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Abstract: Vibration measurement-based gear fault diagnoses have shown the promise aspects, where the
deep learning methods have been harnessed. However, the traditional deep learning methods are
deterministic in nature, and will be prone to false prediction when uncertainties are involved, such as time
varying condition and measurement noise. To address these challenges, the fault pattern recognition needs
to be performed in a probabilistic manner. Considering the features in vibration time-series usually are
massive, in this research we develop a Bayesian convolutional neural network (BCNN) to conduct the gear
fault diagnosis under uncertainties. The predictive distribution yielded facilitates the decision making with
confidence level, leading to the robustness enhancement of the fault diagnosis. Comprehensive case studies

are carried out to validate the proposed methodology.
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1. INTRODUCTION

Gear failure will lead to the abnormal function of rotating
machinery. Therefore, the reliable health monitoring of the
gear plays a vital role. Currently, vibration measurement has
been commonly utilized to support the gear fault diagnosis
(Saravanan et al, 2009; Shen et al, 2014; Zhang and Hu, 2019).
Through analyzing the measurement, different faults can be
discriminated. Signal processing analysis is a well-known
approach to extract the important features in the measurement,
and subsequently to facilitate the fault pattern
recognition/discrimination. Recently there are various signal
processing methods including the time-domain (Hong and
Dupia, 2014), frequency-domain (Sharma and Parey, 2017)
and time and frequency-domain methods (Cheng et al, 2010;
Jena et al, 2014; Zhang and Tang, 2018; Qin et al, 2019) that
have been developed and employed in gear fault diagnosis.
Nevertheless, in the scenario when the correlation between the
features and faults is complex, these signal processing
techniques are not adequate to enable the reliable fault
diagnosis task.

Deep learning-based fault diagnosis techniques have
attracted the growing interest because of their capability in
automatically and powerfully extract the fault-related features,
and then build the mapping between the features and faults.
Convolutional neural network (CNN), as one most
representative class of deep learning methods has been
adopted in a broad range of research. Cao et al (2018) used
CNN-based transfer learning to conduct gear fault diagnosis
using small dataset. Kim and Chi (2019) developed a CNN
model which is implemented upon the signal segmentation to
fulfill the accurate gear fault diagnosis regardless the
measurement location. Li et al (2020) developed a new CNN
with residual connection to classify gear pitting faults with

mixed operating conditions. In addition to deep learning
methods, other data-driven approaches, such as fuzzy
inference system, support vector machine and so on have also
been attempted to pursue the success of fault diagnosis (Bansal
et al, 2013; Zhou and Tang, 2021).

Despite the success of aforementioned methods, the
challenges of the practical fault diagnosis remain unsolved.
One well-known challenge of conventional deep learning
methods is the lack of ability to estimate the uncertainty effect
in decision making. The deterministic nature of those methods
is prone to false fault prediction if uncertainties inevitably
involve. Multiple uncertainty sources in practical
implementation exist, including but not limited to the time-
varying condition and measurement noise. To minimize the
negative effect of uncertainties and accordingly improve the
fault diagnosis performance, the diagnosis technique with
probabilistic prediction capacity is required. While some
probabilistic machine learning methods, such as Gaussian
process can fulfill the probabilistic fault diagnosis, they are
subject to the limitation of simultaneous feature extraction on
a massive number of real-time data (Liang and Zhou, 2021).
In this research, we propose to use the Bayesian convolutional
neural network (BCNN) which takes full advantage of both
CNN and Bayesian optimization. This allows one to
comprehensively investigate the uncertainty impact when
performing the gear fault diagnosis.

The rest of the paper is organized as follows. Section 2
outlines the gear fault diagnosis framework built upon the
BCNN. Section 3 illustrates the feasibility of the framework
by implementing the fault diagnosis on a lab-scale gearbox
system with different formulated scenarios. Section 4 gives
concluding remarks.
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2. METHODOLOGY OVERVIEW

In this section, the gear fault diagnosis framework built
upon BCNN model is mathematically outlined. BCNN model
fundamentally exploits the architecture of CNN model. The
unique difference of BCNN as compared with the CNN is that
the training is built upon the Bayesian optimization, yielding
the probabilistic weights and biases in the form of distribution
in the network. Let 6 be the network unknowns, i.e., [w,b].
Built upon the training input-output relations denoted as D, the
posterior distribution of 8 can be obtained using the Bayes’
rule (Zhou and Tang, 2016),

(6] Dy = - 2P10p(®)

[ p(D]0)p(0)d0
In this research, D is represented as D =[X,y], where
the
y =[»,,¥,,...] is the associated fault labels. Assume that the

(M

X =[x,,X,,...] denotes time-series  signals  and

input-output relation of single sample can be implicitly
expressed as y= f(x,w,b). Equation (1) then can be
rewritten as
w,b,X)p(w,b
p(W.b|X.y) = Py )P(W,b)
[ Py | w,b,X) p(w.b)

_ p(y|w,b,X)p(w,b)
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It is worth mentioning that there is no analytical form for the
posterior distribution shown above. To approximate the
posterior distribution, the variational distribution g(w,b | @)

@)

that is represented in an analytical form oftentimes is adopted.
if g(w,b| @) is a normal distribution, @ thus represents the

mean and variance of unknowns 6. The variational
distribution-based posterior approximation can be achieved by
minimizing the Kullback-Leibler (KL) divergence between
p(w,b|X,y)and ¢g(w,b|e) (Kullback, 1997; Blei et al,

2017).

