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Abstract—Chaos-based communications can be applied to high-
speed vehicular information transmissions thanks to the anti-
jamming and anti-interference capabilities of chaotic transmis-
sions. In traditional practical chaotic systems, reference chaotic
signals are required to be delivered to remove complex chaotic syn-
chronization circuits. However, the direct transmission of reference
signals will degrade the security performances, while interferences
and noises imposed on the reference signals due to imperfect
channel conditions will deteriorate the reliability performances.
In order to enhance the reliability and security performances over
vehicular channels such as the railway channel and the channels
undergoing fast fadings, in this paper, we propose a deep learning
(DL) aided intelligent OFDM-DCSK transceiver. In this design, no
reference chaotic signals are delivered, and we propose to utilize
the time-delay neural network (TDNN) to learn the chaotic maps,
followed by the long short-term memory (LSTM) units to extract
and exploit the correlations between chaotic modulated signals,
and multiple fully connected layers (FCLs) to estimate the user
bit data. With the aid of the constructed deep neural network
(DNN), after the offline neural network training, the receiver can
recover the transmitted information with lower bit error rate (BER)
and enhance security performances. Theoretical performance is
then analyzed for the proposed intelligent transceiver. Simulation
results validate the proposed design, and demonstrate that the
intelligent DL-based OFDM-DCSK system can achieve better BER
and security performances over fast fading and railway channels
compared with the benchmark systems.
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1. INTRODUCTION

WING to the non-periodic, noise-like and initial value
O sensitive characteristics of chaotic sequences, chaos-
based communications have been widely applied to provide
secure and anti-jamming transmissions for wireless systems. For
instance, the aperiodic chaotic sequences have been applied to
modulate user data in practical systems such as ultra-wide-band
(UWB) communication systems and power line communication
systems [ 1], [2] to enhance security and reliability performances.

In recent years, empowered by the sixth-generation mobile
communication system (6G), high-speed vehicular communi-
cations have been proposed to be applied in higher data rate
applications, such as on-board and wayside high definition (HD)
video surveillance, on-board real-time high-data-rate connec-
tivity, and train operation information transmission, etc., to
promote the development of intelligent transportation [3]. How-
ever, the vehicular information transmissions have to combat
complicated time changing fadings induced by the mobility of
users, which can be well modeled by fast fading channels such
as Rayleigh fading channel [4] or Rician fading channel [5], [6].
Besides, due to the broadcasting property of vehicular channels,
the mobile users might suffer from eavesdropping or malicious
attacks.

Chaos-based transmissions can effectively mitigate the inter-
ferences and improve the security performances, which provide
the promising solutions for reliable and secure high-speed ve-
hicular information transmissions. Chaotic modulation meth-
ods can be classified into coherent and non-coherent schemes.
Since non-coherent systems do not require the complicated
synchronization circuit that is difficult to be implemented in
practical systems, they have attracted more research interests
than coherent systems. Among non-coherent chaotic modulation
schemes, differential chaos shift keying (DCSK) [7] has been
widely studied, which can provide reliable transmissions with
low complexity. However, since half of the symbol duration is
used to transmit reference chaotic sequences, DCSK systems
suffer from the low spectrum efficiency and require delay lines.
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To improve the efficiency and remove the delay line, the
orthogonal frequency division multiplexing (OFDM) has been
applied in DCSK systems to compose the OFDM-DCSK
scheme [8]. In OFDM-DCSK systems, the reference chaotic sig-
nals are delivered via specific one or more subcarriers. Due to the
naturally broadcasting property of wireless channels, malicious
users or eavesdroppers might retrieve the data, and thus the direct
delivery of chaotic signals will degrade the security of chaotic
communication systems. Moreover, multicarrier interferences
will increase due to the delivery of real-valued chaotic signals,
which lead to reliability degradations [9], especially over fast
fading channels.

In order to enhance the reliability and the security perfor-
mances of chaotic systems, research works have been performed
to improve the transceiver structures. For example, in [10]
and [11], the chaotic sequences were scrambled in the time
domain to enhance the security performances of the DCSK
systems. However, the delay line circuits are still required for
the demodulation, thus the practicality is weak. Besides, [12]
proposed to scramble the chaotic sequences in the frequency
domain instead of the time domain, but it suffers from low spec-
trum efficiency since only half of spectrum bands are exploited
to transmit the information-bearing symbols. In addition, the
chaotic sequences are cyclic shifted in [ 13] to enhance the system
security. Besides, in [14], the information bits are transmitted
by specific indices of selected Walsh codes implicitly, thus no
reference chaotic signal is required and the energy efficiency can
be improved. In our recent research works, we exploited the fre-
quency hopping to scramble the chaotic modulated sequences to
increase the security and the reliability performances [15]. Fur-
thermore, in [16], we utilized chaotic sequences to implement
the position modulation without transmitting reference chaotic
signals, thus both the efficiency and the security performances
can be improved.

However, most of these improved chaotic modulation
schemes still require to deliver reference chaotic signals. For
those few schemes [14], [16] dispensing with the reference
signals, they need to add signal processing modules to guarantee
the reliability performances, which increase the complexity
and hardware cost. Our objective is to remove the require-
ment of the delivery of chaotic signals with high adaptability
to existing schemes, and then to improve both the security
and the reliability performances. Different from the traditional
chaotic transceivers, we propose to remove the delivery of
reference chaotic signals at the transmitter, then we propose
a deep neural network (DNN) architecture to intelligently ex-
tract the characteristics of reference chaotic signals embed-
ded in received chaotic modulated signals, which are deliv-
ered via multiple subcarriers. Thus the received signals can be
recovered intelligently with enhanced reliability and security
performances.

In this design, we utilize the powerful optimization and
classification capabilities of DNN to determine the estimates
for received data. Different from the DNN applied for the
channel estimation [17], modulation recognition [18], demod-
ulation [19], and end-to-end communication [20], and differ-
ent from our recent work on the DNN aided chaotic receiver
design [21], in this paper, we propose a DNN architecture
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constituted by one time-delay neural network (TDNN) [22],
two recursive long short-term memory (LSTM) units [23] and
multiple fully-connected layers (FCLs). The TDNN consists of
three one-dimensional convolutional layers (1D-CLs), which
aim to find the mapping pattern of chaotic sequences and to
extract the features. Then LSTM units are utilized to find and
exploit the correlation relationship between the received chaotic
modulated signals. Subsequently, the estimates can be recovered
and output from FCLs.

For the proposed intelligent chaotic transceiver without deliv-
ery of reference chaotic signals, at the training stage, the DNN
will gradually learn to extract the chaotic sequence features
and to formulate an optimized demodulation mapping. Then,
at the online deployment stage, with the configured trainable
parameters, the user data can be reliably recovered in real time
from the received signals with no use of reference chaotic
signals. Since no reference chaotic sequences are transmitted,
both the efficiency and the security can be improved. Moreover,
thanks to the powerful learning and generalization capabilities
of DNN, the proposed design can adapt to complicated time
changing conditions, thus better reliability performances can be
obtained over fast fading channels.

