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a b s t r a c t 
Skeletal model reduction based on local sensitivity analysis of time dependent systems is presented in 
which sensitivities are modeled by forced optimally time dependent (f-OTD) modes. The f-OTD factor- 
izes the sensitivity coefficient matrix into a compressed format as the product of two skinny matrices, 
i.e. f-OTD modes and f-OTD coefficients. The modes create a low-dimensional, time dependent, orthonor- 
mal basis which capture the directions of the phase space associated with most dominant sensitivities. 
These directions highlight the instantaneous active species, and reaction paths. Evolution equations for 
the f-OTD modes and coefficients are derived, and the implementation of f-OTD for skeletal reduction is 
described. For demonstration, skeletal reduction is conducted of the constant pressure ethylene-air burn- 
ing in a zero-dimensional reactor, and new reduced models are generated. The laminar flame speed, the 
ignition delay, and the extinction curve as predicted by the models are compared against some existing 
skeletal models in literature for the same detailed model. The results demonstrate the capability of f-OTD 
to eliminate unimportant reactions and species in a systematic, efficient and accurate manner. 

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 

1. Introduction 
Detailed reaction models for C 1 -C 4 hydrocarbons usually con- 

tain over 100 species in about 10 0 0 elementary reactions [1–6] . 
Direct application of such models is limited only to simple, 
canonical combustion simulations because of their tremendous 
computational cost. Various reduction techniques have been 
developed to accommodate realistic fuel chemistry simulations, 
and to capture intricacies of chemical kinetics in complex multi- 
dimensional combustion systems. As the first step in developing 
model reduction, it is important to extract a subset of the detailed 
reaction model, skeletal model , by eliminating unimportant species 
and reactions [7,8] . Local sensitivity analysis (SA), reaction flux 
analysis [9–11] , and directed relation graph (DRG) and its vari- 
ants [12–15] have often been utilized for skeletal model reduction. 
Local SA, which is the subject of the present work, explores 
the response of model output to a small change of a parameter 
from its nominal value [16] while global sensitivity analysis is 
useful for studying uncertainty of kinetic parameters ( i.e. collision 
! Fully documented templates are available in the elsarticle package on CTAN . 
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frequencies and activation energies) which propagate through 
model and non-linear coupling effects [2,17–24] . 

Model reduction with local SA contains methods such as 
PCA [1,25–31] , and construction of a species ranking [32] . In local 
SA, the sensitivities are commonly computed either by finite dif- 
ference (FD) discretizations, directly solving a sensitivity equation 
(SE), or by an adjoint equation (AE) [33] . The computational cost 
of using FD or SE, which are forward in time methods, scales lin- 
early with the number of parameters making them impracticable 
when sensitivities with respect to a large number of parameters 
are needed. On the other hand, computing sensitivities with AE 
requires a forward-backward workflow, but the computational cost 
is independent of the number of parameters as it requires solving 
a single ordinary/partial differential equation (ODE/PDE) [34–36] . 
The AE solution is tied to the objective function, and for cases 
where multiple objective functions are of interest, the same num- 
ber of AEs must be solved. Regardless of the method of computing 
sensitivities, the output of FD, SE, and AE at each time instance 
is the full sensitivity coefficient matrix, which can be extremely 
large for systems with large number of parameters. 

Recently, the forced optimally time dependent (f-OTD) de- 
composition method was introduced for computing sensitivities 
in evolutionary systems using a model driven low-rank ap- 
proximation [33] . This methodology is the extension of OTD 
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decomposition in which a mathematical framework is laid out 
for the extraction of the low-rank subspace associated with 
transient instability of the dynamical system [37] . The OTD ap- 
proximates sensitivities with respect to initial conditions, while 
f-OTD approximates sensitivities with respect to external pa- 
rameters, e.g. , forcing. As a consequence, in the formulation of 
f-OTD there is a two–way coupling between the evolution of 
the f-OTD modes and the f-OTD coefficients, whereas in OTD 
formulation, the evolution of the modes is independent of the 
coefficients. In forward workflow of f-OTD, the sensitivity matrix 
i.e. S(t) ∈ R n eq ×n r is modeled on-the-fly as the multiplication of 
two skinny matrices U(t) = [ u 1 (t) , u 2 (t ) , · · · , u r (t )] ∈ R n eq ×r , and 
Y (t) = [ y 1 (t) , y 2 (t ) , · · · , y r (t )] ∈ R n r ×r which contain the f-OTD 
modes and f-OTD coefficients, respectively, where n eq is the 
number of equations (or outputs), n r is the number of inde- 
pendent parameters, r $ min{ n s , n r } is the reduction size, and 
S(t) ≈ U(t ) Y T (t ) . The key characteristic of f-OTD is that both U(t) 
and Y (t) are time-dependent and they evolve based on closed 
form evolution equations extracted from the model, and are able 
to capture sudden transitions associated with the largest finite 
time Lyapunov exponents [38] . The time-dependent bases have 
also been used for stochastic reduced order modeling [39–43] , and 
recently for on-the-fly reduced order modeling of reactive species 
transport equation [44] . In a nutshell, f-OTD workflow i) is forward 
in time unlike AE, ii) bypasses the computational cost of solving FD 
and SE, or other data-driven reduction techniques, and iii) stores 
the modeled sensitivities in a compressed format, i.e. we only store 
and solve for two skinny matrices U and Y instead of storing and 
solving the full sensitivity matrix S, as in FD, SE and AE. 