Once the probabilistic weights and biases of BCNN model
are optimized through training, The posterior predictive

distribution of y" over a set of unobserved time-series X can
be formulated as

p(y" Wb, X,y,X) = [ [ p(w,b| X,y)p(y" | w,b,X")dwalb

. 3)

In BCNN-based prediction, for each deterministic input X, , its

resulting output y* is probabilistic because the weights and

biases [w,b] are randomly sampled from the optimized

qg(w,b|o"). the

probabilistic weights and biases, the outputs of all layers other

than the input layer become probabilistic. The Monte Carlo
analysis is employed to numerically identify the probability

distribution of interested output given the input X, .

variation distribution Because of

3. CASE DEMONSTRATION

In this section, the proposed BCNN-based framework is
implemented onto the fault diagnosis of a lab-scale gearbox
system using vibration measurement. Two cases are
formulated to validate the framework.

3.1 Data acquisition and BCNN architecture

The gearbox testbed is shown in Figure 1. 9 different fault
conditions are manufactured and introduced into the testbed
(Figure 2), upon which the corresponding measurements are
collected. The same number of data samples are produced
through the time-series vibration signals for all fault
conditions. Each sample essentially is a time series with 3,600
data points. The overview of the data is given in Table 1.
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Figure 2. Fault conditions.

Table 1. Gear fault data

Type/Fault class  Fault condition  Data size
1 Healthy 104
2 Missing tooth 104
3 Crack 104
4 Spalling 104
5 Chipping_tip 5 104

(least severe)
6 Chipping tip 4 104
7 Chipping_tip 3 104
8 Chipping_tip 2 104
9 Chipping_tip 1 104

(most severe)

There are 932 data samples in total to be used in the
subsequent analysis. Two different cases are formulated,
including: (1) Normal fault classification using the dataset
provided; (2) Normal fault classification using the dataset with
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measurement noise introduced. Since the samples are
relatively small-sized, we design a small-scale architecture for
BCNN based on the empirical experience. The layer
configuration of configured BCNN is shown in Table 2. As can
be seen in Table 2, no fully connected layers are built between
the convolutional layers and the softmax layer, which
significantly reduces the number of learnable parameters.

Table 2. BCNN model architecture

Layer Output shape Parameter
number
Input 256x256x1 0
Convolutional (filter: 128x128%32 608
3x3x32) (ReLU)
Convolutional (filter: 64 x 64 x64 36,928
3x3x64) (ReLU)
Convolutional (filter: 32x32x128 147,584
3x3x128) (ReLU)
Flatten 131,072 0
Dense (Softmax) 9 2,097,160

3.2 Case investigations

3.2.1 Fault classification using collected dataset

In this case, we split the dataset shown in Table 1 into 80%
training and 20% testing data. The stratified splitting is
specifically used to ensure the balanced classes. 5% training
data are hold out for validation during the model training. By
observing the training and validation accuracy tendencies with
respect to epoch, it is ensured that there are no model
overfitting and underfitting issues. Once the BCNN model is
well-trained, we can use it to predict the faults over testing
inputs and compared them with the actual faults. As shown in
Section 2, the BCNN can yield so called predictive
distribution, which generally can be represented by
distribution of probability mean and standard deviation.
Gathering the probabilistic information of all testing samples
yield the result in Figure 3. As can be observed, the probability
mean of testing samples for true fault type is much larger than
that for other fault types, indicating the accurate classification
from a probabilistic perspective. Additionally, the probability
standard deviations overall are small. The result indeed
illustrates the accurate decision making with high confidence
level. The crispy classification is 100% if the classification of
the sample is considered as accurate when the actual fault of
sample is identified as being the highest probability mean.
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Figure 3. Classification probability outputs of testing samples

with different faults (a) fault type 1; (b) fault type 2; (C) fault

type 3; (D) fault type 4; (E) fault type 5; (F) fault type 6; (G)
fault type 7; (H) fault type 8; (1) fault type 9.

3.2.2 Fault classification using dataset with additional
measurement noise
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Figure 4. Classification probability outputs of testing samples
with different faults with respect to noise level (a) Probability
mean; (b) Probability standard deviation.

It is well-known that the measurement inevitably is
subject to noise. To examine the feasibility of proposed method
in coping with the measurement with degraded quality, we
introduce additionally 3% and 10% white noises into the
measurement and implement the same analysis procedures
mentioned above to analyze the distribution of probability
mean values and standard deviations of all testing samples. For
the sake of comparison, we put the results of three scenarios,
i.e., no noise, 3% noise, and 10% noises together shown in
Figure 4.

For conciseness, only the upper and low bounds, and
mean of distribution/probability of samples for actual fault are
given (solid line denotes the low or upper bound, and dash line
denotes the mean). Clearly, the predictions under different
noise levels exhibit very small discrepancies. It seems that the
worst case (10% noise level) will significantly increase the
bands of both probability mean and standard deviation for
certain fault conditions, i.e., fault type 1, 8 and 9. That is
reasonable since the noise naturally will interfere the decision
making. The consequence is, even the decision making is very
accurate, i.e., 100% crispy classification accuracy, its
confidence level may reduce.

4. CONCLUSIONS

In this research, a Bayesian convolutional neural network
(BCNN) is developed to conduct the gear fault diagnosis by
taking into the uncertainty effect into account. This deep
learning method can yield the probabilistic prediction result,
allowing one to further incorporate the empirical knowledge to
assist the wise decision making. This unique advantage can
enable this method to be tailored for the practical
implementations. The case studies that implement the fault
diagnosis on a lab-scale gearbox system are carried out to
validate the methodology. The results clearly show that the
BCNN performs satisfactorily in terms of accuracy using the
vibration measurement both with and without noise.
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