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ABSTRACT. We provide a potential theoretic characterization
of vanishing chord-arc domains under mild assumptions. In
particular we show that, if a domain has Ahlfors regular bound-
ary, the oscillation of the logarithm of the interior and exte-
rior Poisson kernels yields a great deal of geometric information
about the domain. We use techniques from classical calculus of
variations, potential theory, and quantitative geometric measure
theory to accomplish this. One feature of this work, compared
to [KT06] and [BH16], is that a priori we only require that the
domains in question are connected.

1. INTRODUCTION

Questions concerning the connections between the geometry of a domain and the
regularity of its boundary with the potential theoretic properties of the domain,
the behavior of singular integrals on the boundary, and the boundary regularity
to solutions of elliptic PDEs have generated a flurry of activity in the area of non-
smooth analysis (see [Tor97] and [Tor19] for a brief recent history and references).
In this paper we focus on the potential theoretic properties of a domain and its
complement and explore their ties to the geometry of the domain. In particular,
we show that if Ω := Ω+ ⊂ Rn and the interior of its complement Ω− are con-
nected, have a shared boundary which is Ahlfors regular (see Definition 2.6), and
the logarithm of the Poisson kernel of each domain is in VMOloc, then the unit
normal is also in VMOloc and the domain is vanishing Reifenberg flat (see Defini-
tions 2.18 and 2.10). We contrast our result with those in the literature in order to
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emphasize the wealth of geometric information (thus far overlooked) encoded in
the assumption concerning the oscillation of the logarithm of the Poisson kernels.

In [KT06] the authors established the following: suppose that Ω± are chord-
arc domains (i.e., NTA domains with Ahlfors regular boundary), and that k± are
the Poisson kernels of Ω± with poles X± ∈ Ω±. If logk± ∈ VMOloc(σ ) then
the unit normal vector ν ∈ VMOloc(σ ) where σ = Hn−1 ∂Ω (see Defini-
tion 2.15). In particular, the assumption that Ω± are chord-arc domains ensures
that ∂Ω± are uniformly rectifiable (see Definition 2.9). In [BH16] the authors
relax the geometric conditions: to be more precise, via a novel approach using
layer potentials rather than blow ups, they prove that if Ω± ⊂ Rn are domains,
whose common boundary is uniformly rectifiable, then logk± ∈ VMOloc(σ ) im-
plies that ν ∈ VMOloc(σ ). We also mention the recent work Prats-Tolsa [PT19],
where the authors studied a different but closely related problem arising in Kenig-
Toro [KT06]. They study the kernel between harmonic measures ω± of Ω±, and
show that for Reifenberg flat NTA domains, small oscillation for the logarithm of
that kernel is also closely linked to small oscillation for the unit normal ν.

In this paper, we further loosen the a priori assumption in [KT06] and instead
deduce as much geometric information as possible from the regularity of logk±.
Furthermore, using classical tools from the calculus of variations, we establish
that in this context the oscillation of the unit normal controls the flatness of the
boundary. More precisely, when ±ν are outward pointing normal vectors to ∂Ω±,
σHn−1 ∂Ω, and ωX±

± = ω± is the harmonic measure for Ω± with pole at X±,
we show the following result.

Theorem 1.1. Let n ≥ 3 and suppose Ω+ ⊂ Rn andΩ− = Rn\Ω+ are domains
satisfying ∂Ω := ∂Ω+ = ∂Ω−, and that ∂Ω is (n − 1)-Ahlfors regular. Then, the
following are equivalent:

(i) Ω± are both vanishing chord-arc domains with ν ∈ VMOloc(σ ) (see Defi-
nition 2.19).

(ii) There exist X+ ∈ Ω+ and X− ∈ Ω− such that k+ = dωX+
+ /dσ and k− =

dωX−
− /dσ exist and logk± ∈ VMOloc(dσ ).

Further, we obtain corresponding quantitative results (see Theorems 4.12 and
4.14).

Remark 1.2. There is some redundancy in condition (i) of Theorem 1.1,
which we leave in for the sake of emphasis. In particular, under the conditions
of Theorem 1.1, Ω+ is a vanishing chord-arc domain if and only if Ω− is. Ad-
ditionally, it is a consequence of our work in this paper (see Corollary 3.11) that
ν ∈ VMOloc(σ ) is equivalent to (under the hypothesis of Theorem 1.1)Ω± being
vanishing chord-arc domains.

In this paper, techniques from potential theory and geometric measure theory
come together, allowing one to deduce geometric properties of domains. In Sec-
tion 2, basic definitions from both areas are presented. In Section 3 we apply clas-
sical tools of geometric measure theory dating back to De Giorgi’s original work
on sets of locally finite perimeter. (See [Mag12] for references and an approach
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motivating the one presented here.) The novelty is that we extend these tools
from perimeter minimizers to sets of locally finite perimeter with Ahlfors regular
boundaries1 2, which allows us to reduce and better understand topological hy-
pothesis from previous works concerning potential theory in “rough” domains (cf.
[KT06, BE17] and the discussion in the last paragraph of Section 2). The general
approach we take is analogous to [Mag12], but new ideas are also implemented
in various places to extend the proof to a more general class of sets. In particular,
Corollary 3.10, which is analogous to a well-known result that plays a fundamen-
tal role in the proof of regularity of perimeter minimizers, shows that control on
the oscillation of the unit normal provides both local control on the flatness of the
boundary as well as local separation properties (see Definition 2.18). In addition
to the proofs of these separation properties, in Appendix A we also prove that if the
unit normal has small oscillation in a ball centered on the perimeter, then a large
portion of the perimeter inside a slightly smaller concentric ball is contained in the
graph of a Lipschitz function. Within the smaller ball both the Lipschitz norm
of this function and the symmetric difference of this graph and the boundary are
quantitatively controlled by the oscillation inside the larger ball.

These results should be contrasted with those found in [Sem91a], [Sem91b],
[KT99], [HMT10], [Mer16a], and [Mer16b]. In particular, in [Sem91a] and
[Sem91b], Semmes introduced the notion of chord-arc surfaces with small con-
stant. (His definition is similar to ours in Definition 2.19, except that he works
on C2 connected embedded hypersurfaces, whereas we assume Ahlfors regular-
ity.) He focused on characterizing such surfaces through the behavior of singular
integral operators on them. One crucial tool in Semmes’s study is the “Semmes
decomposition theorem” which allows one to write a large portion of the chord-
arc surface with small constant as the graph of a Lipschitz function (this is in the
same vein as our aforementioned Lipschitz covering in Appendix A of this pa-
per). To obtain this decomposition, Semmes needed to assume that the surface
was C2 (though his estimates did not depend on the C2-norm). The decomposi-
tion was later obtained in the more general context of Reifenberg flat domains by
[KT97, KT99],3 and then in the even more general context of domains with the
two-sided local John condition in [HMT10]. Given the Semmes decomposition
one can immediately use the oscillation of the unit normal to control the Reifen-
berg flatness of the chord-arc surface. Our key result along these lines, Corollary
3.12, also implies that the oscillation of the unit normal controls the Reifenberg
flatness of the chord-arc surface. However, our condition (which is implied by a

1Rather, a representative whose boundary agrees with the support of the Gauss-Green measure.
See (3.1) and Remark 3.1.

2The class of perimeter minimizers is a subclass of the sets we consider in Section 3, as defined in
(3.1). See [Mag12, Section 16.2].

3We thank the referee for pointing out that no one has explicitly written the proof that a chord-arc
domain with small constant in the sense of [KT97,KT99] satisfies the small γ-condition of [Sem91a].
Although the proof is straightforward, we include it in Remark 2.21 to patch this gap in the literature.
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local two-sided corkscrew condition), is weaker than two-sided local John. Fur-
thermore, our approach does not need a Semmes-type decomposition (though, as
mentioned above, it does yield such a decomposition).

In addition to his geometric study of chord-arc surfaces with small constant,
Semmes also expressed interest in obtaining potential theoretic characterizations.
These characterizations were investigated by Kenig and Toro, with the a priori
assumption of Reifenberg flatness in [KT97], [KT99] and [KT03]. As a conse-
quence of results herein, we show that the flatness hypothesis is redundant4, this in
turn, allows one to remove the a priori topological assumption of Reifenberg flat-
ness (or, more generally, two-sided local John) from some theorems in the afore-
mentioned works of Kenig and Toro. In Section 4 we focus on the local two phase
free boundary problem for the Poisson kernels. In Section 4.1 we show that local
doubling properties of ω± combined with the Ahlfors regularity of the boundary
yield the existence of corkscrew balls on both sides (locally) and therefore imply
local uniform rectifiability of the boundary (see Lemma 4.3 and Corollary 4.4).
In Section 4.2 we show that in our setting, the assumption logk± ∈ VMOloc(dσ )
yields information about the doubling properties of ω± and the local optimal be-
havior of k± (see Lemma 4.11). Combining the results in Sections 4.1 and 4.2, we
almost recover the hypothesis in [BH16]. The proof of Theorem 4.12 follows the
general scheme of the proof in [BH16] with an additional domain approximation
scheme (see Appendix B), and special attention given to the constants in order to
prove a quantitative result.

2. PRELIMINARIES

In the sequel, n is a natural number with n ≥ 3. We typically use E to denote a
set of locally finite perimeter in Rn, that is, a Lebesgue measurable set such that
for every compact set K ⊂ Rn,

sup
{ˆ

E
divT(x)dx : T ∈ C1

c (R
n;Rn), sptT ⊂ K, sup

Rn
|T | ≤ 1

}
< ∞.

We use Ω to denote a domain, that is, an open and connected set, in Rn. Often-
times the domain Ω will also be a set of locally finite perimeter, for example, if we
assume ∂Ω is upper Ahlfors regular (see [EG92, Section 5.11]). We recall a few
results.

4As mentioned above, to show that a domain is δ-chord-arc from the oscillation of the unit normal,
one can use [HMT10, Theorem 4.19] (which does not require Reifenberg flatness) instead of [KT99,
Theorems 4.2 and 4.4] in the presence of the two-sided local John condition. Corollary 3.12 allows
one to remove the two-sided John condition from [HMT10, Theorem 4.19]. Then, one can state the
hypotheses of some theorems in [KT97], [KT99], and [KT03] in terms of the oscillation of the unit
normal alone, that is, without assuming a priori Reifenberg flatness (or two-sided local John). See, e.g.,
[HMT10, Theorem 4.21].
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Proposition 2.1 ([Mag12, Proposition 12.1]). If E is a Lebesgue measurable set
in Rn, then E is a set of locally finite perimeter if and only if there exists an Rn-valued
Radon measure µE on Rn such that

ˆ

E
divT(x)dx =

ˆ

Rn
T · dµE, ∀T ∈ C1

c (R
n;Rn).

The measure µE is called the Gauss-Green measure of E.
For a vector-valued Radon measure µ on Rn, the total variation of µ is de-

noted by |µ|. We recall (see [Mag12, Chapter 4]) that |µ| is a non-negative Radon
measure that has the following characterization on open sets V ⊂ Rn:

(2.1) |µ|(V) = sup
{ˆ

Rn
T · dµ : T ∈ C1

c (V ;Rn), |T | ≤ 1
}
.

If E is a set of locally finite perimeter, and µE the associated Gauss-Green
measure, recall (see [Mag12, Chapter 15]) the reduced boundary of E, denoted
∂∗E, is defined by

(2.2) ∂∗E =
{
x ∈ sptµE : lim

r↓0

µE(B(x, r))

|µE|(B(x, r))
= νE(x) ∈ Sn−1

}
.

In fact, νE : ∂∗E → Sn−1 defined by the limit in (2.2) is a Borel function called
the measure-theoretic outward pointing unit normal. Moreover, the following is a
version of De Giorgi’s structure theorem.

Theorem 2.2 (De Giorgi’s structure theorem, [Mag12, Theorem 15.9]). If
E ⊂ Rn is a set of locally finite perimeter, then

µE = νEHn−1 ∂∗E and |µE| = Hn−1 ∂∗E.

Remark 2.3. For a set of locally finite perimeter E ⊂ Rn there are several
notions of boundary: the reduced boundary ∂∗E, the measure-theoretic boundary
∂∗E, the support of the Gauss-Green measure, and the topological boundary (see
[EG92] or [Mag12] for relevant definitions). The following relationships between
different notions of the boundary hold:

∂∗E ⊂ ∂∗E ⊂ sptµE ⊂ ∂E and Hn−1(∂∗E \ ∂∗E) = 0.

In particular, ∂∗E = ∂E implies ∂∗E = ∂∗E = sptµE = ∂E.
The next two propositions can be found in [Mag12, Propositions 4.29, 4.30].
Proposition 2.4 (Lower semi-continuity of weak∗ convergence). If µk and

µ are vector-valued Radon measures with µk ⇀ µ, that is, for everyϕ ∈ Cc(Rn,Rn),
ˆ

ϕ · dµk →
ˆ

ϕ · dµ,

then for every open set A ⊂ Rn we have |µ|(A) ≤ lim inf
k→∞

|µk|(A).
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Proposition 2.5. Let µk be vector-valued Radon measures on Rn so that µk ⇀ µ
for some µ, a vector-valued Radon measure on Rn. The following hold:

(1) If additionally |µk| ⇀ ν for some ν a non-negative Radon measure on Rn,
then, for every Borel set F ⊂ Rn,

(2.3) |µ|(F) ≤ ν(F).

Furthermore, if F ⊂ Rn is a bounded Borel set with ν(∂F) = 0, then

(2.4) µ(F) = lim
k→∞

µk(F).

(2) If |µk|(Rn)→ |µ|(Rn), and |µ|(Rn) <∞, then |µk|⇀ |µ|.
Definition 2.6 (Ahlfors regularity). A Borel measure µ on Rn is said to be

d-Ahlfors regular if there exists a positive finite constant CA such that

(2.5) C−1
A r

d ≤ µ(B(x, r)) ≤ CArd

for all x ∈ sptµ and all 0 < r < diam sptµ. More generally, we say that a measure
µ is d-Ahlfors regular up to scale r0 if (2.5) holds for all 0 < r < r0. In either case,
the constant CA is called the Ahlfors regularity constant for µ.

Let F ⊂ Rn be a closed set. If (2.5) holds for the measure µ = H d F and
some 0 < d ≤ n, then F is said to be (d-)Ahlfors regular up to scale r0. When d
is understood from context, we simply say F is Ahlfors regular up to scale r0.

Definition 2.7 (Uniformly Rectifiable (UR) sets). Let A ⊂ Rn be a closed
set that is d-Ahlfors regular. It is said to be uniformly rectifiable (UR) if it contains
“Big Pieces of Lipschitz Images.” This means there is a pair of constants θ,Λ > 0
such that for all x ∈ A and all 0 < r ≤ diam(A) there is a Lipschitz mapping
g : B(0, r ) ⊂ Rd → Rn with Lip(g) ≤ Λ such that H d(E ∩ g(B(0, r ))) ≥ θrd.