Briefly, the main contributions include the following:

1) We propose an intelligent deep learning (DL)-based
OFDM-DCSK transceiver with no need of delivery of
reference chaotic sequences to improve the efficiency, reli-
ability and security performances over vehicular channels
such as the railway channel.

2) We construct the DNN architecture for demodulations
with considerations of the chaotic modulation character-
istics. In the proposed architecture, the TDNN is applied
to learn and extract the features of the mapping pattern of
generating the chaotic sequences, while the LSTM units
are utilized to find and exploit the correlation relationship
between the received chaotic modulated signals to recover
the received user data.

3) We propose the hyperparameter selection criterion. Then
theoretical performances including the spectrum effi-
ciency, the energy efficiency, the security performance
and the complexity are analyzed. Moreover, we provide
the data set collection method considering the fairness of
performance comparisons.

This paper is organized as follows. Section II presents
the transceiver structure of the DNN-based OFDM-DCSK
transceiver. Then, in Section III, we describe the architecture
of the proposed DNN and the operating principle of each layer,
while the hyper-parameter selection criterion is also provided.
Next, Section IV analyzes the spectrum efficiency, energy ef-
ficiency and security performances of the proposed system.
Subsequently, the data set generation is discussed in Section V,
followed by the simulation results for analysis of BER, security
and robustness performances. Finally, Section VI concludes our
findings.

II. DL-BASED OFDM-DCSK TRANSCEIVER

In this section, we will present the structure of the proposed
DL-based OFDM-DCSK transceiver.
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Fig. 1. The proposed transmitter structure.

A. The Transmitter Structure

Fig. 1 illustrates the transmitter structure of the proposed
system. The user data are modulated by the binary phase shift
keying (BPSK) at first. In the meantime, considering that the
second-order Chebyshev polynomial function (CPF) possesses
complex dynamic properties and low computational complex-
ity [24], we apply the CPF to generate the chaotic sequence x
of length K. The generated chaotic sequence is expressed as

rp=1-227 ,, O0<k<K-I, (1)
where x;, denotes the kth chip of x and is in a range of —1 to 1,
while the initial value x_; is uniformly distributed between —1
and 1.

Then, after the serial to parallel (S/P) conversion, at the kth
chip time slot, the nth BPSK symbol is modulated by the kth
chaotic chip as

Cn,k = dnl‘k, (2)

where d,, represents the nth BPSK user data symbol with 0 <
n<N-—1.

Subsequently, the inverse fast Fourier transform (IFFT) op-
erations are performed on the chaotic modulated symbols ¢
to ¢y—1,k to modulate the information-bearing symbols onto NV
available subcarriers, then we have

1 e
= 7 D cnae’ ¥, 3)

where s; ;. is the resultant ¢th OFDM symbol at the kth chip
time slot with 0 <¢ < N — 1, j is the imaginary unit with
j* = —1. After the IFFT operations and the parallel to serial
(P/S) conversion, a copy of the tail of OFDM-DCSK modulated
signal s, named as the cyclic prefix (CP), is added in front
of s to mitigate the possible inter-symbol interference (ISI).
Subsequently, the signals are transmitted over the channel.

Notably, different from the traditional OFDM-DCSK trans-
mitter [8], all subcarriers are used to deliver chaotic modulated
signals, and no reference chaotic sequences are transmitted.
Thus both the efficiency and the security performances can be
improved.
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Fig. 2. The intelligent DNN-aided receiver structure.

B. The Receiver Structure

At the receiver side, as shown in Fig. 2, after the CP removal,
the equalization is performed to suppress the inter symbol inter-
ference, and zero-forcing and time domain equalizers are applied
in this paper. Subsequently, the serially received signal at the
kth chip time slot are converted to parallel information subsets
70, t0 N1 . Then, fast Fourier transform (FFT) operations are
performed to extract the information-bearing chaotic modulated
symbols in the frequency domain, which is expressed as

27

1 N-1
/ _ —J n
Cnk = —F—= rige TN 4)

where ¢, i, denotes the recovered nth chaotic modulated symbol
at the kth chip slot.

Next, ¢/o; to ¢ n_1 are buffered, and then they are con-
catenated with the chaotic modulated symbols in the whole K
chip slots to constitute the information-bearing sequences y,, =
[C/n’Q, - 7C/n,ka RN Clnnyl] (0 <n<N — 1) After that, y,,
acts as the inputs to the proposed intelligent DNN-based de-
modulator to attain the data estimates. Note that as mentioned
above, with the proposed DNN, the received data can be recov-
ered intelligently and reliably. More details about the proposed
DNN-aided intelligent demodulator are presented as follows.

III. LSTM-BASED DEEP LEARNING DEMODULATOR

In this section, we present the DNN architecture of the
proposed DNN-aided demodulator, and describe the operation
principle of each layer. Subsequently, the training procedure and
the hyper-parameter configurations for the DNN are introduced.

A. Architecture of DNN-Aided Demodulator

Fig. 3 illustrates the proposed architecture of the DNN em-
ployed in the DNN-aided demodulator. The DNN is composed
of three 1D-CLs, two recursive LSTM units, two FCLs, and
one batch normalization (BN) layer. As mentioned above, at the
receiver, after buffering and concatenating the recovered chaotic
modulated symbols ¢/ n,k in K chip time slots, the resultant
recovered information-bearing chaotic sequences yo to yn_1,
which contain the information of N data bits, are input to the
DNN for the data recovery.

To be more explicit, the input vector y,, is first processed
by the TDNN consisting of three 1D-CLs to find the mapping
pattern and extract the features of chaotic sequences. The reason
why we select the TDNN is that the TDNN is capable of
processing one-dimension data, while most convolutional neural
networks are proposed to process two-dimensional data. With
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Fig. 3. The neural network architecture of the DNN-aided demodulator.

the aid of the TDNN, the proposed DNN aided demodulator
is able to capture the temporal features of chaotic modulated
sequences having the property of one dimension. Owing to
the powerful temporal dynamic behavior capture capability,
the TDNN can intelligently formulate the chaotic dynamics
characteristics. The resultant feature vector y’, is then input to
the following bi-directional LSTM layer.

As shown in Fig. 3, the bi-directional LSTM layer includes
one forward LSTM unit and one backward LSTM unit, which
respectively perform the forward and backward recursive non-
linear operations on the feature vectors in turn to capture the
correlations between chaotic modulated sequences. By exploit-
ing the memory cells in the LSTM unit, the features of the
strong correlations between the input feature vectors which
are correlated to the same reference chaotic sequence can be
extracted while the noises can be suppressed.

Next the output feature vectors [ar,,,ap n] of the forward
and backward LSTM units are concatenated and sent to the
subsequent two FCLs to determine the estimates of information-
bearing vectors, while one BN layer is applied between them
to mitigate the vanishing and exploding gradient effects and
accelerate the convergence. After multiple linear and nonlinear
operations are conducted, the probability of data bit will be
calculated and the probability vector p’,, will be generated. Note
that p’,, contains two elements p’,, ; and p’,, ;, which separately
denote the probability that the nth transmitted bit data is O or 1.
Then according to the index of the largest element of p’,,, the
proposed DNN can provide the estimate of the user data bits.
More details about the operations conducted in DNN layers are
presented as follows.

