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ABSTRACT. We provide a potential theoretic characterization
of vanishing chord-arc domains under mild assumptions. In
particular we show that, if a domain has Ahlfors regular bound-
ary, the oscillation of the logarithm of the interior and exte-
rior Poisson kernels yields a great deal of geometric information
about the domain. We use techniques from classical calculus of
variations, potential theory, and quantitative geometric measure
theory to accomplish this. One feature of this work, compared
to [KT06] and [BH16], is that a priori we only require that the

domains in question are connected.

1. INTRODUCTION

Questions concerning the connections between the geometry of a domain and the
regularity of its boundary with the potential theoretic properties of the domain,
the behavior of singular integrals on the boundary, and the boundary regularity
to solutions of elliptic PDEs have generated a flurry of activity in the area of non-
smooth analysis (see [Tor97] and [Tor19] for a brief recent history and references).
In this paper we focus on the potential theoretic properties of a domain and its
complement and explore their ties to the geometry of the domain. In particular,
we show that if Q := Q" C R™ and the interior of its complement Q™ are con-
nected, have a shared boundary which is Ahlfors regular (see Definition 2.6), and
the logarithm of the Poisson kernel of each domain is in VMOj,,, then the unit
normal is also in VMOJ, and the domain is vanishing Reifenberg flat (see Defini-
tions 2.18 and 2.10). We contrast our result with those in the literature in order to
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emphasize the wealth of geometric information (thus far overlooked) encoded in
the assumption concerning the oscillation of the logarithm of the Poisson kernels.

In [KT06] the authors established the following: suppose that Q* are chord-
arc domains (i.e., NTA domains with Ahlfors regular boundary), and that k= are
the Poisson kernels of Q* with poles X* € Q*. If logk® € VMO\,c(0) then
the unit normal vector v € VMO\o(0) where 0 = H" 1L 0Q (see Defini-
tion 2.15). In particular, the assumption that Q* are chord-arc domains ensures
that 0Q* are uniformly rectifiable (see Definition 2.9). In [BH16] the authors
relax the geometric conditions: to be more precise, via a novel approach using
layer potentials rather than blow ups, they prove that if Q* C R"™ are domains,
whose common boundary is uniformly rectifiable, then logk® € VMO, (0) im-
plies that v € VMO (07). We also mention the recent work Prats-Tolsa [PT19],
where the authors studied a different but closely related problem arising in Kenig-
Toro [KT06]. They study the kernel between harmonic measures w* of QF, and
show that for Reifenberg flat NTA domains, small oscillation for the logarithm of
that kernel is also closely linked to small oscillation for the unit normal v.

In this paper, we further loosen the @ priori assumption in [KT06] and instead
deduce as much geometric information as possible from the regularity of logk*.
Furthermore, using classical tools from the calculus of variations, we establish
that in this context the oscillation of the unit normal controls the flatness of the
boundary. More precisely, when +v are outward pointing normal vectors to 0Q*,
oH"™ 1L 0Q, and w¥" = w* is the harmonic measure for Q* with pole at X*,
we show the following result.

Theorem 1.1. Letn > 3 and suppose Q" C R™ and Q= = R™"\Q+ are domains
satisfying 0Q := 0Q" = 0Q~, and that 0Q) is (n — 1)-Ablfors regular. Then, the
Jollowing are equivalent:

(i) QF are both vanishing chord-arc domains with v.€ VMO\oc(0) (see Defi-

nition 2.19).

(i) There exist X* € Q and X~ € Q such that k* = dw?¥ |do and k= =

dwX™ /do exist and logk* € VMO, (do).

Further, we obtain corresponding quantitative results (see Theorems 4.12 and

4.14).

Remark 1.2. There is some redundancy in condition (i) of Theorem 1.1,
which we leave in for the sake of emphasis. In particular, under the conditions
of Theorem 1.1, Q" is a vanishing chord-arc domain if and only if Q™ is. Ad-
ditionally, it is a consequence of our work in this paper (see Corollary 3.11) that
v € VMO, (0) is equivalent to (under the hypothesis of Theorem 1.1) O being
vanishing chord-arc domains.

In this paper, techniques from potential theory and geometric measure theory
come together, allowing one to deduce geometric properties of domains. In Sec-
tion 2, basic definitions from both areas are presented. In Section 3 we apply clas-
sical tools of geometric measure theory dating back to De Giorgi’s original work
on sets of locally finite perimeter. (See [Magl2] for references and an approach
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motivating the one presented here.) The novelty is that we extend these tools
from perimeter minimizers to sets of locally finite perimeter with Ahlfors regular
boundaries' 2, which allows us to reduce and better understand topological hy-
pothesis from previous works concerning potential theory in “rough” domains (cf.
[KT06,BE17] and the discussion in the last paragraph of Section 2). The general
approach we take is analogous to [Magl2], but new ideas are also implemented
in various places to extend the proof to a more general class of sets. In particular,
Corollary 3.10, which is analogous to a well-known result that plays a fundamen-
tal role in the proof of regularity of perimeter minimizers, shows that control on
the oscillation of the unit normal provides both local control on the flatness of the
boundary as well as local separation properties (see Definition 2.18). In addition
to the proofs of these separation properties, in Appendix A we also prove that if the
unit normal has small oscillation in a ball centered on the perimeter, then a large
portion of the perimeter inside a slightly smaller concentric ball is contained in the
graph of a Lipschitz function. Within the smaller ball both the Lipschitz norm
of this function and the symmetric difference of this graph and the boundary are
quantitatively controlled by the oscillation inside the larger ball.

These results should be contrasted with those found in [Sem91a], [Sem91b],
[KT99], [HMT10], [Merl6a], and [Merl6b]. In particular, in [Sem91a] and
[Sem91b], Semmes introduced the notion of chord-arc surfaces with small con-
stant. (His definition is similar to ours in Definition 2.19, except that he works
on C? connected embedded hypersurfaces, whereas we assume Ahlfors regular-
ity.) He focused on characterizing such surfaces through the behavior of singular
integral operators on them. One crucial tool in Semmes’s study is the “Semmes
decomposition theorem” which allows one to write a large portion of the chord-
arc surface with small constant as the graph of a Lipschitz function (this is in the
same vein as our aforementioned Lipschitz covering in Appendix A of this pa-
per). To obtain this decomposition, Semmes needed to assume that the surface
was C? (though his estimates did not depend on the C?-norm). The decomposi-
tion was later obtained in the more general context of Reifenberg flat domains by
[KT97,KT99],% and then in the even more general context of domains with the
two-sided local John condition in [HMT10]. Given the Semmes decomposition
one can immediately use the oscillation of the unit normal to control the Reifen-
berg flatness of the chord-arc surface. Our key result along these lines, Corollary
3.12, also implies that the oscillation of the unit normal controls the Reifenberg
flatness of the chord-arc surface. However, our condition (which is implied by a

IRather, a representative whose boundary agrees with the support of the Gauss-Green measure.
See (3.1) and Remark 3.1.

2The class of perimeter minimizers is a subclass of the sets we consider in Section 3, as defined in
(3.1). See [Mag12, Section 16.2].

3We thank the referee for pointing out that no one has explicitly written the proof that a chord-arc
domain with small constant in the sense of [KT97, KT99] satisfies the small y-condition of [Sem91a].
Although the proof is straightforward, we include it in Remark 2.21 to patch this gap in the literature.



254 S. BORTZ, M. ENGELSTEIN, M. GOERING, T. TORO, ¢ Z. ZHAO

local two-sided corkscrew condition), is weaker than two-sided local John. Fur-
thermore, our approach does not need a Semmes-type decomposition (though, as
mentioned above, it does yield such a decomposition).

In addition to his geometric study of chord-arc surfaces with small constant,
Semmes also expressed interest in obtaining potential theoretic characterizations.
These characterizations were investigated by Kenig and Toro, with the a priori
assumption of Reifenberg flatness in [KT97], [KT99] and [KT03]. As a conse-
quence of results herein, we show that the flatness hypothesis is redundant?, this in
turn, allows one to remove the  priori topological assumption of Reifenberg flat-
ness (or, more generally, two-sided local John) from some theorems in the afore-
mentioned works of Kenig and Toro. In Section 4 we focus on the local two phase
free boundary problem for the Poisson kernels. In Section 4.1 we show that local
doubling properties of w* combined with the Ahlfors regularity of the boundary
yield the existence of corkscrew balls on both sides (locally) and therefore imply
local uniform rectifiability of the boundary (see Lemma 4.3 and Corollary 4.4).
In Section 4.2 we show that in our setting, the assumption logk* € VMO, (do)
yields information about the doubling properties of w* and the local optimal be-
havior of k* (see Lemma 4.11). Combining the results in Sections 4.1 and 4.2, we
almost recover the hypothesis in [BH16]. The proof of Theorem 4.12 follows the
general scheme of the proof in [BH16] with an additional domain approximation
scheme (see Appendix B), and special attention given to the constants in order to
prove a quantitative result.

2. PRELIMINARIES

In the sequel, n is a natural number with n > 3. We typically use E to denote a
set of locally finite perimeter in R", that is, a Lebesgue measurable set such that
for every compact set K ¢ R",

sup{/EdivT(X)dx : T € CHR™;R™), sptT C K, SEVP”' < 1} < .

We use Q to denote a domain, that is, an open and connected set, in R". Often-
times the domain Q will also be a set of locally finite perimeter, for example, if we
assume 0Q) is upper Ahlfors regular (see [EG92, Section 5.11]). We recall a few
results.

4As mentioned above, to show that a domain is §-chord-arc from the oscillation of the unit normal,
one can use [HMT10, Theorem 4.19] (which does not require Reifenberg flatness) instead of [KT99,
Theorems 4.2 and 4.4] in the presence of the two-sided local John condition. Corollary 3.12 allows
one to remove the two-sided John condition from [HMT10, Theorem 4.19]. Then, one can state the
hypotheses of some theorems in [KT97], [KT99], and [KT03] in terms of the oscillation of the unit
normal alone, that is, without assuming « priori Reifenberg flatness (or two-sided local John). See, e.g.,
[HMT10, Theorem 4.21].
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Proposition 2.1 ([Magl2, Proposition 12.1]). IfE is a Lebesgue measurable set
in R™, then E is a set of locally finite perimeter if and only if there exists an R™-valued
Radon measure ug on R™ such that

/divT(x)dx=/ T dug, VTeCHRYRM).
E Rn

The measure pg is called the Gauss-Green measure of E.

For a vector-valued Radon measure g on R", the total variation of u is de-
noted by |u|. We recall (see [Mag12, Chapter 4]) that |u| is a non-negative Radon
measure that has the following characterization on open sets V. R™:

(2.1) IuI(V)=sup{/R"T-d/J:T€CC1(V;[R"), ITISI}.

If E is a set of locally finite perimeter, and pg the associated Gauss-Green
measure, recall (see [Magl2, Chapter 15]) the reduced boundary of E, denoted
0*E, is defined by

*p _ o MEB(x,7)) i
2.2) 0*E = {x EsptuE.l;%l7|uE|(B(x’T)) =Vve(x) €S }

In fact, vg : 0¥E — S™! defined by the limit in (2.2) is a Borel function called
the measure-theoretic outward pointing unit normal. Moreover, the following is a
version of De Giorgi’s structure theorem.

Theorem 2.2 (De Giorgi’s structure theorem, [Magl2, Theorem 15.9]). If
E C R"™ is a set of locally finite perimeter, then

uE=vE,’1—["‘1I_8*E and |ug| = H"LO*E.

Remark 2.3. For a set of locally finite perimeter E C R there are several
notions of boundary: the reduced boundary 0*E, the measure-theoretic boundary
0« E, the support of the Gauss-Green measure, and the topological boundary (see
[EG92] or [Mag12] for relevant definitions). The following relationships between
different notions of the boundary hold:

0*E C 0+E C sptpp COE and H"™ '(34+E\0*E) = 0.

In particular, 0*E = OF implies 0*E = 04+E = sptug = OE.
The next two propositions can be found in [Mag12, Propositions 4.29, 4.30].

Proposition 2.4 (Lower semi-continuity of weakx convergence). If Ly and
U are vector-valued Radon measures with px — U, that is, for every @ € Cc(R", R™),

/m-duk~/¢-du,

then for every open set A C R™ we have || (A) < li]rcn inf |k | (A).
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Proposition 2.5. Let [y be vector-valued Radon measures on R™ so that px — U
for some U, a vector-valued Radon measure on R™. The following hold:
(1) If additionally \ux| — v for some v a non-negative Radon measure on R™,
then, for every Borel set F C R™,

(2.3) [ul(F) < v(F).
Furthermore, if F C R™ is a bounded Borel set with v (0F) = 0, then

(2.4) u(F) = ]lijgloﬂk(F)-

2) If lux|(R™) — [u[(R™), and |u|(R™) < oo, then |ux| — |ul.
Definition 2.6 (Ablfors regularity). A Borel measure p on R" is said to be
d-Abhlfors regular if there exists a positive finite constant C4 such that

(2.5) Cilr? < u(B(x,7)) < Cyr

forall x € sptpand all 0 < ¥ < diamsptu. More generally, we say that a measure
u is d-Ablfors regular up to scale vy if (2.5) holds for all 0 < ¥ < 7. In either case,
the constant Cj is called the Ablfors regularity constant for .

Let F € R" be a closed set. If (2.5) holds for the measure p = H 4L F and
some 0 < d < n, then F is said to be (d-)Ahlfors regular up to scale ry. When d
is understood from context, we simply say F is Ahlfors regular up to scale 7¢.

Definition 2.7 (Uniformly Rectifiable (UR) sets). Let A C R" be a closed
set that is d-Ahlfors regular. It is said to be uniformly rectifiable (UR) if it contains
“Big Pieces of Lipschitz Images.” This means there is a pair of constants 6, A > 0
such that for all x € A and all 0 < » < diam(A) there is a Lipschitz mapping
g:B(0,7) c RY — R™ with Lip(g) < A such that H4(E n g(B(0,7))) > 0r.

One reason uniformly rectifiable sets are ubiquitous is that they are spaces on
which one can develop a rich Calderén-Zygmund theory. An example of this, to
be used (implicitly) later, is the following characterization of uniformly rectifiable
sets in co-dimension 1.