The major advantage of PCA in skeletal reduction is to com- 
bine the sensitivity coefficients for a wide range of operating con- 
ditions ( e.g. equivalence ratio and pressure) [1] . The PCA finds the 
low-dimensional subspace of data gathered from different (tempo- 
ral or spatial) locations by applying a minimization algorithm over 
the whole data at once. Therefore, PCA is a low-rank approxima- 
tion in a time-averaged sense and may fail to capture highly tran- 
sient finite-time events ( e.g. ignition). In order to resolve this is- 
sue, one needs to pre-recognize the locations of such events and 
use the data mainly from these locations. This requires extensive 
knowledge and/or expertise. Moreover, PCA modes are time invari- 
ant, and the process of selecting sufficient eigenvalues/eigenmodes 
to capture the essence of all observed phenomena ( e.g. ignition, 
flame propagation), is crucial but is usually done by trial and error. 
References [1,45] show that for certain problems, a skeletal model 
built solely upon the information conveyed by that first reaction 
group (first eigenmode) from PCA can fail to accurately reproduce 
the detailed model over the entire domain of interest. Therefore, 
one needs to deal with several eigenmodes with close eigenvalues 
and choose essential reaction groups among them [1] . 

In order to resolve the drawbacks of current SA methods and 
PCA for skeletal model reduction, we use f-OTD methodology for 
both SA and skeletal model reduction. The applicability of our ap- 
proach is demonstrated for ethylene-air burning with the Univer- 
sity of Southern California (USC) chemistry model [2] as the de- 
tailed model. Adiabatic, constant pressure, spatially homogeneous 
ignition is the canonical problem; and the generated skeletal mod- 
els with f-OTD are compared against detailed and several skeletal 
models. 

The remainder of this paper is organized as follows. The the- 
oretical description of PCA and f-OTD and their mathematical 
derivations for SA are presented in Section 2 . Model reduction with 
f-OTD is first described in Section 3 , with a simple reaction model 
for hydrogen-oxygen combustion, followed by skeletal model re- 
duction with f-OTD for the more complex ethylene-air system in 
Section 4 . The paper ends with conclusions in Section 5 . All the 
generated models are supplied in supplementary materials section. 

2. Formulation 
Consider a chemical system of n s species reacting through n r 

irreversible reactions, 
n s ∑ 

k =1 ν ′ 
k j M k → n s ∑ 

k =1 ν ′′ 
k j M k , j = 1 , . . . n r , (1) 

where M k is a symbol for species k , and ν ′ 
k j and ν′′ 

k j are the mo- 
lar stoichiometric coefficients of species k in reaction j. Changes 
of mass fractions ψ = [ ψ 1 , ψ 2 , . . . , ψ n s ] T and temperature T in an 
adiabatic, constant pressure p, and spatially homogeneous reac- 
tion system of ideal gases can be described by the following initial 
value problems (IVPs) [46] 
dψ k 
dt = f ψ k (ψ , T , α) = W k 

ρ

n r ∑ 
j=1 νk j Q j , ψ (0) = ψ 0 , (2a) 

dT 
dt = f T (ψ , T , α) = − 1 

c p 
n s ∑ 

k =1 h k f ψ k , T (0) = T 0 , (2b) 
where t ∈ [0 , t f ] is time, t f is the final time and W k and h k are the 
molecular weight and enthalpy of species k , respectively, and 
νk j = ν ′′ 

k j − ν ′ 
k j , (3a) 

Q j = α j K j n s ∏ 
m =1 

(
ρψ m 
W m 

)ν ′ 
m j 

. (3b) 
Here, α = [1 , 1 , . . . , 1] ∈ R n r is the vector of perturbation param- 

eters and K j is the rate constant of reaction j which is usually 
modeled using the modified Arrhenius parameters [47] for elemen- 
tary reactions (Note: all reversible reactions are cast as irreversible 
reactions). In Eq. (2) ρ(T , ψ ) and c p (T , ψ ) = ∑ n s 

k =1 ψ k c p k (T ) are 
the density and specific heat at constant pressure of the mixture, 
respectively, where c p k (T ) is the specific heat at constant pressure 
of k th species given by the NASA coefficient polynomial parame- 
terization [48] . Let ξ = [ ψ , T ] ∈ R n eq denote the vector of compo- 
sitions and accordingly f = [ f ψ , f T ] where n eq = n s + 1 . Then the 
compositions IVP is governed by: 
dξi 
dt = f i ( ξ , α) , ξ (0) = [ ψ 0 , T 0 ] . (4) 