B. Operations Conducted in DNN Layers

1) ID-CL: In this paper, we apply three 1D-CLs to com-
pose a TDNN similar to [22], where C,,; means the output
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Fig. 4. The structure of the TDNN.

feature dimension. Note that in our proposed DNN, we use
Cout = 4,8,16. As shown in Fig. 4, each convolution kernel
will process « adjacent elements of the input along the time
axis in turn to capture the temporal dynamic behavior within
« time slot, which matches the characteristics that most chaotic
sequences are generated from difference or differential equations
and have specific temporal features. Besides, the 1D-CL in the
higher layer of the employed TDNN will apply convolution
kernels with larger quantity and width. Therefore, both the
short-term and long-term temporal behaviors of y,, will be learnt
and exploited to compress the time dimension and enlarge the
feature dimension. Finally, the output matrix is reshaped to
a one-dimensional feature vector y/ and sent to the follwing
LSTM units.

To be specific, as shown in Fig. 4, in the TDNN, the inputs of
a 1D-CL are usually two-dimensional matrices which consist of
a time axis and a feature axis, and the convolution kernels in the
1D-CL will sequentially perform the convolutional operations
on each adjacent elements of the input along the time axis.
For brevity, in this paper, the row denotes the feature axis
and the column represents the time axis. Notably, the width in
the time axis of a convolution kernel is decided by the user while
the height in the feature axis is always the same as the feature
dimension of the inputs. Let m denote the input of 1D-CL and
m’ represent the output, then each element m/; ; of m’ can be
calculated as

Cin—1a—1 )
! 7
m'ij = om | Y Zw(c’x,v,umu,m +bmyiy |, )

v=0 u=0

where m/; ; denotes the element of ith row and jth column of
m' and m,, ;. represents the element of vth row and (j + u)th
column of m, wg)K ., 18 the element of vth row and uth column

of the ith convolution kernel, by, /; ; means the bias of m/; ;, «
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Fig. 5. The structure of an LSTM unit.

denotes the width in time axis of the convolution kernel, C;,,
represents the feature dimension of the input, and oy (+) is the
activation function applied in the 1D-CL. Notably, wgi(vu and
bm,i,; are the trainable parameters that can be learnt and adjusted
through the neural network training. Besides, the rectified linear
unit (ReLU) activation function is applied in all three 1D-CLs to
enable complicated nonlinear mappings and mitigate vanishing
gradient effects [25], which is expressed as

ReLU(x) = max(0, x), ©)

Because of the convolution operations, the width of m’ will
be smaller than that of m as long as a > 1. Thus as shown
in (5), one convolution kernel will exploit the whole feature
dimension and compress the time dimension of the input, and
then output a vector with smaller time dimension value and
feature dimension value equaling to 1. It is worth mentioning
that since one convolution kernel generates one vector along the
time axis, we can compress the output feature dimension, i.e.
the maximum value of ¢, by using fewer convolution kernels, or
enlarge it by applying more convolution kernels.

2) LSTM Unit: Asillustrated in Fig. 5, after obtaining the vth
external input vector y!, and the (v — 1)th output vector a1,
the vth output vector a,, of an LSTM unit is calculated as [23]

f, = sigmoid(Ws - [a,_1,y,] + bg), (7a)
3, = tanh(Wy - [a,_1,y,] + by), (7b)
i, = sigmoid(Wj - [a,_1,y,] + b;), (7¢)
Y =£ 071 +i, 07, (7d)
o, = sigmoid(W, - [a,_1,¥,] + bo), (7e)
a, = o, ® tanh(vy,), (71)

where [a,_1,y,,] is the concatenation of a,_; and y!, and acts
as the vth input vector of the LSTM unit, and =, _; denotes
the memory cell that stores the useful information in previous
operations. Meanwhile, f,, i,, o, are the Forget Gate, Input
Gate, Output Gate respectively and <, represents the optional
update value, all of which are generated from the vth input vector
and used to update the memory cell and generate the output
vector in the current iteration. To be more explicit, f,, eliminates
the unnecessary parts of =, _; and retains the valuable parts,
v, provides the useful information extracted from the vth input
vector, and i,, controls the exploited parts in ,, to update v, ;.
Then, as shown in (7d), the updated memory cell «y, in this
iteration is calculated. After that, the vth output vector a, is
generated from tanh(-y, ) with the aid of o,, that determines the
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Fig.6. Theunfolded operations of the employed forward and backward LSTM
units.

output part of tanh(-y, ). At last, a,, is also utilized to compose
the next input vector and calculate the output vector in (v + 1)th
iteration.

Except for the forementioned symbols, W¢, by, W, b,,
W;, by, W, b, are all trainable parameters that are learnt
and adjusted through the neural network training, sigmoid(-)
represents the sigmoid activation function where sigmoid(y) =
L tanh(-) means the tanh activation function where

i
I+exp(—
tanh() %, and ® denotes the element-wise

product operation. To facilitate the illustration of the employed
bi-directional LSTM layer, we visualize and unfold the recursive
operations of the forward and backward LSTM units as Fig. 6. At
each iteration, one external input vector is concatenated with the
last output vector and acts as the input for the current iteration.
Then, the output vector is generated with the aid of the useful
information recorded in previous iterations and stored in the
inherited memory cell. Meanwhile, the memory cell is also
updated for the next iteration. Owing to the recursive working
procedure and the memory cell, the LSTM unit can exploit the
knowledge extracted in previous operations to better learn and
capture the dynamic behavior and the correlations between the
input vectors.

However, if only one LSTM unit is employed, less knowledge
can be utilized by the input. To address this issue, we apply two
LSTM units to process the external input vectors in different
directions. The operations conducted by the forward and the
backward LSTM units are the same as mentioned above, while
the only difference between them is the processing order for
the external input. As shown in Fig. 6, the first external input
vector of the backward LSTM unit is y’y_, and the last one
is yg, which is opposite to the forward LSTM unit. By this
means, all the input vectors can utilize complete knowledge
generated from the other external input vectors. Notably, both
the ap 1 and ap y are set to be 0 to compose the initial
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input vectors for the forward and the backward LSTM units
separately.

Besides, from Fig. 6, we can notice that the output feature
vector of the bi-directional LSTM layer is not only dependent
on the current external input vector, but also decided by the
information recorded in different iterations and stored in the
memory cells, which is in consistent with the characteristics of
the proposed OFDM-DCSK system that the information-bearing
chaotic sequences are correlated to each other owing to the
chaotic modulation with the same reference chaotic sequence
x. Therefore, with the aid of the bi-directional LSTM layer, the
correlation features between the recovered information-bearing
chaotic sequences can be extracted to enhance the reliability
performances.

3) Fcl: In the following two FCLs, the output vectors of the
LSTM units will be further processed to implement the data bit
estimation. Let 8 denote the index of the FCL, i.e., 8 = 1,2,
then for the input vector zg of the Sth FCL, the output vector
7’3 is calculated as

z's = 03(Wp - 25 + bg), (8)

where W 3 and bg are the trainable parameters of the Sth FCL
that will be learnt and adjusted through the neural network
training, and o(+) represents the activation function employed
in the Sth FCL.

