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ABSTRACT

Skeletal model reduction based on local sensitivity analysis of time dependent systems is presented in
which sensitivities are modeled by forced optimally time dependent (f-OTD) modes. The f-OTD factor-
izes the sensitivity coefficient matrix into a compressed format as the product of two skinny matrices,
i.e. f-OTD modes and f-OTD coefficients. The modes create a low-dimensional, time dependent, orthonor-
mal basis which capture the directions of the phase space associated with most dominant sensitivities.
These directions highlight the instantaneous active species, and reaction paths. Evolution equations for
the f-OTD modes and coefficients are derived, and the implementation of f-OTD for skeletal reduction is
described. For demonstration, skeletal reduction is conducted of the constant pressure ethylene-air burn-
ing in a zero-dimensional reactor, and new reduced models are generated. The laminar flame speed, the
ignition delay, and the extinction curve as predicted by the models are compared against some existing
skeletal models in literature for the same detailed model. The results demonstrate the capability of f-OTD

to eliminate unimportant reactions and species in a systematic, efficient and accurate manner.

© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

1. Introduction

Detailed reaction models for C;-C4 hydrocarbons usually con-
tain over 100 species in about 1000 elementary reactions [1-6].
Direct application of such models is limited only to simple,
canonical combustion simulations because of their tremendous
computational cost. Various reduction techniques have been
developed to accommodate realistic fuel chemistry simulations,
and to capture intricacies of chemical kinetics in complex multi-
dimensional combustion systems. As the first step in developing
model reduction, it is important to extract a subset of the detailed
reaction model, skeletal model, by eliminating unimportant species
and reactions [7,8]. Local sensitivity analysis (SA), reaction flux
analysis [9-11], and directed relation graph (DRG) and its vari-
ants [12-15] have often been utilized for skeletal model reduction.
Local SA, which is the subject of the present work, explores
the response of model output to a small change of a parameter
from its nominal value [16] while global sensitivity analysis is
useful for studying uncertainty of kinetic parameters (i.e. collision
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frequencies and activation energies) which propagate through
model and non-linear coupling effects [2,17-24].

Model reduction with local SA contains methods such as
PCA [1,25-31], and construction of a species ranking [32]. In local
SA, the sensitivities are commonly computed either by finite dif-
ference (FD) discretizations, directly solving a sensitivity equation
(SE), or by an adjoint equation (AE) [33]. The computational cost
of using FD or SE, which are forward in time methods, scales lin-
early with the number of parameters making them impracticable
when sensitivities with respect to a large number of parameters
are needed. On the other hand, computing sensitivities with AE
requires a forward-backward workflow, but the computational cost
is independent of the number of parameters as it requires solving
a single ordinary/partial differential equation (ODE/PDE) [34-36].
The AE solution is tied to the objective function, and for cases
where multiple objective functions are of interest, the same num-
ber of AEs must be solved. Regardless of the method of computing
sensitivities, the output of FD, SE, and AE at each time instance
is the full sensitivity coefficient matrix, which can be extremely
large for systems with large number of parameters.

Recently, the forced optimally time dependent (f-OTD) de-
composition method was introduced for computing sensitivities
in evolutionary systems using a model driven low-rank ap-
proximation [33]. This methodology is the extension of OTD

0010-2180/© 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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decomposition in which a mathematical framework is laid out
for the extraction of the low-rank subspace associated with
transient instability of the dynamical system [37]. The OTD ap-
proximates sensitivities with respect to initial conditions, while
f-OTD approximates sensitivities with respect to external pa-
rameters, e.g., forcing. As a consequence, in the formulation of
f-OTD there is a two-way coupling between the evolution of
the f-OTD modes and the f-OTD coefficients, whereas in OTD
formulation, the evolution of the modes is independent of the
coefficients. In forward workflow of f-OTD, the sensitivity matrix
ie. S(t) € R"a*™ js modeled on-the-fly as the multiplication of
two skinny matrices U(t) = [ty (t), up(t),--- , ur(t)] € R™", and
Y(t) =[y1(t),y2(t),--- ,y:(t)] e R"™" which contain the f-OTD
modes and f-OTD coefficients, respectively, where neq is the
number of equations (or outputs), n. is the number of inde-
pendent parameters, r <« min{ns, n;} is the reduction size, and
S(t) ~U(t)YT(t). The key characteristic of f-OTD is that both U(t)
and Y(t) are time-dependent and they evolve based on closed
form evolution equations extracted from the model, and are able
to capture sudden transitions associated with the largest finite
time Lyapunov exponents [38]. The time-dependent bases have
also been used for stochastic reduced order modeling [39-43], and
recently for on-the-fly reduced order modeling of reactive species
transport equation [44]. In a nutshell, f-OTD workflow i) is forward
in time unlike AE, ii) bypasses the computational cost of solving FD
and SE, or other data-driven reduction techniques, and iii) stores
the modeled sensitivities in a compressed format, i.e. we only store
and solve for two skinny matrices U and Y instead of storing and
solving the full sensitivity matrix S, as in FD, SE and AE.