Since α = 1 , the perturbation with respect to α j amounts to an 
infinitesimal perturbation of progress rates Q j for j = 1 , 2 , . . . , n r . 
The sensitivity matrix, S(t) = [ s 1 (t) , s 2 (t ) , . . . s n r (t )] ∈ R n eq ×n r , con- 
tains local sensitivity coefficients, s j = ∂ ξ/∂ α j , and it can be calcu- 
lated by solving the SE, 
dS i j 
dt = ∑ n eq 

m =1 ∂ f i 
∂ξm ∂ξm 

∂α j + ∂ f i 
∂α j = ∑ n eq 

m =1 L im S m j + F i j , (5) 
where L im = ∂ f i 

∂ξm and F i j = ∂ f i 
∂α j are the Jacobian and the forcing ma- 

trices, respectively. 
2.1. Principal component analysis 

Principal component analysis allows the investigation of the ef- 
fects of parameter perturbations on the objective function G(p) 
G ( p ) = ∫ z 2 

z 1 
n eq ∑ 
i =1 

[ 
ξi ( z, p ) − ξi (z, p 0 )

ξi (z, p 0 )
] 2 

dz , (6) 
where p 0 and p are unperturbed and perturbed normalized ki- 
netic parameters, respectively; and p j = ln α j for j = 1 . . . n r . The 
integrated squared deviation is investigated on the interval [ z 1 , z 2 ] 
of the independent variable (time and/or space) [45] . It has been 
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shown [25] that G(p) can be approximated around the nominal 
parameter set ( p 0 ) as, 
G ( p ) ≈ ( 'p ) T S T S ( 'p ) , (7) 
where 'p = p − p 0 and 

S = 
 
     

≈
S | z 1 
≈
S | z 2 
. . . 
. . . 

≈
S | z m 

 
     

(m.n eq ) ×n r 
. (8) 

Here, ≈
S | z i ( i = 1 , . . . , m ) are normalized sensitivity matrices 

( ≈S i j = α j 
ξi ∂ξi 

∂α j ) on a series of m quadrature points on [ z 1 , z 2 ] to ap- 
proximate the integral in Eq. (6) . Eigen decomposition of S T S = 
A (A T results in: 
G ( p ) ≈ (

A T 'p )T 
(

(
A T 'p ), (9) 

where ( = diag [ λ1 , λ2 , . . . λn r ] is a diagonal matrix contain- 
ing eigenvalues of S T S (which are real and positive) in descend- 
ing order ( λ1 ≥ λ2 ≥ . . . ≥ λn r ), and A = [ a 1 , a 2 , . . . a n r ] contains the 
eigenvectors of S T S sorted from left to right with the same or- 
der in (. Then PCA uses two thresholds ( λε & a ε ) to select first 
j sets of reactions ( a 1 , a 2 , . . . , a j ) which satisfy λ j > λε condition 
and choose every i th reaction in each a j set with | a i j | > a ε condi- 
tion [1] . 
2.2. Sensitivity analysis with optimally time dependent modes 

Like PCA, our kinetic model reduction strategy is based on se- 
lecting reactions, whose perturbations grow most intensely in the 
composition evolution given by Eq. (4) . However, the selection of 
important reactions is made here based on instantaneous observa- 
tion of modeled sensitivities, unlike PCA. 
2.2.1. Modeling the sensitivity matrix 

Imagine we perturb the composition evolution equation 
( Eq. (4) ) by infinitesimal variations of α j = 1 to α j = 1 + δα j , 
where δα j $ 1 for j = 1 , 2 , . . . , n r . In f-OTD, we factorize the sen- 
sitivity matrix S(t) into a time-dependent subspace in the n eq - 
dimensional phase space of compositions represented by a set of f- 
OTD modes: U(t) = [ u 1 (t) , u 2 (t ) , · · · , u r (t )] ∈ R n eq ×r . These modes 
are orthonormal u T 

i (t) u j (t) = δij at all t , where δi j is the Kronecker 
delta. The rank of S(t) ∈ R n eq ×n r is d = min { n eq , n r } while the f-OTD 
modes represent a rank- r subspace, where r $ d. To this end, we 
approximate the sensitivity matrix via the f-OTD decomposition 
( Fig. 1 ): 
S(t) ≈ U(t ) Y T (t ) , (10) 
where Y (t) = [ y 1 (t) , y 2 (t ) , · · · , y r (t )] ∈ R n r ×r is the f-OTD coeffi- 
cient matrix. The above decomposition is not exact as Eq. (10) is a 
low-rank approximation of the sensitivity matrix S(t) . Note that in 
the above decomposition both U(t) and Y (t) are time dependent. 
We drop the explicit time dependence on t for brevity. Fig. 1 shows 
the schematic of decomposition of S into f-OTD components U and 
Y . The evolution equation for U and Y are obtained by substituting 
Eq. (10) into Eq. (5) : 
dS 
dt ≈ dU 

dt Y T + U dY T 
dt = LUY T + F . (11) 

