

of the proposed system can even be better than those of the

OFDM-BPSK system [39] thanks to the intelligently optimized

DNN based demodulator. Moreover, it is also noticeable that
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Fig. 8. BER performance comparisons over multi-path fast Rayleigh fading
channels with different path numbers and time delays. (a) Multi-path fast
Rayleigh fading, N = 4,K = 16, τ = 4. (b) Multi-path fast Rayleigh fading,
N = 4,K = 16,G = 2.

when the reference chaotic sequence is directly delivered to the

receiver, thanks to the additional information input to the DNN,

the proposed intelligent chaotic transceiver can achieve better

BER and higher reliability performances for small to medium

values of K, although the security performances are deterio-

rated. However, when K is large enough, we can notice that

the BER performances of the system with no reference signals

become better than those of the system delivering reference

signals. The reasons are that on the one hand, the DNN can learn

and extract sufficient features of mapping pattern for generating

the chaotic sequence to mitigate the absence of the knowledge

about the reference signal, on the other hand, the interferences

from the reference signals are removed. Furthermore, it can

be seen that for larger value of N , since more exact features

can be extracted from signals received from larger number of

subcarriers, lower BER can be attained. By contrast, for the

OFDM-BPSK system, when N becomes larger, inter-carrier

interferences increase accordingly, thereby leading to higher

BER, especially at lower value of Eb/N0.

In addition, as illustrated in Fig. 8, we also investigate the

BER performances of the proposed system with different G and

Fig. 9. BER performance comparisons over high-speed railway channels with
different values of K and N . (a) High-speed railway channel, N = 4. (b) High-
speed railway channel, K = 16.

τ over multi-path fast Rayleigh fading channels. It can be seen

that the proposed DL-based systems outperform the traditional

OFDM-DCSK system. Meanwhile, we can observe that whenG
or τ becomes larger, the BER performances degrade accordingly.

Notably, the noise floor might appear at highEb/N0 due to the

removal of the reference chaotic signal. To address this issue,

a promising method is enlarging the dimension or number of

1D-CLs to improve the feature extraction capability of DNN,

while another choice is selecting largerK. As shown in Figs. 7(a)

and 9(a), as K increases, the noise floor of the proposed system

becomes lower and almost disappears.

2) Performance Comparisons With the Benchmarks: Subse-

quently, in Fig. 10, we compare the BER performances of the

proposed design with those of the benchmark improved DCSK-

based systems, including the OFDM-CS-DCSK system [33]

and the FH-OFDM-DCSK system [15], over single-path and

multipath fast Rayleigh fading channels and high-speed railway

channels. From Fig. 10(a) to (c), we can notice that when

transmitting signals over fast fading channels, the proposed

DNN-aided demodulator can obtain better BER performances

compared with the benchmark schemes, regardless of whether
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Fig. 10. BER performance comparisons with the benchmark modified systems
over different channels. (a) Single-path fast Rayleigh fading, N = 4, K = 16.
(b) Multi-path fast Rayleigh fading, N = 4,K = 16, τ = 4. (c) High-speed
railway channel, N = 4, K = 16.

the reference chaotic sequence is delivered or not. The reason is

that the intelligent demodulator design has the powerful learning

and feature extraction capabilities, thus exhibiting higher adapt-

ability to high speed transportation and providing more reliable

transmission performances.

It is worth mentioning that the diversity gain achieved by

the FH-OFDM-DCSK system become negligible for users

with high mobility, since the channel conditions vary so fast

Fig. 11. BER performance comparisons of the legitimate users and the eaves-
droppers in the OFDM-DCSK system with or without transmitting reference
sequences, where K = 16 and N = 4.

that the transceiver can hardly attain the diversity. Hence

we here propose the DNN-aided demodulator to improve the

performances.

D. Security Performance Comparisons

1) Security Performances in the OFDM-DCSK System:

Firstly, we investigate the BER performances of the legitimate

users and the eavesdroppers in the OFDM-DCSK system with

or without transmitting reference sequences. Here we assume

that the key signal features such as the number of subcarriers,

symbol duration and symbol starting points have been known

by the potential eavesdroppers.

As shown in Fig. 11, for the traditional OFDM-DCSK system

transmitting reference sequences, the eavesdroppers can obtain

similar BER to the legitimate users when both of them use

conventional correlators [8] for demodulation. The reason is that

due to broadcasting property of vehicular channels, the eaves-

droppers might retrieve the reference sequences and then obtain

the user data. By contrast, when applying the proposed DNN for

chaotic demodulation, the legitimate users can achieve reliable

information recovery with low BER, which is much lower than

the BER of the eavesdroppers using the same demodulation

method. This is because the legitimate users can train the DNN

with the correct training set, while the eavesdroppers have to first

estimate the bits from the received signals and then utilize them

as training set, which will cause accumulated error. Moreover,

if no reference sequences are delivered, the eavesdroppers can

hardly retrieve the user information even they have known the

key signal features, because of the non-periodic, noise-like and

initial value sensitive characteristics of chaotic sequences and

the difficulty in cracking the chaotic modulated signals without

the knowledge of the reference sequences. Note that the legiti-

mate users can still achieve satisfactory BER performances.

Next we evaluate the secrecy capacity of legitimate users

with (12) and (13). From Fig. 12(a), we can observe that the

information leakage in the traditional OFDM-DCSK system

gradually increases as the Eb/N0 becomes higher and is close
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Fig. 12. Security performance comparisons in the OFDM-DCSK system
with or without transmitting reference sequences, where K = 16 and N = 4.
(a) Information leakage comparisons. (b) Secrecy capacity comparisons.

to 1 at last, which means the potential eavesdroppers can re-

trieve the user information at high Eb/N0 with the aid of

transmitted reference sequences. By contrast, for the proposed

DL-based OFDM-DCSK system, the information leakage al-

ways maintains at a low level, which demonstrates that the

eavesdroppers can hardly obtain the transmitted information

since they have to directly crack the information-bearing chaotic

sequences, thus the secure communication services can be

provided.