Theorem 2.8 ([Dav9l], [MMV96], [NTV14]). Let F C R" be a closed and
(n — 1)-Abhlfors regular set with the associated measure o := H" 'L F. Then, F is
uniformly rectifiable if and only if the Riesz transform operator (see Definition 4.5),
R is L? bounded with respect to 0, in the sense that its truncation R satisfies

sup [Refll2r,o) < Clliflli2rey  V f € LA(F,0),
>0
witha C > 0 uniform in f € L*(F,0).
Definition 2.9 (UR domain, see [HMT10]). We say that an open set Q is a

UR domain if 0Q is UR, and the measure-theoretic boundary 0+ (see Chapter 5
in [EG92)) satisfies H"~1(3Q \ 0+Q) = 0.
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We comment that in the above definition, Q is not required to be connected;
we use the term “UR domain” nonetheless following the convention set by Defi-
nition 3.7 in [HMT10] and also to distinguish them from UR sets (of Definition
2.7).

Definition 2.10 (BMO and VMO). Let F C R™ be (n — 1)-Ahlfors regular
up to scale %o>. Then, forall0 < v <7y, x € F,and f € leoc(jl-["’1 L F), define

1L 1% (x,7)

(4
0<s<r B(x,s)nF

We say the following:

(1) f € BMOjoc(H™ L F) if for every compact set K C R", there exist
Rk > 0 and Ck > 0 such that

2 1/2
dﬂ”*(y)) .

f) —][ f@)dH™(z)
B(x,s)NF

sup  sup [ fll«(x,7) < Ck.

0<r<Rg x€FNK

(2) f € BMOjoc(H™ 1L F) with constant k > 0 if for every compact set
K c R", there exists Rk > 0 such that

sup  sup I fll«(x,7) < k.
0<r<Rg x€FNK

(3) f € VMO0 (H" ' LF) if for every compact set K C R",

lim sup [ fll«(x,7) =0.
r—0x€0ENK

Remark 2.11. It is clear that the local conditions in the definition above are
equivalent to replacing arbitrary compact sets by balls centered on the boundary
with radius less than, say, % diam(F). This is obvious if F is unbounded, and if F

is bounded we can cover F by a finite collection of such balls.

Definition 2.12 (Corkscrew Condition). An open set E C R" satisfies the
(M, Ry) interior corkscrew condition if for every x € 0E and v € (0, Ry) there is
a point x called the interior corkscrew point so that B(x,7/M) C E N B(x,7).

Definition 2.13 (Two-sided Corkscrew Condition). An open set E C R"
satisfies the (M, R¢) two-sided corkscrew condition if for every x € 0F and v €
(0,Rp) there are two points X1 € E and x, € R™ \ E such that B(x1,¥/M) C E
and B(x,,7/M) Cc R" \ E. We call x; and x; the interior and exterior corkscrew
points, respectively.

50f course, this notion can be defined for d-Ahlfors regular subsets of R, but we are only con-
cerned with the case d = n — 1



258 S. BORTZ, M. ENGELSTEIN, M. GOERING, T. TORO, ¢ Z. ZHAO

Definition 2.14 (Harnack Chain Condition). Following [JK82], we say that
a domain Q satisfies the (C, R)-Harnack Chain condition if, for every 0 < p <R,
A = 1, and every pair of points X,X" € Q with 6(X),6(X") = p and with
|X —X’| < Ap, there is a chain of balls By, ..., By C E with N < Clog, A+1, and
X eB, X €By,BkNBys1 = D forallk =1,...,N — 1 and C~1diam(By) <
dist(By, 0Q) < Cdiam(Bg) for all k = 1,...,N. The chain of balls is called a
“Harnack Chain.”

Definition 2.15 (NTA and Chord-Arc Domain). We say that Q C R" is a
Non-Tangentially Accessible Domain (NTA) with constants (M, Ry), if it satisfies
the (M, Ry)-Harnack chain condition and the (M, Rgy) two-sided corkscrew con-
dition. If Q is unbounded, we require that R" \ 0Q consist of two, non-empty,
connected components. Note that if Q is unbounded, then Ry = oo is allowed.

Finally, if Q is an NTA domain whose boundary is Ahlfors regular, we say that
Q is a chord-arc domain.

Remark 2.16. Sometimes in the definition of unbounded NTA domains, it
is required that Ry = o (see, e.g., [KT97], [KT06]). In particular, this allows
one to obtain estimates on harmonic measure/functions at arbitrarily large scales.
Since we are only interested in local geometric properties of Q, we allow Ry < oo
even for unbounded domains Q.

Also note that if Q is an open set with an Ahlfors regular boundary and satisfies
the two-sided corkscrew condition with Ry ~ diam(9Q), then it is a UR domain
(see [D]90, Theorem 1] and also Badger [Bad12]°). In addition, having interior

and exterior corkscrews at arbitrarily small scales forces 0, Q = 0Q.
Let = C R" be a closed set. For any x € 2 and » > 0, we define

O(x,r) = inf{lD[Z N B(x,r),L ﬁB(X,T)]},
L lr

where the infimum is taken over all (n — 1)-planes containing x. Here, D de-
notes the Hausdorff distance; that is, for non-empty sets A,B C R", we have
D[A,B] :=sup{d(a,B) :a € A} +sup{d(b,A) : b € B}. With this in hand, we
can define flatness as in Reifenberg [Rei60].

Definition 2.17 (Reifenberg Flat and Vanishing Reifenberg Flat sets). We
say a closed set = C R™ is §-Reifenberg flat for some 6 > 0 if for each compact set

K c R" there exists Rx > 0 such that

(2.6) sup  sup O(x,r) <é.
re(0,Rx] xeKNZ

We say X is a vanishing Reifenberg flat set if for every compact set K ¢ R"

lim sup O(x,r) =0.

r—0xeInkK

OIn fact, Badger shows that upper Ahlfors regularity is not necessary for the quantitative interior
approximation by Lipschitz domains shown in [D]J90].
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Definition 2.18 (Reifenberg Flat and Vanishing Reifenberg Flat domains).
Let 6 € (0, 6,) where 6, is chosen appropriately (see Remark 2.20) and depends
only on the dimension n. We say that a domain Q C R" is a §-Reifenberg flat
domain (or vanishing Reifenberg flat domain) if 0Q is 6-Reifenberg flat (respec-
tively, vanishing Reifenberg flat) and Q satisfies the separation property: for every
compact set K C R" there exists Ry > 0 such that for any y € 0Q n K and
0 < 7 < Rk there exists a v € $"7! so that if x € B(y,r) and (x — y,v) > dr,
then x € Q°, and if (x — y,v) < =67 then x € Q.

Additionally, if Q is unbounded it is further required that R™ \ 9Q consist of
two connected components, and that § < &,.”

Definition 2.19 (Chord-arc domains with small constants and vanishing
chordarc domains). Let 6 € (0,6,) (where 6 is from Definition 2.18; see the
remark below). A set of locally finite perimeter Q C R" is said to be a §-chord-
arc domain (or chord-arc domain with small constant) if Q is a 6-Reifenberg flat
domain, 0Q is Ahlfors regular, and for each compact set K ¢ R™ there exists some
R > 0 such that

2.7) sup [Ivall«(x,R) < 6.
xe0QnK

We say a domain Q is a chord-arc domain with vanishing constant if it is a chord-
arc domain with small constant, and for each compact set K ¢ R",

lim sup [vall«(x,7) =0,
r—0x€0QNK

that is, if vo € VMO, (H 1L 0Q).

Remark 2.20. We recall from [KT97, Theorem 3.1] that there existsa §,, > 0
such that if O ¢ R" is a §-Reifenberg flat domain for some § < 6y, then Q is
(locally) an NTA domain. If 0Q is also assumed to be Ahlfors regular, then Q is
a chord-arc domain (as in Definition 2.15). This justifies the name 6-chord-arc
domain (or chord-arc domain with vanishing constant).

The reader may wonder whether the smallness in (2.7) implies the smallness
in (2.6), for example, when 0Q is smooth. In the planar case (n = 2) one can show
that sup, , O(x,7) < [Ivall«s but in higher dimensions this estimate holds only if
we know the smallness of both parameters @ priori; otherwise, 0Q might have small
handles. (See the discussions and main theorem in [Sem91c].) However, when 0Q
is assumed to be Ahlfors regular (plus some weak topological assumptions), we
will show in Section 3 how to bound ©(x, ¥) by [[vall«.

Remark 2.21. Here, we record a straightforward argument that chord arc
domains with small constant in the sense of [KT97,KT99] satisfy the quantitative
conditions in the definition of a chord-arc surface from [Sem91a, Sem91b].

7Note that the definition above is slightly different from the one in [KT03, Definition 1.6] as we
do not require flatness at large scales.
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By Definitions 2.17 and 2.18, an n-Reifenberg flat domain E satisfies the
following flatness condition: for any g € 0E, ¥ > 0 there exists some unit vector
Ng,r so that

(2.8) Kngr, ¥ —a)l <nr Yy eB(q,r)noE.

In [Sem91a, Sem91b] it was assumed not only that chord-arc surfaces with
small constant had small BMO norm, but also that they satisfied a flatness condi-
tion like (2.8) where ng, is replaced with the specific vector

Vq"y = f VE d.’]‘[n_l.
B(q,vy)NO*E

This height bound is an unsurprising consequence of being both Reifenberg flat
and having a small BMO norm?®.

More precisely, we have the following result.
Claim 2.22. IfE has Ablfors regular boundary, is an n-Reifenberg flat domain,
and satisfies | Ve« (q,v) < 6 for some & < %, then

(2.9 (v —a,vqr)| < Cryyn+8 Yy €B(q,r)noE.

Proof. Let 0 = H" 'L 0*E and ng, be the direction from the n-Reifenberg
flat condition. We claim it suffices to show (2.10)—(2.12),

(2.10) / Ngy - VEAO — Wp_1¥™ 1| < Cr™n,
B(q,r)
(2.11) ||Vq"y|_1| <96,
(2.12) (1-nnH)wn 1" ' <0 B(q,7r)) < (1+28)wn_1r" L.

Indeed, (2.10) and (2.12) together ensure
|1—vq,r-nq,rl='1—][ nq‘y'VEdO_'SC(r]-Fé).
B(q,r)

Combining (2.11) with the preceding inequality, we deduce

Var 1
| Var | |Vq,r |

< ln 1
—_ "’/ - —
K |Vq,1f|

C
< m[f]-ﬁ-é] =C(n+9).

8Being Reifenberg flat is not necessary, « priori, as seen by Corollary 3.10.



Flatness and Oscillation 261

This in turn implies

2
<C(n+96).

(2.13) ‘nq,r -

|Vq,1f|

Consequently, for y € B(q,r) N OE,

|Vq,1f|

(= a,var)l < (1+6) ‘ <y_q, Var >‘

s(l+6){)<y—q,nq,y>‘ +

(r-amesg )|
’|Vq,1f| ar

where the first inequality used (2.11) and the final inequality follows from (2.13)
and the fact that 0F is n-Reifenberg flat. Since 9 is small, this verifies (2.9). Hence,
it remains to check (2.10)—(2.12).

We compare E N B(q,7) to B(q,v) N {{y — q,ng,y) < 0} to verify (2.10).
Indeed, for any constant vector e it follows that

< (1+6){nr + Cryn + 6},

(2.14) 0= dive
B(q,¥)NE

:/ e-vEd(T+/ e. 2= q9n-1,
B(q,r)NE 3B(gr)nE |y —al

Plugging in e = ngy,,, we get

(2.15) / Ngr - ——L qan-1 = —/ Ngy - Vedo.
0B(q,r)NE ly —ql B(q,v)N3E

Since ng, comes from the n-Reifenberg flat condition,

{E NB(q,r) C {{y —a,nqgy) <nrinBq,r),
{{y—a,vqyr) < -nrinB(q,r) CEnB(q,7).

By using the divergence theorem as it was used in (2.14), it follows that

y—-a

dj_[nfl
ly —al

/
0B(q,r)n{{y—a,ngq,r)<0}

Ngy " Ngyrdo = Wy 17",

/B(q‘r)m{<yq,nq,r>=0}
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and a very generous estimate ensures that

(2.16) ‘/ Ngr - L g1
0B(q,r)NE ly —al

a,r

y_qd

. H <crin.
|y —al

/8B(q.r)m{<y—q,nq,r><0}

Combining (2.15)—(2.16) confirms (2.10). Equation (2.11) then follows from
VI« (B(q,7)) < 6. Details are included when the same statement is verified in
(3.4).

It only remains to show (2.12). The lower bound follows immediately from
OE being n-Reifenberg flat and the separation property, since then

n-1
0 (B(@,7)) = Wn1 (X1 =)™ = Wy (1 _ T”2> Ry

For the upper bound, we use (2.14) with e = v, to obtain the estimate

O'(B(q,r))|vq,r|2: ‘/ Vq,r'VEdO" = ‘/ Vq,r'ud}["_l
B(q,r) 0B(q,r)NE ly —al
< |Vq’r|wn71‘rn_1.
Therefore, by (2.11),
o(B(q,7)) < Wno 1?1 < (1 +28)wpv™ L. 0O

B |Vq,1f|

3. FLATNESS FROM CONTROL ON OSCILLATION

In this section we introduce a class of well-behaved sets A(Ca,79), and prove
our key geometric result, Corollary 3.10. Specifically, in the class, A(Ca, 79), the
oscillation of the unit normal controls the flatness (in the sense of Reifenberg) of
the boundary. One key tool is the “excess” of a set of locally finite perimeter, first
introduced by De Giorgi in [DG61] and ubiquitous in the calculus of variations.
Because of Lemma 3.4, all of our arguments could also be written in terms of the
mean oscillation of the unit normal. Given 1y € (0,0) and C4 € [1, ), we
define a class of sets

(3.1) A(Ca,19)
= {E C R™ | E is a set of locally finite perimeter satisfying

OE = spt g and its perimeter measure |pg| is

(n — 1)-Ahlfors regular up to scale ¥y with constant C A}.
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Uniformly rectifiable domains (up to choosing a representative from the equiv-
alence class; see Remark 3.1) with Ahlfors regularity constant C4 form a subset of
A(Ca,10). The complement of a quasiminimal surface of codimension 1 is the
disjoint union of two open domains of R™ (see [DS98]), and each of these do-
mains would fall within the class A (Ca, 10).