One reason uniformly rectifiable sets are ubiquitous is that they are spaces on
which one can develop a rich Calderón-Zygmund theory. An example of this, to
be used (implicitly) later, is the following characterization of uniformly rectifiable
sets in co-dimension 1.

Theorem 2.8 ([Dav91], [MMV96], [NTV14]). Let F ⊂ Rn be a closed and
(n− 1)-Ahlfors regular set with the associated measure σ := Hn−1 F . Then, F is
uniformly rectifiable if and only if the Riesz transform operator (see Definition 4.5),
R is L2 bounded with respect to σ , in the sense that its truncation Rε satisfies

sup
ε>0

‖Rεf‖L2(F,σ ) ≤ C‖f‖L2(F,σ ) ∀f ∈ L2(F,σ ),

with a C > 0 uniform in f ∈ L2(F,σ ).
Definition 2.9 (UR domain, see [HMT10]). We say that an open set Ω is a

UR domain if ∂Ω is UR, and the measure-theoretic boundary ∂∗Ω (see Chapter 5
in [EG92]) satisfies Hn−1(∂Ω \ ∂∗Ω) = 0.
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We comment that in the above definition, Ω is not required to be connected;
we use the term “UR domain” nonetheless following the convention set by Defi-
nition 3.7 in [HMT10] and also to distinguish them from UR sets (of Definition
2.7).

Definition 2.10 (BMO and VMO). Let F ⊂ Rn be (n− 1)-Ahlfors regular
up to scale r0

5. Then, for all 0 < r < r0, x ∈ F , and f ∈ L2
loc(Hn−1 F), define

‖f‖∗(x, r)

= sup
0<s<r

( 

B(x,s)∩F

∣∣∣∣f (y)−
 

B(x,s)∩F
f (z)dHn−1(z)

∣∣∣∣
2

dHn−1(y)
)1/2

.

We say the following:

(1) f ∈ BMOloc(Hn−1 F) if for every compact set K ⊂ Rn, there exist
RK > 0 and CK > 0 such that

sup
0<r<RK

sup
x∈F∩K

‖f‖∗(x, r) ≤ CK.

(2) f ∈ BMOloc(Hn−1 F) with constant κ > 0 if for every compact set
K ⊂ Rn, there exists RK > 0 such that

sup
0<r<RK

sup
x∈F∩K

‖f‖∗(x, r) ≤ κ.

(3) f ∈ VMOloc(Hn−1 F) if for every compact set K ⊂ Rn,

lim
r→0

sup
x∈∂E∩K

‖f‖∗(x, r) = 0.

Remark 2.11. It is clear that the local conditions in the definition above are
equivalent to replacing arbitrary compact sets by balls centered on the boundary
with radius less than, say, 1

4 diam(F). This is obvious if F is unbounded, and if F
is bounded we can cover F by a finite collection of such balls.

Definition 2.12 (Corkscrew Condition). An open set E ⊂ Rn satisfies the
(M,R0) interior corkscrew condition if for every x ∈ ∂E and r ∈ (0, R0) there is
a point x1 called the interior corkscrew point so that B(x1, r/M) ⊂ E ∩ B(x, r).

Definition 2.13 (Two-sided Corkscrew Condition). An open set E ⊂ Rn

satisfies the (M,R0) two-sided corkscrew condition if for every x ∈ ∂E and r ∈
(0, R0) there are two points x1 ∈ E and x2 ∈ Rn \ E such that B(x1, r/M) ⊂ E
and B(x2, r/M) ⊂ Rn \ E. We call x1 and x2 the interior and exterior corkscrew
points, respectively.

5Of course, this notion can be defined for d-Ahlfors regular subsets of Rn, but we are only con-
cerned with the case d = n− 1
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Definition 2.14 (Harnack Chain Condition). Following [JK82], we say that
a domain Ω satisfies the (C,R)-Harnack Chain condition if, for every 0 < ρ ≤ R,
Λ ≥ 1, and every pair of points X,X′ ∈ Ω with δ(X),δ(X′) ≥ ρ and with
|X−X′| < Λρ, there is a chain of balls B1, . . . , BN ⊂ E with N ≤ C log2Λ+1, and
X ∈ B1, X′ ∈ BN , Bk ∩ Bk+1 ≠ ∅ for all k = 1, . . . , N − 1 and C−1 diam(Bk) ≤
dist(Bk, ∂Ω) ≤ C diam(Bk) for all k = 1, . . . , N. The chain of balls is called a
“Harnack Chain.”

Definition 2.15 (NTA and Chord-Arc Domain). We say that Ω ⊂ Rn is a
Non-Tangentially Accessible Domain (NTA) with constants (M,R0), if it satisfies
the (M,R0)-Harnack chain condition and the (M,R0) two-sided corkscrew con-
dition. If Ω is unbounded, we require that Rn \ ∂Ω consist of two, non-empty,
connected components. Note that if Ω is unbounded, then R0 = ∞ is allowed.

Finally, if Ω is an NTA domain whose boundary is Ahlfors regular, we say that
Ω is a chord-arc domain.

Remark 2.16. Sometimes in the definition of unbounded NTA domains, it
is required that R0 = ∞ (see, e.g., [KT97], [KT06]). In particular, this allows
one to obtain estimates on harmonic measure/functions at arbitrarily large scales.
Since we are only interested in local geometric properties of Ω, we allow R0 < ∞
even for unbounded domains Ω.

Also note that ifΩ is an open set with an Ahlfors regular boundary and satisfies
the two-sided corkscrew condition with R0 ≈ diam(∂Ω), then it is a UR domain
(see [DJ90, Theorem 1] and also Badger [Bad12]6). In addition, having interior
and exterior corkscrews at arbitrarily small scales forces ∂∗Ω = ∂Ω.

Let Σ ⊂ Rn be a closed set. For any x ∈ Σ and r > 0, we define

Θ(x, r) = inf
L

{
1
r
D[Σ∩ B(x, r), L∩ B(x, r)]

}
,

where the infimum is taken over all (n − 1)-planes containing x. Here, D de-
notes the Hausdorff distance; that is, for non-empty sets A,B ⊂ Rn, we have
D[A,B] := sup{d(a, B) : a ∈ A} + sup{d(b,A) : b ∈ B}. With this in hand, we
can define flatness as in Reifenberg [Rei60].

Definition 2.17 (Reifenberg Flat and Vanishing Reifenberg Flat sets). We
say a closed set Σ ⊂ Rn is δ-Reifenberg flat for some δ > 0 if for each compact set
K ⊂ Rn there exists RK > 0 such that

(2.6) sup
r∈(0,RK]

sup
x∈K∩Σ

Θ(x, r) < δ.

We say Σ is a vanishing Reifenberg flat set if for every compact set K ⊂ Rn

lim
r→0

sup
x∈Σ∩K

Θ(x, r) = 0.

6In fact, Badger shows that upper Ahlfors regularity is not necessary for the quantitative interior
approximation by Lipschitz domains shown in [DJ90].
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Definition 2.18 (Reifenberg Flat and Vanishing Reifenberg Flat domains).
Let δ ∈ (0,δn) where δn is chosen appropriately (see Remark 2.20) and depends
only on the dimension n. We say that a domain Ω ⊂ Rn is a δ-Reifenberg flat
domain (or vanishing Reifenberg flat domain) if ∂Ω is δ-Reifenberg flat (respec-
tively, vanishing Reifenberg flat) and Ω satisfies the separation property: for every
compact set K ⊂ Rn there exists RK > 0 such that for any y ∈ ∂Ω ∩ K and
0 < r < RK there exists a ν ∈ Sn−1 so that if x ∈ B(y, r) and 〈x − y,ν〉 > δr ,
then x ∈ Ωc , and if 〈x −y,ν〉 < −δr then x ∈ Ω.

Additionally, if Ω is unbounded it is further required that Rn \ ∂Ω consist of
two connected components, and that δ ≤ δn.7

Definition 2.19 (Chord-arc domains with small constants and vanishing
chordarc domains). Let δ ∈ (0,δn) (where δn is from Definition 2.18; see the
remark below). A set of locally finite perimeter Ω ⊂ Rn is said to be a δ-chord-
arc domain (or chord-arc domain with small constant) if Ω is a δ-Reifenberg flat
domain, ∂Ω is Ahlfors regular, and for each compact set K ⊂ Rn there exists some
R > 0 such that

(2.7) sup
x∈∂Ω∩K

‖νΩ‖∗(x,R) < δ.

We say a domain Ω is a chord-arc domain with vanishing constant if it is a chord-
arc domain with small constant, and for each compact set K ⊂ Rn,

lim
r→0

sup
x∈∂Ω∩K

‖νΩ‖∗(x, r) = 0,

that is, if νΩ ∈ VMOloc(Hn−1 ∂Ω).
Remark 2.20. We recall from [KT97, Theorem 3.1] that there exists a δn > 0

such that if Ω ⊂ Rn is a δ-Reifenberg flat domain for some δ < δn, then Ω is
(locally) an NTA domain. If ∂Ω is also assumed to be Ahlfors regular, then Ω is
a chord-arc domain (as in Definition 2.15). This justifies the name δ-chord-arc
domain (or chord-arc domain with vanishing constant).

The reader may wonder whether the smallness in (2.7) implies the smallness
in (2.6), for example, when ∂Ω is smooth. In the planar case (n = 2) one can show
that supx,r Θ(x, r) 2 ‖νΩ‖∗; but in higher dimensions this estimate holds only if
we know the smallness of both parameters a priori; otherwise, ∂Ωmight have small
handles. (See the discussions and main theorem in [Sem91c].) However, when ∂Ω
is assumed to be Ahlfors regular (plus some weak topological assumptions), we
will show in Section 3 how to bound Θ(x, r) by ‖νΩ‖∗.

Remark 2.21. Here, we record a straightforward argument that chord arc
domains with small constant in the sense of [KT97,KT99] satisfy the quantitative
conditions in the definition of a chord-arc surface from [Sem91a, Sem91b].

7Note that the definition above is slightly different from the one in [KT03, Definition 1.6] as we
do not require flatness at large scales.
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By Definitions 2.17 and 2.18, an η-Reifenberg flat domain E satisfies the
following flatness condition: for any q ∈ ∂E, r > 0 there exists some unit vector
nq,r so that

(2.8) |〈nq,r , y − q〉| ≤ ηr ∀y ∈ B(q, r)∩ ∂E.

In [Sem91a, Sem91b] it was assumed not only that chord-arc surfaces with
small constant had small BMO norm, but also that they satisfied a flatness condi-
tion like (2.8) where nq,r is replaced with the specific vector

νq,r =
 

B(q,r)∩∂∗E
νE dHn−1.

This height bound is an unsurprising consequence of being both Reifenberg flat
and having a small BMO norm8.

More precisely, we have the following result.
Claim 2.22. If E has Ahlfors regular boundary, is an η-Reifenberg flat domain,

and satisfies ‖νE‖∗(q, r) ≤ δ for some δ ≤ 1
2 , then

(2.9) |〈y − q,νq,r〉| ≤ Cr
√
η+ δ ∀y ∈ B(q, r)∩ ∂E.

Proof. Let σ =Hn−1 ∂∗E and nq,r be the direction from the η-Reifenberg
flat condition. We claim it suffices to show (2.10)–(2.12),

∣∣∣∣
ˆ

B(q,r)
nq,r · νE dσ −ωn−1r

n−1
∣∣∣∣ ≤ Crn−1η,(2.10)

∣∣|νq,r |− 1
∣∣ ≤ δ,(2.11)

(1−nη2)ωn−1r
n−1 ≤ σ (B(q, r)) ≤ (1+ 2δ)ωn−1r

n−1.(2.12)

Indeed, (2.10) and (2.12) together ensure

|1 − νq,r ·nq,r | =
∣∣∣∣1−

 

B(q,r)
nq,r · νE dσ

∣∣∣∣ ≤ C(η+ δ).

Combining (2.11) with the preceding inequality, we deduce

∣∣∣∣∣nq,r ·
νq,r
|νq,r |

− 1

∣∣∣∣∣ ≤
∣∣∣∣∣nq,r ·

νq,r
|νq,r |

− 1
|νq,r |

∣∣∣∣∣+
∣∣∣∣∣

1
|νq,r |

− 1

∣∣∣∣∣

≤ C

1− δ[η+ δ] = C(η+ δ).

8Being Reifenberg flat is not necessary, a priori, as seen by Corollary 3.10.
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This in turn implies

(2.13)

∣∣∣∣∣nq,r −
νq,r
|νq,r |

∣∣∣∣∣

2

≤ C(η+ δ).

Consequently, for y ∈ B(q, r)∩ ∂E,

|〈y − q,νq,r〉| ≤ (1+ δ)
∣∣∣∣∣

〈
y − q,

νq,r
|νq,r |

〉∣∣∣∣∣

≤ (1+ δ)
{∣∣∣
〈
y − q,nq,r

〉∣∣∣+
∣∣∣∣∣

〈
y − q,

νq,r
|νq,r |

−nq,r
〉∣∣∣∣∣

}

≤ (1+ δ){ηr + Cr
√
η+ δ},

where the first inequality used (2.11) and the final inequality follows from (2.13)
and the fact that ∂E is η-Reifenberg flat. Since δ is small, this verifies (2.9). Hence,
it remains to check (2.10)–(2.12).

We compare E ∩ B(q, r) to B(q, r) ∩ {〈y − q,nq,r 〉 ≤ 0} to verify (2.10).
Indeed, for any constant vector e it follows that

0 =
ˆ

B(q,r)∩E
dive(2.14)

=
ˆ

B(q,r)∩∂E
e · νE dσ +

ˆ

∂B(q,r)∩E
e · y − q|y − q| dH

n−1.

Plugging in e = nq,r , we get

(2.15)
ˆ

∂B(q,r)∩E
nq,r ·

y − q
|y − q| dH

n−1 = −
ˆ

B(q,r)∩∂E
nq,r · νE dσ .

Since nq,r comes from the η-Reifenberg flat condition,

{
E ∩ B(q, r) ⊂ {〈y − q,nq,r 〉 ≤ ηr}∩ B(q, r),
{〈y − q,νq,r 〉 ≤ −ηr}∩ B(q, r) ⊂ E ∩ B(q, r).

By using the divergence theorem as it was used in (2.14), it follows that

ˆ

∂B(q,r)∩{〈y−q,nq,r 〉≤0}
nq,r ·

y − q
|y − q| dH

n−1

= −
ˆ

B(q,r)∩{〈y−q,nq,r 〉=0}
nq,r ·nq,r dσ = −ωn−1r

n−1,
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and a very generous estimate ensures that

∣∣∣∣
ˆ

∂B(q,r)∩E
nq,r ·

y − q
|y − q| dH

n−1(2.16)

−
ˆ

∂B(q,r)∩{〈y−q,nq,r 〉≤0}
nq,r ·

y − q
|y − q| dH

n−1
∣∣∣∣ ≤ Crn−1η.

Combining (2.15)–(2.16) confirms (2.10). Equation (2.11) then follows from
‖ν‖∗(B(q, r)) ≤ δ. Details are included when the same statement is verified in
(3.4).