To elaborate a bit further, as shown in Fig. 12(b), for the system

transmitting reference sequences, when the legitimate users

use the proposed DNN-aided demodulator, they can achieve

relatively high secrecy capacity at low and medium Eb/N0

thanks to better BER performances, while the secrecy capac-

ity still decreases after 16 dB since the information leakage

become aggravated at high Eb/N0. By contrast, if no refer-

ence sequences are delivered, the secrecy capacity of legit-

imate users can still maintain a high level at high Eb/N0.

Finally, for the traditional OFDM-DCSK system, the secrecy

capacity of legitimate users is always close to zero. Therefore,

Fig. 13. BER performance comparisons of the legitimate users and the eaves-
droppers in the proposed and the benchmark systems with K = 16 and N = 4.

the proposed DL-based OFDM-DCSK system can effectively

increase the secured information rate and improve the security

performances.

2) Security Performance Comparisons With the Benchmarks:

Next we compare the security performances with the benchmark

OFDM-CS-DCSK [33] and FH-OFDM-DCSK [15] systems.

For fairness of comparisons, we assume that the transmitter de-

tails can be learned by all users in considered systems. Explicitly,

we assume that eavesdroppers can occasionally learn the Walsh

code sequences utilized in OFDM-CS-DCSK system, and the

frequency hopping pattern applied in the FH-OFDM-DCSK sys-

tem. It can be observed from Fig. 13 that the proposed intelligent

DNN aided system can provide better security performances

than benchmark schemes.

Then, we evaluate and compare the secrecy capacity of the

proposed system and the two benchmark systems. As shown

in Fig. 14(a), the information leakage rate of the benchmark

systems gradually increases to a certain value as the Eb/N0

becomes higher since eavesdroppers can learn the key informa-

tion. By contrast, the proposed design can keep the information

leakage at lower rate. Besides, it can be observed from Fig. 14(b)

that the proposed system can provide higher secrecy capacity at

medium and high Eb/N0.

E. Robustness Analysis

In the simulations presented above, the CSI at both the offline

training stage and the online deployment stage is assumed to

be perfect. However, in practical systems, the CSI might be

imperfect due to imperfect operating conditions of functional

modules, which can be modeled as [40], [41]

ĝ = ϕg +
√

1 − ϕ2ε, (15)

where ĝ represents the estimated channel coefficient, g de-

notes the actual channel coefficient, ϕ indicates the corre-

lation coefficient ranging from 0 to 1, which determines
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Fig. 14. Security performance comparisons of the proposed and the bench-
mark systems with K = 16 and N = 4. (a) Information leakage comparisons.
(b) Secrecy capacity comparisons.

the accuracy of channel estimations, and ε is a com-

plex Gaussian random variable with zero mean and unit

variance.

Namely, when ϕ = 1.0, the perfect channel estimation and

the exact CSI can be provided for the receivers. In this case,

the channel conditions used at the training stage perfectly

match the conditions applied for practical deployment. When

ϕ < 1.0, the channel estimation is imperfect and will lead to

the divergence between training and deployment conditions.

Obviously, for smaller ϕ, the forementioned gap will become

wider, leading to performance degradations.

It can be observed from Fig. 15 that the proposed DL-based

OFDM-DCSK system can always maintain better BER per-

formances than the traditional OFDM-DCSK system whatever

the value of ϕ is. However, as ϕ decreases, the performance

gain achieved by the DL-based systems also declines. The

reason is that since the transmission characteristics learnt at

the training stage do not match the transmission conditions

at the deployment stage, the performance of the DNN-based

Fig. 15. BER performance comparisons over single-path fast Rayleigh fading
channel with imperfect CSI, where K = 16 and N = 4.

receiver will degrade and the features can not be correctly

extracted.

Last but not the least, it is worth mentioning that in practical

systems, we usually have ϕ > 0.95 to guarantee the normalized

mean-square error E( ‖ĝ−g‖2

‖g‖2 ) be lower than 0.1 even when the

signal to noise ratio is 0 dB [42], [43]. Hence, the robustness

of the proposed design can meet practical user demands in

vehicular communications.

VI. CONCLUSION

In this paper, considering that vehicular communications suf-

fer from weak security due to the broadcasting property of ve-

hicular channels, and interferences induced by mobility of users

and fast fading of channels, we propose a reliable and secure

intelligent chaotic receiver. In this design, we propose to remove

the delivery of the reference chaotic signals at the transmitter

to improve both the efficiency and the security performances.

Then we propose a DNN to construct an intelligent demodulator

to enhance the reliability performances. In the proposed DNN,

we apply a TDNN composed of three 1D-CLs to learn and

extract the features of mapping pattern for chaotic sequence

generation, and then we employ a bi-directional LSTM layer

to capture and formulate the correlation characteristics between

chaotic modulated sequences, followed by two FCLs with one

BN layer inserted between them to attain the data estimates. Af-

ter the offline training, the proposed DL-based communication

system is configured with the optimized trainable parameters.

Then at the online deployment stage, the optimized transceiver

can provide reliable and secure information transmissions for

vehicular users. Simulation results under different conditions

demonstrate that the proposed DL-based OFDM-DCSK sys-

tem achieves better BER and security performances than the

benchmark traditional OFDM-DCSK, OFDM-CS-DCSK and

FH-OFDM-DCSK systems over vehicular channels such as

high-speed railway channels. Therefore, the proposed intelligent

design can provide more reliable, secure and efficient services

for vehicular user equipments.
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