To be more explicit, when [ = 1, the input vector z; =
[apm, ap ), which is the concatenation of the output feature
vectors of the forward and backward LSTM units, while the
output vector z'; = a,. Besides, no activation function is ap-
plied in this FCL, i.e., o1(x) = x. Additionally, when 5 = 2,
the input vector z, = p,,, where p,, is the standardized vector
from the BN layer which will be introduced later, while the
output vector z', = p!,. It is worth mentioning that the softmax
activation function is applied in the 2nd FCL, which is expressed
as

softmax(x,) = exp—(Xu) 9)

D orex XP(Xw)’

where Y, is the uth element of the vector x. After processing by
the softmax activation function, the value of each element of p/,
will be constrained between 0 and 1 while maintaining the sum
as 1. In other words, the softmax activation function applied in
the last FCL enables it to learn to calculate the probability of
the data bit carried by the information-bearing sequences, then
the generated probability vector p!, is exploited to determine the
estimates of the user data bits.

4) BN Layer: A BN layer is employed between the two
FCLs to standardize the input vector for efficient neural network
training. As shown in Fig. 3, let a/, denote the input vector
of the BN layer and p,, represent the output vector, then the
standardization process is expressed as [26]

a',,.c —mean(d,
P = oy | 8 % Lo (@) 2. o
var(a'n,c) + €

where a',, ¢ and p,, ¢ are the (th elements of aj, and p,,, while
mean(a’y ¢) and var(a', ¢) represent the mean and variance of
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the (th element of the input vector a/, respectively, which are
learnt and estimated during the training stage and then directly
used at the deployment stage. In addition, ¢ = 107 is a small
constant applied to avoid the denominator from becoming zero,
opn(+) is the activation function employed in the BN layer,
which is set as the ReLLU activation funtion (6) in this paper, and
0 and 7 are the trainable scale and shift factors used for possible
distribution recovery if needed.

After performing standardizations, each element of the input
vector is normalized to the range with zero mean and unit
variance, wherein the activation functions applied in the DNN,
such as sigmoid, tanh and softmax, will have high gradients
when updating the trainable parameters by the back propagation
algorithm during the training. Therefore, the vanishing and ex-
ploding gradient problem can be alleviated and the convergence
process can be accelerated. However, the standardizations will
change the distributions of input vectors, leading to the loss
of information. To address this issue, we apply the scale and
shift factors to recover the original distributions, which can be
adjusted during the training, thus the strength of standardizations
can be controlled to achieve the trade off between convergence
acceleration and information preservation.

C. Neural Network Training of DNN

At the offline training stage, the training data set provides the
known input and output data for the DNN to learn and formulate
the parameter configurations for the performance optimization.
During the training, by using the back propagation algorithm,
the DNN calculates the derivatives of the differences between
the actual output and known knowledge with respect to trainable
parameters which are then utilized to update the parameters by
the selected optimization algorithm. Along with the iterative
updating of parameters, the differences will decrease gradually
and converge to a previously specified threshold.

Explicitly, in our design, the received chaotic sequences y,, =
[€n.0,Cnts ey nk-1],(0 <n <N —1) are applied as the
training samples and the data bits d = [d,, d,, ..., dn_1] act as
the known output. After the neural network training, we can
formulate and establish the mapping from y,, to the estimates
c?n with the aim of minimizing the differences between d and
d= [UTO, R Jn, e JN,l], which can be evaluated by the loss
function. Here we generate the training data set and the test
data set via simulations. Thanks to the statistical randomness of
the noises and fading amplitudes, the data splitting and the data
augmentation are not required to enrich the data set. More details
about the data set generation used for simulations are discussed
in Section V-B.

D. Hyper-Parameter Selection

The hyper-parameter selections have great impacts on the
learning capability, the complexity, the convergence rate, etc.,
of the DNN. In this subsection, we select four typical hyper-
parameters for discussions of the influence of the hyper-
parameter selection on the performances.

1) Output Dimension of Each Layer: The output dimension
of each layer for the employed DNN is presented in Table I,
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TABLE I
OUTPUT DIMENSION OF EACH LAYER FOR THE PROPOSED DNN-AIDED
DEMODULATOR
Layer Output Dimension
K= K=16 | K=32 | K =256
Input 16 32 64 512
Ist 1D-CL 4x15 4x31 4x63 4x511
2nd 1D-CL 8x12 8x28 8% 60 8x508
3rd 1D-CL 16%5 16x21 16x53 16x501
F. LSTM 16 32 64 64
B. LSTM 16 32 64 64
Ist FC 24 48 96 96
BN 24 48 96 96
2nd FC 2 2 2 2
TABLE II

NUMBER OF TRAINABLE PARAMETERS OF EACH LAYER FOR THE PROPOSED
DNN-AIDED DEMODULATOR

Number of Trainable Parameters

Layer K=8] K=16 | K=232 | K =256
Input 0 0 0 0
Ist 1D-CL 12 12 12 12
2nd 1D-CL 136 136 136 136
3rd 1D-CL 1040 1040 1040 1040
F. LSTM 6272 47360 233984 2068992
B. LSTM 6272 47360 233984 2068992
1st FC 792 3120 12384 12384
BN 48 9 192 192
2nd FC 50 98 194 194

which are determined by the dimension of input vectors, the
learning capacity, the complexity and the convergence rate of the
DNN. When the dimension becomes larger, the learning capa-
bility can be enhanced and the DNN can learn more complicated
mappings. However, the computational complexity of the DNN
also increases, and the convergence time will be longer. With
the aim to get a better tradeoff between the learning capability
and the complexity, we train and test the proposed DNN with
different sets of output dimensions, including different output
feature dimensions C',,, convolution kernel widths «, etc., to
select the set to achieve the performances approaching to the
saturation with the lowest output dimensions.

2) Number of Trainable Parameters: The number of train-
able parameters of each layer is highly related with the output
dimension. Let I and O respectively represent the input and
output dimension, then, when using the PyTorch DL framework,
the number of trainable parameters can be calculated as /O + O
for the FCLs and 4(/ + O)O + 80 for the LSTM units. On the
other side, the parameter numbers of 1D-CLs are decided by the
input and output feature dimensions and the width in the time
axis of the convolution kernel. In this paper, as shown in Tables I
and II, the output feature dimensions of the three 1D-CLs are
Cout = 4,8, 16, while the convolution kernel widths of them
are o = 2,4, 8. Then, the number of trainable parameters of
ID-CL can be calculated as C,,¢(Cyn + 1). Besides, the BN
layer needs 20 trainable parameters to learn the scale and shift
factors for each element of the output vectors, and the parameter
number of the input layer is zero since it is applied only to receive
and group the input data.