It only remains to show (2.12). The lower bound follows immediately from
∂E being η-Reifenberg flat and the separation property, since then

σ (B(q, r)) ≥ωn−1(r
√

1− η2)n−1 ≥ωn−1

(
1− n− 1

2
η2
)
rn−1.

For the upper bound, we use (2.14) with e = νq,r to obtain the estimate

σ (B(q, r))|νq,r |2 =
∣∣∣∣
ˆ

B(q,r)
νq,r · νE dσ

∣∣∣∣ =
∣∣∣∣
ˆ

∂B(q,r)∩E
νq,r ·

y − q
|y − q| dH

n−1
∣∣∣∣

≤ |νq,r |ωn−1r
n−1.

Therefore, by (2.11),

σ (B(q, r)) ≤ 1
|νq,r |

ωn−1r
n−1 ≤ (1+ 2δ)ωn−1r

n−1. !

3. FLATNESS FROM CONTROL ON OSCILLATION

In this section we introduce a class of well-behaved sets A(CA, r0), and prove
our key geometric result, Corollary 3.10. Specifically, in the class, A(CA, r0), the
oscillation of the unit normal controls the flatness (in the sense of Reifenberg) of
the boundary. One key tool is the “excess” of a set of locally finite perimeter, first
introduced by De Giorgi in [DG61] and ubiquitous in the calculus of variations.
Because of Lemma 3.4, all of our arguments could also be written in terms of the
mean oscillation of the unit normal. Given r0 ∈ (0,∞) and CA ∈ [1,∞), we
define a class of sets

(3.1) A(CA, r0)

=
{
E ⊂ Rn | E is a set of locally finite perimeter satisfying

∂E = sptµE and its perimeter measure |µE| is

(n− 1)-Ahlfors regular up to scale r0 with constant CA
}
.
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Uniformly rectifiable domains (up to choosing a representative from the equiv-
alence class; see Remark 3.1) with Ahlfors regularity constant CA form a subset of
A(CA, r0). The complement of a quasiminimal surface of codimension 1 is the
disjoint union of two open domains of Rn (see [DS98]), and each of these do-
mains would fall within the class A(CA, r0).

Remark 3.1. The condition that ∂E = sptµE corresponds to choosing a rep-
resentative for our set amongst the equivalence class of sets of locally finite perime-
ter (see [Mag12, Proposition 12.19, Remark 16.11]): for any set of finite perimeter
E, we can find a Borel set F such that |E∆F| = 0, for ∂F = sptµF = sptµE . This
choice is necessary since we want to deduce information on the topological bound-
ary from information on the measure-theoretic unit outer normal, which is merely
defined on the reduced boundary ∂∗E (see, e.g., Lemma 3.8 and Theorem 3.9).

A particularly useful property of A(CA, r0) is that if E ∈ A(CA, r0) then
Rn \ E ∈A(CA, r0). This follows since µE = −µRn\E and ∂E = ∂(Rn \ E).

Remark 3.2. If E ∈ A(CA, r0), then ∂E is (n − 1)-Alhfors regular since
∂E = sptµE and Hn−1(∂E \ ∂∗E) = 0 (see [Mat95, Theorem 6.9]). Thus,

|µE| = Hn−1 ∂∗E =Hn−1 ∂E.

Definition 3.3 (Cylinders and excess: c.f. [Mag12, Chapter 22]). For r > 0,
x ∈ Rn, and some ν ∈ Sn−1, we let

C(x, r ,ν) = {y : |〈x −y,ν〉| < r, |x −y − 〈x − y,ν〉ν| < r}.

Note that C(x, r ,ν) is a cylinder with center x, radius and height r , and axial
direction ν. For a set of locally finite perimeter E, x ∈ ∂E, r > 0, and ν ∈ Sn−1

we define the cylindrical excess

e(E,x, r ,ν) = 1
rn−1

ˆ

C(x,r ,ν)∩∂∗E

|νE − ν|2
2

dHn−1.

The following lemma elucidates the relationship between oscillation of the
unit normal and excess.

Lemma 3.4. Let E ∈A(CA, r0) and let Q ∈ ∂E and 0 < r < r0. There exists
some constant 0 < C <∞ (which depends only on CA and the dimension) such that

(3.2)
 

B(Q,r)∩∂∗E
|νE − (νE)Q,r |2 dHn−1 ≤ Ce(E,Q, r ,ν)

for any ν ∈ Sn−1, where (νE)Q,r represents the integral average of νE with respect to
Hn−1 on B(Q, r)∩ ∂∗E. Furthermore, as long as |(νE)Q,r | ≠ 0, we have that

(3.3) e

(
E,Q,

r√
2
,
(νE)Q,r
|(νE)Q,r |

)
≤ C

 

B(Q,r)∩∂∗E
|νE − (νE)Q,r |2 dHn−1.
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Proof. We first prove (3.2). Note that B(Q, r)∩ ∂∗E ⊂ C(Q, r ,ν)∩ ∂∗E for
any Q ∈ ∂E and r > 0. Thus,

e(E,Q, r ,ν) ≥ c
 

B(Q,r)∩∂∗E

|νE − ν|2
2

dHn−1,

where c is a constant depending only on the Ahlfors regularity of E. We compute
 

B(Q,r)∩∂∗E
|νE(x)− (νE)Q,r |2 dHn−1

≤ 2
 

B(Q,r)∩∂∗E
|νE(x)− ν|2 dHn−1

+ 2
 

B(Q,r)∩∂∗E
|ν − (νE)Q,r |2 dHn−1

≤ 4
 

B(Q,r)∩∂∗E
|νE(x)− ν|2 dHn−1 ≤ Ce(E,Q, r ,ν),

where the second inequality follows from the triangle inequality and Jensen’s in-
equality. This is exactly (3.2).

To prove (3.3) it suffices to consider
 

B(Q,r)∩∂∗E
|νE − (νE)Q,r |2 dHn−1 = ε < 1.

We first estimate |(νE)Q,r |; note that

(|1− |(νE)Q,r |)2 =
 

B(Q,r)∩∂∗E
(|νE|− |(νE)Q,r |)2

dHn−1(3.4)

≤
 

B(Q,r)∩∂∗E
|νE − (νE)Q,r |2 dHn−1 = ε

and

(3.5) |(νE)Q,r | =
∣∣∣∣
 

B(Q,r)∩∂∗E
νE dHn−1

∣∣∣∣ ≤
 

B(Q,r)∩∂∗E
|νE|dHn−1 = 1.

Now, combining (3.4) with (3.5) ensures that we have 1 − √ε ≤ |(νE)Q,r | ≤ 1.
Let ν0 ≡ (νE)Q,r /|(νE)Q,r | and compute

|νE − ν0| ≤ |νE − (νE)Q,r | + |(νE)Q,r |
∣∣∣∣∣1− 1

|(νE)Q,r |

∣∣∣∣∣
≤ |νE − (νE)Q,r | + |1− (νE)Q,r |
≤ |νE − (νE)Q,r | + ε1/2,
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so that

(3.6) |νE − ν0|2 ≤ 2|νE − (νE)Q,r |2 + 2ε.

Notably, (3.6) and C(Q, r/
√

2,ν0) ⊂ B(Q, r) imply

e
(
E,Q,

r√
2
,ν0

)

= 2(n−1)/2

rn−1

ˆ

C(Q,r/
√

2,ν0)∩∂∗E

|νE − ν0|2
2

dHn−1

≤ 2(n−1)/2

rn−1

ˆ

C(Q,r/
√

2,ν0)∩∂∗E
|νE − (νE)Q,r |2 dHn−1

+ 2(n−1)/2Hn−1(C(Q, r/
√

2,ν0)∩ ∂∗E)
rn−1

ε

≤ 2(n−1)/2Hn−1(B(Q, r)∩ ∂∗E)
rn−1

×
( 

B(Q,r)∩∂∗E
|νE − (νE)Q,r |2 dHn−1 + ε

)

= 2(n+1)/2Hn−1(B(x, r)∩ ∂∗E)
rn−1

ε ≤ Cn · CAε. !

Remark 3.5. We recall some basic properties of the cylindrical excess (see,
e.g., [Mag12, Chapter 22] for more details). The cylindrical excess is invariant
under translation and scaling in the sense that if Ex,r = (E − x)/r , then

(3.7) e(Ex,r ,0,1,ν) = e(E,x, r ,ν).

Furthermore, if r < s, the non-negativity of the integrand ensures

1
rn−1

ˆ

C(x,r ,ν)∩∂∗E

|νE − ν|2
2

dHn−1

≤
(
s

r

)n−1 1
sn−1

ˆ

C(x,s,ν)∩∂∗E

|νE − ν|2
2

dHn−1,

that is,

(3.8) e(E,x, r ,ν) ≤
(
s

r

)n−1

e(E,x, s,ν).

Finally, since ν,νE are each of unit length, |νE − ν|2/2 = 1− 〈νE,ν〉 so that

(3.9) e(E,x, r ,ν) = 1
rn−1

ˆ

C(x,r ,ν)∩∂∗E
(1− 〈νE,ν〉)dHn−1.
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Given a sequence of sets of locally finite perimeter {Ek}k∈N in Rn, we say that
{Ek} converges to E in L1

loc(R
n) and write

Ek
L1

loc(R
n)

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""→ E

if limk→∞Hn(E∆Ek) = 0. The following compactness theorem is the key tool
used in proving the flatness result.

Theorem 3.6. If {Ek}k∈N ⊂A(CA, r0) with 0 ∈ ∂Ek for all k ≥ 1, there exist
a subsequence {Ekj}j∈N, a set E of locally finite perimeter, and a non-negative Radon
measure, µ, such that as j approaches infinity,

(3.10) Ekj
L1

loc(R
n)

""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""→ E, µEkj ⇀ µE and |µEkj |⇀ µ.

Additionally, ∂E = sptµE and µ is (n−1)-Ahlfors regular up to scale r0 with constant
CA. Furthermore, |µE| ≤ µ and we have the following:

(1) If x ∈ ∂E, then for all j ∈ N there exist xkj ∈ ∂Ekj such that limj→∞ xkj =
x.

(2) If x ∈ sptµ, then for all j ∈ N there exist xkj ∈ ∂Ekj so that limj→∞ xkj =
x.

(3) If for all j ∈ N, xkj ∈ ∂Ekj and limj→∞ xkj = x, then x ∈ sptµ.

Remark 3.7.

• We note that (2) and (3) in Theorem 3.6 combine to say that x ∈ sptµ if
and only if there exists xkj ∈ ∂Ekj such that xkj → x. However, without
additional hypotheses, all that is known is that sptµE ⊆ sptµ.

• Unlike in the analogous theorem [Mag12, Theorem 21.14] for perimeter
minimizers, here in general we do not have µ = |µE| because of possible
cancellations for sets of finite perimeter. However, with further infor-
mation on the excess, we will be able to conclude µ = |µE| (see, e.g.,
Lemma 3.8).

Proof. Standard techniques and a diagonalization argument (see, e.g., [Mag12,
Sections 12.4, 21.5]) verify that sets whose boundary are uniformly Ahlfors-regular
(i.e., Ahlfors regular with constants independent of the element in the sequence)
are pre-compact in the space of sets of locally finite perimeter. That is to say, there
exists some set of locally finite perimeter E ⊂ Rn so that χEkj

→ χE in L1
loc and

µEkj ⇀ µE in a weak star sense. Without loss of generality (see Remark 3.1) we
may assume that sptµE = ∂E. Finally, note the |µEkj | are uniformly Ahlfors reg-
ular (see Remark 3.2) and hence precompact. Without explicitly relabeling the
new subsequence, there exists a Radon measure µ on Rn so that |µEkj |⇀ µ in the
weak star sense. Thus, (3.10) holds.
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The fact that |µE| ≤ µ follows from (2.3). This ensures that sptµE ⊂ sptµ, so
(2) (which is a standard fact) implies (1). Moreover, (2), and the uniform upper
regularity of {|µEkj |} imply the upper Ahlfors regularity of µ.

We show (3) and lower Ahlfors regularity of µ simultaneously. For each j ∈ N
suppose xkj ∈ ∂Ekj = spt |µEkj | such that xkj → x.

Fix 0 < s < r0 and fix ε ∈ (0,1). Note that for kj large enough,

B(xkj , s(1− ε)) ⊂ B(x, s(1− ε/2)).

Since Ekj ∈A(CA, r0) it follows that

C−1
A (s(1− ε))n−1 ≤ |µEkj |(B(xkj , s(1− ε)))

≤ |µEkj |
(
B(x, s(1− ε/2))

)
,

so that by weak∗ convergence of |µEkj | to µ,

C−1
A (s(1− ε))n−1 ≤ lim sup

j

|µEkj |
(
B(x, s(1− ε/2))

)

≤ µ
(
B(x, s(1− ε/2))

)
,

and taking ε → 0 results in C−1
A s

n−1 ≤ µ(B(x, s)) for all s ∈ (0, r0); in particular
x ∈ sptµ, verifying (3). On the other hand, since (2) and (3) combine to show
that x ∈ sptµ if and only if there exists xkj ∈ ∂Ekj such that xkj → x, this
demonstrates µ is (n−1)-lower Ahlfors regular up to scale r0 with constant CA. !

We now prove that small excess implies local measure theoretic separation. To
simplify notation, define en(E,x, r) = e(E,x, r , en).

Lemma 3.8 (Separation lemma (compare with [Mag12, Lemma 22.10])).
Given CA≥1, t0∈(0,1), there is ω(n, t0, CA)∈(0,∞) such that if E∈A(CA,2r)
for some r > 0 and if there exist x0 ∈ ∂E and ν ∈ Sn−1 with

e(E,x0,2r ,ν) ≤ω(n, t0, CA),

then

|〈x − x0,ν〉| < t0r ∀x ∈ C(x0, r ,ν)∩ ∂E,(3.11)

|{x ∈ C(x0, r ,ν)∩ E | 〈x − x0,ν〉 > t0r}| = 0,(3.12)

and
|{x ∈ C(x0, r ,ν)∩ Ec | 〈x − x0,ν〉 < −t0r}| = 0.(3.13)

(Note, here and below for any Lebesgue measurable set O ⊂ Rn we write |O| to denote
the Lesbesgue measure of O).
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Proof. This follows by a compactness-contradiction argument. If Lemma 3.8
does not hold, there exist CA > 1, t0 ∈ (0,1), a sequence of sets {Fk}k∈N and
radii rk > 0 such that Fk ∈ A(CA,2rk), a sequence of points xk ∈ ∂Fk, and a
sequence of directions νk ∈ Sn−1, with

e(Fk, xk,2rk,νk) ≤ 2−k,

such that at least one of the following conditions holds for infinitely many k:

{x ∈ C(xk, rk,νk)∩ ∂Fk : |qk(x)| > t0rk} ≠∅,(3.14)

|{x ∈ C(xk, rk,νk)∩ Fk : qk(x) > t0rk}| > 0,(3.15)

or

|{x ∈ C(xk, rk,νk)∩ Fck : qk(x) < −t0rk}| > 0,(3.16)

where qk(x) = 〈x − xk,νk〉.
By rescaling, recentering, and rotating (see Remark 3.5) we may assume that

νk ≡ en, xk ≡ 0, and rk ≡ 1. Note that the transformed domains are now in
A(CA,2). Abusing notation, we call these new sets Fk. Note that

(3.17) en(Fk,0,2) ≤ 2−k ∀k ≥ 1.