The major advantage of PCA in skeletal reduction is to com-
bine the sensitivity coefficients for a wide range of operating con-
ditions (e.g. equivalence ratio and pressure) [1]. The PCA finds the
low-dimensional subspace of data gathered from different (tempo-
ral or spatial) locations by applying a minimization algorithm over
the whole data at once. Therefore, PCA is a low-rank approxima-
tion in a time-averaged sense and may fail to capture highly tran-
sient finite-time events (e.g. ignition). In order to resolve this is-
sue, one needs to pre-recognize the locations of such events and
use the data mainly from these locations. This requires extensive
knowledge and/or expertise. Moreover, PCA modes are time invari-
ant, and the process of selecting sufficient eigenvalues/eigenmodes
to capture the essence of all observed phenomena (e.g. ignition,
flame propagation), is crucial but is usually done by trial and error.
References [1,45] show that for certain problems, a skeletal model
built solely upon the information conveyed by that first reaction
group (first eigenmode) from PCA can fail to accurately reproduce
the detailed model over the entire domain of interest. Therefore,
one needs to deal with several eigenmodes with close eigenvalues
and choose essential reaction groups among them [1].

In order to resolve the drawbacks of current SA methods and
PCA for skeletal model reduction, we use f-OTD methodology for
both SA and skeletal model reduction. The applicability of our ap-
proach is demonstrated for ethylene-air burning with the Univer-
sity of Southern California (USC) chemistry model [2] as the de-
tailed model. Adiabatic, constant pressure, spatially homogeneous
ignition is the canonical problem; and the generated skeletal mod-
els with f-OTD are compared against detailed and several skeletal
models.

The remainder of this paper is organized as follows. The the-
oretical description of PCA and f-OTD and their mathematical
derivations for SA are presented in Section 2. Model reduction with
f-OTD is first described in Section 3, with a simple reaction model
for hydrogen-oxygen combustion, followed by skeletal model re-
duction with f-OTD for the more complex ethylene-air system in
Section 4. The paper ends with conclusions in Section 5. All the
generated models are supplied in supplementary materials section.
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2. Formulation

Consider a chemical system of ng species reacting through n;
irreversible reactions,

ns ns
Y M= Y My, j=1,...ny, (1)
k=1 k=1

where M, is a symbol for species k, and v,’{j and vl/{’] are the mo-
lar stoichiometric coefficients of species k in reaction j. Changes
of mass fractions ¥ = [y, V5, ..., ¥n,|T and temperature T in an
adiabatic, constant pressure p, and spatially homogeneous reac-
tion system of ideal gases can be described by the following initial

value problems (IVPs) [46]

d‘;/;k = fu (Y. T.a) = % Xr:vkjgj, ¥ (0) = Yo, (2a)
j=1
Z—Z =fr(¥.T,a)= _Cl i:hkf‘//k* T() =Ty, (2b)
P k=1

where t € [0, t;] is time, ¢/ is the final time and Wy, and hy, are the
molecular weight and enthalpy of species k, respectively, and

Vikj = Vij = Vijo (3a)
g Vinj
PYm \ "
m=1 m
Here, o =[1,1,...,1] € R™ is the vector of perturbation param-

eters and K; is the rate constant of reaction j which is usually
modeled using the modified Arrhenius parameters [47] for elemen-
tary reactions (Note: all reversible reactions are cast as irreversible
reactions). In Eq. (2) o(T,v¥) and cp(T, ¥) =Z£5:1 Yicp, (T) are
the density and specific heat at constant pressure of the mixture,
respectively, where cp, (T) is the specific heat at constant pressure
of kth species given by the NASA coefficient polynomial parame-
terization [48]. Let £ = [¥, T] € R"a denote the vector of compo-
sitions and accordingly f = [fw, fr] where neg = ns + 1. Then the
compositions IVP is governed by:

d§;

T = i) §0) = [Wo. Tl )
Since o =1, the perturbation with respect to «; amounts to an

infinitesimal perturbation of progress rates Q; for j=1,2,..., nr.