Remark 3.1. The condition that 0F = sptpg corresponds to choosing a rep-
resentative for our set amongst the equivalence class of sets of locally finite perime-
ter (see [Magl2, Proposition 12.19, Remark 16.11]): for any set of finite perimeter
E, we can find a Borel set F such that |[EAF| = 0, for 0F = sptur = sptpg. This
choice is necessary since we want to deduce information on the topological bound-
ary from information on the measure-theoretic unit outer normal, which is merely
defined on the reduced boundary 0*E (see, e.g., Lemma 3.8 and Theorem 3.9).

A particularly useful property of A(Ca,7y) is that if E € A(Ca,7p) then
R™\ E € A(Ca, 7). This follows since g = —pign\r and 0F = 0(R" \ E).

Remark 3.2. If E € A(Ca,710), then OE is (n — 1)-Alhfors regular since
OF = spt g and H" 1(3E \ 0*E) = 0 (see [Mat95, Theorem 6.9]). Thus,

|pp| = H" 'L O*E = H" 'L OE.

Definition 3.3 (Cylinders and excess: c.f. [Magl2, Chapter 22]). Forr > 0,
x € R", and some v € S, we let

Cx,r,v)={y:[{x—-y,v)I <7, |x—y—-(x—-y,v)V|<7r}.

Note that C(x,7,V) is a cylinder with center x, radius and height ¥, and axial
direction v. For a set of locally finite perimeter E, x € 0E, 7 > 0, and v € S"!
we define the cylindrical excess

1 _ 2
e(E,X,T,V) = - / udg{n—l.
YL e, v)natE 2

The following lemma elucidates the relationship between oscillation of the
unit normal and excess.

Lemma 3.4. Let E € A(Cq,1y) and let Q € OF and 0 < v < vy. There exists
some constant 0 < C < oo (which depends only on Cs and the dimension) such that

(3.2) ][ Ve — (VE) g [P dH ™! < Ce(E,Q,7,V)
B(Q,y)No*E

for any v € S"Y, where (Vi) represents the integral average of Vi with respect to
H" 1 on B(Q, ) N O*E. Furthermore, as long as |(Ve)g.r| # 0, we have that

v (VE)or ][ 2 -1
. E —,—— ] <C - AlEdHM™ L.
(3.3) e( ,Q, ek |(VE)Q,1’|) < B(Q,r)ma*E|VE (VE)orl
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Proof. We first prove (3.2). Note that B(Q,¥) N 0*E C C(Q,7,Vv) N 0*E for
any Q € 0E and v > 0. Thus,

Ve — v|?

e(E,Q,r,Vv) zc][ dH" 1,

B(Q,r)N3*E 2

where ¢ is a constant depending only on the Ahlfors regularity of E. We compute
][ IVE(X) — (VE) g |*dH ™!
B(Q,r)Nd*E
sz][ [VE(X) = vI*dH ™!
B(Q,r)N0*E

+2][ V= (VE)gr|PdH ™!
B(Q,r)Nd*E
54][ Ve(x) —v|I?dH"™ ! < Ce(E,Q,7,V),
B(Q,r)Nd*E
where the second inequality follows from the triangle inequality and Jensen’s in-

equality. This is exactly (3.2).
To prove (3.3) it suffices to consider

][ Ve — (VE)our|PdH" T = e < 1.
B(Q,r)No*E
We first estimate | (Vg),»|; note that

G4 (1-1vi)ar)? =][ (vl = | (vi)gr )2 dH™!

B(Q,¥)NO*E

s][ Ve — (VE) oo P dH ! = ¢
B(Q,ry)No*E
and

(3.5 1vE)an| = ‘ ][ Vg
B(Q,¥)NO*E

S][ |VE|d.7'[n_1=1.
B(Q,¥)No*E

Now, combining (3.4) with (3.5) ensures that we have 1 — /¢ < [(VE)g.| < 1.
Let vo = (VE)q,r/|(VE) Q| and compute

[VE — Vol < |VE — (VE)g,r| + [(VE) Q7|

1
1_7
|(VE)Q,1"|

<|ve— (VE)or| +11 = (VE)g.r|

< |ve— (VE)gr| + &2,
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so that
(3.6) |VE = vol? < 2|ve — (VE)gr|* + 26

Notably, (3.6) and C(Q, ¥ /+/2,vo) C B(Q,7) imply

”
el E, ,—,v)
( Qv
2(111)/2/ |VE_VO|2
=1 e ivzve noE 2

2(n-1)/2

dg_['n—l

IVE — (VE) Qo [P dH ™!

rn-l /C<Q,r/ﬁ,vo)ma*5

20V M-1(C(Q, 7 /+/2,vo) N O*E) c
Tn—l

2 HL(B(Q,7) N3*E)
rn-1

X (][ |VE—(VE)Q,1/|2CL7'[”_1+E>
B(Q,r)No*E

s H"1(B(x,7) N O*E)
1/'1’!,*1

+

< 2!

=2 E<Cy-Cye. O

Remark 3.5. We recall some basic properties of the cylindrical excess (see,
e.g., [Magl2, Chapter 22] for more details). The cylindrical excess is invariant
under translation and scaling in the sense that if Ex , = (E — x) /¥, then

(3.7) e(Exy,0,1,v) =e(E,x,7,Vv).

Furthermore, if ¥ < s, the non-negativity of the integrand ensures

1 ve —v|?
n_l/ Ve — V| FET
r C(x,r,v)NO*E 2

n-1 _ 2
< (5) 11/ Ve ZVIZ g gpn-t,
r S Je(x,5,v)NO*E 2

that is,
S n-1
(3.8) e(E,x,r,v) < <;> e(E,x,s,v).
Finally, since v, v are each of unit length, [V — v[?/2 = 1 — (vg, v) so that

(3.9) e(E,x,r,v) =

=9 (1= (v, v)) daLnL,
v C(x,r,v)NO*E
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Given a sequence of sets of locally finite perimeter {Ex}ren in R™, we say that
{Ex} converges to E in Llloc([R") and write

I }
Lloc(Rn)

if limg—oo H™(EAEx) = 0. The following compactness theorem is the key tool
used in proving the flatness result.

Theorem 3.6. If {Ex}ken C A(Ca,¥o) withQ € OEy for all k = 1, there exist
a subsequence {Ex;} jen, a set E of locally finite perimeter, and a non-negative Radon
measure, W, such that as j approaches infinity,

LllOC(R")

(310) Ekj— E’ IJEkj — MHE and |HEkj| - u.

Additionally, OE = sptug and p is (n—1)-Ablfors regular up to scale vo with constant
Ca. Furthermore, |Ug| < U and we have the following:

(1) Ifx € OE, then for all j € N there exist xx; € OEk; such thatlimj_ xy; =
X.

(2) Ifx € sptu, then for all j € N there exist xx, € OEx; so that lim;_.co Xk; =
X.

(3) Ifforall j € N, xy,; € 0Ey; and lim; .. X, = X, then X € sptp.

Remark 3.7.

e We note that (2) and (3) in Theorem 3.6 combine to say that x € sptp if
and only if there exists xx; € 0Ek; such that xx, — x. However, without
additional hypotheses, all that is known is that sptpg < sprp.

e Unlike in the analogous theorem [Mag12, Theorem 21.14] for perimeter
minimizers, here in general we do not have u = |ug| because of possible
cancellations for sets of finite perimeter. However, with further infor-

mation on the excess, we will be able to conclude p = [ugl| (see, e.g.,
Lemma 3.8).

Proof- Standard techniques and a diagonalization argument (see, e.g., [Magl2,
Sections 12.4, 21.5]) verify that sets whose boundary are uniformly Ahlfors-regular
(i.e., Ahlfors regular with constants independent of the element in the sequence)
are pre-compact in the space of sets of locally finite perimeter. That is to say, there
exists some set of locally finite perimeter E C R" so that x; — X in Lj,. and

HE,, — ME in a weak star sense. Without loss of generality (see Remark 3.1) we
may assume that spt gz = E. Finally, note the | HE, | are uniformly Ahlfors reg-

ular (see Remark 3.2) and hence precompact. Without explicitly relabeling the
new subsequence, there exists a Radon measure ¢ on R" so that IuEkj | — u in the

weak star sense. Thus, (3.10) holds.
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The fact that |pg| < p follows from (2.3). This ensures that spt g C spt i, so
(2) (which is a standard fact) implies (1). Moreover, (2), and the uniform upper
regularity of {|ug, |} imply the upper Ahlfors regularity of p.

We show (3) and lower Ahlfors regularity of 4 simultaneously. For each j € N
suppose Xk; € 0Ey; = spt|ug, | such that xi; — x.

Fix 0 < s < 79 and fix € € (0,1). Note that for k; large enough,
B(xkj,s(l —&)) CB(x,s(1—¢/2)).
Since Ex; € A(Ca, 1) it follows that

Cil(s(1—g)™ ! < pEy, [ (B(xk;, s(1 —€)))
< lpg, | (B(x,s(1 - ¢€/2))),

so that by weaks convergence of |u, | to p,

Cil(s(1 =)™ ! <limsup IuEij(B(x,s(l —-£/2)))
J

< u(B(x,s(1—¢/2))),

and taking € — 0 results in Cyls™ ' < u(B(x,s)) forall s € (0,7); in particular
X € spt, verifying (3). On the other hand, since (2) and (3) combine to show
that x € spty if and only if there exists xy; € 0Ey, such that xy; — x, this
demonstrates p is (n—1)-lower Ahlfors regular up to scale ¥y with constant C4. O

We now prove that small excess implies local measure theoretic separation. To
simplify notation, define e, (E, x,7) = e(E, x,7,ey).

Lemma 3.8 (Separation lemma (compare with [Magl2, Lemma 22.10])).
Given Ca=1, to€ (0, 1), there is w(n, tg, Ca) € (0, ) such that if E € A(Ca,2v)
for some v > 0 and if there exist xo € OF and v € S"~! with

e(E,x0,2v,v) < w(n,ty, Ca),

then

(3.11) [{x —x0,V)| < tor Vx & C(xo,7,v)NOIE,
(3.12) [{x € C(x0,7, V) NE | {x —x0,V) > tor}| =0,
and

(3.13) [{x € C(xp,7,v) NE®| {x —x0,V) < —to¥}| = 0.

(Note, here and below for any Lebesgue measurable ser O C R™ we write |O| to denote
the Lesbesgue measure of O).
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Proof. This follows by a compactness-contradiction argument. If Lemma 3.8
does not hold, there exist C4 > 1, to € (0, 1), a sequence of sets {Fi}ren and
radii ¥ > 0 such that Fy € A(Ca,27k), a sequence of points xx € 0Fk, and a
sequence of directions vx € S, with

e(Fy, X, 2¥x, vi) < 27K,

such that at least one of the following conditions holds for infinitely many k:

(3.14) {x € C(xXk, 7k, Vk) N OFk : lqx(x)| > tori} + O,
(3.15) [{x € C(xk, 7k, Vk) N Fx : qi(x) > tork}| > 0,
or

(3.16) [{x € C(xk, 7k, vk) N Ff : qr(x) < —tori}| >0,

where gqi(x) = (x — Xk, Vk).

By rescaling, recentering, and rotating (see Remark 3.5) we may assume that
Vi = ey, Xk = 0, and rx = 1. Note that the transformed domains are now in
A(Ca,2). Abusing notation, we call these new sets Fx. Note that

(3.17) en(Fr,0,2) <27 vik>1.

Writing G = C(0,7,e5) and q(x) = (x,e,) we rewrite (3.14)—(3.16) as

(3.18) {xeCindFy|ty<|qx)|} + I,
(3.19) l{x € CinFx [ q(x) > to}| >0,
or

(3.20) [{x € C1\ Fx | q(x) < —to}| > 0.

By Theorem 3.6, there is a set of finite perimeter F C Cs;3 with 0 € 0F =
spt |ur| and a Radon measure p such that, by passing to a subsequence we do not
explicitly relabel, Fx N Cs;3 — F in L'(R"), ppncs; — MF> and [Upnc,,] — 1
with |up| < u.

Consider an open set U such that U C Cs;3. Then, (3.9) implies

5\"! 5
(3.21) (—) en (Fk,(), —) > / (1—ey- Vﬂ)dj‘[”fl
3 3 UNo*Fy
= |ug 1 (U) —en - ug, (U) = 0,

where the final inequality follows since

(3.22) dpr, = vi ldug | and |V | =1  |up |-almost everywhere.
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Then, (3.8) and (3.17) ensure that as k tends to infinity,

6 n-1
er(0.2) = () en00 0.

This combined with (3.21) yields

0 < lim {15, |(U) — ey - 5, (U)} < Cy lim e (Fk’(’%) =0

Since (2.3) says |ur| < p we can apply (2.4) to both |pp, | and pp, to learn
(3.23)  p(U) =en - up(U) for any open set U € Cs;3, with u(oU) = 0.

Note that by Theorem 3.6, u is Ahlfors regular with constant C4 up to scale
2 in the cylinder Cs;3. Hence, in particular for any x € C4/3 N spt 4 and almost
every r € (0,3), u(3B(x,7)) = 0 and by (3.23) u(B(x,7)) = ey - up(B(x,7)).
Consequently, for all x € spt|ur| N Cyy3,

, pBx,7r) . HE(B(x,7))
limsup B o) ~ oMU TGy < b

where the final inequality uses the property (3.22) for the set F. Therefore, in
C4/3 we have shown pu < |up| < p, which implies p = |pp| = H™ 1L 9*F.
But then, (3.23) says |[pp| = en - U so that vi(x) = ey at H "™ !-almost every
x € 0*F. In particular, ey, (F,0, %) = 0, at which point [Magl2, Proposition
22.2] asserts that F N C4y3 is equivalent (in the sense of sets of locally finite perime-
ter) to C4;3 N {q(x) < 0} or C4y3 N {q(x) > 0}. Since |ug| = ey - ur it follows
that F N Cy43 is equivalent to C4/3 N {q(x) < 0}. We write this as

(3.24) C43NF ~ {q(x) <0} N Cyy3.