Writing Cr = C(0, r , en) and q(x) = 〈x, en〉 we rewrite (3.14)–(3.16) as

{x ∈ C1 ∩ ∂Fk | t0 ≤ |q(x)|} ≠∅,(3.18)

|{x ∈ C1 ∩ Fk | q(x) > t0}| > 0,(3.19)

or

|{x ∈ C1 \ Fk | q(x) < −t0}| > 0.(3.20)

By Theorem 3.6, there is a set of finite perimeter F ⊂ C5/3 with 0 ∈ ∂F =
spt |µF | and a Radon measure µ such that, by passing to a subsequence we do not
explicitly relabel, Fk ∩ C5/3 → F in L1(Rn), µFk∩C5/3 ⇀ µF , and |µFk∩C5/3| ⇀ µ
with |µF | ≤ µ.

Consider an open set U such that Ū ⊂ C5/3. Then, (3.9) implies

(
5
3

)n−1

en

(
Fk,0,

5
3

)
≥
ˆ

U∩∂∗Fk
(1− en · νFk)dHn−1(3.21)

= |µFk |(U)− en · µFk(U) ≥ 0,

where the final inequality follows since

(3.22) dµFk = νFk|dµFk | and |νFk| = 1 |µFk |-almost everywhere.
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Then, (3.8) and (3.17) ensure that as k tends to infinity,

en

(
Fk,0,

5
3

)
≤
(

6
5

)n−1

en(Fk,0,2) → 0.

This combined with (3.21) yields

0 ≤ lim
k→∞

{|µFk|(U)− en · µFk(U)} ≤ Cn lim
k→∞

en

(
Fk,0,

5
3

)
= 0.

Since (2.3) says |µF | ≤ µ we can apply (2.4) to both |µFk | and µFk to learn

(3.23) µ(U) = en · µF(U) for any open set U 7 C5/3, with µ(∂U) = 0.

Note that by Theorem 3.6, µ is Ahlfors regular with constant CA up to scale
2 in the cylinder C5/3. Hence, in particular for any x ∈ C4/3 ∩ sptµ and almost
every r ∈ (0, 1

3), µ(∂B(x, r)) = 0 and by (3.23) µ(B(x, r)) = en · µF(B(x, r)).
Consequently, for all x ∈ spt |µF |∩ C4/3,

lim sup
r→0

µ(B(x, r))

|µF |(B(x, r))
= en · lim sup

r→0

µF(B(x, r))

|µF |(B(x, r))
≤ 1,

where the final inequality uses the property (3.22) for the set F . Therefore, in
C4/3 we have shown µ ≤ |µF | ≤ µ, which implies µ = |µF | = Hn−1 ∂∗F .
But then, (3.23) says |µF | = en · µF so that νF (x) = en at Hn−1-almost every
x ∈ ∂∗F . In particular, en(F,0,

4
3) = 0, at which point [Mag12, Proposition

22.2] asserts that F∩C4/3 is equivalent (in the sense of sets of locally finite perime-
ter) to C4/3 ∩ {q(x) < 0} or C4/3 ∩ {q(x) > 0}. Since |µF | = en · µF it follows
that F ∩ C4/3 is equivalent to C4/3 ∩ {q(x) < 0}. We write this as

(3.24) C4/3 ∩ F ∼ {q(x) < 0}∩ C4/3.

We assumed that one of (3.18)–(3.20) holds for infinitely many k. First, suppose
(3.18) holds for infinitely many k. By passing to a subsequence, we may assume
that (3.18) holds for all k ∈ N. Then, for all k ∈ N, there exists xk ∈ ∂Fk ∩ C1

such that t0 ≤ |q(xk)|. By passing to a subsequence, xk → x∞ for some x∞ ∈ C1

and |q(x∞)| ≥ t0. By Theorem 3.6 (3), x∞ ∈ sptµ = sptµF = ∂F . Hence (see
[Mag12, Proposition 12.19]),

(3.25) 0 < |B(x∞, s)∩ F| <ωns
n ∀ s > 0.

However, because |q(x∞)| ≥ t0, (3.24) implies that

|B(x∞, s)∩ F| =
{
ωnsn if q(x∞) < 0,
0 if q(x∞) > 0,
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for any s ≤ min{ 1
8 , |q(x∞)|/2}, which contradicts (3.25). This shows that (3.18)

cannot hold for infinitely many k.
Arguing as above and invoking Theorem 3.6 (3), we conclude there exists

k0 ∈ N such that for all k ≥ k0,

(3.26) {x ∈ C5/4 ∩ ∂Fk | t0 < |q(x)| ≤ 1} =∅.

However, by [Mag12, Equation 16.7], for all r ∈ (1, 5
4),

|µFk∩Cr | = |µCr | F(1)k + |µFk| (Cr ∪ {νFk = νCr }).

For almost every r ∈ (1, 5
4) we know |µFk |(∂Cr ) = 0 for all k. Then, for any such

r (3.26) demonstrates

(3.27) |µFk∩Cr |({x ∈ Cr | t0 < |q(x)| < 1}) = 0 ∀k ≥ k0.

We claim (3.27) implies that for almost every r ∈ (1, 5
4), χCr∩Fk is constant

on each connected component of {t0 < |q(x)| < 1} ∩ Cr , which implies χC1∩Fk
is constant on connected components of {t0 < |q(x)| < 1}∩ C1. Indeed, choose
r ∈ (1, 5

4) so that |µFk|(∂Cr ) = 0 for all k. Consider the sets

U± := {t0 < ±q(x) < 1}∩ Cr ,

which are both open and connected. The definition (2.1) and (3.27) guarantee,
for all k ≥ k0,

ˆ

Rn
T · dµFk = 0 for all T ∈ C1

c (U±;Rn).

(If the integral is nonzero, we can flip the sign of T and get a contradiction with
(3.27).) Thus, by Proposition 2.1,

ˆ

Rn
χFk divT dx =

ˆ

Rn
T · dµFk = 0 for all T ∈ C1

c (U±;Rn),

that is, in the weak sense, ∇χFk = 0 on U+ and U−. This implies χFk is almost
everywhere constant on each U± (e.g., see [Mag12, Lemma 7.5]). Combining

(3.24) with χFk constant on each U± and Fk ∩ C5/3
L1(Rn)
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""→ F , it follows that for

k ≥ k0,

χFk∩C1
=
{

0 for almost every x ∈ C1 ∩ {t0 < q(x) < 1},
1 for almost every x ∈ C1 ∩ {−1 < q(x) < t0}.

This shows that (3.19) and (3.20) cannot happen for infinitely many k. !
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The (qualitative) separation lemma above can be further improved to a quan-
tative “height bound” of ∂E. Since the proof is by fairly standard techniques in
the theory of sets of locally finite perimeter, we include it in Appendix A (see
Theorem A.2). Topological considerations then imply the following theorem.

Theorem 3.9. Given CA ≥ 1 and n ≥ 2, there exist positive constants C1 =
C1(n,CA) < ∞ and ε1 = ε1(n,CA) small such that if E ∈ A(CA,4r0) for some
r0 > 0, and x0 ∈ ∂E satisfies e(E,x0,2r ,ν) ≤ ε1 for some ν ∈ Sn and 0 < r <
2r0, then

|〈x − x0,ν〉| ≤ C1re(E,x0,2r ,ν)1/(2(n−1)) ∀x ∈ C(x0, r ,ν)∩ ∂E,
{x ∈ C(x0, r ,ν)∩ E | 〈x − x0,ν〉 > C1re(E,x0,2r ,ν)1/(2(n−1))} =∅,

and

{x ∈ C(x0, r ,ν)∩ Ec | 〈x − x0,ν〉 < −C1re(E,x0,2r ,ν)1/(2(n−1))} =∅.

An immediate quantitative consequence of Lemma 3.4 and Theorem 3.9 is
the following result.

Corollary 3.10. Given n ≥ 2, and CA ≥ 1 there exist constants ε2 = ε2(n,CA)
and C2 = C(n,CA) (both positive and finite), such that if E ∈A(CA, r0) (for some
r0 > 0) satisfies

sup
r<r0

( 

B(x,r)∩∂∗E
|νE − (νE)x,r |2 dHn−1

)1/2

≤ ε2

for some x ∈ ∂E, then

sup
ρ<r0/8

Θ(x,ρ) ≤ C2ε
1/(n−1)
2 .

In particular, if Ω ⊂ Rn is a domain such that ∂∗Ω = ∂Ω, ∂Ω is (n − 1)-Ahlfors
regular, and νΩ satisfies

sup
r<r0

sup
x∈∂Ω

( 

B(x,r)∩∂Ω
|νΩ − (νΩ)x,r |2 dHn−1

)1/2

≤ ε2,

then Ω is a C2ε
1/(n−1)
2 -Reifenberg flat domain.

Proof. As in Remark 2.3, ∂Ω = ∂∗Ω and ∂Ω is Ahlfors regular imply

∂Ω = sptµΩ, |µΩ| is Ahlfors regular.

That is,Ω ∈A(CA, r0) for some constants CA, and all r0. Therefore, the corollary
is a consequence of Theorem 3.9. !
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An immediate qualitative consequence of Lemma 3.10 and Theorem 3.9 is
the following result.

Corollary 3.11. If Ω ⊂ Rn is a domain such that ∂∗Ω = ∂Ω, ∂Ω is (n − 1)-
Ahlfors regular, and νE ∈ VMOloc(Hn−1 ∂Ω), then ∂Ω is a vanishing Reifenberg
flat set.

Corollary 3.10 also has the following quantitative consequence for δ-CADs
(see Definition 2.19).

Corollary 3.12. Let Ω ⊂ Rn be a domain with ∂∗Ω = ∂Ω and with (n− 1)-
Ahlfors regular boundary with constant CA. Further assume, if Ω is unbounded,
that Rn \ ∂Ω consists of two nonempty connected components. Then, there exists a
δn > 0 such that for δ ∈ (0,δn], there exists εδ < ε2 (where ε2 > 0 is as in
Corollary 3.10) such that if for every compact set K 7 Rn there exists an RK > 0 such
that supx∈∂Ω∩K ‖ν‖(x,RK) < εδ, then Ω is a δ-chord-arc domain.

4. AN APPLICATION TO A TWO-PHASE PROBLEM FOR

HARMONIC MEASURE

In this section, we consider a two-phase free boundary problem for harmonic
measure, originally studied by Kenig-Toro in [KT06] and later by [BH16]. In
particular, we complete the proof of Theorem 1.1, and prove a quantitative version
of it (Theorem 4.14).

4.1. The existence of corkscrews. The goal of this subsection is to show
that the doubling of harmonic measure implies interior corkscrews (Lemma 4.3).
Later, we will show that control on the oscillation of the logarithm of the Poisson
kernel implies doubling. This is an important step in proving Theorem 4.12 as
it will allow us use the theory of UR domains (by way of Appendix B). First, we
recall what it means for harmonic measure to be doubling.

Definition 4.1. Let Ω ⊂ Rn be a domain with harmonic measure ω. We say
that ω is locally doubling with constant C if, for every compact set K, there exists
rK > 0 such that

ω(B(x,2r)) < Cω(B(x, r)).

for all x ∈ ∂Ω∩K and all r ∈ (0, rK). We also refer to rK as the (local) doubling
condition radius.

Remark 4.2. We often assume rK is sufficiently small compared to the dis-
tance from the pole of ω to the boundary ∂Ω. This allows us to focus on local
regions away from the pole, so that we can use preliminary estimates on the har-
monic measure with ease.

To prove estimates that are uniform on compacta, it is important to keep
track of what the value of each constant depends on, and in particular, whether
or not it depends on the choice of compact set. For simplicity, we may say the
value depends on allowable constants, if it depends only on the dimension n
and the Ahlfors regularity constant, and not on the compact set. The following
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Lemma 4.3, which might be considered folklore, shows the existence of interior
corkscrews given the doubling of harmonic measure. This is an essential step, as it
allows us to gain topological information on Ω from the regularity of the Poisson
kernel. We sketch the proof here, which is a small modification of the proof of
[HM15, Lemma 3.14] (see also [HLMN17, Lemma 4.24]).

Lemma 4.3. Let Ω ⊂ Rn be a domain whose boundary is Ahlfors regular with
constant CA. Fix X0 ∈ Ω. Suppose ωX0 is locally doubling with constant C0. There
exists an η = η(n,CA) > 0 such that, for every closed ball K, if rK ; δ(X0) is
the doubling radius of ωX0 in K, then Ω admits an interior corkscrew ball at every
x ∈ ∂Ω∩ K up to radius sK := ηrK with constant C1 = C(n,CA,C0).

Proof. Fix the closed ball K and recall that rK is the local doubling radius. The
proof of this lemma requires a slight modification of the argument in Lemma 3.14
of [HM15]. Recall the following relationship between the Green function and the
harmonic measure. For Φ ∈ C∞c (Rn+1),

ˆ

∂Ω
Φ(y)dωX(y)− Φ(X)(4.1)

= −
¨

Ω
∇G(X, Y)∇Φ(Y)dY, for almost every X ∈ω,

where ω := ωX and G(Y) := G(X, Y) are the harmonic measure and Green’s
function for Ω with pole at X.

It was proven in [HM15, Lemma 2.40] that there exists κ0 > 2 depending
only on dimension and the Ahlfors regularity constant such that for all x ∈ ∂Ω
and 0 < r <min{δ(X)/κ0,diam(∂Ω)}, for B = B(x, r),

(4.2) sup
(1/2)B

G(Y) 2 1
|B|

¨

B
G(Y)dY 2 rω(CB)

σ (CB)
,

where all implicit (and explicit) constants depend only on dimension and the
Ahlfors regularity constant.