Projecting Eq. (11) to U results in 
U T dU 

dt Y T + U T U dY T 
dt = U T LU Y T + U T F . (12) 

The f-OTD modes are orthonormal, U T U = I. Taking a time deriva- 
tive of the orthonormality condition yields in: dU T 

dt U + U T dU 
dt = 0 . This 

means that ϕ = U T dU 
dt ∈ R r×r is a skew-symmetric matrix ( ϕ T = 

−ϕ). As shown in Refs. [33,37] , any skew-symmetric choice of ma- 
trix ϕ, will lead to equivalent f-OTD subspaces. Here we choose 
ϕ = 0 . Using U T U = I and U T dU 

dt = 0 , Eq. (12) simplifies to 
dY T 
dt = U T LU Y T + U T F . (13) 

The evolution equation for U can be obtained by substituting dY T 
dt 

from Eq. (13) in Eq. (11) and projecting the resulting equation onto 
Y by multiplying Y from right 
dU 
dt = Q LU + Q F Y C −1 , (14) 

where Q = I − U U T is the orthogonal projection onto the space 
spanned by the complement of U and C = Y T Y ∈ R r×r is a correla- 
tion matrix matrix. Matrix C(t) is, in general, a full matrix implying 
that the f-OTD coefficients are correlated. Eq. (13) can be written 
as 
dY 
dt = Y L T r + F T U, (15) 

where L r = U T LU ∈ R r×r is a reduced linearized operator. 
Eqs. (14) and (15) are a coupled system of ODEs and they 
constitute the f-OTD evolution equations. The f-OTD modes align 
themselves with the most instantaneously sensitive directions 
of the composition evolution equation when perturbed by α. It 
is shown in Ref. [38] that when α is the perturbation to the 
initial condition, the OTD modes converge exponentially to the 
eigen-directions of the CauchyGreen tensor associated with the 
most intense finite-time instabilities. We refer to Ref. [37] for 
further details about OTD. 
2.2.2. Selecting important reactions & species 

In our approach, instantaneous sensitivities are analyzed as op- 
posed to PCA in which sensitivities are sampled at a few selected 
time instants. Computing instantaneous sensitivities would signif- 
icantly increase the computational/bookkeeping costs especially if 
large detailed mechanisms are to be analyzed. The f-OTD leverages 
the fact that we are often interested in the leading sensitivity vec- 
tors, and it provides a computationally feasible approach for solv- 
ing only those dominant sensitivity vectors, without requiring to 
explicitly compute the full sensitivities at any point. The reduction 
procedure is as follows: 
1. Modeled sensitivities are computed in factorized format by 

solving Eqs. (14) and (15) . These two equations are evolved in 
addition to Eq. (4) , and the values of ξ , U , and Y are stored at 
resolved time steps t i ∈ [0 , t f ] . Eq. (4) is initialized with a com- 
bination of the initial temperatures, equivalence ratios ( φ0 ), etc . 
Each simulation with a different initial condition is denoted by 
a case here. Eqs. (14) and (15) are initialized by first solving the 
SE ( Eq. (5) ) for a few time steps, and then performing singu- 
lar value decomposition of the sensitivity matrix S = B .V T and 
assigning U = B and Y = V .. 

2. At each resolved time step and for each case, we compute the 
eigen decomposition of ≈S T ≈S ∈ R n r ×n r as ≈S T ≈S = A (A T , and define 
w ∈ R n r ×1 = (.λi | a i | ) / (.λi ) ∈ R n r . The w vectors are basically 
the average of eigenvectors of ≈

S T ≈S matrix weighted based on 
their associated eigenvalues. This prevents us from dealing with 
each eigenvector ( a i ) separately. We use the normalized sensi- 
tivities ( ≈S i j = α j 

ξi ∂ξi 
∂α j ) of species with mass fractions greater than 

a threshold, e.g. 1.0e-6. This results in elimination of some of 
the rows of ≈

S associated with small mass fraction species at 
each time step. As shown in Sections 3 and 4 , the first sorted 
eigenvalue ( λ1 ) is usually orders of magnitude larger than the 
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Fig. 1. Modeling sensitivity matrix S(t) as a multiplication of two low-ranked matrices U(t) and Y (t) which evolve based on Eqs. (14) and (15) . 

Fig. 2. Model reduction for hydrogen-oxygen: (a) eigenvalues calculated by PCA, I-PCA and f-OTD, (b) sorted reactions and species based on their associated χ values. 
Ignition data is gathered for stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 

others which means w(t) ≈ | a 1 (t) | . Each element of w, i.e. w i , 
is positive and associated with a certain reaction ( i th reaction). 
The larger the w i value, the more important reaction i is. We 
define χi as the highest value associated with w i through all 
resolved time-steps and cases. 