We assumed that one of (3.18)—(3.20) holds for infinitely many k. First, suppose
(3.18) holds for infinitely many k. By passing to a subsequence, we may assume
that (3.18) holds for all k € N. Then, for all k € N, there exists xx € 0Fx N C;
such that to < [g(xx)|. By passing to a subsequence, Xy — X« for some X € C,
and |q(x«)| = to. By Theorem 3.6 (3), X € spty = sptyr = 0F. Hence (see
[Mag12, Proposition 12.19]),

(3.25) 0 < |B(Xc0,S) NF| < w0pns™ Vs>0.
However, because [q(Xx«)| = to, (3.24) implies that

wys™ ifq(xs) <0,

|B(Xw,$) NF| = {0 ifq(xe) >0,
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forany s < min{%, |q(x)|/2}, which contradicts (3.25). This shows that (3.18)
cannot hold for infinitely many k.
Arguing as above and invoking Theorem 3.6 (3), we conclude there exists

ko € N such that for all k > kq,
(3.26) {x €Cs;4sN0F |ty < lq(x)| <1} = @.

However, by [Mag12, Equation 16.7], for all v € (1, %),

\Rnc, | = e, ILEY + g L (Cr U {vg, = ve, ).

For almost every v € (1, %) we know |uF, [ (0Cy) = 0 for all k. Then, for any such
v (3.26) demonstrates

(3.27) lUpnc l({x € Gy [t < lg(x)] <1}) =0 Vk=ko.

We claim (3.27) implies that for almost every v € (1, %), XC,nFy is constant
on each connected component of {ty < [q(x)| < 1} N Cy, which implies Xc\nF,
is constant on connected components of {ty < [q(x)| < 1} N C;. Indeed, choose
r e (1, %) so that |y, [(0Cy) = 0 for all k. Consider the sets

Us := {t) < 2q(x) < 1} n G,

which are both open and connected. The definition (2.1) and (3.27) guarantee,
for all k = ko,

/T-dupkzo forallTeCcl(Ut;[R").
[R'Vl

(If the integral is nonzero, we can flip the sign of T and get a contradiction with
(3.27).) Thus, by Proposition 2.1,

/ X, div T dx =/ T-dug =0 forall T € CH(U.;RM),
R", R'Vl,

that is, in the weak sense, VXp, = 0 on U, and U-. This implies X, is almost

everywhere constant on each U: (e.g., see [Magl2, Lemma 7.5]). Combining

LY(R™ .
®Y , it follows that for

(3.24) with xp, constant on each U. and Fx N Cs;3
k > ko,

(o for almost every x € C; N {ty < q(x) < 1},
XFnCr = 1 foralmostevery x € C; n {—1 < q(x) < to}.

This shows that (3.19) and (3.20) cannot happen for infinitely many k. O
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The (qualitative) separation lemma above can be further improved to a quan-
tative “height bound” of 0E. Since the proof is by fairly standard techniques in
the theory of sets of locally finite perimeter, we include it in Appendix A (see
Theorem A.2). Topological considerations then imply the following theorem.

Theorem 3.9. Given Ca = 1 and n = 2, there exist positive constants C, =
Ci(n,Cy) < o and & = &1(n, Ca) small such that if E € A(Ca,4ry) for some
¥o > 0, and xo € OF satisfies e(E, x0,2v,V) < & for some v € S™ and 0 < v <
270, then

[{x — X0, V)| < Cive(E,xq,2r,v)VCM=1) v x e C(xo,7,v) N E,

{x € C(x0,7,V) NE | {x —x0,V) > Cire(E, xo,2vr,v)/ -1 — o5
and

{x € C(x0,7,v) NEC| {x — x0,V) < —Cyre(E, xo,2r,v)/En=1)1 = &

An immediate quantitative consequence of Lemma 3.4 and Theorem 3.9 is
the following result.

Corollary 3.10. Givenn = 2, and Cx = 1 there exist constants &, = €,(n, Ca)
and Cy = C(n, Ca) (both positive and finite), such that if E € A(Ca, o) (for some
¥o > 0) satisfies

1/2
sup (][ v = () P ) <y
B(x,r)No*E

<1y
for some x € OE, then

n-1)

sup O(x,p) < ey
p<ry/8

In particular, if @ C R™ is a domain such that 0,Q = 0Q, 0Q is (n — 1)-Ablfors

regular, and vq satisfies

1/2
sup sup (f lva — (VQ)x,V|2d3'[n71> < &,
B(x,r)NoQ

Y <ty xcoQ

then Q is a Cyed/ "™ -Reifenberg flat domain.
Proof. As in Remark 2.3, 0Q = 0,Q and 0Q is Ahlfors regular imply

0Q = sptuq, |Hal is Ahlfors regular.

Thatis, Q € A(Cy, 1y) for some constants Ca, and all . Therefore, the corollary
is a consequence of Theorem 3.9. O
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An immediate qualitative consequence of Lemma 3.10 and Theorem 3.9 is
the following result.

Corollary 3.11. If Q C R" is a domain such thar 0+,Q = 0Q, 0Q is (n — 1)-
Ablfors reqular, and vi € VMO\oc (H" 1L 0Q), then 0Q is a vanishing Reifenberg
flat set.

Corollary 3.10 also has the following quantitative consequence for 5-CADs
(see Definition 2.19).

Corollary 3.12. Let Q C R"™ be a domain with 0+Q = 0Q and with (n — 1)-
Ablfors regular boundary with constant Ca. Further assume, if Q is unbounded,
that R™ \ 0Q consists of two nonempty connected components. Then, there exists a
On > 0 such that for 6 € (0,0n], there exists €5 < & (where &, > 0 is as in
Corollary 3.10) such that if for every compact set K € R™ there exists an Rg > 0 such
that sup, 30k 1VI1(X, Rk) < &5, then Q is a -chord-arc domain.

4. AN APPLICATION TO A TwWO-PHASE PROBLEM FOR
HARMONIC MEASURE

In this section, we consider a two-phase free boundary problem for harmonic
measure, originally studied by Kenig-Toro in [KT06] and later by [BH16]. In
particular, we complete the proof of Theorem 1.1, and prove a quantitative version

of it (Theorem 4.14).

4.1. The existence of corkscrews. The goal of this subsection is to show
that the doubling of harmonic measure implies interior corkscrews (Lemma 4.3).
Later, we will show that control on the oscillation of the logarithm of the Poisson
kernel implies doubling. This is an important step in proving Theorem 4.12 as
it will allow us use the theory of UR domains (by way of Appendix B). First, we
recall what it means for harmonic measure to be doubling.

Definition 4.1. Let Q C R™ be a domain with harmonic measure w. We say
that w is locally doubling with constant C if, for every compact set K, there exists
rx > 0 such that

w(B(x,2r)) < Cw(B(x,7)).

forall x € 0O N K and all ¥ € (0,7g). We also refer to 7k as the (local) doubling
condition radius.

Remark 4.2. We often assume 7 is sufficiently small compared to the dis-
tance from the pole of w to the boundary 0Q. This allows us to focus on local
regions away from the pole, so that we can use preliminary estimates on the har-
monic measure with ease.

To prove estimates that are uniform on compacta, it is important to keep
track of what the value of each constant depends on, and in particular, whether
or not it depends on the choice of compact set. For simplicity, we may say the
value depends on allowable constants, if it depends only on the dimension n
and the Ahlfors regularity constant, and not on the compact set. The following
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Lemma 4.3, which might be considered folklore, shows the existence of interior
corkscrews given the doubling of harmonic measure. This is an essential step, as it
allows us to gain topological information on Q from the regularity of the Poisson
kernel. We sketch the proof here, which is a small modification of the proof of
[HM15, Lemma 3.14] (see also [HLMN17, Lemma 4.24]).

Lemma 4.3. Let Q C R"™ be a domain whose boundary is Ablfors regular with
constant Ca. Fix Xo € Q. Suppose ™ is locally doubling with constant Cy. There
exists an N = N(n,Ca) > 0 such that, for every closed ball K, if vk < 6(Xo) is
the doubling radius of w*° in K, then Q admits an interior corkscrew ball at every
x € 0Q N K up to radius sx := nvg with constant C; = C(n, Ca, Cy).

Proof- Fix the closed ball K and recall that 7k is the local doubling radius. The
proof of this lemma requires a slight modification of the argument in Lemma 3.14
of [HM15]. Recall the following relationship between the Green function and the
harmonic measure. For ® € CZ (R"*1),

(4.1) /aQ<I>(y)de(y) — ®(X)

= —// VG(X,Y)V®(Y)dY, foralmostevery X € w,
Q

where w := w¥ and G(Y) := G(X,Y) are the harmonic measure and Green’s
function for Q with pole at X.

It was proven in [HM15, Lemma 2.40] that there exists ko > 2 depending
only on dimension and the Ahlfors regularity constant such that for all x € 0Q
and 0 < ¥ < min{d(X) /Ko, diam(0Q)}, for B = B(x,r),

(4.2) sup G(Y) s L /Q(Y) dY svr
B

(1/2)B |B

w(CB)
o (CB)’

where all implicit (and explicit) constants depend only on dimension and the
Ahlfors regularity constant.
Now, let x € 0Q and

0 <7 < min{&(Xp) /Ko, 107° diam(3Q), 10 >7¢ /C},

where 7k is the doubling condition radius for w and C is as in (4.2). Without loss
of generality we may assume

rx < min{d(X), diam(0Q)},

so that the above minimum equals 1077k /C. Set B := B(x,7) and ® € C2 (%B)
suchthat 0 <® <1, =1o0n ﬁB and |V®| < 8/7. Using (4.1) with X = Xy,

9We may move Xg slightly using the Harnack inequality.
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we obtain

4.3) ro (LB) < r/ ®(y) dw(y)
100 2QN(1/100)B

= —r// VG(Y)VO(Y)dY
Q

- 8// IVG(Y)|dY
Qn(1/2)B

< 8// IVG(Y)|dY
((1/2)BNQ)\Z, (1)

L8 // IVG(Y)|dY
(1/2)BNZ, (r)
=A + B,

where 2,(¥) is the “boundary strip,” 2,(r) := {Y € Q : §(Y) < pr}, and
p > 0 is a small number to be chosen momentarily. Let W = {I} be a Whitney
decomposition of Q, and let 7 := {I € W : In %B NZ,(r) +# @}. Then, by using
standard interior estimates (the Caccioppoli inequality and the Moser estimate),
we have

(4.4) B<82//|VG(Y)|<1Y<C > e Gg

Iel Ie]

where Y7 is the center of the Whitney cube I and #(I) is the side length of I.
For each I € 7 we use the Holder continuity at the boundary of the Green func-
tion (which only depends on dimension and the Ahlfors regularity constant), in
conjunction with (4.2), to obtain the estimate

21 1 2\ w(CB)
901 = ( r ) 12B] ZBmQG(Y)dYS( r ) "o (CB)

Summing over I € 7, and using an elementary geometric argument, whose proof
we temporarily postpone, we have that

1
(4.5) B<p*rw(CB) <sp Tw(lOO )
where we used that the harmonic measure is doubling up to 7.
Then, there exists p > 0 depending on Cy, n, and C (which depended addi-
tionally on C4), small enough so that the upper bound in (4.5) can be absorbed
in the lefthand side of (4.3), at which point we have

1 1
—8// v (Y)IdY_—rw( >>0.
((1/2)BAQ)\S, (1) § 2 100
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Since A > 0, there exists a point Yz € %B N Q such that §(Yg) > pr, which
shows that Q satisfies the (1/p, Ry)-interior corkscrew condition, where

Ro = min{&(X) /Ko, 1072 diam(9Q), 1031 /C} = 1027k /C =: sk.

Hence, we finish the proof of the lemma with constant n := 1072/C.

Now, we shall sketch the “elementary geometric argument,” that is, how we
used the estimate on G(Y;) and (4.4) in order to obtain (4.5). If we first let
7:= {I eEW:IniB= @}, then we observe that the Whitney property of each
I € 7 ensures that £(I) < 7, and for each I € 7 there exists X; in B(x,Cr) N Q.
such that £(I) = dist(I,0Q) =~ dist(X;,Y) forall Y € 1.

Now, fix k such that 2% < p7, denote 7 := {I € 7 : £(I) = 27¥}, and
cover B(x,Cr) N dQ by balls {By ;}; = {B(xkj,27%)} with x¢ ; € 0Q such that
{%Bk, j};j are disjoint. Using Ahlfors regularity to compare surface areas, we see
that, for each fixed k, we have #{By j}; ~ yn-12k(n=1) Now, with each I € 7} we
associate an index j such that x; € By j, and notice we have dist(Y, xx ;) < 27
forall Y € I. Since the I € 7 are disjoint, comparing volumes, we have that for
fixed j, we have that #{I € 7y : I is associated to j} < C, where C depends on
dimension. It follows from our bound on #{By ;} j that #7, < r"~12¢"=1)_ Now,
breaking the sum over k in (4.4) and using our bound for G(Y7), we obtain

B < w(CB)r? "« z z 7—k(n-1+a)
kz—log, (pr) 1€7;
Ssw(CBy e N gkl p—kinolrw
kz—log, (p7)

< p*rw(CB)

as desired, where we used 0 (CB) = ¥~ ! in the first line. O

One immediate corollary is that domains with Ahlfors regular boundaries have
uniformly rectifiable boundaries whenever the interior and exterior harmonic mea-
sures are doubling.

Corollary 4.4. Suppose Q" C R™ and Q= = R™\Q* are domains with common
topological boundary 0Q := 0Q* = 0Q~ and diam(0Q") < oo, which has the
additional property that 0Q is (n — 1)-Ablfors regular. Suppose further there exists
Xt € Qf and X~ € Q7 such that the harmonic measures W%~ are doubling. Then,
0Q is uniformly rectifiable and 0Q = 0+ Q. In particular, Q* are UR domains.

4.2. A localization result. The major technical result of this section is The-
orem 4.12, which, roughly, states that the local oscillation of the Poisson kernel
controls the local oscillation of the unit normal. Perhaps, contrary to the spirit of
a “localized result,” the scale at which we get control of the oscillation of the unit
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normal depends on the compact set; however, the quantitative control does not
(see (4.32) and (4.33)).

Our main tool in the proof of Theorem 4.12 is the single layer potential; we
recall its definition now.

