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Abstract: Vibration measurement-based gear fault diagnoses have shown the promise aspects, where the 

deep learning methods have been harnessed. However, the traditional deep learning methods are 

deterministic in nature, and will be prone to false prediction when uncertainties are involved, such as time 

varying condition and measurement noise. To address these challenges, the fault pattern recognition needs 

to be performed in a probabilistic manner. Considering the features in vibration time-series usually are 

massive, in this research we develop a Bayesian convolutional neural network (BCNN) to conduct the gear 

fault diagnosis under uncertainties. The predictive distribution yielded facilitates the decision making with 

confidence level, leading to the robustness enhancement of the fault diagnosis. Comprehensive case studies 

are carried out to validate the proposed methodology. 
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1. INTRODUCTION 

Gear failure will lead to the abnormal function of rotating 
machinery. Therefore, the reliable health monitoring of the 
gear plays a vital role. Currently, vibration measurement has 
been commonly utilized to support the gear fault diagnosis 
(Saravanan et al, 2009; Shen et al, 2014; Zhang and Hu, 2019). 
Through analyzing the measurement, different faults can be 
discriminated. Signal processing analysis is a well-known 
approach to extract the important features in the measurement, 
and subsequently to facilitate the fault pattern 
recognition/discrimination. Recently there are various signal 
processing methods including the time-domain (Hong and 
Dupia, 2014), frequency-domain (Sharma and Parey, 2017)  
and time and frequency-domain methods (Cheng et al, 2010; 
Jena et al, 2014; Zhang and Tang, 2018; Qin et al, 2019) that 
have been developed and employed in gear fault diagnosis. 
Nevertheless, in the scenario when the correlation between the 
features and faults is complex, these signal processing 
techniques are not adequate to enable the reliable fault 
diagnosis task.  

Deep learning-based fault diagnosis techniques have 
attracted the growing interest because of their capability in 
automatically and powerfully extract the fault-related features, 
and then build the mapping between the features and faults. 
Convolutional neural network (CNN), as one most 
representative class of deep learning methods has been 
adopted in a broad range of research. Cao et al (2018) used 
CNN-based transfer learning to conduct gear fault diagnosis 
using small dataset. Kim and Chi (2019) developed a CNN 
model which is implemented upon the signal segmentation to 
fulfill the accurate gear fault diagnosis regardless the 
measurement location. Li et al (2020) developed a new CNN 
with residual connection to classify gear pitting faults with 

mixed operating conditions. In addition to deep learning 
methods, other data-driven approaches, such as fuzzy 
inference system, support vector machine and so on have also 
been attempted to pursue the success of fault diagnosis (Bansal 
et al, 2013; Zhou and Tang, 2021).  

Despite the success of aforementioned methods, the 
challenges of the practical fault diagnosis remain unsolved. 
One well-known challenge of conventional deep learning 
methods is the lack of ability to estimate the uncertainty effect 
in decision making. The deterministic nature of those methods 
is prone to false fault prediction if uncertainties inevitably 
involve. Multiple uncertainty sources in practical 
implementation exist, including but not limited to the time-
varying condition and measurement noise. To minimize the 
negative effect of uncertainties and accordingly improve the 
fault diagnosis performance, the diagnosis technique with 
probabilistic prediction capacity is required. While some 
probabilistic machine learning methods, such as Gaussian 
process can fulfill the probabilistic fault diagnosis, they are 
subject to the limitation of simultaneous feature extraction on 
a massive number of real-time data (Liang and Zhou, 2021). 
In this research, we propose to use the Bayesian convolutional 
neural network (BCNN) which takes full advantage of both 
CNN and Bayesian optimization. This allows one to 
comprehensively investigate the uncertainty impact when 
performing the gear fault diagnosis. 