3. The elements of χ vector are sorted in descending order to 
find the indices of the most important reactions in the detailed 
model. Species are also sorted based on their first presence in 
the sorted reactions, i.e. species who first shows up in a higher 
ranked reaction would be more important than a species who 
first participate in a lower ranked reaction. This results in a re- 
action and species ranking based on χ vector e.g. Fig. 2 (b). 

4. In the last step, we choose a set of species by defining a thresh- 
old χε on the element of χ vector and eliminate species whose 
associated χi are less than χε . We also get rid of the reactions 

which include the species. As our skeletal model reduction is 
reaction based, any non-reactive species with non-zero mass 
fraction in the initial condition should be manually added to 
the skeletal model. 
In summary, we sort the reactions to find the most important 

species. These species and the reactions which connect them to- 
gether, create our reduced models. In combustion systems, pertur- 
bations with respect to “fast’’ reactions generate very large sen- 
sitivities for short time periods which vanish as t → ∞ . On the 
other hand, perturbations with respect to “slow’’ reactions gen- 
erate smaller and more sustained sensitivities. As our approach 
is based on the instantaneous observation of sensitivities, both 
“slow’’ and “fast’’ reactions can leave an imprint on the instanta- 
neous normalized reaction vector ( w ) if their imprints are larger 
than the threshold value (χε ) . However, if the sensitivities asso- 
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Fig. 3. Model reduction for hydrogen-oxygen: comparison of the predicted temperature and some species mass fraction profiles from different models for stoichiometric 
mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 

Fig. 4. Model reduction for hydrogen-oxygen: temporal variation of w (t) for the ignition of a stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with 
T 0 = 1200K. 
ciated with “fast’’ and “slow’’ reactions from all times and loca- 
tions would be combined with each other before dimension re- 
duction, as commonly done in PCA-type approaches, the smaller 
sensitivities associated with “slow’’ reactions could have been out- 
weighted by the large sensitivities associated with “fast’’ reactions. 
In fact, this concern is the primary motivation for using f-OTD 
rather than PCA-type skeletal reduction approaches. 
3. Model reduction with f-OTD: application for 
hydrogen-oxygen combustion 

In this section, the process of eliminating unimportant reac- 
tions and species from a detailed kinetic model with f-OTD is de- 
scribed, and its differences with PCA are highlighted. The Burke 
model [49] for hydrogen-oxygen system which contains n s = 10 
species, 1 and n r = 54 irreversible (27 reversible) reactions is con- 
sidered as the detailed model. The reduction process is performed 
by analyzing only one case for the ignition of an adiabatic, stoi- 
chiometric hydrogen-oxygen mixture at atmospheric pressure and 
T 0 = 1200K, with integration of both the SE ( Eq. (5) ) and f-OTD 
equations ( Eqs. (14) and (15) ). Exact sensitivities from SE are com- 
puted for two purposes, i) finding PCA eigenmodes and eigenval- 
ues, and ii) analyzing the performance of f-OTD by comparing the 
instant eigenvalues of ≈S T ≈S at each t , from f-OTD against those ob- 
tained by solving the SE. The latter is equivalent to performing in- 

1 This kinetic model has 13 species (H, H 2 , O, OH, H 2 O, O 2 , HO 2 , H 2 O 2 , N 2 , AR, 
HE, CO, CO 2 ) in which N 2 , CO, and CO 2 do not participate in the reactions. 

stantaneous PCA (I-PCA) on the full sensitivity matrix. The I-PCA 
shows the optimal reduction of the time-dependent sensitivity ma- 
trix, and we show that the eigenvalues of f-OTD closely approxi- 
mate the r most dominant eigenvalues of I-PCA. 

Figure 2 (a) compares top eigenvalues of f-OTD with PCA (static) 
and I-PCA (instantaneous). It is shown that the top PCA eigenval- 
ues are time invariant, and close to each other. In contrast the 
first f-OTD eigenvalue is orders of magnitude larger than the oth- 
ers during the course of ignition, i.e. from t= 0 to t= 30 µs (until 
most of the heat is released). Moreover, f-OTD eigenvalues match 
with I-PCA with increasing number of modes ( r). This means that 
the modeled sensitivities converge to the exact values by adding 
more modes, in this case addition of top 6 modes. The results also 
show that with f-OTD ( r= 5), the time variation of top eigenvalues 
is captured well, while the second dominant eigenvalues deviates 
from I-PCA solution in the main non-equilibrium reaction layer and 
the post heat release region. Figure 2 (b) portray the reaction and 
species rankings for ignition problem. Note: inert species AR and 
HE in Fig. 2 (b) are not important in pure hydrogen-oxygen ignition 
and can be eliminated. The f-OTD-Burke model is generated by re- 
moving these two species and their associated reactions from the 
Burke model with n s = 8 and n r = 46. Figure 3 demonstrates f-OTD- 
Burke ability in reproducing the species evolution using the Burke 
model, for a stoichiometric mixture ( φ0 = 1 . 0 ) of hydrogen-oxygen 
at p= 1atm and T 0 = 1200K. Figure 4 portrays the temporal evolution 
of w(t) . As each element of w(t) is associated with a reaction, any 
change in the shape of this temporal vector signifies a change in 
the importance of reactions during the course of ignition. For ex- 
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Fig. 5. Model reduction for hydrogen-oxygen: first eight eigenmodes of S T S calculated by PCA, from combined analysis over the time interval 0 to 5.0e-6 secs. The analysis 
is associated with the ignition of a stoichiometric mixture ( φ0 = 1 . 0 ) at atmospheric pressure ( p = 1atm) with T 0 = 1200K. 
ample the first reaction (H+O 2 → O+OH) is the most important one 
at t= 5.0e-6, but by marching in time and passing the peak of the 
heat release region, other reactions ( e.g. reactions 2–10 which are 
specifically radical recombination reactions like OH+OH → O+H 2 O) 
also become important. Our model reduction approach ranks re- 
actions based on their all time maximum value on w. The f-OTD 
approach detects reactions even if their importance become visible 
instantly. Such reactions cannot be detected in static model reduc- 
tion techniques such as PCA. 