Definition 4.5 (Riesz transform and the single layer potential). Let F C R™
be a closed (n — 1)-Ahlfors regular set with surface measure 0 = H" 'L F. We
define the (vector-valued) Riesz kernel as

. ¢
K(X) = Cnmi
where ¢, is chosen so that
Cn
K(X)=V
(X) x|z

and ¢y, is such that —Acy, /| X|""2 = §¢ (here, &y is the Dirac mass at the origin).
Let f € LP(do) for some p € [1,n — 1). We define the Riesz transform of
f (relative to F) to be

RF(X) = K % (fo) (X) = /Fx(x ) f(¥)do(y) XeR"\F,

as well as the truncated Riesz transforms for X € F to be

Rgf(X):=/ KX =) f(»)do(y), &> 0.
Fn{y:IX-y|>¢}

We define S the (harmonic) single layer potential of f relative to F to be

SFX) = /Ff(x—wf(y)da(y),

where E(X) = ¢, | X|*7".

Remark 4.6. For f as above we have that Sf (X) makes sense as an absolutely
convergent integral for X ¢ F. To see this, we may use the upper Ahlfors regu-
larity to break the boundary up into dyadic annuli centered at xy € F such that
dist(X,F) = | X — x|, and see that E(X — ) isin L? (do) forall p € [1,n - 1),
where p’ is the Holder conjugate exponent to p (albeit with bounds depending
on X). Notice also that for such f, VSf(X) = Rf(X) for X ¢ F and Rf(X)
makes sense as an absolutely convergent integral for X ¢ F (here, we use the same
argument as for £ to show that K(X — y) € LP' (do) for p € [1,)). To see
VSf(X) = Rf(X) for X ¢ F we form the difference quotients for Sf and use
the dominated convergence theorem. Every function we apply the single layer
potential to in the proof of Theorem 4.12 is in the space L! (do).
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The singular layer potential is useful in that it generates solutions to the Neu-
mann problem (see, e.g., [HMT10, Section 5.5]). However, in order to make
sense of boundary data in a rough domain we need to introduce the concept of
non-tangential regions.

Definition 4.7 (Nontangential approach region and maximal function).

Fix & > 0 and let Q be a domain; then, for x € 0Q we define the nontangential
approach region (or “cone”):

F(x)=Tx(x)={Y €eQ:|Y —x| < (1 +x)6(Y)}.
We also define the nontangential maximal function for u : Q — R:

Nu(x) = Nou(x) = sup |u(Y)l, x€oQ.
Yely(x)

We make the convention that Nu(x) = 0 when Ix(x) = @'° and that @ = 1
when no subscript appears in T.

The relationship between the two definitions above is made clear in the fol-
lowing two lemmas.

Lemma 4.8 ([HMT10]). Suppose Q is a UR domain (recall Definition 2.9)
and f € L(do) for someq € [1,n —1). Forall p € (1, ), we have

(4.0) IN(VSF) e ao) < ClfllLr o),

where C depends on the UR character of 0Q), dimension, p, and the aperture of the
cones defining N .

The bound for the non-tangential maximal function of VSf follows from
uniform bounds for the truncated singular integrals [Dav91], plus a Cotlar lemma
argument; the details may be found in [HMT10, Proposition 3.20].

In addition, we have the following result proved in [HMT10].

Lemma 4.9 ((HMT10] Proposition 3.30). If Q is a UR domain, whose mea-
sure theoretic and topological boundary agree up to a set of H™™' measure zero, then
for almost every x € 0Q, and forall f € LP(do), 1< p<n-1,

4.7) lim VSf(Z) = —lv(x)f(x) + T f(x),
Z—x,Zel(x) 2

and

(4.8) lim VSf(Z) = lv(x)f(x) + T f(x).
Z—x,Zel*(x) 2

10 the settings that are treated here, this is always a set of "~ ! measure zero [HMT10, Propo-
sition 2.9].
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where T (x) is the cone at x relative to Q, T~ (x) is the cone at x relative to Qext,
Vv is the unit outer normal to Q, and T is a (vector-valued) principal value singular
integral operator:

TF) = lim / VE(x - y)f(y)do ().
ye0Q\B(x,¢)

Remark 4.10. As in [BH16], we have taken our fundamental solution to be
positive, so for that reason there are some changes in sign in both (4.7) and (4.8)
as compared to the formulation in [HMT10].

Next, we show that if logk has small BMO norm, the measure w = kdo is
doubling. The proof uses the fact that o is doubling. We comment that in general,
the fact that || logkl|lsmo < o or that k satisfies a reverse Holder inequality does
not ensure that w = kdo is doubling (see the discussions and example in [ST89,
Chapter I]).

Lemma 4.11. Let 0 be a doubling measure on R"™ and w = kdo be another
Radon measure with 0 < k € Llloc(dO'). There exists Tg > 0 depending on the
doubling constant of o, such that if

(4.9) [l logkll« (B(x0,470)) < T < Ty forsome xo € spto andry > 0,

then the following holds for B C B(xo,2vy) with B a ball centered on spto:
(1) There is a constant C depending on n such that

1 w (B)
fglogkdo _
(4.10) 1+CT]£kdaseB s]ﬁkda (B

(2) Givenp > 1, there exists T(p) < To such that if (4.9) holds with T < T(p),
then for any Borel set E C B, where B is as before,

w(E) o(E)\’
4.11) o ZC(p,T)(—O_(B)> .

Here, the constant c(p,T) — 1 as T — 0.
(3) In particular, for x € spto such that B(x,2v) C B(xy,21),

(4.12) w(B(x,2r)) < Cw(B(x,71)),

where the constant C depends on n and the doubling constant of o .
(4) Givenv > 1, there exists T(v) < To such that if (4.9) holds with T < T(r),
then the weight k satisfies the reverse Hilder inequality for v, that is,

1/v
(4.13) (]iky da) < C(T,T)]ikdO'.

Here, the constant C(r,T) = 1 asT — 0.
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Proof. By the local version of John-Nirenberg inequality for doubling mea-
sures (see [ABKY11, Theorem 5.2]), we have

o ({x € B:|logk(x) — (logk)g| > A}) < Cie N T (B)

forall A > 0, where the constants C; and C; depend on the doubling constant for
0. Therefore,

][e\logk—(logk)gldo-
B
= L/ o ({x € B: ellosk(x)=logh)sl 5 ¢y ¢
g (B) Jo
1 1
= ﬁ/o o(B)ds
R , B .
i O'(B)/o o ({x € B: |logk(x) — (logk)p| > A})e” dA

1+G /m e~ (GITATA )
0

<1+CT,

IA

if T is sufficiently small (depending on the constant C,). Then, (4.10) follows
immediately.
Similarly, provided T is small enough depending on p, we also have

(4.14) ][e<1/<r’*”>”°g’<*<1°g’<>8‘ do <1+ CpT.
B

Henceforth, T¢p > 0 is chosen so that (4.14) holds with p = 2 and T < T¢. Let
a = p/(p — 1) be the Holder conjugate of p. It follows that

n/q
][kda . ][k*q/’”da
B

p-1
logkdo. ][ (1/(10—1))logkdo_>
p-1
ogk (logk)g do - (][e*(l/(lﬂ*1))(logk7(logk)3) dO')
B

<

I
\\\

p-1
e\logk (logk)8l 10 - <][ e(1/(p—1)llogk—(logk)] dO’)
B

+Cp'r)”

that is, k € A, (o), where A, is the Muckenhaupt class with power p > 1.
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Let g = 0 be an arbitrary measurable function on B. We have

1/p 1/q
/gdo < (/g”kda) (/k””"da)
B B B

<a +CpT)(T(B)(/Bkd0'>l/p</Bglﬂkdo>1/p.

In particular, for any Borel set E C B, by plugging in the above inequality g = X,
we get

o (E) w(E)\ P
(T(B)S(1+CpT)(w(B)> ’

or equivalently,

WE) o (ﬂ)”
w(B) ’ o (B)
with c(p,T) = 1/(1 + CpT)?. The doubling property (4.12) follows by taking
E = %B,p =2,and T = To.
Let 7 > 1; then, (4.14) applied to p = 1+ 1/7 implies that for T small enough
depending on 7 we have

][kT do =< (1 + Cp1)e" e,
B

Taking 7-th root on both sides of the inequality and using (4.10), we get

1/r
(][ k" da) <(1+C1)/relogbs < (1 + C, 1)V ][ kdo,
B B

that is, k € RH, (o), where RH, denotes weight that satisfies the reverse Holder
inequality with power v > 1. O

After we establish the reverse Holder inequality (4.13), one can show

4.15) ( ]ﬁ

where a = efs108kd0 For details of the proof we refer interested readers to [BH16,
Lemma 1.33].

The following result states that control on the oscillation of the logarithm of
the interior and exterior Poisson kernels provides control on the oscillation of the
unit normal.

k

2 1/2
1—5 dO‘) < C(lllogkll«(4B)'/® < CT'/8,
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Theorem 4.12. Ler Qf c R", Q~ = R" \ QF be domains with common (topo-
logical) boundary, 00" = 0Q~ = 0Q. Assume that 0Q is (n — 1)-Abhlfors regular
and let X* € QF be such that k* = dw=*/do exist. Here, w* = wX, where
wX™ is the harmonic measure for QF with pole at X*. Given € > 0, there exists
K1 > 0 depending on 6(X=), &, n, and the Ablfors regularity constant Ca such that
if logk®™ € BMO\o(0) with constant 0 < k < k1, then v . € BMOo(0) with

constant at most €. In particular, iflogk* € VMO\oc(0), then v € VMO (0).

Remark 4.13. The proof of the above theorem yields a quantitative estimate
(see (4.32) and (4.33)).

Proof. Let A > 2 be a constant depending on dimension and the Ahlfors
regularity constant'!' such that if x; € 9Q and %y € (0,diam dQ), then there
exists'? a dyadic cube Q as in Lemma B.2 such that

A(x9,79/A) C Q C A(xp, 1).

Let T(p) be as in Lemma 4.11 such that (4.11) holds with power p =
1 +1/(2(n —1)). Suppose that logk* € BMOj.c(0) with BMOjoc semi-norm
K satisfying k € (0, k1), where k1 < T(p) will be determined after (4.31). No-
tice that in the case when logk* € VMOj,.(0), this holds for every k > 0. Fix
B*B(y,4R) for some ¥y € 9Q and R € (0,diam(3Q)/4), and set B = %B_*
Since logk* € BMO\oc(07) with constant k, there exists a radius 79 = ¥o(T(p),
B*) < cmin{R,6(X*)} (with ¢ > 0 depending on dimension and Ahlfors di-
mension and Ahlfors regularity) such that

[ logkll«(B(z0,279)) < k, ¥ zy€ B*NoQ.

The proof of Lemma 4.11 establishes that w* are doubling13 up to radius 7y on
balls centered on B* N 0Q, with a doubling constant depending on n and Cjy.
Moreover, by choice of ¢ and Lemma 4.3, the domains Q* both admit an interior
corkscrew ball for every x € B* N 0Q up to radius #y. Thus, we record for later
use that, in the language of Appendix B, Q satisfies the (x0, My, 79)-DLTSCS
for all x, € B.

Henceforth, x will denote an arbitrary point in BnoQ. Let1 <M < o and
0 € (0,1) be determined later. For x € B(xg,79/(20A)) N 0Q, let v € (0, Ory)
be such that A := A(x,r) € A* := A(x,Mr) C B(xg, 79/ (5A)).

For any ¥,z € A, we let ¥* and z* denote arbitrary points in the non-
tangential approach regions in Q~, I (y) N B(y,r/2) and I (z) N B(z,7/2),

e use A to simplify notation. In fact, we take A = C3 as in Lemma B.2 and as used in
Lemma B.4.

128¢e Remark B.3.

13Here, we have uniform control on the doubling constant by Lemma 4.11 and the choice of ;.

14This is a local two-sided corkscrew condition; see Definition B.1.
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respectively. Following [BH16, Theorem 1.1], we first show

2 1/2
(4.16) (][A 'vsm(z*)—][Av51A*(y*)do(y) do(z))
G r\'”? 1 n-1/2,1/8 , G
= W(B(x0, 10/ (5A))) (1’0> N S VE

where w is the harmonic measure of Q" with pole X*, and where the constants
C1,C3,C3 > 0 depend only on n, the Ahlfors regularity constant Cy4, and 6 (X*).
In particular, w = k* do. We decompose 15+ as

=[5 5[]

where a = ax pr = efaslogk® do \ye want to estimate the lefthand side of (4.16)
by using this decomposition and the triangle inequality. This gives three terms,
which we denote as I, II, and III:

= (f o[ (1- 51 e

_ ][AVS[(I - §)1A*](y*)da(y) 2d0(2)>1/2,
II = (]i VS[S](Z*) —][AVS[S](y*)dU(y) 2d(r(z)>1/2,
and
11 = (][A vs[(%)hmc](z*)
—][AVS[(§>1<A*)c](y*)da(y) 2dc7(2)>1/2.

For simplicity, we drop the super-index and write k = k*. We will leave the
estimate of I for last, as it requires the use of the localization Lemma B.4.

For II, we recall that k = k™ is the Poisson kernel for Q with pole at X*.
Moreover, E(- — z*) and E(- — y*) are harmonic in Q since z*, y* € Q~, and
decay to 0 at infinity, and are therefore equal to their respective Poisson integrals
in Q. Consequently,

2

1/2
(4.17) Ilsl(][][IVE(X*—z*)—Vf(X*—y*)d(T(y) dO’(Z)) .
a\jaJa

Note that, since y*,z* € B(x,2r) and | Xt — x| > 79,

IVE(X* - 2%) = VE(X* — v*)| 5 &

—.
"o
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Then, continuing (4.17), we have, using (4.11) with power p = 1 + T 1),

1 ol o (A%) w (B(x0,%0/(5A)))
U18) IS Zmr > o an "~ 0Bl GA))  riw(an)

= w(B(xo,io/(SA))) (1\1/{—:>n1 (%YH/ZTLO

C 2
= W(B(x0, 10/ (5A))) (%) M

where C > 0 depends on n and the Ahlfors regularity constant.
For II1I, we use basic Calderén-Zygmund type estimates as follows. Let

Aji=Ax,27), Aji=Aj\Ajy,

so that

4.19) III = (][A

Fos (B e

- VS[(S)I(A*)C](y*)>dO'(y) 2do(z)>l/2
Vf(z* -w) - VEy* - w)]
aQ\A*
k(w)do(w)do(y) 2d0(z)>1/2
< Z (][A [][A N IVE(z* —w) - VE(y* —w)|

{jl2/=M}

2 1/2
Md(f(w)da(y)] dO’(Z))

< X L, o] ana)

{jl27=M}

wher¢ we understand that, if diam(0Q) < o, the sums are finite and terminate
for 27r = diam(9Q).