The sensitivity matrix, S(t) = [s1(t), S2(t), ...Sn, (t)] € R™*™ con-
tains local sensitivity coefficients, s; = 3&/0c;, and it can be calcu-
lated by solving the SE,

ds; _ N 0f; 08m dfi _ §Me . . -
T = lmet T 9; T o, = > met LimSmj + Fij, (5)

where L;, = % and F; = % are the Jacobian and the forcing ma-
]

trices, respectively.
2.1. Principal component analysis

Principal component analysis allows the investigation of the ef-
fects of parameter perturbations on the objective function G(p)

2
2 | &z p) - &(z p°)
Gg(p) = — 2| dz, 6
®=[ Y| e 2 (6)

where p® and p are unperturbed and perturbed normalized ki-
netic parameters, respectively; and p; = Ine; for j=1...n;. The
integrated squared deviation is investigated on the interval [z1, z;]
of the independent variable (time and/or space) [45]. It has been
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shown [25] that G(p) can be approximated around the nominal
parameter set (p?) as,

G(p) ~ (Ap)'s"s(Ap), (7)
where Ap=p— p® and

S|21
Slz,
S= (8)
S|Z'" (M.neg) xny
Here, §|zi (i=1,...,m) are normalized sensitivity matrices

(;ij = %%) on a series of m quadrature points on [z, 2] to ap-
i 0%

proximate the integral in Eq. (6). Eigen decomposition of STS =

AAAT results in:

G(p) ~ (ATAp)  A(ATAD), (9)
where A = diag [A1,Ag,...Ap] is a diagonal matrix contain-
ing eigenvalues of STS (which are real and positive) in descend-
ing order (A1 > Ay > ... > Ap,), and A = [aq, a;, ... ay, | contains the
eigenvectors of STS sorted from left to right with the same or-
der in A. Then PCA uses two thresholds (A & a¢) to select first
Jj sets of reactions (aq, @, ..., a;) which satisfy A; > A¢ condition
and choose every ith reaction in each a; set with |a;;| > ac condi-
tion [1].

2.2. Sensitivity analysis with optimally time dependent modes

Like PCA, our kinetic model reduction strategy is based on se-
lecting reactions, whose perturbations grow most intensely in the
composition evolution given by Eq. (4). However, the selection of
important reactions is made here based on instantaneous observa-
tion of modeled sensitivities, unlike PCA.

2.2.1. Modeling the sensitivity matrix

Imagine we perturb the composition evolution equation
(Eq. (4)) by infinitesimal variations of oj=1 to a;=1+daj,
where Sozj <1forj=1,2,..., ny. In f-OTD, we factorize the sen-
sitivity matrix S(t) into a time-dependent subspace in the neg-
dimensional phase space of compositions represented by a set of f-
OTD modes: U(t) = [uq(t), uy(t),--- ,u:(t)] € R™*" These modes
are orthonormal uiT (t)u;(t) = §; at all t, where §;; is the Kronecker
delta. The rank of S(t) € R"%a*™ is d = min{neq, n,} while the f-OTD
modes represent a rank-r subspace, where r « d. To this end, we
approximate the sensitivity matrix via the f-OTD decomposition
(Fig. 1):
S(t) ~UMDYT(t), (10)

where Y (t) = [y (t),y5(t),--- .y (t)] e R is the f-OTD coeffi-
cient matrix. The above decomposition is not exact as Eq. (10) is a
low-rank approximation of the sensitivity matrix S(t). Note that in
the above decomposition both U(t) and Y(t) are time dependent.
We drop the explicit time dependence on t for brevity. Fig. 1 shows
the schematic of decomposition of S into f~-OTD components U and
Y. The evolution equation for U and Y are obtained by substituting
Eq. (10) into Eq. (5):

ds _du.; . .dy’

— A —_— T
T th +U i LUY® +F. (11)
Projecting Eq. (11) to U results in
T
UTC;—ltJYT + UTUdst =UTWYT +U'F. (12)

The f-OTD modes are orthonormal, UTU = I. Taking a time deriva-

tive of the orthonormality condition yields in: %U-&UT%’:O. This

Combustion and Flame 235 (2022) 111684

means that ¢ =UT% e R™" is a skew-symmetric matrix (¢ =

—@). As shown in Refs. [33,37], any skew-symmetric choice of ma-

trix ¢, will lead to equivalent f-OTD subspaces. Here we choose

@ =0. Using UTU =1 and UT % = 0, Eq. (12) simplifies to

dy’