3) Ey/Ny: When applying DL methods to communication
applications, the energy per bit to noise power spectral density
ratio (E},/Ny) of the simulated channel environment at the offline
training stage is a key hyper-parameter, which can significantly
affect the detection performances of the DNN. Excessively high
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value of the training Ej, /Ny will induce the overfitting problem,
while the too small value of Ej, /Ny will induce the underfitting
problem [27]. To address this issue, we can apply the optimiza-
tion algorithm, such as the simulated annealing optimization
algorithm, to select the value of E}, /N for the DNN training with
the objective of maximizing the learning efficiency. For fairness
of performance comparisons to be presented in the following
section, the value of Ej, /N is uniformly set as 20 dB for the fast
Rayleigh fading channel and 17 dB for the high-speed railway
channel at the training stage.

4) Loss Function and Optimization Algorithm Selection: For
the DNN, the loss function can quantitatively evaluate the dif-
ference between the actual DNN output and the known output,
while the optimization algorithm can formulate the trainable
parameter configurations with the aid of the gradients calcu-
lated by the back prorogation algorithm. Obviously, appropriate
loss function and optimization algorithm helps to improve the
convergence rate and the accuracy of the DNN. In our design,
considering that the chaotic demodulation process is equiva-
lent to solve a classification problem, we propose to apply
the categorical cross-entropy loss function, which can provide
a reliable measure of the difference between two probability
distributions [28], to act as the loss function and to solve this
classification problem [29]. Besides, in order to efficiently ad-
just the trainable parameters in DNN according to the mea-
sured loss value and the corresponding derivatives, the Adam
algorithm [30] is selected as the optimization algorithm due
to the invariance to diagonal rescaling of the gradients, high
computational efficiency and low memory requirements. At the
training stage, we set the disturbance term and exponential decay
rates for the Adam algorithm the same as those given in [30],
and the batch size is set as 50 to mitigate the oscillation effect
while maintaining satisfactory generalization capacity [31]. Ad-
ditionally, with the objective to guarantee the learning efficiency
without losing the convergence stability, we first set the learning
rate of the Adam algorithm as 0.01, and then gradually lower
the learning rate till 10 if the training loss does not decrease
in an epoch [32].

IV. THEORETICAL ANALYSIS

In this section, we will analyze and compare the spectrum
efficiency, energy efficieny, security performances and com-
plexity of the proposed DL-based OFDM-DCSK system with
the benchmark traditional OFDM-DCSK system [8], [9], the
OFDM code shifted DCSK (OFDM-CS-DCSK) system [33]
and the frequency-and-time hybrid-interleaving OFDM-DCSK
(FH-OFDM-DCSK) system [15].

A. Spectrum Efficiency Analysis

The spectrum efficiency is defined as the ratio of the bit rate
to the total bandwidth [34]. Let To rpas denote the duration of
one OFDM symbol, and Borp s represent the occupied band-
width of one OFDM symbol. Then, as presented in Section II,
since one OFDM-DCSK symbol is composed of K modulated
OFDM symbols, the duration of one OFDM-DCSK symbol is
expressed as T' = KTorpys. For the traditional OFDM-DCSK
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TABLE III
SPECTRUM EFFICIENCY COMPARISONS

Scheme Spectrum Efficiency
OFDM-DCSK [8] TBor o
OFDM-CS-DCSK [33] [ gpoim— (1 <M <N 1)
FH-OFDM-DCSK [15] TBo oot
DL-based OFDM-DCSK Thorns

TABLE IV
ENERGY EFFICIENCY COMPARISONS

Scheme Energy Efficiency
DCSK [7] :
OFDM-DCSK [8] N1
OFDM-CS-DCSK [33] [ fz(1<M <N —1)
FH-OFDM-DCSK [15] N1
DL-based OFDM-DCSK 1

system and the FH-OFDM-DCSK system, N — 1 bits will be
transmitted by a modulated symbol, while our proposed sys-
tem can transmit N bits in one symbol. Meanwhile, for the
OFDM-CS-DCSK system, the interval of each subcarrier are set
as the same as the forementioned three systems for comparison
fairness, thus the occupied bandwidth will be K Borpas and
the duration will be T rp pr, and the number of transmitted bits
willbe M with1 < M < N — 1.

Subsequently, we can evaluate the spectrum efficiency of
the proposed system and benchmark systems. As shown in
Table III, since no reference chaotic sequences are transmitted
by any subcarrier, we can notice that the proposed DL-based
OFDM-DCSK system achieves higher spectrum efficiency than
the benchmark systems, especially when the number of exploited
subcarriers NN is small.

B. Energy Efficiency Analysis

Let Ej, denote the transmitted energy for each bit, Fg,¢,
and F,.y respectively represent the energy of the data and
the reference signals. Then, the energy efficiency is defined as
the data-energy-to-bit-energy-ratio (DBR) EdE—(:“ [15]. Table IV
presents and compares the energy efficiency of the proposed
design and benchmark schemes.

For the DCSK system, since one modulated symbol is
the concatenation of one reference chaotic sequence and one
information-bearing chaotic sequence, we have Egq1q = Fref
and By = Fggtq + Erer = 2E4q1q, thus the energy efficiency
will be % While in the traditional OFDM-DCSK system and the
FH-OFDM-DCSK system, one reference sequence is shared by
N — 1information-bearing sequences, thus F,..; = ﬁEdam.
Without loss of generality, we neglect the energy cost of CP, the

. . E E
energy efficiency is calculated as =dete — e =
gy y Ey Egatat Nl,l Faiata

%, which is higher than that of the DCSK system as presented
in Section I. In the OFDM-CS-DCSK system, M information-
bearing sequences share one reference chaotic signal, thus the
energy efficiency will be #—H’ where | < M < N — 1. Finally,
for the proposed DL-based OFDM-DCSK system, since no
reference sequences are needed to be transmitted, we have Ej, =
Fjq1q and the energy efficiency will be 1, which demonstrates
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the superiority of the efficiency of our design, especially when
N has small value in some vehicular Internet of Things (IoT).

C. Security Evaluation

Furthermore, we evaluate the security performances of the
proposed intelligent transceiver in terms of the information
leakage rate and the secrecy capacity. Without loss of generality,
we assume that the probabilities of transmitting 0 and 1 are equal,
then the information leakage A is calculated as [15]

jE,?L(RE7S)
= H,(Rg) — Hy(RE|S)
=1+ penlog(pen) + (1 — prn)log(l — prn), (11)

N-—1
1 .
A= N;IE,n(RE,S), (12)

where [ E,n denotes the mutual information between the trans-
mitted data S and the data retrieved by the eavesdroppers Ry at
the nth subcarrier, H,,(-) represents the entropy operation, and
pE,» denotes the BER at the nth subcarrier for the eavesdropping
receivers.

Based on the information leakage rate given by (12), the
secrecy capacity of legitimate users can be derived as

1 N-1 )
Csecrecy = ﬁ Z IL,n(RLa S) - A
n=0
— Hy(Ry) — Ho(Ry|S) — A
=14 prnlogy(prn)

+ (1 = pr.n)logy(1 —prn) — A, (13)

where I, ,, denotes the mutual information between the trans-
mitted data S and the data retrieved by the legitimate users Ry,
at the nth subcarrier, and py, ,, indicates the BER at the nth
subcarrier for the legitimate receivers.