Now, let x ∈ ∂Ω and

0 < r <min{δ(X0)/κ0,10−3 diam(∂Ω),10−3rK/C},

where rK is the doubling condition radius forω and C is as in (4.2). Without loss
of generality we may assume

rK ; min{δ(X),diam(∂Ω)},

so that the above minimum equals 10−3rK/C. Set B := B(x, r) and Φ ∈ C∞c ( 1
2B)

such that 0 ≤ Φ ≤ 1, Φ ≡ 1 on 1
100B and |∇Φ| 2 8/r . Using (4.1) with X = X0

9,

9We may move X0 slightly using the Harnack inequality.
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we obtain

rω
(

1
100

B
)
≤ r

ˆ

∂Ω∩(1/100)B
Φ(y)dω(y)(4.3)

= −r
¨

Ω
∇G(Y)∇Φ(Y)dY

≤ 8
¨

Ω∩(1/2)B
|∇G(Y)|dY

≤ 8
¨

((1/2)B∩Ω)\Σρ(r)
|∇G(Y)|dY

+ 8
¨

(1/2)B∩Σρ(r)
|∇G(Y)|dY

=A+B,

where Σρ(r) is the “boundary strip,” Σρ(r) := {Y ∈ Ω : δ(Y) ≤ ρr}, and
ρ > 0 is a small number to be chosen momentarily. Let W = {I} be a Whitney
decomposition of Ω, and let I := {I ∈W : I∩ 1

2B∩Σρ(r) ≠∅}. Then, by using
standard interior estimates (the Caccioppoli inequality and the Moser estimate),
we have

(4.4) B ≤ 8
∑

I∈I

¨

I
|∇G(Y)|dY ≤ C′

∑

I∈I
/(I)n−1|G(YI)|,

where YI is the center of the Whitney cube I and /(I) is the side length of I.
For each I ∈ I we use the Hölder continuity at the boundary of the Green func-
tion (which only depends on dimension and the Ahlfors regularity constant), in
conjunction with (4.2), to obtain the estimate

G(YI) 2
(
/(I)

r

)α
1
|2B|

¨

2B∩Ω
G(Y)dY 2

(
/(I)

r

)α
r
ω(CB)

σ (CB)
.

Summing over I ∈ I, and using an elementary geometric argument, whose proof
we temporarily postpone, we have that

(4.5) B 2 ραrω(CB) 2 ραrω
(

1
100

B
)
,

where we used that the harmonic measure is doubling up to rK .
Then, there exists ρ > 0 depending on C0, n, and C (which depended addi-

tionally on CA), small enough so that the upper bound in (4.5) can be absorbed
in the lefthand side of (4.3), at which point we have

A= 8
¨

((1/2)B∩Ω)\Σρ(r)
|∇G(Y)|dY ≥ 1

2
rω

(
1

100
B
)
> 0.
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Since A > 0, there exists a point YB ∈ 1
2B ∩ Ω such that δ(YB) > ρr , which

shows that Ω satisfies the (1/ρ, R0)-interior corkscrew condition, where

R0 = min{δ(X)/κ0,10−3 diam(∂Ω),10−3rK/C} = 10−3rK/C =: sK.

Hence, we finish the proof of the lemma with constant η := 10−3/C.
Now, we shall sketch the “elementary geometric argument,” that is, how we

used the estimate on G(YI) and (4.4) in order to obtain (4.5). If we first let
Ĩ :=

{
I ∈W : I ∩ 1

2B ≠∅
}

, then we observe that the Whitney property of each

I ∈ Ĩ ensures that /(I) 2 r , and for each I ∈ Ĩ there exists x̂I in B(x,Cr) ∩ ∂Ω
such that /(I) ≈ dist(I, ∂Ω) ≈ dist(x̂I , Y) for all Y ∈ I.

Now, fix k such that 2−k 2 ρr , denote Ĩk := {I ∈ Ĩ : /(I) = 2−k}, and
cover B(x,Cr)∩ ∂Ω by balls {Bk,j}j = {B(xk,j,2−k)} with xk,j ∈ ∂Ω such that
{ 1

5Bk,j}j are disjoint. Using Ahlfors regularity to compare surface areas, we see
that, for each fixed k, we have #{Bk,j}j ≈ rn−12k(n−1). Now, with each I ∈ Ĩk we
associate an index j such that xI ∈ Bk,j, and notice we have dist(Y ,xk,j) 2 2−k

for all Y ∈ I. Since the I ∈ Ĩk are disjoint, comparing volumes, we have that for
fixed j, we have that #{I ∈ Ĩk : I is associated to j} ≤ C, where C depends on
dimension. It follows from our bound on #{Bk,j}j that #Ĩk 2 rn−12k(n−1). Now,
breaking the sum over k in (4.4) and using our bound for G(YI), we obtain

B 2ω(CB)r 2−n−α
∑

k<− log2(ρr)

∑

I∈Ĩk

2−k(n−1+α)

2ω(CB)r 2−n−α
∑

k<− log2(ρr)

rn−12k(n−1)2−k(n−1+α)

2 ραrω(CB)

as desired, where we used σ (CB) ≈ rn−1 in the first line. !

One immediate corollary is that domains with Ahlfors regular boundaries have
uniformly rectifiable boundaries whenever the interior and exterior harmonic mea-
sures are doubling.

Corollary 4.4. Suppose Ω+ ⊂ Rn andΩ− = Rn\Ω+ are domains with common
topological boundary ∂Ω := ∂Ω+ = ∂Ω− and diam(∂Ω+) < ∞, which has the
additional property that ∂Ω is (n − 1)-Ahlfors regular. Suppose further there exists
X+ ∈ Ω+ and X− ∈ Ω− such that the harmonic measures ωX±

± are doubling. Then,
∂Ω is uniformly rectifiable and ∂Ω = ∂∗Ω. In particular, Ω± are UR domains.

4.2. A localization result. The major technical result of this section is The-
orem 4.12, which, roughly, states that the local oscillation of the Poisson kernel
controls the local oscillation of the unit normal. Perhaps, contrary to the spirit of
a “localized result,” the scale at which we get control of the oscillation of the unit
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normal depends on the compact set; however, the quantitative control does not
(see (4.32) and (4.33)).

Our main tool in the proof of Theorem 4.12 is the single layer potential; we
recall its definition now.

Definition 4.5 (Riesz transform and the single layer potential). Let F ⊂ Rn
be a closed (n− 1)-Ahlfors regular set with surface measure σ = Hn−1 F . We
define the (vector-valued) Riesz kernel as

K(X) = c̃n
X

|X|n ,

where c̃n is chosen so that

K(X) = ∇ cn
|X|n−2

and cn is such that −∆cn/|X|n−2 = δ0 (here, δ0 is the Dirac mass at the origin).
Let f ∈ Lp(dσ ) for some p ∈ [1, n− 1). We define the Riesz transform of

f (relative to F) to be

Rf (X) := K ∗ (fσ )(X) =
ˆ

F
K(X −y)f(y)dσ (y) X ∈ Rn \ F,

as well as the truncated Riesz transforms for X ∈ F to be

Rεf (X) :=
ˆ

F∩{y :|X−y|>ε}
K(X −y)f(y)dσ (y), ε > 0.

We define S the (harmonic) single layer potential of f relative to F to be

Sf (X) :=
ˆ

F
E(X − y)f(y)dσ (y),

where E(X) = cn|X|2−n.
Remark 4.6. For f as above we have that Sf (X)makes sense as an absolutely

convergent integral for X =∈ F . To see this, we may use the upper Ahlfors regu-
larity to break the boundary up into dyadic annuli centered at x0 ∈ F such that
dist(X, F) = |X−x0|, and see that E(X−y) is in Lp

′
(dσ ) for all p ∈ [1, n−1),

where p′ is the Hölder conjugate exponent to p (albeit with bounds depending
on X). Notice also that for such f , ∇Sf (X) = Rf (X) for X =∈ F and Rf (X)
makes sense as an absolutely convergent integral for X =∈ F (here, we use the same
argument as for E to show that K(X − y) ∈ Lp′(dσ ) for p ∈ [1,∞)). To see
∇Sf (X) = Rf (X) for X =∈ F we form the difference quotients for Sf and use
the dominated convergence theorem. Every function we apply the single layer
potential to in the proof of Theorem 4.12 is in the space L1(dσ ).
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The singular layer potential is useful in that it generates solutions to the Neu-
mann problem (see, e.g., [HMT10, Section 5.5]). However, in order to make
sense of boundary data in a rough domain we need to introduce the concept of
non-tangential regions.

Definition 4.7 (Nontangential approach region and maximal function).
Fix α > 0 and let Ω be a domain; then, for x ∈ ∂Ω we define the nontangential
approach region (or “cone”):

Γ (x) = Γα(x) = {Y ∈ Ω : |Y − x| < (1+α)δ(Y)}.

We also define the nontangential maximal function for u : Ω→ R:

Nu(x) =Nαu(x) = sup
Y∈Γα(x)

|u(Y)|, x ∈ ∂Ω.

We make the convention that Nu(x) = 0 when Γα(x) = ∅10 and that α = 1
when no subscript appears in Γ .

The relationship between the two definitions above is made clear in the fol-
lowing two lemmas.

Lemma 4.8 ([HMT10]). Suppose Ω is a UR domain (recall Definition 2.9)
and f ∈ Lq(dσ ) for some q ∈ [1, n− 1). For all p ∈ (1,∞), we have

(4.6) ‖N (∇Sf )‖Lp(dσ ) ≤ C‖f‖Lp(dσ ),

where C depends on the UR character of ∂Ω, dimension, p, and the aperture of the
cones defining N .

The bound for the non-tangential maximal function of ∇Sf follows from
uniform bounds for the truncated singular integrals [Dav91], plus a Cotlar lemma
argument; the details may be found in [HMT10, Proposition 3.20].

In addition, we have the following result proved in [HMT10].

Lemma 4.9 ([HMT10] Proposition 3.30). If Ω is a UR domain, whose mea-
sure theoretic and topological boundary agree up to a set of Hn−1 measure zero, then
for almost every x ∈ ∂Ω, and for all f ∈ Lp(dσ ), 1 ≤ p < n− 1,

lim
Z→x, Z∈Γ−(x)

∇Sf (Z) = −1
2
ν(x)f (x)+T f (x),(4.7)

and

lim
Z→x, Z∈Γ+(x)

∇Sf (Z) = 1
2
ν(x)f (x)+T f (x).(4.8)

10In the settings that are treated here, this is always a set ofHn−1 measure zero [HMT10, Propo-
sition 2.9].
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where Γ+(x) is the cone at x relative to Ω, Γ−(x) is the cone at x relative to Ωext,
ν is the unit outer normal to Ω, and T is a (vector-valued ) principal value singular
integral operator:

T f (x) = lim
ε→0+

ˆ

y∈∂Ω\B(x,ε)
∇E(x −y)f(y)dσ (y).

Remark 4.10. As in [BH16], we have taken our fundamental solution to be
positive, so for that reason there are some changes in sign in both (4.7) and (4.8)
as compared to the formulation in [HMT10].

Next, we show that if logk has small BMO norm, the measure ω = kdσ is
doubling. The proof uses the fact that σ is doubling. We comment that in general,
the fact that ‖ logk‖BMO < ∞ or that k satisfies a reverse Hölder inequality does
not ensure that ω = kdσ is doubling (see the discussions and example in [ST89,
Chapter I]).

Lemma 4.11. Let σ be a doubling measure on Rn and ω = kdσ be another
Radon measure with 0 ≤ k ∈ L1

loc(dσ ). There exists τ0 > 0 depending on the
doubling constant of σ , such that if

(4.9) ‖ logk‖∗(B(x0,4r0)) < τ ≤ τ0 for some x0 ∈ sptσ and r0 > 0,

then the following holds for B ⊂ B(x0,2r0) with B a ball centered on sptσ :
(1) There is a constant C depending on n such that

(4.10)
1

1+ Cτ

 

B
kdσ ≤ e

ffl

B logkdσ ≤
 

B
kdσ = ω(B)

σ (B)
.

(2) Given p > 1, there exists τ(p) ≤ τ0 such that if (4.9) holds with τ ≤ τ(p),
then for any Borel set E ⊂ B, where B is as before,

(4.11)
ω(E)

ω(B)
≥ c(p,τ)

(
σ (E)

σ (B)

)p
.

Here, the constant c(p,τ) → 1 as τ → 0.
(3) In particular, for x ∈ sptσ such that B(x,2r) ⊂ B(x0,2r0),

(4.12) ω(B(x,2r)) ≤ Cω(B(x, r)),

where the constant C depends on n and the doubling constant of σ .
(4) Given r > 1, there exists τ̃(r) ≤ τ0 such that if (4.9) holds with τ ≤ τ̃(r),

then the weight k satisfies the reverse Hölder inequality for r , that is,

(4.13)
( 

B
kr dσ

)1/r

≤ C(r ,τ)
 

B
kdσ .

Here, the constant C(r ,τ) → 1 as τ → 0.
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Proof. By the local version of John-Nirenberg inequality for doubling mea-
sures (see [ABKY11, Theorem 5.2]), we have

σ ({x ∈ B : | logk(x)− (logk)B| > λ}) ≤ C1e
−C2λ/τσ (B)

for all λ > 0, where the constants C1 and C2 depend on the doubling constant for
σ . Therefore,

 

B
e| logk−(logk)B | dσ

= 1
σ (B)

ˆ ∞

0
σ ({x ∈ B : e| logk(x)−(log k)B | > s})ds

≤ 1
σ (B)

ˆ 1

0
σ (B)ds

+ 1
σ (B)

ˆ ∞

0
σ ({x ∈ B : | logk(x)− (logk)B| > λ})eλ dλ

≤ 1+ C1

ˆ ∞

0
e−(C2/τ)λ+λ dλ

≤ 1+ Cτ,

if τ is sufficiently small (depending on the constant C2). Then, (4.10) follows
immediately.

Similarly, provided τ is small enough depending on p, we also have

(4.14)
 

B
e(1/(p−1))| log k−(logk)B | dσ ≤ 1+ Cpτ.

Henceforth, τ0 > 0 is chosen so that (4.14) holds with p = 2 and τ ≤ τ0. Let
q = p/(p − 1) be the Hölder conjugate of p. It follows that

 

B
kdσ ·

( 

B
k−q/p dσ

)p/q

=
 

B
elogk

dσ ·
( 

B
e−(1/(p−1)) log k

dσ
)p−1

=
 

B
elogk−(logk)B dσ ·

( 

B
e−(1/(p−1))(log k−(logk)B) dσ

)p−1

≤
 

B
e| logk−(logk)B | dσ ·

( 

B
e(1/(p−1))| log k−(logk)B | dσ

)p−1

≤ (1+ Cpτ)p,

that is, k ∈ Ap(σ ), where Ap is the Muckenhaupt class with power p > 1.
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Let g ≥ 0 be an arbitrary measurable function on B. We have

ˆ

B
g dσ ≤

(ˆ

B
gpkdσ

)1/p(ˆ

B
k−q/p dσ

)1/q

≤ (1+ Cpτ)σ (B)
(ˆ

B
kdσ

)−1/p(ˆ

B
gpkdσ

)1/p

.

In particular, for any Borel set E ⊂ B, by plugging in the above inequality g = χE ,
we get

σ (E)

σ (B)
≤ (1+ Cpτ)

(
ω(E)

ω(B)

)1/p

,

or equivalently,

ω(E)

ω(B)
≥ c(p,τ)

(
σ (E)

σ (B)

)p

with c(p,τ) = 1/(1 + Cpτ)p. The doubling property (4.12) follows by taking
E = 1

2B, p = 2, and τ = τ0.
Let r > 1; then, (4.14) applied to p = 1+1/r implies that for τ small enough

depending on r we have

 

B
kr dσ ≤ (1+ Crτ)er(logk)B .

Taking r -th root on both sides of the inequality and using (4.10), we get

( 

B
kr dσ

)1/r

≤ (1+ Crτ)1/r e(logk)B ≤ (1+ Crτ)1/r
 

B
kdσ ,

that is, k ∈ RHr(σ ), where RHr denotes weight that satisfies the reverse Hölder
inequality with power r > 1. !