Figure 5 shows the first 8 eigenmodes of S T S matrix ( Eq. (8) ) 
and their associated eigenvalues from PCA. The parameters λ1 −
λ4 have a same order of magnitudes and a 1 − a 4 introduce sim- 
ilar important reactions. Reactions 22 and 28 are not considered 
important by observing only a 1 − a 4 . However, it was shown in 
Fig. 4 that these reactions are effective during t ∈ [3.0e-5,3.5e-5]. 
The next step in model reduction with PCA is to define threshold 
values λε and a ε to select important reactions and species as de- 
scribed in Section 2.1 . This task is beyond the scope of this study. 
4. Skeletal reduction: application for ethylene-air burning 

Several detailed kinetic models for ethylene-air burning are 
available in literature, and are developed at the University of Cali- 
fornia, San Diego (UCSD) [4] , the University of Southern California 
(USC - a subset of JetSurf) [2] , the KAUST (AramcoMech2) [50] , and 
the Politecnico of Milan (CRECK) [5] . Figure 6 indicates that the ig- 
nition delays as predicted by all these models are in a reasonable 
agreement with each other. Moreover, it is shown in Ref. [51] that 
USC ignition delays are closer to experimental data in comparison 
with the other three models. Therefore, here we consider USC as 
our detailed kinetic model, and extract a series of skeletal models 
via comparison with this baseline. 
4.1. Problem setup and initial conditions 

Simulations are conducted of an adiabatic, atmospheric pres- 
sure ( p= 1atm) reactor for 6 cases with different initial temper- 
atures T 0 ∈ [140 0,20 0 0] and equivalence ratios φ ∈ [0.5,1.0,1.5] for 
ethylene-air mixture. The USC model [2] with 111 species and 1566 
irreversible (784 reversible) reactions is the detailed model based 
on which all the skeletal models (f-OTDs) are generated. Only three 

Fig. 6. Skeletal model reduction for ethylene-air: ignition delays calculated by dif- 
ferent detailed kinetic models for an atmospheric ( p= 1atm) stoichiometric mixture 
( φ0 = 1.0) of ethylene-air. USC, UCSD, CRECK, and AramcoMech2 are in good agree- 
ment with each other. 
f-OTD modes ( r= 3) are employed to model the sensitivity ma- 
trix. Simulations with SK31 [1] , SK32 [52] and SK38 [1] , which 
are also skeletal models generated from two versions of USC (op- 
timized and unoptimized), are considered. The comparisons are 
made based on three criteria: i) ignition delay, ii) premixed lam- 
inar flame speed, iii) non-premixed extinction strain. The flame 
speeds and the extinction curves are generated by Cantera [48] . 
4.2. Skeletal models 

Figure 7 (a) portrays the evolution of eigenvalues of ≈S T ≈S for one 
of the cases with T 0 = 1400K and φ0 = 1.0. The value of λ1 (t) is two 
orders of magnitude larger than λ2 (t) during the course of igni- 
tion, except around temperature inflection point 2 ( T in f ) in which 
λ1 (t) is six orders of magnitude larger than λ2 (t) . This means that 

2 Temperature at d T /d t| max 
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Fig. 7. Skeletal model reduction for ethylene-air: (a) eigenvalues of ≈S T ≈
S with r= 3 for ignition simulation initialized with T 0 = 1400K and φ= 1.0. λ1 (t) is orders of magnitude 

larger than the others during ignition. (b) Species ranking with χε associated with f-OTD models. Only first 50 species in USC model are presented here. 