~_ =UTWYT +U'F. (13)
dt

The evolution equation for U can be obtained by substituting %

from Eq. (13) in Eq. (11) and projecting the resulting equation onto

Y by multiplying Y from right

du

T = QLU + QFYC!, (14)

where Q =T —UUT is the orthogonal projection onto the space

spanned by the complement of U and C =YTY e R™" is a correla-

tion matrix matrix. Matrix C(t) is, in general, a full matrix implying

that the f-OTD coefficients are correlated. Eq. (13) can be written

as

v _ YLT + FTU, (15)
dt

where L, =UTIU e R™" is a reduced linearized operator.
Eqgs. (14) and (15) are a coupled system of ODEs and they
constitute the f~-OTD evolution equations. The f-OTD modes align
themselves with the most instantaneously sensitive directions
of the composition evolution equation when perturbed by «. It
is shown in Ref. [38] that when « is the perturbation to the
initial condition, the OTD modes converge exponentially to the
eigen-directions of the CauchyGreen tensor associated with the
most intense finite-time instabilities. We refer to Ref. [37] for
further details about OTD.

2.2.2. Selecting important reactions & species

In our approach, instantaneous sensitivities are analyzed as op-
posed to PCA in which sensitivities are sampled at a few selected
time instants. Computing instantaneous sensitivities would signif-
icantly increase the computational/bookkeeping costs especially if
large detailed mechanisms are to be analyzed. The f-OTD leverages
the fact that we are often interested in the leading sensitivity vec-
tors, and it provides a computationally feasible approach for solv-
ing only those dominant sensitivity vectors, without requiring to
explicitly compute the full sensitivities at any point. The reduction
procedure is as follows:

1. Modeled sensitivities are computed in factorized format by
solving Eqs. (14) and (15). These two equations are evolved in
addition to Eq. (4), and the values of &, U, and Y are stored at
resolved time steps ¢; € [0, tf]. Eq. (4) is initialized with a com-
bination of the initial temperatures, equivalence ratios (¢y), etc.
Each simulation with a different initial condition is denoted by
a case here. Egs. (14) and (15) are initialized by first solving the
SE (Eq. (5)) for a few time steps, and then performing singu-
lar value decomposition of the sensitivity matrix S = BXVT and
assigning U =Band Y =VX.

2. At each resolved time step and for each case, we compute the

eigen decomposition of STS e R<Mr as §Ts — AAAT, and define
we R"™! = (ZAila;])/(ZX;) € R™. The w vectors are basically

the average of eigenvectors of sTS matrix weighted based on
their associated eigenvalues. This prevents us from dealing with
each eigenvector (a;) separately. We use the normalized sensi-
e ~ o 9§
tivities (S;; = STaT'j
a threshold, e.g. 1.0e-6. This results in elimination of some of

) of species with mass fractions greater than

the rows of S associated with small mass fraction species at
each time step. As shown in Sections 3 and 4, the first sorted
eigenvalue (Aq) is usually orders of magnitude larger than the
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Fig. 1. Modeling sensitivity matrix S(t) as a multiplication of two low-ranked matrices U(t) and Y (t) which evolve based on Eqs. (14) and (15).

(a)
10* ' ‘
]
£ ]
{ S ]
| g ]
g 1
| £ .
Q
—— 8 ]
i s ] & ]
i i
MIRE: [ 4 S 1 ]
1075 111 | i Tl E
11t I S 1
i1 TR T T ]
102H 111 |.”\‘.‘," B ]
11t f/ Vil >
AR 1/ v/ — PCA 5 ]
1073 IR i/ J --=- I.PCA ] £ 5
1111 1l === fOTD (r=5) &
tire N f-OTD (r=6) 3
L S g
10- /1 1 1 L [ID)‘
1 2 3 4 5 !
t [s] x 1073

Fig. 2. Model reduction for hydrogen-oxygen: (a) eigenvalues calculated by PCA, I-PCA and f-OTD, (b) sorted reactions and species based on their associated x values.
Ignition data is gathered for stoichiometric mixture (¢ = 1.0) at atmospheric pressure (p =1atm) with Ty=1200K.

others which means w(t) ~ |a;(t)|. Each element of w, i.e. w;,
is positive and associated with a certain reaction (ith reaction).
The larger the w; value, the more important reaction i is. We
define y; as the highest value associated with w; through all
resolved time-steps and cases.