After we establish the reverse Hölder inequality (4.13), one can show

(4.15)
( 

B

∣∣∣∣1− k
a

∣∣∣∣
2

dσ
)1/2

≤ C(‖ logk‖∗(4B))1/8 ≤ Cτ1/8,

where a = e
ffl

B logkdσ . For details of the proof we refer interested readers to [BH16,
Lemma 1.33].

The following result states that control on the oscillation of the logarithm of
the interior and exterior Poisson kernels provides control on the oscillation of the
unit normal.
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Theorem 4.12. Let Ω+ ⊂ Rn, Ω− = Rn \Ω+ be domains with common (topo-
logical ) boundary, ∂Ω+ = ∂Ω− ≡ ∂Ω. Assume that ∂Ω is (n − 1)-Ahlfors regular
and let X± ∈ Ω± be such that k± = dω±/dσ exist. Here, ω± = ωX±

± , where
ωX±
± is the harmonic measure for Ω± with pole at X±. Given ε > 0, there exists

κ1 > 0 depending on δ(X±), ε, n, and the Ahlfors regularity constant CA such that
if logk± ∈ BMOloc(σ ) with constant 0 < κ ≤ κ1, then ν ∈ BMOloc(σ ) with
constant at most ε. In particular, if logk± ∈ VMOloc(σ ), then ν ∈ VMOloc(σ ).

Remark 4.13. The proof of the above theorem yields a quantitative estimate
(see (4.32) and (4.33)).

Proof. Let A > 2 be a constant depending on dimension and the Ahlfors
regularity constant11 such that if x0 ∈ ∂Ω and r0 ∈ (0,diam∂Ω), then there
exists12 a dyadic cube Q as in Lemma B.2 such that

∆(x0, r0/A) ⊂ Q ⊂ ∆(x0, r0).

Let τ(p) be as in Lemma 4.11 such that (4.11) holds with power p =
1 + 1/(2(n − 1)). Suppose that logk± ∈ BMOloc(σ ) with BMOloc semi-norm
κ satisfying κ ∈ (0,κ1), where κ1 ≤ τ(p) will be determined after (4.31). No-
tice that in the case when logk± ∈ VMOloc(σ ), this holds for every κ > 0. Fix
B∗B(y0,4R) for some y0 ∈ ∂Ω and R ∈ (0,diam(∂Ω)/4), and set B̃ = 1

4B
∗.

Since logk± ∈ BMOloc(σ ) with constant κ, there exists a radius r0 = r0(τ(p),
B∗) < cmin{R,δ(X±)} (with c > 0 depending on dimension and Ahlfors di-
mension and Ahlfors regularity) such that

‖ logk‖∗(B(z0,2r0)) < κ, ∀z0 ∈ B∗ ∩ ∂Ω.

The proof of Lemma 4.11 establishes that ω± are doubling13 up to radius r0 on
balls centered on B∗ ∩ ∂Ω, with a doubling constant depending on n and CA.
Moreover, by choice of c and Lemma 4.3, the domains Ω± both admit an interior
corkscrew ball for every x ∈ B∗ ∩ ∂Ω up to radius r0. Thus, we record for later
use that, in the language of Appendix B, Ω satisfies the (x0,M0, r0)-DLTSCS14

for all x0 ∈ B̃.
Henceforth, x0 will denote an arbitrary point in B̃∩ ∂Ω. Let 1 < M <∞ and

θ ∈ (0,1) be determined later. For x ∈ B(x0, r0/(20A)) ∩ ∂Ω, let r ∈ (0,θr0)
be such that ∆ := ∆(x, r) ⊂ ∆∗ := ∆(x,Mr) ⊂ B(x0, r0/(5A)).

For any y,z ∈ ∆, we let y∗ and z∗ denote arbitrary points in the non-
tangential approach regions in Ω−, Γ−(y) ∩ B(y, r/2) and Γ−(z) ∩ B(z, r/2),

11We use A to simplify notation. In fact, we take A = C3 as in Lemma B.2 and as used in
Lemma B.4.

12See Remark B.3.
13Here, we have uniform control on the doubling constant by Lemma 4.11 and the choice of κ1.
14This is a local two-sided corkscrew condition; see Definition B.1.
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respectively. Following [BH16, Theorem 1.1], we first show

( 

∆

∣∣∣∣∇S1∆∗(z∗)−
 

∆
∇S1∆∗(y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

(4.16)

≤ C1

ω(B(x0, r0/(5A)))
·
(
r

r0

)1/2

· 1√
M
+ C2M

(n−1)/2κ1/8 + C3

M
,

where ω is the harmonic measure of Ω+ with pole X+, and where the constants
C1, C2, C3 > 0 depend only on n, the Ahlfors regularity constant CA, and δ(X±).
In particular, ω = k+ dσ . We decompose 1∆∗ as

1∆∗ =
[(

1− k
+

a

)
1∆∗

]
+
[
k+

a

]
−
[(
k+

a

)
1(∆∗)c

]
,

where a = ax,Mr = e
ffl

∆∗ logk± dσ . We want to estimate the lefthand side of (4.16)
by using this decomposition and the triangle inequality. This gives three terms,
which we denote as I, II, and III:

I =
( 

∆

∣∣∣∣∇S
[(

1− k
a

)
1∆∗

]
(z∗)

−
 

∆
∇S

[(
1− k

a

)
1∆∗

]
(y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

,

II =
( 

∆

∣∣∣∣∇S
[
k

a

]
(z∗)−

 

∆
∇S

[
k

a

]
(y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

,

and

III =
( 

∆

∣∣∣∣∇S
[(
k

a

)
1(∆∗)c

]
(z∗)

−
 

∆
∇S

[(
k

a

)
1(∆∗)c

]
(y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

.

For simplicity, we drop the super-index and write k = k+. We will leave the
estimate of I for last, as it requires the use of the localization Lemma B.4.

For II, we recall that k = k+ is the Poisson kernel for Ω with pole at X+.
Moreover, E(· − z∗) and E(· − y∗) are harmonic in Ω since z∗, y∗ ∈ Ω−, and
decay to 0 at infinity, and are therefore equal to their respective Poisson integrals
in Ω. Consequently,

(4.17) II ≤ 1
a

( 

∆

 

∆
|∇E(X+ − z∗)−∇E(X+ − y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

.

Note that, since y∗, z∗ ∈ B(x,2r) and |X+ − x| > r0,

|∇E(X+ − z∗)−∇E(X+ − y∗)| 2 r

rn0
.
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Then, continuing (4.17), we have, using (4.11) with power p = 1+ 1
2(n−1) ,

II 2 1
arn0

r ≈ σ (∆∗)
rn0 ω(∆∗)

r = σ (∆∗)
ω(B(x0, r0/(5A)))

ω(B(x0, r0/(5A)))
rn0 ω(∆∗)

r(4.18)

≤ C

ω(B(x0, r0/(5A)))

(
Mr

r0

)n−1 ( r0

Mr

)n−1/2 r

r0

≤ C

ω(B(x0, r0/(5A)))

(
r

r0

)1/2

· 1√
M
,

where C > 0 depends on n and the Ahlfors regularity constant.
For III, we use basic Calderón-Zygmund type estimates as follows. Let

∆j := ∆(x,2jr), Aj := ∆j \∆j−1,

so that

(4.19) III =
( 

∆

∣∣∣∣
 

∆

(
∇S

[(
k

a

)
1(∆∗)c

]
(z∗)

− ∇S
[(
k

a

)
1(∆∗)c

]
(y∗)

)
dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

=
( 

∆

∣∣∣∣
 

∆

ˆ

∂Ω\∆∗

[
∇E(z∗ −w)−∇E(y∗ −w)

]

× k(w)

a
dσ (w)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

≤
∑

{j|2j≥M}

( 

∆

[ 

∆

ˆ

Aj
|∇E(z∗ −w)−∇E(y∗ −w)|

× k(w)

a
dσ (w)dσ (y)

]2

dσ (z)
)1/2

2
∑

{j|2j≥M}

( 

∆

[ 

∆

ˆ

Aj

r

(2jr)n
k(w)

a
dσ (w)dσ (y)

]2

dσ (z)
)1/2

,

where we understand that, if diam(∂Ω) < ∞, the sums are finite and terminate
for 2jr ≥ diam(∂Ω).

III ≤
∑

{j|2j≥M}

( 

∆

[ 

∆

ˆ

Aj

r

(2jr)n
k(w)

a
dσ (w)dσ (y)

]2

dσ (z)
)1/2

(4.20)

2
∑

{j|M≤2j≤r0/(2r)}

rω(Aj)

(2jr)na
+

∑

{j|2j≥r0/(2r)}

rω(Aj)

(2jr)na

= IIIa + IIIb.
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To estimate IIIa and IIIb we use (4.10), the fact that Aj ⊂ ∆j (in IIIa), that ω is
a probability measure (in IIIb), and (4.11) again with p = 1+ 1/(2(n− 1)):

IIIa =
∑

{j|M≤2j≤r0/(2r)}

rω(Aj)

(2jr)na
(4.21)

2
∑

{j|M≤2j≤r0/(2r)}

rω(Aj)

(2jr)n
· σ (∆

∗)

ω(∆∗)

2
∑

{j|M≤2j≤r0/(2r)}

rσ (∆∗)
(2jr)n

·
ω(∆j)
ω(∆∗)

2
∑

{j|M≤2j≤r0/(2r)}

1
M
· (Mr)

n

(2jr)n
·
(

2jr
Mr

)n−1/2

2 1√
M

∑

{j|M≤2j≤r0/(2r)}
2−j/2 = C

M
,

IIIb =
∑

{j|2j≥r0/(2r)}

rω(Aj)

(2jr)na
(4.22)

2
∑

{j|2j≥r0/(2r)}

rω(Aj)

(2jr)n
· σ (∆

∗)

ω(∆∗)

2
∑

{j|2j≥r0/(2r)}

r

(2jr)n
· σ (∆

∗)

ω(∆∗)

2 r

rn0
· σ (∆∗)
ω(B(x0, r0/(5A)))

· ω(B(x0, r0/(5A)))
ω(∆∗)

2 1
M
·
(
Mr

r0

)n
· 1
ω(B(x0, r0/(5A)))

(
r0

Mr

)n−1/2

≤ C

ω(B(x0, r0/(5A)))
·
(
r

r0

)1/2

· 1√
M
.

As before, the constant C > 0 in (4.21) and (4.22) depends only on n and the
Ahlfors regularity constant. Combining (4.19), (4.20), (4.21), and (4.22), we
conclude that

(4.23) III ≤ C(n,CA)
M

+ C(n,CA)

ω(B(x0, r0/(5A)))
·
(
r

r0

)1/2

· 1√
M
.

The idea in estimating I is to approximate Ω, locally, by UR domains, so
that we may exploit Lemmas 4.8 and 4.9 on those approximate domains. Using
the fact that the (x0,M0, r0)-DLTSCS holds, we may invoke Lemma B.4 to con-
struct two UR “domains” T±Q ⊆ Ω±, where Q is a dyadic cube such that we have



Flatness and Oscillation 285

∆(x0, r0/(4A)) ⊂ Q ⊂ ∆(x0, r0/4), where the definition of A above allows us to
find such a cube. In particular,

∂T±Q ∩∆(x0, r0/(4A)) = ∆(x0, r0/(4A)),

and for Hn−1-almost every x ∈ ∆(x0, r0/(4A)), the unit outer normals νT±Q (x)
exist and satisfy

(4.24) νT±Q (x) = ±νΩ+(x).

For any open set U with Ahlfors regular boundary, define

SUf (X) :=
ˆ

∂U
E(X −y)f(y)dσ (y).

In our context, U is either Ω± or T±Q . The coincidence of ∂T±Q ∩∆(x0, r0/(4A))
and ∆(x0, r0/(4A)) allows us to conclude, for

f ∈ L2(∆(x0, r0/(4A))) with sptf ⊆ ∆(x0, r0/(4A)),

(4.25) SΩ+f (X) = SΩ−f (X) = ST±Qf (X),

for all X =∈ ∆(x0, r0/(4A)).
Recall

I =
( 

∆

∣∣∣∣∇S
[(

1− k
a

)
1∆∗

]
(z∗)

−
 

∆
∇S

[(
1− k

a

)
1∆∗

]
(y∗)dσ (y)

∣∣∣∣
2

dσ (z)
)1/2

,

where z∗ and y∗ are in non-tangential regions in Ω− over y,z ∈ ∂Ω. We want
to dominate∇S[(1−k/a)1∆∗](z∗) by a non-tangential maximal function in T−Q .
To this end, we make the observation that if r/r0 is sufficiently small (which we
may ensure by adjusting the value of θ), then for any y ∈ ∆, the non-tangential
cone Γ−(y)∩B(y, r/2) ⊂ T−Q , provided we take the constant K in the definition
of T±Q large enough depending on dimension and the Ahlfors regularity of ∂Ω15.
To see this, one needs to inspect the definition of WQ (see Appendix B), and note
that if Z ∈ Γ−(y) ∩ B(y,2r) then δ(Z) ∼ |Z − y| < 2r , and therefore Z is
inside a Whitney cube I for Ω− with

dist(I,y) ∼ /(I) ∼ δ(Z) < 2r 2 /(Q).
15This does not affect the validity of Lemma B.4.
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By choosing K sufficiently large, depending on allowable parameters, we can guar-
antee the existence of a cube Q′ ⊂ Q containing y ∈ Q′ with length /(Q′) ≈K
/(I). Hence, Z ∈ U−Q′ ⊂ T−Q . Moreover, in the construction of the Whit-
ney region UQ′ , int I∗ ⊂ UQ′ where I∗ = (1 + τ)I for some (small) parameter
τ > 0 (see Appendix B, and note this τ is unrelated to τ(p) above). This forces
dist(Z, ∂T−Q) <τ /(I) ∼ |Z −y|, and therefore,

Z ∈ Γβ,T−Q (y) := {Y ∈ T−Q : |Y −y| < (1+ β)dist(Y , ∂T−Q)},

where β = β(n,CA,θ)>τ 1. We conclude that

Γ−(y)∩ B(y, r/2) ⊂ Γβ,T−Q (y)∩ B(y, r/2).

With these observations in hand, we can estimate I. By (4.6) and (4.15),

I ≤ 2
( 

∆

∣∣∣∣Ñ
(
∇ST−Q

[(
1− k

a

)
1∆∗

])∣∣∣∣
2

dσ
)1/2

(4.26)

≤ C
(
σ (∆∗)
σ (∆)

)1/2( 

∆∗

∣∣∣∣1− k
a

∣∣∣∣
2

dσ
)1/2

≤ CM(n−1)/2(‖ logk‖∗(B(x0, r0)))
1/8 ≤ CM(n−1)/2κ1/8,

where Ñ is the non-tangential maximal function in T−Q with aperture β (which
dominates ST−Q [(1−k/a)1∆∗](y

∗) by the arguments in the preceding paragraph).
Note that C > 0 above depends only on β > 0, n, CA, and the UR constants of
∂Ω, which in turn depend only on n, CA, and δ(X±).