The rest of the paper is organized as follows. Section 2 
outlines the gear fault diagnosis framework built upon the 
BCNN. Section 3 illustrates the feasibility of the framework 
by implementing the fault diagnosis on a lab-scale gearbox 
system with different formulated scenarios. Section 4 gives 
concluding remarks. 
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2. METHODOLOGY OVERVIEW 

In this section, the gear fault diagnosis framework built 

upon BCNN model is mathematically outlined. BCNN model 

fundamentally exploits the architecture of CNN model. The 

unique difference of BCNN as compared with the CNN is that 

the training is built upon the Bayesian optimization, yielding 

the probabilistic weights and biases in the form of distribution 

in the network. Let θ  be the network unknowns, i.e., [ , ]w b . 

Built upon the training input-output relations denoted as D, the 

posterior distribution of θ  can be obtained using the Bayes’ 

rule (Zhou and Tang, 2016), 
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In this research, D is represented as [ , ]D X y , where 

1 2[ , ,...]X x x denotes the time-series signals and 

1 2[ , ,...]y yy  is the associated fault labels. Assume that the 

input-output relation of single sample can be implicitly 

expressed as ( , , )y f x w b . Equation (1) then can be 

rewritten as 
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It is worth mentioning that there is no analytical form for the 
posterior distribution shown above. To approximate the 
posterior distribution, the variational distribution ( , | )q w b φ
that is represented in an analytical form oftentimes is adopted. 
if ( , | )q w b φ  is a normal distribution, φ thus represents the 
mean and variance of unknowns θ . The variational 
distribution-based posterior approximation can be achieved by 
minimizing the Kullback-Leibler (KL) divergence between

( , | , )p w b X y and ( , | )q w b φ (Kullback, 1997; Blei et al, 
2017). 

Once the probabilistic weights and biases of BCNN model 
are optimized through training, The posterior predictive 
distribution of *y over a set of unobserved time-series *X can 
be formulated as  

* * * *( | , , , , ) ( , | , ) ( | , , )p p p d d  y w b X y X w b X y y w b X w b
(3) 

In BCNN-based prediction, for each deterministic input *
ix , its 

resulting output *y is probabilistic because the weights and 
biases [ , ]w b  are randomly sampled from the optimized 
variation distribution *( , | )q w b φ . Because of the 
probabilistic weights and biases, the outputs of all layers other 
than the input layer become probabilistic. The Monte Carlo 
analysis is employed to numerically identify the probability 
distribution of interested output given the input *

ix . 
 
 

3. CASE DEMONSTRATION 

In this section, the proposed BCNN-based framework is 
implemented onto the fault diagnosis of a lab-scale gearbox 
system using vibration measurement. Two cases are 
formulated to validate the framework.  

3.1 Data acquisition and BCNN architecture 

The gearbox testbed is shown in Figure 1. 9 different fault 
conditions are manufactured and introduced into the testbed 
(Figure 2), upon which the corresponding measurements are 
collected. The same number of data samples are produced 
through the time-series vibration signals for all fault 
conditions. Each sample essentially is a time series with 3,600 
data points. The overview of the data is given in Table 1. 
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Figure 1. Experimental testbed. 

 

 
Figure 2. Fault conditions. 

 
Table 1. Gear fault data 

Type/Fault class Fault condition Data size 

1 Healthy 104 

2 Missing tooth 104 

3 Crack 104 

4 Spalling 104 

5 Chipping_tip_5 

(least severe) 

104 

6 Chipping_tip_4 104 

7 Chipping_tip_3 104 

8 Chipping_tip_2 104 

9 Chipping_tip_1 

(most severe) 

104 

 
There are 932 data samples in total to be used in the 

subsequent analysis. Two different cases are formulated, 
including: (1) Normal fault classification using the dataset 
provided; (2) Normal fault classification using the dataset with 



measurement noise introduced. Since the samples are 
relatively small-sized, we design a small-scale architecture for 
BCNN based on the empirical experience. The layer 
configuration of configured BCNN is shown in Table 2. As can 
be seen in Table 2, no fully connected layers are built between 
the convolutional layers and the softmax layer, which 
significantly reduces the number of learnable parameters. 