. The elements of x vector are sorted in descending order to
find the indices of the most important reactions in the detailed
model. Species are also sorted based on their first presence in
the sorted reactions, i.e. species who first shows up in a higher
ranked reaction would be more important than a species who
first participate in a lower ranked reaction. This results in a re-
action and species ranking based on x vector e.g. Fig. 2(b).

. In the last step, we choose a set of species by defining a thresh-
old x. on the element of x vector and eliminate species whose
associated x; are less than x.. We also get rid of the reactions

which include the species. As our skeletal model reduction is
reaction based, any non-reactive species with non-zero mass
fraction in the initial condition should be manually added to
the skeletal model.

In summary, we sort the reactions to find the most important

species. These species and the reactions which connect them to-
gether, create our reduced models. In combustion systems, pertur-
bations with respect to “fast” reactions generate very large sen-
sitivities for short time periods which vanish as t — co. On the
other hand, perturbations with respect to “slow” reactions gen-
erate smaller and more sustained sensitivities. As our approach
is based on the instantaneous observation of sensitivities, both
“slow” and “fast” reactions can leave an imprint on the instanta-
neous normalized reaction vector (w) if their imprints are larger
than the threshold value (x¢). However, if the sensitivities asso-
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Fig. 3. Model reduction for hydrogen-oxygen: comparison of the predicted temperature and some species mass fraction profiles from different models for stoichiometric

mixture (¢o = 1.0) at atmospheric pressure (p =1atm) with To=1200K.
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Fig. 4. Model reduction for hydrogen-oxygen: temporal variation of w(t) for the ignition of a stoichiometric mixture (¢o = 1.0) at atmospheric pressure (p =latm) with

Ty=1200K.

ciated with “fast” and “slow” reactions from all times and loca-
tions would be combined with each other before dimension re-
duction, as commonly done in PCA-type approaches, the smaller
sensitivities associated with “slow” reactions could have been out-
weighted by the large sensitivities associated with “fast” reactions.
In fact, this concern is the primary motivation for using f-OTD
rather than PCA-type skeletal reduction approaches.

3. Model reduction with f-OTD: application for
hydrogen-oxygen combustion

In this section, the process of eliminating unimportant reac-
tions and species from a detailed kinetic model with f-OTD is de-
scribed, and its differences with PCA are highlighted. The Burke
model [49] for hydrogen-oxygen system which contains ns=10
species,! and n;=54 irreversible (27 reversible) reactions is con-
sidered as the detailed model. The reduction process is performed
by analyzing only one case for the ignition of an adiabatic, stoi-
chiometric hydrogen-oxygen mixture at atmospheric pressure and
To=1200K, with integration of both the SE (Eq. (5)) and f-OTD
equations (Eqs. (14) and (15)). Exact sensitivities from SE are com-
puted for two purposes, i) finding PCA eigenmodes and eigenval-
ues, and ii) analyzing the performance of f-OTD by comparing the

instant eigenvalues of §T§ at each t, from f-OTD against those ob-
tained by solving the SE. The latter is equivalent to performing in-

1 This kinetic model has 13 species (H, H,, O, OH, H,0, O, HO,, H,0,, N3, AR,
HE, CO, CO,) in which Ny, CO, and CO, do not participate in the reactions.

stantaneous PCA (I-PCA) on the full sensitivity matrix. The I-PCA
shows the optimal reduction of the time-dependent sensitivity ma-
trix, and we show that the eigenvalues of f-OTD closely approxi-
mate the r most dominant eigenvalues of I-PCA.

Figure 2(a) compares top eigenvalues of f~-OTD with PCA (static)
and I-PCA (instantaneous). It is shown that the top PCA eigenval-
ues are time invariant, and close to each other. In contrast the
first f-OTD eigenvalue is orders of magnitude larger than the oth-
ers during the course of ignition, i.e. from t=0 to t=30 wus (until
most of the heat is released). Moreover, f-OTD eigenvalues match
with I-PCA with increasing number of modes (r). This means that
the modeled sensitivities converge to the exact values by adding
more modes, in this case addition of top 6 modes. The results also
show that with f-OTD (r=5), the time variation of top eigenvalues
is captured well, while the second dominant eigenvalues deviates
from I-PCA solution in the main non-equilibrium reaction layer and
the post heat release region. Figure 2(b) portray the reaction and
species rankings for ignition problem. Note: inert species AR and
HE in Fig. 2(b) are not important in pure hydrogen-oxygen ignition
and can be eliminated. The f-OTD-Burke model is generated by re-
moving these two species and their associated reactions from the
Burke model with ns=8 and n,=46. Figure 3 demonstrates f~-OTD-
Burke ability in reproducing the species evolution using the Burke
model, for a stoichiometric mixture (¢ = 1.0) of hydrogen-oxygen
at p=1atm and Ty=1200K. Figure 4 portrays the temporal evolution
of w(t). As each element of w(t) is associated with a reaction, any
change in the shape of this temporal vector signifies a change in
the importance of reactions during the course of ignition. For ex-
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Fig. 5. Model reduction for hydrogen-oxygen: first eight eigenmodes of STS calculated by PCA, from combined analysis over the time interval 0 to 5.0e-6 secs. The analysis
is associated with the ignition of a stoichiometric mixture (¢o = 1.0) at atmospheric pressure (p =1atm) with To=1200K.