Fig. 8. Skeletal model reduction for ethylene-air: (a) predicted ignition delays, (b) flame speeds, and (c) extinction strains for skeletal models generated from USC. Ignition 
delays are generated with φ0 = 1.0, flame speeds with T 0 = 300K, both at 1atm pressure. Extinction curves are generated for ethylene-air diffusion flame at 1atm pressure and 
T 0 = 300K. 
only one of the modes of ≈S T ≈S is dominant during the ignition phe- 
nomenon and contains more than 95% of the energy of the dynam- 
ical system ( λ1 (t) / .i λi (t) > 0 . 95 ). Figure 7 (b) shows the species 
ranking based on the process described in Section 2.2.2 . Similar 
to the species ranking of hydrogen-oxygen system presented in 
Section 3 , H, OH, O and O 2 appear as the most important species 
based on their associated values on χ vector for the most sensitive 
reaction, which is H+O 2 → OH+O. Different skeletal models can be 
generated by putting different threshold χε on χ and eliminating 

species with χ < χε and their associated reactions. Our goal is to 
find a model which can reproduce the results of USC model based 
on the criteria mentioned in Section 4.1 with a pre-determined ac- 
curacy, e.g. less than 5% error. Table 1 provides the details of mod- 
els generated with varying threshold values of χε . 

Figures 8 (a) and 9 (a) demonstrate that f-OTD models with 
n s ≥ 32 perfectly predict the ignition delays for the stoichiometric 
mixture. The SK32 model under-predicts the ignition delays while 
SK38 and SK31 (with slightly different rate constants from USC) 
over-predict the ignition delays, and the relative error associated 

7 
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Fig. 9. Skeletal model reduction for ethylene-air: relative errors in (a) predicted ignition delays, and (b) flame speeds for skeletal models generated from USC. Ignition delays 
are generated with φ0 = 1.0, flame speeds with T 0 = 300K, both at 1atm pressure. 

Fig. 10. Skeletal model reduction for ethylene-air: Evolution of (a) C 2 H 4 , (b) HCO, (c) HCCO, and (d) CO 2 mass fractions as predicted by different models in Table 1 with 
T 0 = 1400K, φ= 1.0, and at 1atm pressure. f-OTD models with n s ≥ 32 show strong ability in reproducing USC results. 
with these three models are usually higher than f-OTD models 
with n s ≥ 32 . Figure 8 (b) and 9 (b) compare the laminar premixed 
flame speeds as predicted by different models initialized with 
T 0 = 300K. The f-OTD-2, SK31 and SK32 show largest deviations 
from the USC model. The f-OTD models with n s ≥ 38 and SK38 
have the best flame speed predictions, while f-OTD models show 
better comparisons at lower and upper bounds of φ0 . Figure 8 (c) 
compares the extinction strain rates. All f-OTD models show 
good agreements in estimating these rates. This is the toughest 
canonical flame feature to predict. The SK38 model under-predicts 
the maximum temperatures indicating the influence of optimized 
rate constants in Ref. [2] . 

Figure 10 portrays the species mass fraction evolution for some 
key species in a mixture initialized with φ0 = 1.0 and T 0 = 1400K. 
This figure highlights the ability of f-OTD-2 (with 32 species) in 
predicting ignition. Moreover, all f-OTD models (with n s ≥ 32 ) pro- 
vide a better estimate for the maximum mass fraction of species 
shown in Fig. 10 as compared with SK32 model. 

Observing the results in Fig. 8 , it is clear that f-OTD-1 is not a 
good skeletal model for USC. This is attributed to the elimination of 
C 2 O, CH 2 OCH 2 , CH 3 O, and H 2 O 2 in this 28 species model. Although 
f-OTD-1 cannot predict the ignition delay accurately, it performs 
reasonably well in estimating laminar flame speeds and maxi- 
mum temperatures for extinction. As mentioned above, f-OTD-2 

Table 1 
Model Characteristics. 

Model χε n s n r 
USC – 111 1566 
SK38 – 38 474 
SK32 – 32 412 
SK31 – 31 348 
f-OTD-1 3e-2 28 324 
f-OTD-2 2e-2 32 386 
f-OTD-3 1e-2 38 472 
f-OTD-4 3e-3 43 570 
f-OTD-5 2e-3 46 610 

estimates the ignition delays and extinction strain rate reasonably. 
Moreover, its flame speed predictions also match those via SK32 
model. We recommend this model when 10 % of relative error is 
tolerable in predicting ignition delays and laminar flame speeds. 
Predictions with f-OTD-3, f-OTD-4, and f-OTD-5 for all the test 
cases are so close to USC, and become more precise by increas- 
ing n s . Comparing f-OTD-3 with f-OTD-5 based on their applica- 
tions in reproducing USC model and their computational costs, we 
recommend the former. As Fig. 9 shows, f-OTD-3 predicts the re- 
sults of USC with less than 5 % relative error. Here are some dif- 
ferences/similarities between participating species in f-OTD models 
and SK32 and SK38: 

8 
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Fig. 11. Skeletal model reduction for ethylene-air: comparison of (a) ignition delay, (b) flame speed, and (c) extinction strain as predicted by the detailed model (USC) and 
the f-OTD-3 skeletal model. Ignition delays are generated for φ0 = 1.0, and flame speed and extinction simulations are performed with T 0 = 300K. 
• f-OTD-2 and SK32 (generated by DRG) both with 32 species 

have 27 species in common. f-OTD-2 has C, C 2 H, C 2 O, C 4 H 6 , 
CH 2 OCH 2 but SK32 has C 2 H 6 , C 3 H 6 , CH 3 CHO, aC 3 H 5 , nC 3 H 7 . 