Notably, if the potential eavesdroppers have known the key
features of signals such as the number of subcarriers, the symbol
duration and the symbol starting points, they can easily retrieve
the user data from the traditional OFDM-DCSK modulated sym-
bols with the aid of transmitted reference chaotic sequences. On
the other side, since no reference chaotic sequences are directly
transmitted in our design, the eavesdroppers can not utilize them
to retrieve the user data. Hence it becomes difficult for the
eavesdroppers to crack the chaotic modulated signals through
brute force methods thanks to the non-periodic, noise-like and
initial value sensitive characteristics of chaotic sequences. As a
result, the BER of the eavesdropping receivers will be high in
the proposed system, and lower information leakage and higher
secrecy capacity can be guaranteed by applying our design,
which will be demonstrated in the following Section V.

D. Complexity Analysis

Finally, we analyze the computational complexity of the
DL-based OFDM-DCSK system. In this paper, for fairness of
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TABLE V
COMPUTATIONAL COMPLEXITY COMPARISONS

Scheme Computational Complexity
OFDM-DCSK [8] O(NKlog, N)
OFDM-CS-DCSK [33] O(N?K) + O(NK log,(NK))
FH-OFDM-DCSK [15] O(NK log, N)

O(Zzzl NKCout,O—ICout,OQQ)
+O(NKCoutsLrsrar) + O(NL] g7ur)
+O(NLrstmLre,1) + O(NK log, N)

DL-based OFDM-DCSK

comparisons, we apply the same complexity evaluation method
as that used in [15], [20]. Explicitly, the computational com-
plexity is defined as the total number of operations per symbol
conducted at both transmitters and receivers [15], [20], which
is expressed in terms of the asymptotic upper bound O(-). Sim-
ilar to the computational complexity analysis presented in [20]
and [35], considering that the DNN training is carried out offline,
we only evaluate the complexity at the online deployment stage
at which the proposed design is applied for the real time detection
of signals.

Let Coyut,0 and oy respectively denote the output feature
dimension and the convolution kernel width of the 6th 1D-CL,
where § = 1,2,3 and Coy1 0 = 1, Lrs7 s represent the output
dimension of the LSTM unit, and Lrc,; represent the output
dimension of the first FC layer, then we evaluate the compu-
tational complexity of the proposed DL-based OFDM-DCSK
system and the benchmarks as provided in Table V.

For the OFDM systems, the computational complexity of
IFFT or FFT is O(Nlog, N), and K times IFFT operations
are needed to generate an OFDM-DCSK symbol. For the pro-
posed transmitter, to generate an OFDM-DCSK symbol, the
computational complexity of IFFT or FFT is at the order of
O(Nlog, N), and K times IFFT operations are needed. At
the receiver, N x K multiplications are carried out to per-
form the channel equalization, and K times FFT operations
are required to recover the chaotic modulated sequences from
the received signals. Therefore, the complexity of modula-
tion, equalization and information-bearing chaotic sequences
recovery of the proposed DL-based OFDM-DCSK system
is O2NKlog, N)+ O(NK) = O(NK log, N). Next, the
chaotic demodulation is conducted to recover the user data from
information-bearing chaotic modulated sequences without using
reference sequences.

After recovering the chaotic modulated sequences, they are
input to the proposed DNN for chaotic demodulation. The
number of operations of the #th 1D-CL has the complexity
of O(NKCloyt,0-1Cout,00g), the complexity of the LSTM
unitis O(NKCoy3LrsTam) + O(NLZLSTM), the complexity
of the first FCL is O(NLrsraLrc,), the complexity of
the BN layer is O(NLpc,1), and the complexity of the
second FCL is O(NLpc,1). Summing the computational
complexity of modulation, equalization, information-bearing
chaotic sequences recovery and DNN operations, we
can obtain the complexity of the proposed system as
O(Zgzl NKCout.ﬂflCout,GaO) + O(NKCout,BLLSTM) +
O(NL3 grp1) + O(NLrstmLrc,1) + O(NK log, N).

8067

Notably, at the online deployment stage, the dimension of each
layer remains invariant. Thus we can see that the complexity of
the proposed design is at the same level as that of the traditional
OFDM-DCSK system and the FH-OFDM-DCSK system.

V. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to demonstrate
superior reliability and security performances of the proposed
intelligent OFDM-DCSK transceiver over vehicular channels
including fast fading channels and railway channels. Moreover,
the robustness of our design is also analyzed.

A. Simulation Settings

Considering that vehicles have high mobility, in the simula-
tions, the single-path fast Rayleigh fading channel, the multi-
path fast Rayleigh fading channel and the high-speed railway
channel are taken into account of simulated performance anal-
ysis.

To be explicit, for the single-path fast Rayleigh fading chan-
nel, the received signal r is expressed by r = g ® s + ¢, where
s denotes the transmitted signal, g represents the channel coef-
ficients, ¢ denotes the additive noise and © means the element-
wise product operation. In this channel model, g = | + j1,,
where 1), and 1), are independent and identically distributed
Gaussian random vectors having zero mean and unit vari-

ance, thus the normalized amplitude |g| = 4/ M follows
the Rayleigh distribution. Note that considering the mobility in
high-speed vehicular communications, the channel coefficient
is assumed to change at each time slot to reflect the fast fading
property [4]. Besides, each channel coefficient in g is also
assumed to be mutually independent because of large spatial
and velocity variations in vehicular information transmissions.
Thus the single coefficient exponential correlation matrix is an
identity matrix and the correlation coefficient equals zero [36].

Next, for the multi-path fast Rayleigh fading channel, the
received signal is modelled as r¢ = Zle e, wSe—wr +le, £ =
1,2,...,N x K, where r¢ and s¢_,» respectively denote the
&th and (€ — w)th element of r and s, g, represents the
Rayleigh channel coefficient of the wth path when causing 7¢,
t¢ is the additive noise, G indicates the path number and 7
means the length of time delay. Besides, each channel path has
the average power of E{(g7 ,)} = exp(l —w)E{(gz )}, w=
1,2,...,G[15], where the summed average power of each path
equals 1,ie., Y59 E{(9: )} = 1.

Subsequently, for the high-speed railway channel, existing
research works have demonstrated that the Rician distribu-
tion can better describe the channel conditions experienced by
users, In this case, g is composed of a constant component
caused by line-of-sight propagation and a Rayleigh component
caused by non-line-of-sight propagation, which is defined as

o= \/ imician | \/ (31 + j4,). where the nor-
malized amplitude |g| follows the Rician distribution. Besides,
KRician represents the Rician K -factor, which can be modeled
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as a double-slope linear function as [5]

¢y Xdist+¢ xdist,dist <distgp
Kpician(dist) = § 1ot v o, xdist. dist > dist s P
(14)
where dist and distgp denote the transmitter to receiver
distance and the break point distance respectively. In this
paper, the suburban high-speed railway scenario is applied,
thus ¢; = —0.027dB, ¢ = 8.48dB, ¢ = —0.0023dB, ¢ =
4.024dB, distgp = 200m, and the mean value of statistical
Rician K -factor Kpjcian = 2.83dB [5] is adopted.