ample the first reaction (H+O, — O+OH) is the most important one
at t=5.0e-6, but by marching in time and passing the peak of the
heat release region, other reactions (e.g. reactions 2-10 which are
specifically radical recombination reactions like OH+OH— O+H,0)
also become important. Our model reduction approach ranks re-
actions based on their all time maximum value on w. The f-OTD
approach detects reactions even if their importance become visible
instantly. Such reactions cannot be detected in static model reduc-
tion techniques such as PCA.

Figure 5 shows the first 8 eigenmodes of STS matrix (Eq. (8))
and their associated eigenvalues from PCA. The parameters A; —
A4 have a same order of magnitudes and a; — a4 introduce sim-
ilar important reactions. Reactions 22 and 28 are not considered
important by observing only a; — a4. However, it was shown in
Fig. 4 that these reactions are effective during t €[3.0e-5,3.5e-5].
The next step in model reduction with PCA is to define threshold
values A¢ and ae to select important reactions and species as de-
scribed in Section 2.1. This task is beyond the scope of this study.

4. Skeletal reduction: application for ethylene-air burning

Several detailed kinetic models for ethylene-air burning are
available in literature, and are developed at the University of Cali-
fornia, San Diego (UCSD) [4], the University of Southern California
(USC - a subset of JetSurf) [2], the KAUST (AramcoMech2) [50], and
the Politecnico of Milan (CRECK) [5]. Figure 6 indicates that the ig-
nition delays as predicted by all these models are in a reasonable
agreement with each other. Moreover, it is shown in Ref. [51] that
USC ignition delays are closer to experimental data in comparison
with the other three models. Therefore, here we consider USC as
our detailed kinetic model, and extract a series of skeletal models
via comparison with this baseline.

4.1. Problem setup and initial conditions

Simulations are conducted of an adiabatic, atmospheric pres-
sure (p=1atm) reactor for 6 cases with different initial temper-
atures Ty €[1400,2000] and equivalence ratios ¢ €[0.5,1.0,1.5] for
ethylene-air mixture. The USC model [2] with 111 species and 1566
irreversible (784 reversible) reactions is the detailed model based
on which all the skeletal models (f-OTDs) are generated. Only three

0 , .
16 O usc
= UCSD
m m CRECK
m m AramcoMech2

10°® ' '
4 6 8 10 12
1/T [107%/K]

Fig. 6. Skeletal model reduction for ethylene-air: ignition delays calculated by dif-
ferent detailed kinetic models for an atmospheric (p=1atm) stoichiometric mixture
(¢o=1.0) of ethylene-air. USC, UCSD, CRECK, and AramcoMech2 are in good agree-
ment with each other.

f-OTD modes (r=3) are employed to model the sensitivity ma-
trix. Simulations with SK31 [1], SK32 [52] and SK38 [1], which
are also skeletal models generated from two versions of USC (op-
timized and unoptimized), are considered. The comparisons are
made based on three criteria: i) ignition delay, ii) premixed lam-
inar flame speed, iii) non-premixed extinction strain. The flame
speeds and the extinction curves are generated by Cantera [48].

4.2. Skeletal models

Figure 7(a) portrays the evolution of eigenvalues of sTs for one
of the cases with Ty =1400K and ¢y =1.0. The value of Aq(t) is two
orders of magnitude larger than A,(t) during the course of igni-
tion, except around temperature inflection point® (T, ) in which
Aq(t) is six orders of magnitude larger than A, (t). This means that

2 Temperature at dT/dt|max
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only one of the modes of sTs is dominant during the ignition phe-
nomenon and contains more than 95% of the energy of the dynam-
ical system (Aq(t)/X;A;(t) > 0.95). Figure 7(b) shows the species
ranking based on the process described in Section 2.2.2. Similar
to the species ranking of hydrogen-oxygen system presented in
Section 3, H, OH, O and O, appear as the most important species
based on their associated values on x vector for the most sensitive
reaction, which is H+0, — OH+O0. Different skeletal models can be
generated by putting different threshold x. on x and eliminating

species with y < xe and their associated reactions. Our goal is to
find a model which can reproduce the results of USC model based
on the criteria mentioned in Section 4.1 with a pre-determined ac-
curacy, e.g. less than 5% error. Table 1 provides the details of mod-
els generated with varying threshold values of xe.