• f-OTD-3 and SK38 (generated by PCA) both with 38 species 
have 36 species in common. f-OTD-3 contains C 3 H 3 and pC 3 H 4 
while SK38 has aC 3 H 5 and iC 4 H 3 . 

• f-OTD-3 has 30 species in common with SK32. 
Figure 11 demonstrates the ability of f-OTD-3 in predicting ig- 

nition delay, laminar flame speed and extinction strains for three 
different pressures: 0.5atm, 1.0atm, and 3.0atm. f-OTD-3 shows 
strong ability in reproducing USC results. In this regard, it should 
be mentioned that the USC model contains certain reactions which 
are tuned for atmospheric pressure conditions. Thus, any large ex- 
cursions from 1atm, e.g. 0.1 or 10atm, require manual selection of 
alternate set of rate parameters; the process we have tried to avoid 
here. We believe the range of pressure, i.e. 0.5 to 3atm (pressure 
ratio of 6) provides a decent test of fall-off pressure effects in our 
results. 
4.3. Normalized or non-normalized sensitivities for f-OTD 

As mentioned earlier, f-OTD analyzes the eigen decompostion of 
≈
S T ≈S instantly instead of S T S in PCA ( Eq. 8 ). Using normalized sen- 
sitivities ( ≈S i j = α j 

ξi ∂ξi 
∂α j ) can produce numerical issues where mass 

fractions ( ξi ) approach zero. In this study we used the normalized 
sensitivities of species with mass fractions greater than a thresh- 
old, e.g. 1.0e-6. This results in elimination of some of the rows of ≈S 
at each time step. 

Another approach is to analyze the eigen decompostion of S T S
instead of ≈

S T ≈S in f-OTD. This approach does not need a thresh- 
old for species mass fractions, and results in almost exactly the 
same skeletal models (f-OTD ∗s models). f-OTD-1 ∗, f-OTD-3 ∗ are ex- 
actly the same as f-OTD-1 and f-OTD-3, while f-OTD-2 ∗, f-OTD- 
4 ∗, and f-OTD-5 ∗ have only one species difference with f-OTD-2, 
f-OTD-4, and f-OTD-5, respectively. f-OTD-2 ∗ uses C 4 H 2 but f-OTD- 
2 uses C 2 O instead, f-OTD-4 ∗ uses H 2 C 4 O but f-OTD-4 uses aC 3 H 4 
instead, and f-OTD-5 ∗ uses CH 2 OH but f-OTD-5 uses C 2 H 3 CHO in- 
stead. Moreover, the test results do not show significant differences 
for this one species difference. 
5. Conclusions 

Instantaneous sensitivity analysis with f-OTD is described and 
implemented for a systematic skeletal model reduction. A key fea- 
ture of the f-OTD approach is that it factorizes the sensitivity ma- 
trix into a multiplication of two low-ranked time-dependent ma- 
trices which evolve based on evolution equations derived from the 
governing equations of the system. Modeled sensitivities are then 

normalized and the most important reactions and species of a de- 
tailed model are ranked in a systematic manner based on the cor- 
relations between normalized sensitivities. It is also shown that 
analyzing the correlations between the non-normalized sensitivi- 
ties also result in almost the same skeletal models. The signifi- 
cance of the f-OTD approach in model reduction is described for 
hydrogen-oxygen combustion, and its application for skeletal re- 
duction is demonstrated for ethylene-air burning. The generated 
skeletal models are compared based on their ability to predict ig- 
nition delays, flame speeds and diffusion flame extinction strain 
rates. f-OTD demonstrates strong ability in eliminating unimpor- 
tant species and reactions from the detailed model in an efficient 
manner. We recommend using f-OTD-2 and f-OTD-3 as skeletal 
models for USC with 10 % and 5 % relative errors, respectively, in 
estimating USC ignition delays and laminar flame speeds. 

The extension of this study would include sensitivity analysis 
based on the most effective thermochemistry parameters e.g. acti- 
vation energies, formation enthalpies, and transport properties e.g. 
heat and mass diffusivities. Most importantly, as shown recently 
[33] , f-OTD can be used in solving PDEs for multi-dimensional 
combustion problems in a cost-effective manner — by exploiting 
the correlations between the spatiotemporal sensitivities of dif- 
ferent species with respect to different parameters. This analysis 
can be especially insightful for problems containing rare events e.g. 
deflagration-detonation-transition by providing more insight about 
the global effective phenomena. Moreover, the f-OTD provides an 
excellent setting for development of reduced schemes in other 
mechanisms, for example thermonuclear reactions [53] . 
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