Putting (4.18), (4.23), and (4.26) together, we finally obtain (4.16). The
estimate analogous to (4.16) when y∗ and z∗ are in Γ+(y) ∩ B(y, r/2) and
Γ+(z) ∩ B(z, r/2) is also true by symmetry. It remains to use the jump relations
to get an estimate on the oscillation of unit outer normal. Here, we again use the
approximations T±Q . Applying the jump relation in Lemma 4.9 to T±Q , and using
(4.25), (4.24), and the containment Γ±(y)∩B(y, r/2) ⊂ Γβ,T±Q (y)∩B(y, r/2),
we obtain for Hn−1 almost every y ∈ ∆(x0, r0/(4A))

(4.27) νΩ+(y)1∆∗(y) = lim
Z→y

Z∈Γ+(y)

∇S1∆∗(Z)− lim
Z→y

Z∈Γ−(y)

∇S1∆∗(Z).

Here, we need to make the further observation that the principal value singular
integral operators TT±Q

16 in (4.7) and (4.8) have the property that TT+Qf = TT−Qf
whenever f ∈ L2(∆(x0, r0/(4A))) with sptf ⊆ ∆(x0, r0/(4A)). This is a conse-
quence of the definition of T and that

∂T+Q ∩ B(x0, r0/(4A)) = ∂T−Q ∩ B(x0, r0/(4A)).

16The operator TU is defined in the same way as SU .
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Taking nontangential limits17 in (4.16), and using (4.27), we obtain

( 

B(x,r)

∣∣∣∣νΩ+(y)−
 

B(x,r)
νΩ+(z)dσ (z)

∣∣∣∣
2

dσ (y)
)1/2

(4.28)

≤ C1

ω(B(x0, r0/(4A)))
·
(
r

r0

)1/2

· 1√
M
+ C2M

(n−1)/2κ1/8 + C3

M
,

for x ∈ ∂Ω ∩ B(x0, r0/(20A)) and 0 < r ≤ θr0. Here, as above, the constants
C1, C3 > 0 depend on n and CA, and C2 depends on n, CA, and δ(X±). No-
tice that we may apply the same argument to Ω− and logk− to get an analogous
estimate to (4.28).

We define a constant

(4.29) C4 =
C1

inf
x0∈B̃∩∂Ω

ω±(B(x0, r0/(5A)))
.

In fact, for each x0 ∈ B̃ ∩ ∂Ω, the harmonic measure ω±(B(x0, r0/(5A))) > 0
since σ ;ω±. Consider an arbitrary pair x0, x

′
0 ∈ B̃∩ ∂Ω such that |x0−x′0| <

r0/(5A). By the doubling property of ω± (up to radius r0), we have

ω±(B(x0, r0/(5A))) ≤ω±(B(x′0, r0)) ≤ Cω±(B(x′0, r0/(5A))).

Since B̃ ∩ ∂Ω is compact, it can be covered by finitely many balls centered on
B̃ ∩ ∂Ω with radii r0/(5A). In particular, the denominator in (4.29) is a strictly
positive constant depending on the domains Ω± and B̃, and thus the constant C4

is well defined. Notice that the same argument applied to logk− combined with
(4.28) and (4.29) yields

( 

B(x,r)

∣∣∣∣νΩ±(y)−
 

B(x,r)
νΩ±(z)dσ (z)

∣∣∣∣
2

dσ (y)
)1/2

(4.30)

≤ C4

(
r

r0

)1/2

· 1√
M
+ C2M

(n−1)/2κ1/8 + C3

M
,

where C4 = C4(n,CA, B̃,Ω±). For ε > 0 sufficiently small (satisfying C3ε ≤ 4), we
choose the constant M such that 1/

√
M = ε/4 and C3/

√
M ≤ 1; we also choose

the constant θ such that Mθ < 1/(10A) and C4θ1/2 ≤ 1. Then, (4.30) becomes

( 

B(x,r)

∣∣∣∣νΩ±(y)−
 

B(x,r)
νΩ±(z)dσ (z)

∣∣∣∣
2

dσ (y)
)1/2

(4.31)

≤ ε

2
+ C5ε

−(n−1)κ1/8,

17This is justified by Lemma 4.8 and the dominated convergence theorem.
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where C5 depends on n and CA. Note that in the above estimate, only θ depends
on B̃. Thus, perhaps further shrinking κ1 (depending on ε, n, CA, and δ(X±),
and independent of B̃), (4.31) becomes

( 

B(x,r)

∣∣∣∣νΩ±(y)−
 

B(x,r)
νΩ±(z)dσ (z)

∣∣∣∣
2

dσ (y)
)1/2

≤ ε

2
+ C5(n,CA)ε

−(n−1)κ1/8
1 ≤ ε.

To sum up, we have shown that, given ε > 0 there exists a small constant κ1

depending on ε, n, CA, and δ(X±) such that the following holds: for every ball
B∗ centered on the boundary with radius less than 1

4 diam(∂Ω), if there is a radius
r0 = r0(B∗) such that

(4.32) sup
x0∈B∗∩∂Ω

‖ logk±‖∗(B(x0, r0)) ≤ κ ≤ κ1,

then we can find θ ∈ (0,1) depending on n, CA, the domains Ω±, and B̃ := 1
4B

∗

so that

(4.33) sup
x0∈B̃∩∈∂Ω

‖ν‖∗(B(x0,θr0)) ≤ ε.

Thus, ν ∈ BMOloc(σ )with constant at most ε (see Remark 2.11). This concludes
the proof of Theorem 4.12. !

4.3. Free boundary results. In this section we combine Theorem 4.12 with
Corollaries 3.10 and 3.11 to obtain information about the local geometry of a
domain (with minimal hypothesis) from the local oscillation of the logarithm of
the interior and exterior Poisson kernels.

Theorem 1.1. Let n ≥ 3 and suppose Ω+ ⊂ Rn andΩ− = Rn\Ω+ are domains
satisfying ∂Ω := ∂Ω+ = ∂Ω−, and that ∂Ω is (n − 1)-Ahlfors regular. Then, the
following are equivalent:

(i) Ω± are both vanishing chord-arc domains with ν ∈ VMOloc(σ ) (see Defi-
nition 2.19).

(ii) There exist X+ ∈ Ω+ and X− ∈ Ω− such that k+ = dωX+
+ /dσ and k− =

dωX−
− /dσ exist and logk± ∈ VMOloc(dσ ).

Proof. (i) implies (ii) is the main theorem in [KT03]. That (ii) implies (i) fol-
lows from Theorem 4.12. Indeed, by Corollary 3.11, to show that Ω± are vanish-
ing chord-arc domains it suffices to prove that ν ∈ VMOloc(dσ ). Theorem 4.12
asserts this is the case when logk± ∈ VMOloc(dσ ). !

The following is a quantified version of Theorem 1.1 which results from the
remark at the end of the proof of Theorem 4.12.
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Theorem 4.14 (Quantified version of Theorem 1.1). Let Ω+ ⊂ Rn and
Ω− = Rn \Ω+ be domains with common (topological ) boundary ∂Ω = ∂Ω+ = ∂Ω−.
Assume that ∂Ω is (n − 1)-Ahlfors regular, and let X± ∈ Ω± be such that k± =
dωX±

± /dσ exist. Given δ > 0 there exists κ = κ(δ, n, CA,δ(X±)) > 0 such that
if logk± ∈ BMOloc(σ ) with constant less than κ, then Ω+ and Ω− are δ-chord-arc
domains.

Conversely, for every κ > 0 there exists δ = δ(η, n, CA) > 0 if ν ∈ BMOloc(σ )
with constant less than δ; then, logk± ∈ BMOloc(σ ) with constant less than κ.

Proof. This is a combination of Theorem 4.12, Corollary 3.10, and the work
in [KT99]. !

APPENDIX A. PROOF OF THEOREM 3.9

In this section we prove Theorem 3.9. Recall, roughly speaking, that Theorem 3.9
says small excess implies flatness in the sense of Reifenberg. We will show Theorem
3.9 as a corollary of the height bound, Theorem A.2. Many of the techniques,
included for completeness, are standard. Another consequence of Theorem A.2 is
a Lipschitz approximation theorem, Theorem A.4, which is proven at the end of
this section. It is of independent interest and is not used in this paper.

The next lemma is contained in [Mag12, Lemma 22.11]. Here, we recall
some notation introduced in other sections. We define q(x) = 〈x, en〉, p(x) =
x − q(x)en, Cr = {|q(x)| < r}∩ {|p(x)| < r}, Dr = p(Cr ) and D = p(C1).
We consider D,Dr to be subsets of Rn−1. Finally, when the set E is clear from
context, recall en(x, r) = e(E,x, r , en) and if x = 0, en(r) = e(E,0, r , en).

Lemma A.1 (Excess Measure). If E ⊂ Rn is a set of locally finite perimeter in
Rn with 0 ∈ ∂E, such that for some t0 ∈ (0,1), (3.11), (3.12), and (3.13) are each
satisfied with r = 1 and ν = en, then writing M = C1 ∩ ∂∗E it follows that, for any
Borel G ⊂ D,

Hn−1(G) =
ˆ

M∩p−1(G)
〈νE, en〉dHn−1.

Moreover, for every ϕ ∈ C0
c (D) and t ∈ (−1,1),

ˆ

D
ϕ dx =

ˆ

M
ϕ(p(x))〈νE(x), en〉dHn−1

and
ˆ

Et∩D
ϕ dx =

ˆ

M∩{q(x)>t}
ϕ(p(x))〈νE(x), en〉dHn−1 ∀ t ∈ (−1,1)

where Et = {z ∈ Rn−1 | (z, t) ∈ E}. In fact, the set function

ζ(G) =Hn−1(M ∩ p−1(G))−Hn−1(G)
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defines a Radon measure in D, and is called the excess measure of E over D since
ζ(D) = e(E,0,1, en).

Theorem A.2 (Height bound: cf. [Mag12, Theorem 22.8]). Given CA ≥ 1,
r0 > 0 and n ≥ 2, there exist constants ε1 = ε(n,CA) > 0 and C1 = C(n,CA) ≥ 1
such that if E ⊂ Rn is Ahlfors regular with constant CA up to scale 4r0 and x0 ∈ ∂E
satisfies

en(x0,4r0) ≤ ε1,

then

1
r0

sup{|q(x0)− q(y)| : y ∈ C(x0, r0, en)∩ ∂E} ≤ C1en(x0,4r0)
1/(2(n−1)).

Proof. By Remark 3.5, we let x0 = 0 and 2r0 = 1. We then want to show that
|q(x)| ≤ c0(n)en(2)1/(2(n−1)) whenever x ∈ C1/2 ∩ ∂E.

First, assume ε1 ≤ min{ω(n, 1
4 , CA),2

−nHn−1(D)}, with ω(n, 1
4 , CA) from

Lemma 3.8. Then, by Lemma 3.8, |q(x)| ≤ 1
4 whenever x ∈ C1 ∩ ∂∗E =: M ,

and moreover E satisfies the hypotheses of Lemma A.1 with t0 = 1
4 . Therefore,

(A.1) 0 ≤Hn−1(M)−Hn−1(D) ≤ en(1) ≤ 2n−1en(2)

and
(A.2)

0 ≤Hn−1(M ∩ {q(x) > t})−Hn−1(Et ∩D) ≤ 2n−1en(2) ∀ t ∈ (−1,1).

Now, we consider f : (−1,1)→ [0,Hn−1(M)] defined by

f (t) =Hn−1(M ∩ {q(x) > t}).

By Lemma 3.8

f (t) =





Hn−1(M) −1 < t < −1
4
,

0
1
4
< t < 1.

Since f is decreasing and right continuous, there exists |t0| < 1
4 such that





f (t) ≤ Hn−1(M)

2
t ≥ t0,

f (t) >
Hn−1(M)

2
t < t0.

(A.3)

Claim A.3. If x ∈ C1/2 ∩ ∂E, then |q(x) − t0| ≤ c(n)en(2)1/(2(n−1)). In
particular, since 0 ∈ ∂E, this ensures |t0| ≤ c(n)en(2)1/(2(n−1)).
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The claim will be verified by showing that q(x) − t0 ≤ c(n)en(2)1/(2(n−1)),
then considering Rn \ E to get |q(x) − t0| ≤ c(n)en(2)1/(2(n−1)). Since ∂E =
sptµE = ∂∗E and the projection function q is continuous, it suffices to prove the
estimate for x ∈ C1/2 ∩ ∂∗E. To bound q(x) − t0, we first show there exists
t1 with q(x) − t1 ≤ c(n)en(2)1/(2(n−1)) and then that t1 − t0 satisfies a similar
upper-bound.

By choice of ε1,
√
en(2) <

1
2CA

≤ Hn−1(M)

2
.

So, we choose t1 ∈ (t0, 1
4) such that

(A.4)

{
f (t) ≤

√
en(2) ∀ t ≥ t1,

f (t) >
√
en(2) ∀ t < t1.

To see q(x) − t1 ≤ c(n)en(2)1/(2(n−1)) for all x ∈ C1/2 ∩ ∂∗E, note if
y ∈ C1/2 ∩ ∂∗E and q(y) > t1, then q(y) − t1 < 1

2 since t1 ∈ (t0,
1
4) and

|q(y)| < 1
4 . In particular, (q(y)−t1) is a small enough scale for Ahlfors-regularity

to hold. Hence,

(A.5) C−1
A (q(y)− t1)n−1 ≤ |µE|(B(y, q(y)− t1)).

Since x ∈ B(y, q(y)− t1) implies q(y)−q(x) ≤ |x−y| < q(y)− t1 and since
y ∈ C1/2 with q(y)− t1 < 1

2 ,

(A.6) B(y, q(y)− t1) ⊂ {x ∈ C1 | q(x) > t1}.

Thus, B(y, q(y)− t1)∩ ∂∗E ⊂ M ∩ {q > t1}. So, (A.5) and (A.6) imply

C−1
A (q(y)− t1)n−1 ≤ |µE|(C1 ∩ {q(x) > t1})

=Hn−1(M ∩ {q(x) > t1}) = f (t1).

By the choice of t1 in (A.4), under the standing assumption q(y) − t1 > 0 we
have

(A.7) q(y)− t1 ≤ c(n,CA)en(2)1/(2(n−1)),

as desired. Note, (A.7) is trivially true when q(y) ≤ t1.
Next, we show that t1 − t0 ≤ cnen(2)1/(2(n−1)), which verifies Claim A.3.

We will use a slicing result (see [Mag12, Theorem 18.11]) which ensures that for
almost every t ∈ (−1,1),

Hn−2((∂∗Et)∆(∂∗E)t) = 0,
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where

(∂∗E)t = {z ∈ Rn−1 : (z, t) ∈ ∂∗E} ⊂ Rn−1

Et = {z ∈ Rn−1 | (z, t) ∈ E} ⊂ Rn−1.