Figures 8(a) and 9(a) demonstrate that f-OTD models with
ns > 32 perfectly predict the ignition delays for the stoichiometric
mixture. The SK32 model under-predicts the ignition delays while
SK38 and SK31 (with slightly different rate constants from USC)
over-predict the ignition delays, and the relative error associated
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with these three models are usually higher than f-OTD models
with ng > 32. Figure 8(b) and 9(b) compare the laminar premixed
flame speeds as predicted by different models initialized with
To=300K. The f-OTD-2, SK31 and SK32 show largest deviations
from the USC model. The f-OTD models with ns > 38 and SK38
have the best flame speed predictions, while f-OTD models show
better comparisons at lower and upper bounds of ¢q. Figure 8(c)
compares the extinction strain rates. All f-OTD models show
good agreements in estimating these rates. This is the toughest
canonical flame feature to predict. The SK38 model under-predicts
the maximum temperatures indicating the influence of optimized
rate constants in Ref. [2].

Figure 10 portrays the species mass fraction evolution for some
key species in a mixture initialized with ¢¢=1.0 and Ty=1400K.
This figure highlights the ability of f-OTD-2 (with 32 species) in
predicting ignition. Moreover, all f-OTD models (with ns > 32) pro-
vide a better estimate for the maximum mass fraction of species
shown in Fig. 10 as compared with SK32 model.

Observing the results in Fig. 8, it is clear that f~-OTD-1 is not a
good skeletal model for USC. This is attributed to the elimination of
C,0, CH,0CH,, CH30, and H,0, in this 28 species model. Although
f-OTD-1 cannot predict the ignition delay accurately, it performs
reasonably well in estimating laminar flame speeds and maxi-
mum temperatures for extinction. As mentioned above, f-OTD-2

Table 1

Model Characteristics.
Model Xe ng ne
usc - 111 1566
SK38 - 38 474
SK32 - 32 412
SK31 - 31 348
f-OTD-1 3e-2 28 324
f-OTD-2 2e-2 32 386
f-OTD-3 le-2 38 472
f-OTD-4 3e-3 43 570
f-OTD-5 2e-3 46 610

estimates the ignition delays and extinction strain rate reasonably.
Moreover, its flame speed predictions also match those via SK32
model. We recommend this model when 10% of relative error is
tolerable in predicting ignition delays and laminar flame speeds.
Predictions with f-OTD-3, f-OTD-4, and f-OTD-5 for all the test
cases are so close to USC, and become more precise by increas-
ing ns. Comparing f-OTD-3 with f-OTD-5 based on their applica-
tions in reproducing USC model and their computational costs, we
recommend the former. As Fig. 9 shows, f-OTD-3 predicts the re-
sults of USC with less than 5% relative error. Here are some dif-
ferences/similarities between participating species in f-OTD models
and SK32 and SK38:



A.G. Nouri, H. Babaee, P. Givi et al.

Combustion and Flame 235 (2022) 111684

(a) (b) (c)
10° 80 . 2200
umn fOTD-3 \d «
0.5atm ]
+$901.0atm R ‘:8"8.'8'%’. 2100 ..Q"O.
+O3.0atm 60 Q. O‘O 3.0 atm
2 o . Qo P
10 3 % 30 G, Ot =
. % ~ Qp .o b. 80_5 atm| ﬁ 2000 a i
2, g * b 1.0 atm| "Q
28 D40 +0.0 0 8 'O.o
- g: o 8‘0' Osoum (5 1900 1.0atm
10 Q| O
209’0 1800 "%5 atm
106 0 1700
4 6 8 10 12 05 07 09 11 13 15 1000 2000 3000
1/Ty [10-4/K] o a [1/s)

Fig. 11. Skeletal model reduction for ethylene-air: comparison of (a) ignition delay, (b) flame speed, and (c) extinction strain as predicted by the detailed model (USC) and
the f-OTD-3 skeletal model. Ignition delays are generated for ¢o=1.0, and flame speed and extinction simulations are performed with Ty=300K.