2 1/2
(4.20) III < ][ ][/ (zjr)nmda(w)da(y)] da(z))
{J|21>M} v a
rw(A;) rw(A;)
s Z - + Z :
{jIM<2i<ry/(2r)} (2r)ta {j12i=70/(2r)} (2/r)ra

= I, + III.
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To estimate 11, and 11, we use (4.10), the fact that Aj € A;j (in I11,), that w is
a probability measure (in I11), and (4.11) again with p = 1+ 1/(2(n — 1)):

TOU(AJ')
2ir)na

(4.21) 11, = >

{jIM=<2i<ry/(2r)}

S 2.
{jIM=<2i<ry/(2r)}
s ro(A*) w(Aj)
2ir)n  w(A*)

1 (M (2fr>”‘1/2

Z v i
{jIM=<2/<ry/(27r)} (277) Mr

rw(A;) o(A%)
2ir)n w(A*)

S

{jIM=<2i<ry/(2r)}

A

1 C
< > 27012 = =,
\/M {jIM=<27<7y/(2v)} M
A,
(4.22) = 3 rw(A,))

) 2iryng
{jl127 =7y /(2r)} ( )

rw(Aj)  o(A*)

< g > . *
Jyr)n
{jl27 =7/ (2r)} (277) w (A*)

2. L ACND)
jryn ¥
lzismrary T w(A%)

v o(A*) w (B(x0,70/(5A)))

7 w(B(x0,710/(54))) 0 (A%)

A

A

A

ﬁ ' <Ai_:>n w(B(xoﬂlfo/(SA))) (%)nw

C r\'2 1
= W(B(x0, 10/ GA))) (%) UM

As before, the constant C > 0 in (4.21) and (4.22) depends only on n and the
Ahlfors regularity constant. Combining (4.19), (4.20), (4.21), and (4.22), we

conclude that

ik

C(n,Cy) C(n,Ca) LARS
(4.23) Hs——+ w(B(x0,70/(5A))) <7’0> '

The idea in estimating I is to approximate €, locally, by UR domains, so
that we may exploit Lemmas 4.8 and 4.9 on those approximate domains. Using
the fact that the (x¢, Mo, 79)-DLTSCS holds, we may invoke Lemma B.4 to con-
struct two UR “domains” Té—' c QF, where Q is a dyadic cube such that we have



Flatness and Oscillation 285

A(xo,79/(4A)) C Q C A(xg,7o/4), where the definition of A above allows us to
find such a cube. In particular,

0Ty N Axo, 10/ (4A)) = Alxo, 10/ (4A)),

and for H " !-almost every x € A(xo,7o/(4A)), the unit outer normals Vs (x)
exist and satisfy

(4.24) vrs (x) = £vo+ (x).

For any open set U with Ahlfors regular boundary, define

SuF(X) = /an()< — ) f()da ().

In our context, U is either OF or Té’. The coincidence ofaTé N A(xo, 1o/ (4A))
and A(xy, 70/ (4A)) allows us to conclude, for

f € L*(A(x0,70/(4A)))  with spt.f < A(xo,70/(4A)),

(4.25) Sar f(X) = Sa f(X) = Spz f(X),

for all X é A(Xo,TQ/(4A)).

Recall
I= (][A VS[(1—§>1A*](Z*)
_]ivs[<1 - g)u*](y*)d(f(y)

where z* and y* are in non-tangential regions in Q~ over y,z € 0Q. We want
to dominate VS[(1—k/a)1a+](z*) by a non-tangential maximal function in Tg-
To this end, we make the observation that if ¥ /7y is sufficiently small (which we
may ensure by adjusting the value of 0), then for any 3 € A, the non-tangential
cone I (y) N B(y,7/2) C Ty, provided we take the constant K in the definition
of T large enough depending on dimension and the Ahlfors regularity of 9Q".
To see this, one needs to inspect the definition of W (see Appendix B), and note
that if Z € T~ (y) n B(y,2r) then §(Z) ~ |Z — y| < 27, and therefore Z is
inside a Whitney cube I for Q™ with

2 1/2
da(Z)) ,

dist(I,y) ~ €(I) ~ 6(Z) < 2r s £(Q).

I5This does not affect the validity of Lemma B.4.
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By choosing K sufficiently large, depending on allowable parameters, we can guar-
antee the existence of a cube Q" € Q containing ¥ € Q' with length £(Q") =~k
0(I). Hence, Z € Uy C T,. Moreover, in the construction of the Whit-
ney region Uq, intI* C Uy where I* = (1 + T)I for some (small) parameter
T > 0 (see Appendix B, and note this T is unrelated to T(p) above). This forces
dist(Z,aTé) 2+ 0(I) ~|Z — /|, and therefore,

Z eTyr (¥) = {Y € Tg : Y — yI < (1+ B dist(Y,3T5)3,
where B = B(n,Ca, 0) >, 1. We conclude that
I"(y) nB(y,r/2) ClIgr; (y) N B(y,7r/2).

With these observations in hand, we can estimate I. By (4.6) and (4.15),

w0 sl [5lesf1- 2 )"
(585 (f 1~ w)

< CM D12 (| log K|« (B(xo, 7)) /¥ < CM =172 115,

where NV is the non-tangential maximal function in T, with aperture B (which
dominates St [(1-k/a)1a=]1(y*) by the arguments in the preceding paragraph).
Note that C > 0 above depends only on B > 0, n, Ca, and the UR constants of
0Q, which in turn depend only on n, Cy4, and 6 (X™).

Putting (4.18), (4.23), and (4.26) together, we finally obtain (4.16). The
estimate analogous to (4.16) when y* and z* are in I'*(y) N B(y,7/2) and
I*(z) N B(z,7/2) is also true by symmetry. It remains to use the jump relations
to get an estimate on the oscillation of unit outer normal. Here, we again use the
approximations Tg;. Applying the jump relation in Lemma 4.9 to T, and using
(4.25), (4.24), and the containment I'*(y) N B(y,7/2) C T 13 (»)NB(y,r/2),
we obtain for {"~! almost every 3 € A(xo, 10/ (4A))

(427) VQr+ (_)/)IA* (_)/) = th VSIA* (Z) — }1m VSIA* (Z)
Zel"*%/y) Zer*%/y)

Here, we need to make the further observation that the principal value singular
integral operators TT& 16in (4.7) and (4.8) have the property that ’TTaf = TTéf
whenever f € L2(A(xo,70/(4A))) with spt.f € A(xo,¥o/(4A)). This is a conse-
quence of the definition of 7 and that

6T5 N B(xg, 19/ (4A)) = 6T6 N B(xg, 19/ (4A)).

16The operator Ty is defined in the same way as Sy .
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Taking nontangential limits'” in (4.16), and using (4.27), we obtain

2 1/2
(4.28) (][ vao+(y) —][ vo+(2)do(2) dO’(y))
Ber) B(x,r)
Cy r 1/2 1 s . Cs
= w(B(xo, 70/ (4A))) <7’o> C UM +OM K

for x € 0Q N B(x0,79/(20A)) and 0 < r < Ory. Here, as above, the constants
C1,C3 > 0 depend on n and Ca, and C, depends on 1, Cy4, and 6(X*). No-
tice that we may apply the same argument to Q™ and logk™ to get an analogous
estimate to (4.28).

We define a constant

G

inf _w*(B(x0,70/(5A)))
XoEBNOQ

(4.29) Cs =

In fact, for each x¢ € B n 9Q, the harmonic measure w*(B(xp,79/(5A))) >0
since 0 < w*. Consider an arbitrary pair X, x, € B N 0 such that |x — x| <
79/ (5A). By the doubling property of w* (up to radius 79), we have

w™(B(x0,70/(5A))) < w*(B(xg,70)) < Cw™(B(xg, 70/ (5A))).

Since B N 9Q is compact, it can be covered by finitely many balls centered on
B n 0Q with radii 79/ (5A). In particular, the denominator in (4.29) is a strictly
positive constant depending on the domains Q* and B, and thus the constant Cy

is well defined. Notice that the same argument applied to logk™ combined with
(4.28) and (4.29) yields

2 1/2
(4.30) <][ vao: () —][ vo=(z)do(z) do(y))
B(x,r) B(x,r)
r\'? m-1s2,1/8 , C3
=Cili) e

where C4 = C4(n, Ca, B,Q*). Fore > 0 sufficiently small (satisfying Cze < 4), we
choose the constant M such that 1/+/M = &/4 and C3//M < 1; we also choose
the constant 8 such that MO < 1/(10A) and C40'/2 < 1. Then, (4.30) becomes

.31 (]i(x,r)

€
=5+ Cse~ (D18,

2 1/2
dﬂy))

vo: () —][ vo=(z)do (2)
B(x,r)

17This is justified by Lemma 4.8 and the dominated convergence theorem.
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where Cs depends on 7 and Ca. Note that in the above estimate, only 6 depends
on B. Thus, perhaps further shrinking k; (depending on €, n, Ca, and 6(X*),
and independent of B), (4.31) becomes

(i

£
=5+ Gn, Ca)e M Dyll® < ¢,

2 1/2
dﬂy))

vo: () —][ vo=(z)do(2)
B(x,r)

To sum up, we have shown that, given € > 0 there exists a small constant k;
depending on &, n, Ca, and 6 (X*) such that the following holds: for every ball
B* centered on the boundary with radius less than % diam (0Q), if there is a radius
1o = 1o (B*) such that

(4.32) sup |l logk* ||« (B(x0,70)) < K < Ky,

XoEB* NdQ

then we can find 0 € (0, 1) depending on n, Ca, the domains O, and B:.= %B_*
so that

(4.33) sup  [[VIlx(B(xo,079)) < &.

Xo€BNedQ

Thus, v € BMOj..(0) with constant at most & (see Remark 2.11). This concludes
the proof of Theorem 4.12. O

4.3. Free boundary results. In this section we combine Theorem 4.12 with
Corollaries 3.10 and 3.11 to obtain information about the local geometry of a
domain (with minimal hypothesis) from the local oscillation of the logarithm of
the interior and exterior Poisson kernels.

Theorem 1.1. Letn > 3 and suppose Q" C R™ and Q™ = R™"\Q* are domains
satisfying 0Q := 0Q" = 0Q~, and that 0Q) is (n — 1)-Ablfors regular. Then, the
Jollowing are equivalent:

(i) QF are both vanishing chord-arc domains with v.€ VMO\oc(0) (see Defi-

nition 2.19).

(i) There exist X* € Q and X~ € Q such that k* = dw?¥ " |do and k= =

dwX" /do exist and logk* € VMO)o(do).

Proof- (i) implies (ii) is the main theorem in [KT03]. That (ii) implies (i) fol-
lows from Theorem 4.12. Indeed, by Corollary 3.11, to show that Q* are vanish-
ing chord-arc domains it suffices to prove that v.€ VMO)oc(do). Theorem 4.12
asserts this is the case when logk* € VMO)..(do). O

The following is a quantified version of Theorem 1.1 which results from the
remark at the end of the proof of Theorem 4.12.
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Theorem 4.14 (Quantified version of Theorem 1.1). Ler Q" C R" and
Q™ = R"\ QF be domains with common (topological) boundary 0Q = 0Q+ = 9Q~.
Assume that 0Q is (n — 1)-Ablfors regular, and let X* € QF be such that k* =
dw)f/d(r exist. Given & > 0 there exists Kk = K(0,n,Ca, 6(XF)) > 0 such that
iflogk* € BMO\o.(0) with constant less than k, then QO and Q™ are 6-chord-arc
domains.

Conversely, for every k > 0 there exists 6 = 6(n,n,Ca) > 0 if v € BMOjoc(0)
with constant less than 6; then, logk* € BMO\oc(0°) with constant less than k.

Proof- This is a combination of Theorem 4.12, Corollary 3.10, and the work
in [KT99]. |

APPENDIX A. PROOF OF THEOREM 3.9

In this section we prove Theorem 3.9. Recall, roughly speaking, that Theorem 3.9
says small excess implies flatness in the sense of Reifenberg. We will show Theorem
3.9 as a corollary of the height bound, Theorem A.2. Many of the techniques,
included for completeness, are standard. Another consequence of Theorem A.2 is
a Lipschitz approximation theorem, Theorem A.4, which is proven at the end of
this section. It is of independent interest and is not used in this paper.

The next lemma is contained in [Magl2, Lemma 22.11]. Here, we recall
some notation introduced in other sections. We define q(x) = (x,e,), p(x) =
x —q(x)en, Cr = {lq(x)| <7r}n{lp(x)| <7}, Dy = p(Cy) and D = p(Cy).
We consider D, Dy to be subsets of R"~!. Finally, when the set E is clear from
context, recall e, (x,7) = e(E,x,7,e,) and if x = 0, e, (v) = e(E,0,7,e,).

Lemma A.1 (Excess Measure). IfE C R" is a set of locally finite perimeter in
R™ with 0 € OF, such that for some to € (0,1), (3.11), (3.12), and (3.13) are each
satisfied withv = 1 and v = ey, then writing M = C1 N 0*E it follows that, for any
Borel G C D,

H"NG) = /

(VE, en) dH™ 1,
Map~1(G)

Moreover, for every @ € C2(D) and t € (-1,1),
/(pdx=/ P(p () (VE(x), en) dH !
D M
and
/ <pdx=/ PP ) (VE(x),en)dH™ ! Vie(-1,1)
E;nD Mn{g(x)>t}

where Ey = {z € R | (2,t) € E}. In fact, the set function

2(G) =H" "M np H(G) - H"(G)
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defines a Radon measure in D, and is called the excess measure of E over D since
C(D) =e(E,0,1,ey).
Theorem A.2 (Height bound: cf. [Magl2, Theorem 22.8]). Given Ca = 1,
1o > 0 andn = 2, there exist constants €1 = €N, Ca) > 0 and C; = C(n,Cy) =1
such that if E C R™ is Ablfors reqular with constant Ca up to scale 4vy and xy € OE
satisfies
en(xo,4r9) < &1,

then

Tlosup{lq(xO) —q(»)|: ¥ € C(x0,70,en) NIE} < Cren(xo, 47p) /M=),

Proof- By Remark 3.5, we let xo = 0 and 27y = 1. We then want to show that
lq(x)| < co(n)ey (2)1/ M=) whenever x € Cy;, N OE.