Table 2. BCNN model architecture 
Layer Output shape Parameter 

number 
Input 256 256 1   0 

Convolutional (filter: 
3 3 32  ) (ReLU) 

128 128 32   608 

Convolutional (filter: 
3 3 64  ) (ReLU) 

64 64 64   36,928 

Convolutional (filter: 
3 3 128  ) (ReLU) 

32 32 128   147,584 

Flatten 131,072 0 
Dense (Softmax) 9  2,097,160 

3.2 Case investigations 

3.2.1 Fault classification using collected dataset 
In this case, we split the dataset shown in Table 1 into 80% 

training and 20% testing data. The stratified splitting is 
specifically used to ensure the balanced classes.  5% training 
data are hold out for validation during the model training. By 
observing the training and validation accuracy tendencies with 
respect to epoch, it is ensured that there are no model 
overfitting and underfitting issues. Once the BCNN model is 
well-trained, we can use it to predict the faults over testing 
inputs and compared them with the actual faults. As shown in 
Section 2, the BCNN can yield so called predictive 
distribution, which generally can be represented by 
distribution of probability mean and standard deviation. 
Gathering the probabilistic information of all testing samples 
yield the result in Figure 3. As can be observed, the probability 
mean of testing samples for true fault type is much larger than 
that for other fault types, indicating the accurate classification 
from a probabilistic perspective. Additionally, the probability 
standard deviations overall are small. The result indeed 
illustrates the accurate decision making with high confidence 
level. The crispy classification is 100% if the classification of 
the sample is considered as accurate when the actual fault of 
sample is identified as being the highest probability mean.  
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Figure 3. Classification probability outputs of testing samples 
with different faults (a) fault type 1; (b) fault type 2; (C) fault 
type 3; (D) fault type 4; (E) fault type 5; (F) fault type 6; (G) 

fault type 7; (H) fault type 8; (I) fault type 9. 
 

3.2.2 Fault classification using dataset with additional 
measurement noise 
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Figure 4. Classification probability outputs of testing samples 
with different faults with respect to noise level (a) Probability 

mean; (b) Probability standard deviation. 
 

It is well-known that the measurement inevitably is 
subject to noise. To examine the feasibility of proposed method 
in coping with the measurement with degraded quality, we 
introduce additionally 3% and 10% white noises into the 
measurement and implement the same analysis procedures 
mentioned above to analyze the distribution of probability 
mean values and standard deviations of all testing samples. For 
the sake of comparison, we put the results of three scenarios, 
i.e., no noise, 3% noise, and 10% noises together shown in 
Figure 4.  

For conciseness, only the upper and low bounds, and 
mean of distribution/probability of samples for actual fault are 
given (solid line denotes the low or upper bound, and dash line 
denotes the mean). Clearly, the predictions under different 
noise levels exhibit very small discrepancies. It seems that the 
worst case (10% noise level) will significantly increase the 
bands of both probability mean and standard deviation for 
certain fault conditions, i.e., fault type 1, 8 and 9. That is 
reasonable since the noise naturally will interfere the decision 
making. The consequence is, even the decision making is very 
accurate, i.e., 100% crispy classification accuracy, its 
confidence level may reduce.  

 

4. CONCLUSIONS 

In this research, a Bayesian convolutional neural network 
(BCNN) is developed to conduct the gear fault diagnosis by 
taking into the uncertainty effect into account. This deep 
learning method can yield the probabilistic prediction result, 
allowing one to further incorporate the empirical knowledge to 
assist the wise decision making. This unique advantage can 
enable this method to be tailored for the practical 
implementations. The case studies that implement the fault 
diagnosis on a lab-scale gearbox system are carried out to 
validate the methodology. The results clearly show that the 
BCNN performs satisfactorily in terms of accuracy using the 
vibration measurement both with and without noise.  
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