Moreover, in the following simulations, the length of CP is
long enough to eliminate the ISI, while both perfect channel
state information (CSI) and imperfect CSI are considered for
the performance analysis of the reliability, the security and
the robustness. Besides, in this paper, we use Python 3.6.4 as
the programming software and apply PyTorch 1.0.0 as the DL
framework, and the Intel Core i15-7300HQ is used for computa-
tions.

B. Data Set Discussion

As mentioned above, the data set is generated via simulations.
For fairness of comparisons, different lengths of the chaotic
sequences K, numbers of subcarriers NV, numbers of paths G and
lengths of time delay 7 between each two adjacent paths over
multi-path channels are applied to generate the data. Besides,
typical vehicular channel conditions, such as the fast fading
channels and railway channels, are considered to compose the
data set.

To be explicit, with consideration of the mobility of vehi-
cles, we respectively construct the single-path fast Rayleigh
fading channel, the multi-path fast Rayleigh fading channel
and the high-speed railway channel, wherein the fading coef-
ficients are assumed to vary at each time slot. Besides, different
values of G and 7 and different channel conditions of the
multi-path Rayleigh fading channel are considered. Moreover,
both tropospheric and ionospheric signal propagation effects,
as well as the urban environment, are also considered in the
Rayleigh fading channels [37], [4], and the multi-path trans-
mission, which typically exists in the coordinated multi-point
transmission/reception scenario, is also simulated in the multi-
path Rayleigh fading channel [38]. Furthermore, a fast Rician
fading channel with the Rician factor Kpjcian = 2.83 dB is
applied to model the fading behavior in the suburban high-speed
railway scenario [5], [6]. In addition, in order to analyze the
performances, different modulation parameters, i.e., X and N
are applied to compose the different data set for performance
comparisons.

Then we set the system parameters to generate information
bits randomly. Explicitly, 50 thousand received signals are gen-
erated via simulations as the training set of one epoch, and
50 training epochs in total are used to implement the offline
training of the DNN. At the online deployment stage, similar
procedure is conducted to evaluate the performances for the
proposed intelligent transceiver with the configured DNN based
demodulator, and to compare with the benchmark schemes.
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Fig. 7. BER performance comparisons over single-path fast Rayleigh fading
channels with different values of K and N . (a) Single-path fast Rayleigh fading,
N = 4. (b) Single-path fast Rayleigh fading, K = 16.

C. BER Performance Comparisons

1) BER Performances Over Different Channels: Figures 7 -
9 illustrate and compare the BER performances under different
channel conditions and modulation parameters over single-path
and multipath fast Rayleigh fading channels and high-speed
railway channels. In the comparisons, we consider two cases
that the transmitter delivers or does not deliver the reference
chaotic signals, which are respectively labelled as “w/ ref.”
and “w/o ref.”. Besides, we also compare the performances
of the benchmark traditional OFDM-DCSK system [8] and
the OFDM-BPSK system [39] with no chaotic interferences
induced.

It can be observed from Fig. 7 and 9 that the proposed intel-
ligent transceiver outperforms the OFDM-DCSK system [8] no
matter where the reference chaotic signal is delivered or not over
fast fading channels with different values of K and N. Besides,
we can notice that at higher Ej /Ny, the BER performances
of the proposed system can even be better than those of the
OFDM-BPSK system [39] thanks to the intelligently optimized
DNN based demodulator. Moreover, it is also noticeable that
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Fig. 8. BER performance comparisons over multi-path fast Rayleigh fading
channels with different path numbers and time delays. (a) Multi-path fast
Rayleigh fading, N = 4, K = 16, 7 = 4. (b) Multi-path fast Rayleigh fading,
N=4K=16,G=2.

when the reference chaotic sequence is directly delivered to the
receiver, thanks to the additional information input to the DNN,
the proposed intelligent chaotic transceiver can achieve better
BER and higher reliability performances for small to medium
values of K, although the security performances are deterio-
rated. However, when K is large enough, we can notice that
the BER performances of the system with no reference signals
become better than those of the system delivering reference
signals. The reasons are that on the one hand, the DNN can learn
and extract sufficient features of mapping pattern for generating
the chaotic sequence to mitigate the absence of the knowledge
about the reference signal, on the other hand, the interferences
from the reference signals are removed. Furthermore, it can
be seen that for larger value of N, since more exact features
can be extracted from signals received from larger number of
subcarriers, lower BER can be attained. By contrast, for the
OFDM-BPSK system, when N becomes larger, inter-carrier
interferences increase accordingly, thereby leading to higher
BER, especially at lower value of Ej,/Nj.

In addition, as illustrated in Fig. 8, we also investigate the
BER performances of the proposed system with different G and
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Fig.9. BER performance comparisons over high-speed railway channels with
different values of K and N. (a) High-speed railway channel, N = 4. (b) High-
speed railway channel, K = 16.

7 over multi-path fast Rayleigh fading channels. It can be seen
that the proposed DL-based systems outperform the traditional
OFDM-DCSK system. Meanwhile, we can observe that when G
or 7 becomes larger, the BER performances degrade accordingly.

Notably, the noise floor might appear at high Ej, /Ny due to the
removal of the reference chaotic signal. To address this issue,
a promising method is enlarging the dimension or number of
1D-CLs to improve the feature extraction capability of DNN,
while another choice is selecting larger K. As shown in Figs. 7(a)
and 9(a), as K increases, the noise floor of the proposed system
becomes lower and almost disappears.

2) Performance Comparisons With the Benchmarks: Subse-
quently, in Fig. 10, we compare the BER performances of the
proposed design with those of the benchmark improved DCSK-
based systems, including the OFDM-CS-DCSK system [33]
and the FH-OFDM-DCSK system [15], over single-path and
multipath fast Rayleigh fading channels and high-speed railway
channels. From Fig. 10(a) to (c), we can notice that when
transmitting signals over fast fading channels, the proposed
DNN-aided demodulator can obtain better BER performances
compared with the benchmark schemes, regardless of whether
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Fig. 10. BER performance comparisons with the benchmark modified systems
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railway channel, N = 4, K = 16.

the reference chaotic sequence is delivered or not. The reason is
that the intelligent demodulator design has the powerful learning
and feature extraction capabilities, thus exhibiting higher adapt-
ability to high speed transportation and providing more reliable
transmission performances.

It is worth mentioning that the diversity gain achieved by
the FH-OFDM-DCSK system become negligible for users
with high mobility, since the channel conditions vary so fast
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Fig. 11.  BER performance comparisons of the legitimate users and the eaves-
droppers in the OFDM-DCSK system with or without transmitting reference
sequences, where K = 16 and N = 4.

that the transceiver can hardly attain the diversity. Hence
we here propose the DNN-aided demodulator to improve the
performances.

D. Security Performance Comparisons

1) Security Performances in the OFDM-DCSK System:
Firstly, we investigate the BER performances of the legitimate
users and the eavesdroppers in the OFDM-DCSK system with
or without transmitting reference sequences. Here we assume
that the key signal features such as the number of subcarriers,
symbol duration and symbol starting points have been known
by the potential eavesdroppers.