« f-OTD-2 and SK32 (generated by DRG) both with 32 species
have 27 species in common. f-OTD-2 has C, C,H, C,0, C4Hg,
CH,0CH, but SK32 has C,Hg, C3Hg, CH3CHO, aC3Hs, nC3H5.

« f-OTD-3 and SK38 (generated by PCA) both with 38 species
have 36 species in common. f-OTD-3 contains C3Hz and pC3Hy
while SK38 has aCs3Hs and iC4Hs.

« f-OTD-3 has 30 species in common with SK32.

Figure 11 demonstrates the ability of f-OTD-3 in predicting ig-
nition delay, laminar flame speed and extinction strains for three
different pressures: 0.5atm, 1.0atm, and 3.0atm. f-OTD-3 shows
strong ability in reproducing USC results. In this regard, it should
be mentioned that the USC model contains certain reactions which
are tuned for atmospheric pressure conditions. Thus, any large ex-
cursions from latm, e.g. 0.1 or 10atm, require manual selection of
alternate set of rate parameters; the process we have tried to avoid
here. We believe the range of pressure, i.e. 0.5 to 3atm (pressure
ratio of 6) provides a decent test of fall-off pressure effects in our
results.

4.3. Normalized or non-normalized sensitivities for f-OTD

As mentioned earlier, f-OTD analyzes the eigen decompostion of

sTs instantly instead of STS in PCA (Eq. 8). Using normalized sen-
o 38
§; da;j
fractions (£;) approach zero. In this study we used the normalized
sensitivities of species with mass fractions greater than a thresh-

sitivities (S;; = ) can produce numerical issues where mass

old, e.g. 1.0e-6. This results in elimination of some of the rows of §
at each time step.
Another approach is to analyze the eigen decompostion of STS

instead of STS in f-OTD. This approach does not need a thresh-
old for species mass fractions, and results in almost exactly the
same skeletal models (f-OTD*s models). f~-OTD-1*, f-OTD-3* are ex-
actly the same as f-OTD-1 and f-OTD-3, while f-OTD-2*, f-OTD-
4*, and f-OTD-5* have only one species difference with f-OTD-2,
f-OTD-4, and f-OTD-5, respectively. f-OTD-2* uses C4H, but f-OTD-
2 uses C,0 instead, f-OTD-4* uses H,C40 but f-OTD-4 uses aC3Hy
instead, and f-OTD-5* uses CH,OH but f-OTD-5 uses C,H3CHO in-
stead. Moreover, the test results do not show significant differences
for this one species difference.

5. Conclusions

Instantaneous sensitivity analysis with f-OTD is described and
implemented for a systematic skeletal model reduction. A key fea-
ture of the f-OTD approach is that it factorizes the sensitivity ma-
trix into a multiplication of two low-ranked time-dependent ma-
trices which evolve based on evolution equations derived from the
governing equations of the system. Modeled sensitivities are then

normalized and the most important reactions and species of a de-
tailed model are ranked in a systematic manner based on the cor-
relations between normalized sensitivities. It is also shown that
analyzing the correlations between the non-normalized sensitivi-
ties also result in almost the same skeletal models. The signifi-
cance of the f-OTD approach in model reduction is described for
hydrogen-oxygen combustion, and its application for skeletal re-
duction is demonstrated for ethylene-air burning. The generated
skeletal models are compared based on their ability to predict ig-
nition delays, flame speeds and diffusion flame extinction strain
rates. f-OTD demonstrates strong ability in eliminating unimpor-
tant species and reactions from the detailed model in an efficient
manner. We recommend using f-OTD-2 and f-OTD-3 as skeletal
models for USC with 10% and 5% relative errors, respectively, in
estimating USC ignition delays and laminar flame speeds.

The extension of this study would include sensitivity analysis
based on the most effective thermochemistry parameters e.g. acti-
vation energies, formation enthalpies, and transport properties e.g.
heat and mass diffusivities. Most importantly, as shown recently
[33], f-OTD can be used in solving PDEs for multi-dimensional
combustion problems in a cost-effective manner — by exploiting
the correlations between the spatiotemporal sensitivities of dif-
ferent species with respect to different parameters. This analysis
can be especially insightful for problems containing rare events e.g.
deflagration-detonation-transition by providing more insight about
the global effective phenomena. Moreover, the f-OTD provides an
excellent setting for development of reduced schemes in other
mechanisms, for example thermonuclear reactions [53].
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