First, assume & < min{w(n, 1, Ca), 27" H""1(D)}, with w(n, 3, C4) from
Lemma 3.8. Then, by Lemma 3.8, [g(x)| < % whenever x € C; N 0*E =: M,
and moreover E satisfies the hypotheses of Lemma A.1 with ¢y = 7. Therefore,

(A.1) 0<H" (M) -H" (D) <en(l) <2" le,(2)

and
(A.2)
O<H" ' Mn{gx)>t}) —H"YE,nD)<2"le,(2) Vte(-1,1).

Now, we consider f : (=1,1) — [0, H "™ 1(M)] defined by
f) =H" 1M n{q(x) > t}).

By Lemma 3.8

HY" I M) -1<t< —%,
F) =

0 %<t<1.

Since f' is decreasing and right continuous, there exists |ty < % such that
n-1
f(t) < w t = to,
(A.3)
f) >

t <ty

}[n—l(M)
2

Claim A.3. If x € C1j2 N OE, then |q(x) — to| < c(n)e, (2)V/M=-D) " [
particular, since O € OF, this ensures |ty| < c(n)e, (2)1/2M=1),
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The claim will be verified by showing that g(x) — ty < c(n)e, (2)1/2M-D),
then considering R™ \ E to get |g(x) — to] < c(n)e, (2)V2m=-1)  Since 9E =
spt g = 0*E and the projection function ¢ is continuous, it suffices to prove the
estimate for x € Cy;; N 0*E. To bound q(x) — to, we first show there exists
t; with g(x) — t; < c(n)e, (2)/2M=1) and then that t; — to satisfies a similar
upper-bound.

By choice of ¢,

1 H1(M)
ven(2) < 2, < 2 .

So, we choose t; € (&g, %) such that

7{f(t) <\en(2) Vt=ty,

(A4) ft) >+e,(2) Vi<t

To see q(x) — t; < c(n)e,(2)V/2M=1) for all x € Cyj N O*E, note if
y € C1/2 N 0*E and q(y) > i, then q(y) -t < % since t; € (to,%) and

la(y)| < % In particular, (q(y)—t;) is a small enough scale for Ahlfors-regularity
to hold. Hence,

(A.5) Cila(y) —t)" ! < luel(B(y,q(y) — t1)).

Since x € B(y,q(y) —t1) implies g(¥) —q(x) < |x —y| < q() — t; and since
y eCip with q(y) -t < %a

(A.0) B(y,q(y)—t1)) c{xeClq(x)>t}.

Thus, B(y,q(y) —t1) N0*E Cc M n {q > ti}. So, (A.5) and (A.6) imply

Cilay) —t)™ ! < [ugl(Cr N {a(x) > t1})
= H" UM n{q(x) > t1}) = f(t1).

By the choice of t; in (A.4), under the standing assumption q(y) — £; > 0 we
have

(A7) a(y) —t; <c(n,Ca)en(2)/Gn=1)

as desired. Note, (A.7) is trivially true when q(y) < t;.

Next, we show that t; — tg < cpen (2)V/CM-1) which verifies Claim A.3.
We will use a slicing result (see [Magl2, Theorem 18.11]) which ensures that for
almost every t € (—1,1),

H"((0*Er)A@*E)r) = 0,
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where

(0*E); = {zeR"!:(z,t) € 0*E} c R*!
E;={zeR"!|(z,t) e E} cR" L

Furthermore, the co-area formula ensures that for any g : R™ — [0, 0] a non-
negative Borel function,

/*E!J\/Tg,en)zdﬂ-["*l :/[R(/(a*E)tgd}[n2> dt.

In particular, realizing the square-root term on the left is just the Jacobian of the
projection p, and choosing the function g = X, recalling that C; N 0*E > M is
Ahlfors regular up to scale 2,

/_1 H"—Z((a*E)t N D) dt

1

= / 1 — (vg,en)2dH" !
M

172

< (23—["’1(M))1/2</ (1- (VE,en))d:l-["”)
M

<cn,Calren(2).

We extract from the above that

1 1
(A.8) H"2(0*E; n D) dt s/ H"2(0*E; n D) dt < c(n)q/en(2).
-1

to
For almost all t € [tg, 1) it follows from
H"YWE;nD) < H" Y (M n {q(x) > t}),
(A.1), (A.2), and (A.3) that
H™ (M) - H" (D)
2 N 2
where we used that e, (2) < 27" H " 1(D).

Applying the relative isoperimetric inequality (see [Mag12, (12.45)]) in R"~!
to the set E; N D, we have

H"YE nD) <

+2" 2, (2) < %5{”‘1 (D),

(A9) H"2(D N O*E;) = c(m)H" Y (E; n D)2/ (n=1)

for almost every t € [to, 1).
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Then, (A.8) and (A.9) together imply (where the constant ¢(n) can change in
every instance, but only depends on n)

t
(A.10) H"Y(E, nD)=2/n=D g
to

1
<cn) | H"YE; n D) 2D/M=D gt < c(n)\/en(2).

to

Finally, (A.2) and (A.4) yield, for t < ti,

H"YWE,nD) = H" (M n {q(x)>t}) —2" e, (2)
> qJen(2) = 2" 1en(2) = c(n)yen(2),
which combined with (A.10) ensures

(t; — to)en(z)(n—1)/(2(n—1))—1/(2(n—1))

(n-2)/(n—-1)
= (t; — to)r/en(2) <c(n)yen(2),

so that t; — ty < c(n)e, (2)1/2M=1) 55 desired. O

We are now ready to prove Theorem 3.9 which first appears in Section 3
above. We restate it here for convenience.

Theorem. Fix Co = 1,79 > 0, andn = 2. Let &1 = €(Ca,n) > 0 be as in
Theorem A.2. IfE € A(Ca, 4vy) and xo € OF satisfies

e(E,xo,2v,V) <&

Jor some v € S™ and 0 < v < 2vy, then

(A.11) {x € Cxo,7,v) NE|

(x = x0,V) > rCre(E, xp,2r,v)1/ 2"} = &
and
(A.12) {x € C(xo,7,v) NE€ |

(x — x0,V) < —rCle(E,x0,21f,v)l/(z("*m} - Q.

Proof of Theorem 3.9. We will verify (A.11), and (A.12) follows similarly. By
translation and rotation, without loss of generality we suppose xo = 0 and v = ey,.

Suppose (A.11) fails. Then, there exists

x € G, NnE withq(x) > rCie,(2r)/En=1),
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However, &; < w(n, %,CA) guarantees that (3.12) holds with ¢y = % However,
(3.12) guarantees that there exists some ¥ € C, N E€ with q(x) < q(y) <. But
then, there exists z € OF which lies on the line segment connecting x and y. In
particular, q(z) > q(x) > rCie, (2r)!/?"=1D) contradicting Theorem A.2. O

The following theorem is another consequence of the height bound, Theo-
rem A.2. Hereafter, V' denotes the gradient in R""!.

Theorem A.4 (Lipschitz function approximation: cf. Theorem 23.7 in
[Mag12]). There exist positive C3 = C(n,Ca), €3 = £€(n,Cya), 69 = 6(n,Ca),
and L = L(n,Ca) < 1 with the following properties. If E € A(Ca,13v) and
en(x0,13%) < & with xo € OE, then for M = C(xo,v) N OE and for My =
{y €M | supy ;g en(¥,s) <o} thereisu : R"! — R with Lip(u) < L and

u
sup |T—| < Gzen(xg, 131) /201D

Rn-1

such that My C M NT whereT = x¢ + {(z,u(2)) | z € D, }. Furthermore,

H" L (MAT
777571 ) < Czen(x9,137),
1 ,

pory /D IV'ul? < Cen(xo,137),

and

(A.13) dist(x, (p(x),u(p(x))))
=lq(x) —u(p(x))| <2Ldist(p(x),p(My)) Vx e M.

In fact, (A.13) ensures there exist Lipschitz functions U+ defined by

u(x) x € p(My),
(A.14) U+(X) =1 inf wu(y)+Llx -yl xeD\pM,
yep (M)
u(x) x € p(My),
(A.15) u-(x) =17 sup u(y)-Llx-yl xeD\pMo),
yep(My)
with the property that
(A.16) u_-(p(x)) <qx) <u;(p(x)) VxeM.

Proof. Step 1: Up to replacing E with Ex,, and correspondingly replacing u
with u,(z) = ¥'u(rz), we can reduce to proving that if E € A(Cy,13) with
0 € 0F, if

(A.17) M=CnoE, My={yeM]| sup en(y,s) <dp(n,Ca)},

0<s<8
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and if e, (0,13) < &3, then there exists a Lipschitz function u : R*"! — R with
Lip(u) < L < 1 such that

(A.18) sup |u| < Csen(0,13)1/20n=1)
Rn—l

such that My ¢ M N T where

(A.19) I'={(z,u(z)) | z € D}.

Furthermore,

(A.20) H" Y(MAT) < Cze,(0,13)

and

(A.21) / IV'ul? < C3e,(0,13).
D

By Theorem A.2 it follows that
(A.22) sup{|@(x)| : x € C; N OE} < Cren(0,13)1/ =),

By choosing &3 < & < w(n, %, Ca), E satisfies the hypotheses of Lemma 3.8.
Consequently, Lemma A.1 and (3.8) imply

0<H" I Mnp 1(G)) - H" 1 (G) <en(0,1) < 13" 1e,(0,13),

for every Borel set G ¢ D. Meanwhile, Theorem 3.9 ensures

{xeCz|q(x)<—%}chmEc{xeCzlq(x)<%}.

Step 2: We show that My is contained in the graph of a Lipschitz function u,
satisfying (A.18) and (A.20). In order to create the Lipschitz function, we first
need to know My is non-empty. This follows from a covering argument done later
in more detail in (A.27).

Define ||+ || = max{|p(-)],14(-)|}. Then, C(y,s) = {z € R" | [[z—y]l < s}.
For fixed ¥ € My and x € M, consider F = E, jx—y|. Notably, [x — yIl < 2.
Since v € My and 4||x — y|| < 8 it follows from (3.7) and (A.17) that

en(F,0,4) = en(E,y;4||x _yH) < 60'

Thus, choosing 89 < &; allows us to apply Theorem A.2 to F € A(Ca,4) and
conclude that

sup{lg(w)| : w € CNdF} < Cien(F,0,4)1/20-1) < ¢ g)/@n=1)
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Applying this height bound to the specific point w = (x — y)/llx — y [l we find
(A.23) a(x) —a)] < Com)d " lly — xI.

If we now define L = C; 5(1)/(2(7“1)) and choose 8¢ so small that L < 1, it follows
from (A.23) that

la(x) —aq()| <llx-xl,
which ensures that ||x — y|| = |p(x) — p(»)], and hence (A.23) can be written
(A.24) la(x) —a(¥)| < Llp(x) —p(¥)l, Vy &M, x €M,

which implies that p|a is invertible. Define u : p(Mp) — Rsuch thatu(p(x)) =
q(x) for every x € My. Evidently, (A.24) ensures u satisfies

lu(p(x)) —ulp(y)l <Llpx) -p¥)l, Vx,y € M.
Since My C M, it follows from (A.22) that
(A.25) lu(p(x))| =19(x)| < Cren(0,13)/2M=D) v x € M.

Via Kirzbraun’s theorem and truncation we extend u from p (M) to R*!
with Lipschitz constant L < 1 such that the L¥-bound from (A.25) holds on all of
R™"!, which verifies (A.18). The definition of u on p (M) guarantees My C M NT
where T is as in (A.19).

Next, we show (A.20). By definition of My, for every v € M \ My there exists
sy € (0,8) with

_ 2
(A.26) sost ! < | Ve —enl” ggpner
C(y,sy)NOE 2

Let T be the set of all balls B(k, v/2sk) centered on M \ M satisfying (A.26)
of radius at most 8+/2. Each ball is contained in C;,5,53 C Ci3. By Besicovitch’s
covering theorem (see [EG92, Theorem 2, Section 1.5.2]) we partition F into N,
disjoint families of balls Gj. Then, there exists j such that

H UM\ My) < Ny, Z H (M \ My) ﬂB(yk,\/ESk))
B(yk,Sk)€G;
<Np S H"™ (M 0 B(yi,V251))
keN

< NpCa2 D72 %" gpt,
keN
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Since C(Yk, Skyen) C B(Vk, V25k), the family of cylinders are also mutually dis-
joint. Thus, (A.26) combined with the preceding computation yields

(A.27) HY I M\ M) <C > sp!
keN

< QZ/ e —enl® 5 ne
) k 7 Ck,si) 2

C
< 6—Oen(0, 13).
Keeping in mind that ¢ < min{sz("fl), &1}, if &3 is small enough that 6 >
Cez/H™ (D) it follows that My is non-empty. This also adds an additional
constraint on &3. A consequence of (A.27) and M \T ¢ M \ M is

(A.28) H" I (M\T) < Cen(0,13).

To finish verifying (A.20) it remains to bound H ™ (I'\ M).
Indeed, Lip(u) < 1 and Mo C T together ensure

H™ N T\M) <1+ |VUPH" Y(pT\ M)
<\2H" (M npH(p(T\ M))).
But, Mnp~! (p(I'\ M)) C M\T, so by the bound in (A.28), we have the necessary
bound on H ™ 1(I'\ M), verifying (A.20) with a constant we denote as Cs.
Step 3: We verify (A.21). The first necessary observation is to note that for almost
everyx e M nT,
(=V'u(p(x)),1)

(A.29) VE(Xx) = A(x)
Y1+ IV u(p(x)?

where A(x) € {-1,1}. Since |VE — en|? = |p(ve)|?, (A.29) implies

en(0,1) > 1/ P (ve) 2 A
MnI

2
1 Vupe)
=2 Jure T v upoo) )
/ 2
1 [V'u(z) 41 (2).