As shown in Fig. 11, for the traditional OFDM-DCSK system
transmitting reference sequences, the eavesdroppers can obtain
similar BER to the legitimate users when both of them use
conventional correlators [8] for demodulation. The reason is that
due to broadcasting property of vehicular channels, the eaves-
droppers might retrieve the reference sequences and then obtain
the user data. By contrast, when applying the proposed DNN for
chaotic demodulation, the legitimate users can achieve reliable
information recovery with low BER, which is much lower than
the BER of the eavesdroppers using the same demodulation
method. This is because the legitimate users can train the DNN
with the correct training set, while the eavesdroppers have to first
estimate the bits from the received signals and then utilize them
as training set, which will cause accumulated error. Moreover,
if no reference sequences are delivered, the eavesdroppers can
hardly retrieve the user information even they have known the
key signal features, because of the non-periodic, noise-like and
initial value sensitive characteristics of chaotic sequences and
the difficulty in cracking the chaotic modulated signals without
the knowledge of the reference sequences. Note that the legiti-
mate users can still achieve satisfactory BER performances.

Next we evaluate the secrecy capacity of legitimate users
with (12) and (13). From Fig. 12(a), we can observe that the
information leakage in the traditional OFDM-DCSK system
gradually increases as the Ej,/Ny becomes higher and is close
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to 1 at last, which means the potential eavesdroppers can re-
trieve the user information at high Ej/N, with the aid of
transmitted reference sequences. By contrast, for the proposed
DL-based OFDM-DCSK system, the information leakage al-
ways maintains at a low level, which demonstrates that the
eavesdroppers can hardly obtain the transmitted information
since they have to directly crack the information-bearing chaotic
sequences, thus the secure communication services can be
provided.

To elaborate a bit further, as shown in Fig. 12(b), for the system
transmitting reference sequences, when the legitimate users
use the proposed DNN-aided demodulator, they can achieve
relatively high secrecy capacity at low and medium Ej /Ny
thanks to better BER performances, while the secrecy capac-
ity still decreases after 16 dB since the information leakage
become aggravated at high FEj/Ny. By contrast, if no refer-
ence sequences are delivered, the secrecy capacity of legit-
imate users can still maintain a high level at high Ej/Nj.
Finally, for the traditional OFDM-DCSK system, the secrecy
capacity of legitimate users is always close to zero. Therefore,
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Fig. 13.  BER performance comparisons of the legitimate users and the eaves-
droppers in the proposed and the benchmark systems with K = 16 and N = 4.

the proposed DL-based OFDM-DCSK system can effectively
increase the secured information rate and improve the security
performances.

2) Security Performance Comparisons With the Benchmarks:
Next we compare the security performances with the benchmark
OFDM-CS-DCSK [33] and FH-OFDM-DCSK [15] systems.
For fairness of comparisons, we assume that the transmitter de-
tails can be learned by all users in considered systems. Explicitly,
we assume that eavesdroppers can occasionally learn the Walsh
code sequences utilized in OFDM-CS-DCSK system, and the
frequency hopping pattern applied in the FH-OFDM-DCSK sys-
tem. It can be observed from Fig. 13 that the proposed intelligent
DNN aided system can provide better security performances
than benchmark schemes.

Then, we evaluate and compare the secrecy capacity of the
proposed system and the two benchmark systems. As shown
in Fig. 14(a), the information leakage rate of the benchmark
systems gradually increases to a certain value as the Ej/Ny
becomes higher since eavesdroppers can learn the key informa-
tion. By contrast, the proposed design can keep the information
leakage at lower rate. Besides, it can be observed from Fig. 14(b)
that the proposed system can provide higher secrecy capacity at
medium and high Ej,/Ny.

E. Robustness Analysis

In the simulations presented above, the CSI at both the offline
training stage and the online deployment stage is assumed to
be perfect. However, in practical systems, the CSI might be
imperfect due to imperfect operating conditions of functional
modules, which can be modeled as [40], [41]

g=wvg+V1-¢%,

where g represents the estimated channel coefficient, g de-
notes the actual channel coefficient, ¢ indicates the corre-
lation coefficient ranging from O to 1, which determines

(15)
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Fig. 14.  Security performance comparisons of the proposed and the bench-

mark systems with K = 16 and N = 4. (a) Information leakage comparisons.
(b) Secrecy capacity comparisons.

the accuracy of channel estimations, and ¢ is a com-
plex Gaussian random variable with zero mean and unit
variance.

Namely, when ¢ = 1.0, the perfect channel estimation and
the exact CSI can be provided for the receivers. In this case,
the channel conditions used at the training stage perfectly
match the conditions applied for practical deployment. When
¢ < 1.0, the channel estimation is imperfect and will lead to
the divergence between training and deployment conditions.
Obviously, for smaller ¢, the forementioned gap will become
wider, leading to performance degradations.

It can be observed from Fig. 15 that the proposed DL-based
OFDM-DCSK system can always maintain better BER per-
formances than the traditional OFDM-DCSK system whatever
the value of ¢ is. However, as ¢ decreases, the performance
gain achieved by the DL-based systems also declines. The
reason is that since the transmission characteristics learnt at
the training stage do not match the transmission conditions
at the deployment stage, the performance of the DNN-based
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receiver will degrade and the features can not be correctly
extracted.

Last but not the least, it is worth mentioning that in practical
systems, we usually have ¢ > 0.95 to guarantee the normalized
signal to noise ratio is 0 dB [42], [43]. Hence, the robustness
of the proposed design can meet practical user demands in
vehicular communications.

mean-square error E( ) be lower than 0.1 even when the

VI. CONCLUSION

In this paper, considering that vehicular communications suf-
fer from weak security due to the broadcasting property of ve-
hicular channels, and interferences induced by mobility of users
and fast fading of channels, we propose a reliable and secure
intelligent chaotic receiver. In this design, we propose to remove
the delivery of the reference chaotic signals at the transmitter
to improve both the efficiency and the security performances.
Then we propose a DNN to construct an intelligent demodulator
to enhance the reliability performances. In the proposed DNN,
we apply a TDNN composed of three 1D-CLs to learn and
extract the features of mapping pattern for chaotic sequence
generation, and then we employ a bi-directional LSTM layer
to capture and formulate the correlation characteristics between
chaotic modulated sequences, followed by two FCLs with one
BN layer inserted between them to attain the data estimates. Af-
ter the offline training, the proposed DL-based communication
system is configured with the optimized trainable parameters.
Then at the online deployment stage, the optimized transceiver
can provide reliable and secure information transmissions for
vehicular users. Simulation results under different conditions
demonstrate that the proposed DL-based OFDM-DCSK sys-
tem achieves better BER and security performances than the
benchmark traditional OFDM-DCSK, OFDM-CS-DCSK and
FH-OFDM-DCSK systems over vehicular channels such as
high-speed railway channels. Therefore, the proposed intelligent
design can provide more reliable, secure and efficient services
for vehicular user equipments.
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