"2 pMnn) V1 + [V'u(z)l?

Since Lip(u) < 1 it follows that

(A.30) / [V'u(z)|? <23%e,(0,1).
p(Mnr)
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On the other hand, Lip(u) < 1 and (A.20) imply
(A.31) / IV'ul? < H" '(p(MAT)) < H" 1 (MAT) < C3e,(0, 13).
p(MAT)

As e, (0,1) < 13" e, (0,13), (A.30) and (A.31) together guarantee (A.21).

Step 4: Note that (A.24) and the definition of u+ in (A.14) and (A.15) ensure
(A.16) holds. Thus, we conclude by showing (A.13). In fact, if My were closed,
then (A.24) would immediately verify (A.13).

In case My is not closed, fix € > 0 small. For x € M \ My choose v € M such
that dist(p (x), p(¥)) < dist(x, p(Mp)) + €. Then,

lga(x) —u(p(x))| <u.(p(x)) —u-(p(x))
< (u(p(y)) +Lipx) —p)) - (u(p(y))
—Lipx) —pO)D)
<2Llp(x) —p(y)]
< 2Ldist(x,p(Mp)) + 2Le.

Taking € — 0 verifies (A.13). 0

APPENDIX B. APPROXIMATION OF UR DOMAINS WITH
DOUBLY LOCAL TwO-SIDED CORKSCREWS

In this appendix we will build UR domains'® which (locally) approximate open
sets satisfying a (doubly) local two-sided corkscrew (DLTSCS) condition with
Ahlfors regular boundary. This will allow us to directly use the work of [HMT10]
on singular integrals on UR domains.

Definition B.1 (Doubly local two-sided corkscrew condition). We let
Ry € (0,0), My = 2,and xp € R™. We say an open set Q C R" with x( € 0Q sat-
isfies the (xo, Mo, Ry)-doubly local two-sided corkscrew condition or (x9, My, Ro)-
DLTSCS condition, if for every x € B(x¢,Ro) N 0Q and ¥ € (0,Ry) there are two
points X1, X, so that B(X1,v/My) C B(x,r)NnQand B(X3,7v/My) C B(x,7) \Q.

The first step in the construction is to introduce the appropriate notion of
boundary “cubes” for sets with (n — 1)-dimensional Ahlfors regular boundary.
These constructions were introduced in the work of David [Dav88] and were
refined by Christ [Chr90]. The dyadic “families” built later by Hyténen and
Kairema in [HK12] are better adapted to our needs; thus, we describe them below.

Lemma B.2 (Dyadic cubes [Dav88, Chr90, HK12]). Suppose E C R™ is an
(n — 1)-dimensional, closed Ahlfors regular set. Then, there exist N, ao, y, Ca, and

18Recall that in [HMT10], the authors use the word domain to mean an open set; we have adopted
this convention only in the context of “UR domains”.
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C3 depending on n and the Ablfors regularity constant such that the following holds.
Foreacht € {1,...,N} there exists a collection of Borel sets (“cubes”)

DL (E) := D} := {QX C E | j € 3},

where Ty denotes some (possibly finite) index set depending on k, satisfying the follow-
ing:
@) E=U; Q) foreach k € 7.
(ii) Ifm = k then either Q" C Q? or Q" N Qf = .
(iii) For each (j, k) and each m < k, there is a unique i such that Qf cQ".
(iv) diam(Q¥) = G27*.
(v) Each Qf contains some ‘Surface ball”

A(x¥,a027%) := B(x¥,a027%) N E.

(vi) H"({x € Q¥ : dist(x,E\ Q¥) < 027%}) < GuoYH " 1(QY), for all
k, j and for all ¢ € (0, ay).

(vii) For every surface ball A(x,v) = B(x,v) NE, x € E, and v € (0,diamE)
there exists t and Q € D' := Uy D}, with B C Q and diam(Q) < Csv.

IfQ e [D),t(forsome te{l,...,N} andk € Z we set £(Q) = 2. Evidently,
diam(Q) ~ €(Q), provided 27% < diam(E)", and we refer to £(Q) as the “Side
length” of Q.

Remark B.3. When we use these dyadic cubes we always start by knowing
that the DLTSCS condition holds on some ball B(xg, Ry). The flexibility of the
families (the index t above) allows us to use property (vii) to find a cube Q such
that B(xo, C5'Ro) N 0Q C Q C B(xo,Roy) N 0Q.

From this point onward, we work with E ¢ R", an (n — 1)-dimensional
Ahlfors regular set (E will eventually be the boundary of an open set) and a par-
ticular dyadic grid D := D' for some t to be chosen when needed to ensure the
existence of a cube as in Remark B.3. There will be no constants that depend on
L.

For E ¢ R™ an (n — 1)-dimensional Ahlfors regular set, we denote by W =
W (E®) the collection of (closed) n-dimensional dyadic Whitney cubes of R™ \ E;
that is, the collection W = {I} form a pairwise non-overlapping (their boundaries
may intersect) covering of R™ \ E with the property that

4diam(I) < dist(4I,E) < dist(I, E) < 40diam(I)

(see [Ste70, Chapter VI]). Moreover, whenever I1,I, € W with I} NI, + &, we
have diam(I;) = diam(I;). For I € W we let £(I) denote the side length of I.

19We ignore the cubes for which 27 > diam(E), because (v) implies that eventually D} consists
of a single cube if diam(E) < oo and k is sufficiently large.
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Now we relate these two notions of cubes to form Carleson and Whitney-
type regions associated with each boundary cube Q. These are almost exactly as
in [HM14]%°.

We let K > 1 be a large parameter, and for Q € D(E) we define

WQ = WQ(K)
={I e W(E®) | K(Q) <€) <KL(Q), dist(I,Q) < K£(Q)}.

Since E is Ahlfors regular, one can show that Wy is non-empty provided K is
chosen large enough. We do not fix K at this point because we will eventually set
E = 0Q and want to choose K to take advantage of the existence of the (local)
corkscrew points afforded by the DLTSCS condition.

Next, we fix T a small parameter depending on dimension so that the (1+T)-
dilates of I € W, I* := I*(7) = (1 + T)I maintain the Whitney property

L) =~ €J*) = dist(I*,E) = dist(I, E)

and I* meets J* if and only if I N J # &. We also may ensure (by choice of T
small) that if N J # @ and I # J then I* N (3]) = @.
Finally, we define the Whitney regions relative to Q

(B.1) Ug(K):= |J I*
IeWq (K)

and the Carleson boxes relative to Q

(B.2) To(K) =int( |J Uq (X)),
Q’ebq

where Dg := {Q' € D: Q' = Q}.

Now we are ready to state our approximation lemma.

Lemma B.4. Let My = 2 and Ry > 0. If Q C R" is an open set with (n — 1)-
dimensional Ahlfors regular boundary 0Q satisfying 0+Q = 0Q with xo € 0Q such
that Q satisfies the (xo, Mo, 2Ro)-DLTISCS condition, then there exist K > 1 and
My = My depending on n, Ry, My, and the Ablfors reqularity constant such that the
Jollowing holds.

Let E = 0Q, D(E), W = W(EC), and so on be as above. Suppose Q € D' for
some t such that B(xy, C;lRo) NoQ < Q < B(xo,Ro)>". Then, the sets

Ty :=T5(K):=To(K)NQ  and Ty :=T45(K) := To(K) n (Q)°

20The difference here is that the regions are not “augmented” by exploiting connectivity which was
present in [HM14].
21gee Remark B.3.
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are non-empty. Also, they satisfy the (Mg, €(Q))-two sided corkscrew condition (see
Definition 2.13) and 0Ty are (n — 1)-Ablfors regular with constant depending on
Mo, Ro, and the Ahlfors regularity constant for 0Q. In particular, Té are UR domains
with constants depending on n, Ry, Mo, and the Ablfors regularity constant for 9Q*?,
and 0T N Q = Q. Moreover, for H "1_almost every x € Q the measure theoretic
outer normals to Té, denoted by vTg (x), exist and satisfy Vg (x) = £va(x).

Proof- Fix Q < B(x9,Ro). Choose K big enough to ensure that for Q" € Do
with Q" = B(xy, Ry) the sets

Ub == Uy (K) :=Uqg (K)nQ and Uy := Uy (K) := Ug (K) N (Q)°

are non-empty. To see that such a choice (depending on My, Ry, and the Ahlfors
regularity constant for 0Q) exists, we note that if x € Q" < B(xy,Ro), then
necessarily £(Q’) < CRg and the ball B(xq', (1/C)€(Q’)) contains two corkscrew
points, one for Q and one for (Q)¢. Choosing K~! < 1/(CM,) ensures that these
points are contained in Ug (K).

We also have that 0T are both Ahlfors regular by the work of [HM14] (see
the Appendix therein). It is also easy to see that 075 N Q = Q, since for every
X €Q,x €Qj € Dg with(Qj) ~ 0as j — co. Using that Uj, are non-empty,
we see there exist Xj € Ug, — X as j — o, and hence x € 8T5 (see (B.1) and
(B.2)).

Next, we show that Té' both satisfy the (M, £(Q))-two sided corkscrew con-
dition. The hypotheses are symmetric so we may just show that Tj satisfies
the (Mg, €(Q))-two sided corkscrew condition. To this end, let x € 0T and
r € (0,£(Q)), and fix Ag to be chosen?>. We break into cases, following closely
[HM14, HMM16].

Case 1. v < ApS(x), where §(x) := dist(x,0Q). In this case, (x) > 0 and x
is “far” from 0Q. Necessarily (since 6(x) > 0), x € 0I* for some “fat” Whitney
cube I'* with int(I*) C Ta and also x € J for some J € W\ (UQ'eQ Wqr). The
Whitney property of I* and J yields £(I*) ~ £(J) = 8(x) 2 v/Ay. It follows
(from our choice of T) that J contains an exterior corkscrew point and I'* contains
an interior corkscrew point for T, at x at scale 7, with constants depending on
Ay, for now.

Case 2: v = Ag6(x). In this case, we are close enough to the boundary so that we
may exploit the (My, Ro)-DLTSCS condition for Q. We break into further cases.

22gce the discussion following Definition 2.9 and note that since diam(Tg) ~g £(Q), Tq satisfies
the two-sided corkscrew condition.
23Note that the choice of Ag depends on K, which is now fixed.
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Case 2a: 5(x) > 0. In this case x € 0I* for some I asin Case I. Let X € Q be
such that 6(x) =~ |x — x|, where the implicit constants depend on K (which we
have fixed). Note that the existence of X is afforded by the Whitney property of
I*. Moreover, I € W' for some Q' C Q. Since

. Y
Ix — %] < Cxb(x) < CKALO < Cx 1(4(02)’

choosing Ay large enough we may find Q* whose closure contains X, Q* € Q and
£(Q*) = AL’ where the implicit constants depend on 1, the Ahlfors regularity
0

constant, and K. Note that by the (x9, My, 2R()-DLTSCS condition of Q, and
choice of K, Ug+ are both non-empty, and we may find two points X5« € Ug-
with .

dise(X3:,0T¢) = Cel(Q*) =~ -
Here, one may take each X5 to be the center of a Whitney cube in Wo«. We
then choose Ag > 2 such that

R R Yy r
Ix = X2 <|x—-X|+|X-X3«| S — < —=.
Q* Q* Ao 2

Having fixed such an A, depending on the allowable parameters, we have
dist(X3.,3T3) = Cel(Q*) 2 7

so that X7, may serve as interior and exterior corkscrews (respectively) for T at
x at scale .

Case 2b: 5(x) = 0. In this case, things are easier than Case 24:, provided we
can show x € Q. Indeed, we may forgo the step of finding X above, by setting
X = x and repeating the above argument verbatim. To show x € Q, we use
that 6(x) = 0 and x € 8T5, so there exists a sequence of points X; € Uéi with
Qic Qand £(Q;) — 0, |X; — x| — 0asi — oco. Here, we used 6(X;) = £(Q;)
by the Whitney property of cubes in W, and that §(-) is continuous. Moreover,
for each i there exists X; € Q; with IX; — Xi| < £(Q;) so that

Ix - Xil <|x—=Xi| +1Xi = X;| =0 asi— .

Since X; € Q this shows x € Q, and we can proceed as in Case 2a:.

Again, by [D]J90, Theorem 1], an open set with Ahlfors regular boundary
that satisfies a two-sided corkscrew condition on scales up to its diameter is a
UR domain. Thus, the only thing left to do is show that the measure theoretic
unit normals for Té agree with the unit normal of Q up to a sign. Again, the
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symmetry of the hypotheses in the theorem and the fact that 9,Q = 0Q allow us
to only consider T.

Since T§ has (n — 1)-Ahlfors regular boundary and satisfies the two-sided
corkscrew condition, Federer’s criteria ensures that T is a set of locally finite
perimeter [EG92, Theorem 1, Section 5.11]. The structure theorem for sets of
locally finite perimeter ensures that the measure theoretic unit normal to 0T

exists H "~ 1-almost everywhere [EG92, Theorem 2, Section 5.7.3]. Since Q C 9Q
and 0T5 N Q = Q the measure theoretic tangents to 0T and 0Q must agree
H" Lalmost everywhere in Q. Thus, the measure theoretic outer unit normal
for T§ and Q must agree up to a sign for H "~ !-almost every x € Q.

To show that vy (x) = va(x) H"™ -almost everywhere in Q, assume that
x € 0*Ty N Q; then, Vs (x) = £va(x). Suppose, for the sake of obtaining a
contradiction, that Vg (x) = =vq(x), and set

H":={y eR"| (y —x)-volx) = 0}.

This is a half-space through x, perpendicular to vo(x). The blow-up of the
reduced boundary [EG92, Section 5.7, Corollary 1] gives

I LB, r)NQNH") _ 0
it "(B(x,1)) -

which of course implies

i LB(x,r) N T& NHY) .
S L7(B(x,7)) -

On the other hand, using vry (x) = —va(x), and applying Corollary 1 in Section
5.7 of [EG92] to the set T give

i L"Bx,r)nTonHY) 1
oo I"(B(x,7)) X

which is impossible. Thus, vy (x) = va(x), and we have proved the lemma. O
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