Furthermore, the co-area formula ensures that for any g : Rn → [0,∞] a non-
negative Borel function,

ˆ

∂∗E
g
√

1− 〈νE, en〉2 dHn−1 =
ˆ

R

(ˆ

(∂∗E)t
g dHn−2

)
dt.

In particular, realizing the square-root term on the left is just the Jacobian of the
projection p, and choosing the function g = χC1

, recalling that C1 ∩ ∂∗E ⊃ M is
Ahlfors regular up to scale 2,

ˆ 1

−1
Hn−2

(
(∂∗E)t ∩D

)
dt

=
ˆ

M

√
1− 〈νE, en〉2 dHn−1

≤ (2Hn−1(M))1/2
(ˆ

M
(1− 〈νE, en〉)dHn−1

)1/2

≤ c(n,CA)
√
en(2).

We extract from the above that

(A.8)
ˆ 1

t0
Hn−2(∂∗Et ∩D)dt ≤

ˆ 1

−1
Hn−2(∂∗Et ∩D)dt ≤ c(n)

√
en(2).

For almost all t ∈ [t0,1) it follows from

Hn−1(Et ∩D) ≤Hn−1(M ∩ {q(x) > t}),

(A.1), (A.2), and (A.3) that

Hn−1(Et ∩D) ≤
Hn−1(M)

2
≤ H

n−1(D)

2
+ 2n−2en(2) ≤

3
4
Hn−1(D),

where we used that en(2) ≤ 2−nHn−1(D).
Applying the relative isoperimetric inequality (see [Mag12, (12.45)]) in Rn−1

to the set Et ∩D, we have

Hn−2(D ∩ ∂∗Et) ≥ c(n)Hn−1(Et ∩D)(n−2)/(n−1)(A.9)

for almost every t ∈ [t0,1).
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Then, (A.8) and (A.9) together imply (where the constant c(n) can change in
every instance, but only depends on n)

ˆ t1

t0
Hn−1(Et ∩D)(n−2)/(n−1)

dt(A.10)

≤ c(n)
ˆ 1

t0
Hn−1(Et ∩D)(n−2)/(n−1)

dt ≤ c(n)
√
en(2).

Finally, (A.2) and (A.4) yield, for t < t1,

Hn−1(Et ∩D) ≥Hn−1(M ∩ {q(x) > t})− 2n−1en(2)

≥
√
en(2)− 2n−1en(2) ≥ c(n)

√
en(2),

which combined with (A.10) ensures

(t1 − t0)en(2)(n−1)/(2(n−1))−1/(2(n−1))

= (t1 − t0)
√
en(2)

(n−2)/(n−1)
≤ c(n)

√
en(2),

so that t1 − t0 ≤ c(n)en(2)1/(2(n−1)) as desired. !

We are now ready to prove Theorem 3.9 which first appears in Section 3
above. We restate it here for convenience.

Theorem. Fix CA ≥ 1, r0 > 0, and n ≥ 2. Let ε1 = ε(CA,n) > 0 be as in
Theorem A.2. If E ∈A(CA, 4r0) and x0 ∈ ∂E satisfies

e(E,x0,2r ,ν) ≤ ε1

for some ν ∈ Sn and 0 < r < 2r0, then

{
x ∈ C(x0, r ,ν)∩ E |(A.11)

〈x − x0,ν〉 > rC1e(E,x0,2r ,ν)1/(2(n−1))
}
=∅

and {
x ∈ C(x0, r ,ν)∩ Ec |(A.12)

〈x − x0,ν〉 < −rC1e(E,x0,2r ,ν)1/(2(n−1))
}
=∅.

Proof of Theorem 3.9. We will verify (A.11), and (A.12) follows similarly. By
translation and rotation, without loss of generality we suppose x0 = 0 and ν = en.

Suppose (A.11) fails. Then, there exists

x ∈ Cr ∩ E with q(x) > rC1en(2r)1/(2(n−1)).
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However, ε1 ≤ ω(n, 1
4 , CA) guarantees that (3.12) holds with t0 = 1

4 . However,
(3.12) guarantees that there exists some y ∈ Cr ∩Ec with q(x) < q(y) < r . But
then, there exists z ∈ ∂E which lies on the line segment connecting x and y . In
particular, q(z) > q(x) > rC1en(2r)1/(2(n−1)) contradicting Theorem A.2. !

The following theorem is another consequence of the height bound, Theo-
rem A.2. Hereafter, ∇′ denotes the gradient in Rn−1.

Theorem A.4 (Lipschitz function approximation: cf. Theorem 23.7 in
[Mag12]). There exist positive C3 = C(n,CA), ε3 = ε(n,CA), δ0 = δ(n,CA),
and L = L(n,CA) < 1 with the following properties. If E ∈ A(CA,13r) and
en(x0,13r) ≤ ε3 with x0 ∈ ∂E, then for M = C(x0, r ) ∩ ∂E and for M0 =
{y ∈ M | sup0<s<8r en(y, s) < δ0} there is u : Rn−1 → R with Lip(u) ≤ L and

sup
Rn−1

|u|
r
≤ C3en(x0,13r)1/(2(n−1))

such that M0 ⊂ M ∩ Γ where Γ = x0 + {(z,u(z)) | z ∈ Dr}. Furthermore,

Hn−1(M∆Γ )
rn−1

≤ C3en(x0,13r),

1
rn−1

ˆ

Dr
|∇′u|2 ≤ C3en(x0,13r),

and

dist(x, (p(x),u(p(x))))(A.13)

= |q(x) −u(p(x))| ≤ 2Ldist(p(x),p(M0)) ∀x ∈M.

In fact, (A.13) ensures there exist Lipschitz functions u± defined by

u+(x) =




u(x) x ∈ p(M0),

inf
y∈p(M0)

u(y)+ L|x − y| x ∈ D \ p(M0),
(A.14)

u−(x) =





u(x) x ∈ p(M0),

sup
y∈p(M0)

u(y)− L|x − y| x ∈ D \ p(M0),(A.15)

with the property that

(A.16) u−(p(x)) ≤ q(x) ≤ u+(p(x)) ∀x ∈ M.

Proof. Step 1: Up to replacing E with Ex0,r and correspondingly replacing u
with ur(z) = r−1u(rz), we can reduce to proving that if E ∈ A(CA,13) with
0 ∈ ∂E, if

(A.17) M = C ∩ ∂E, M0 = {y ∈M | sup
0<s<8

en(y, s) < δ0(n,CA)},
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and if en(0,13) ≤ ε3, then there exists a Lipschitz function u : Rn−1 → R with
Lip(u) ≤ L < 1 such that

(A.18) sup
Rn−1

|u| ≤ C3en(0,13)1/(2(n−1)),

such that M0 ⊂ M ∩ Γ where

(A.19) Γ = {(z,u(z)) | z ∈ D}.

Furthermore,

Hn−1(M∆Γ ) ≤ C3en(0,13)(A.20)

and
ˆ

D
|∇′u|2 ≤ C3en(0,13).(A.21)

By Theorem A.2 it follows that

(A.22) sup{|q(x)| : x ∈ C2 ∩ ∂E} ≤ C1en(0,13)1/(2(n−1)).

By choosing ε3 ≤ ε1 ≤ ω(n, 1
4 , CA), E satisfies the hypotheses of Lemma 3.8.

Consequently, Lemma A.1 and (3.8) imply

0 ≤Hn−1(M ∩ p−1(G))−Hn−1(G) ≤ en(0,1) ≤ 13n−1en(0,13),

for every Borel set G ⊂ D. Meanwhile, Theorem 3.9 ensures

{
x ∈ C2 | q(x) < −

1
4

}
⊂ C2 ∩ E ⊂

{
x ∈ C2 | q(x) <

1
4

}
.

Step 2: We show that M0 is contained in the graph of a Lipschitz function u,
satisfying (A.18) and (A.20). In order to create the Lipschitz function, we first
need to knowM0 is non-empty. This follows from a covering argument done later
in more detail in (A.27).

Define ‖·‖ = max{|p(·)|, |q(·)|}. Then, C(y, s) = {z ∈ Rn | ‖z−y‖ < s}.
For fixed y ∈ M0 and x ∈ M , consider F = Ey,‖x−y‖. Notably, ‖x − y‖ < 2.
Since y ∈ M0 and 4‖x −y‖ < 8 it follows from (3.7) and (A.17) that

en(F,0,4) = en(E,y,4‖x − y‖) ≤ δ0.

Thus, choosing δ0 ≤ ε1 allows us to apply Theorem A.2 to F ∈ A(CA,4) and
conclude that

sup{|q(w)| : w ∈ C ∩ ∂F} ≤ C1en(F,0,4)1/(2(n−1)) ≤ C1δ
1/(2(n−1))
0 .
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Applying this height bound to the specific point w = (x −y)/‖x −y‖ we find

|q(x)− q(y)| ≤ C0(n)δ
1/(2(n−1))
0 ‖y − x‖.(A.23)

If we now define L = C1δ
1/(2(n−1))
0 and choose δ0 so small that L < 1, it follows

from (A.23) that

|q(x)− q(y)| < ‖x −y‖,

which ensures that ‖x −y‖ = |p(x) − p(y)|, and hence (A.23) can be written

|q(x)− q(y)| ≤ L|p(x)− p(y)|, ∀y ∈M0, x ∈ M,(A.24)

which implies that p|M0 is invertible. Define u : p(M0)→ R such that u(p(x)) =
q(x) for every x ∈M0. Evidently, (A.24) ensures u satisfies

|u(p(x))−u(p(y))| ≤ L|p(x)− p(y)|, ∀x,y ∈M0.

Since M0 ⊂ M , it follows from (A.22) that

(A.25) |u(p(x))| = |q(x)| ≤ C1en(0,13)1/(2(n−1)), ∀x ∈ M0.

Via Kirzbraun’s theorem and truncation we extend u from p(M0) to Rn−1

with Lipschitz constant L < 1 such that the L∞-bound from (A.25) holds on all of
Rn−1, which verifies (A.18). The definition of u on p(M0) guaranteesM0 ⊂M∩Γ
where Γ is as in (A.19).

Next, we show (A.20). By definition of M0, for every y ∈ M \M0 there exists
sy ∈ (0,8) with

(A.26) δ0s
n−1
y <

ˆ

C(y,sy)∩∂E

|νE − en|2
2

dHn−1.

Let F be the set of all balls B(yk,
√

2sk) centered on M \M0 satisfying (A.26)
of radius at most 8

√
2. Each ball is contained in C1+8

√
2 ⊂ C13. By Besicovitch’s

covering theorem (see [EG92, Theorem 2, Section 1.5.2]) we partitionF into Nn
disjoint families of balls Gj. Then, there exists j such that

Hn−1(M \M0) ≤ Nn
∑

B(yk,sk)∈Gj
Hn−1((M \M0)∩ B(yk,

√
2sk))

≤ Nn
∑

k∈N
Hn−1(M ∩ B(yk,

√
2sk))

≤ NnCA2(n−1)/2
∑

k∈N
sn−1
k .
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Since C(yk, sk, en) ⊂ B(yk,
√

2sk), the family of cylinders are also mutually dis-
joint. Thus, (A.26) combined with the preceding computation yields

Hn−1(M \M0) ≤ C
∑

k∈N
sn−1
k(A.27)

≤ C

δ0

∑

k

ˆ

C(yk,sk)

|νE − en|2
2

dHn−1

≤ C

δ0
en(0,13).

Keeping in mind that δ0 < min{C−2(n−1)
1 , ε1}, if ε3 is small enough that δ0 ≥

Cε3/Hn−1(D) it follows that M0 is non-empty. This also adds an additional
constraint on ε3. A consequence of (A.27) and M \ Γ ⊂ M \M0 is

(A.28) Hn−1(M \ Γ ) ≤ Cen(0,13).

To finish verifying (A.20) it remains to bound Hn−1(Γ \M).
Indeed, Lip(u) ≤ 1 and M0 ⊂ Γ together ensure

Hn−1(Γ \M) ≤
√

1+ |∇′u|2Hn−1(p(Γ \M))

≤
√

2Hn−1(M ∩ p−1(p(Γ \M))).

But,M∩p−1
(
p(Γ \M)

)
⊂ M\Γ , so by the bound in (A.28), we have the necessary

bound on Hn−1(Γ \M), verifying (A.20) with a constant we denote as C3.

Step 3: We verify (A.21). The first necessary observation is to note that for almost
every x ∈ M ∩ Γ ,

(A.29) νE(x) = λ(x)
(−∇′u(p(x)),1)√
1+ |∇′u(p(x))|2

where λ(x) ∈ {−1,1}. Since |νE − en|2 = |p(νE)|2, (A.29) implies

en(0,1) ≥
1
2

ˆ

M∩Γ
|p(νE)|2 dHn−1

= 1
2

ˆ

M∩Γ

|∇′u(p(x))|2
1+ |∇′u(p(x))|2 dHn−1(x)

= 1
2

ˆ

p(M∩Γ)

|∇′u(z)|2√
1+ |∇′u(z)|2

dHn−1(z).

Since Lip(u) < 1 it follows that

(A.30)
ˆ

p(M∩Γ)
|∇′u(z)|2 ≤ 23/2en(0,1).
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On the other hand, Lip(u) < 1 and (A.20) imply

(A.31)
ˆ

p(M∆Γ)
|∇′u|2 ≤Hn−1(p(M∆Γ )) ≤Hn−1(M∆Γ ) ≤ C3en(0,13).

As en(0,1) ≤ 13n−1en(0,13), (A.30) and (A.31) together guarantee (A.21).

Step 4 : Note that (A.24) and the definition of u± in (A.14) and (A.15) ensure
(A.16) holds. Thus, we conclude by showing (A.13). In fact, if M0 were closed,
then (A.24) would immediately verify (A.13).

In caseM0 is not closed, fix ε > 0 small. For x ∈ M \M0 choose y ∈M0 such
that dist(p(x),p(y)) ≤ dist(x,p(M0))+ ε. Then,

|q(x)−u(p(x))| ≤ u+(p(x))−u−(p(x))
≤ (u(p(y))+ L|p(x)− p(y)|)− (u(p(y))

− L|p(x)− p(y)|)
≤ 2L|p(x)− p(y)|
≤ 2Ldist(x,p(M0))+ 2Lε.

Taking ε → 0 verifies (A.13). !

APPENDIX B. APPROXIMATION OF UR DOMAINS WITH

DOUBLY LOCAL TWO-SIDED CORKSCREWS

In this appendix we will build UR domains18 which (locally) approximate open
sets satisfying a (doubly) local two-sided corkscrew (DLTSCS) condition with
Ahlfors regular boundary. This will allow us to directly use the work of [HMT10]
on singular integrals on UR domains.

Definition B.1 (Doubly local two-sided corkscrew condition). We let
R0 ∈ (0,∞),M0 ≥ 2, and x0 ∈ Rn. We say an open setΩ ⊂ Rn with x0 ∈ ∂Ω sat-
isfies the (x0,M0, R0)-doubly local two-sided corkscrew condition or (x0,M0, R0)-
DLTSCS condition, if for every x ∈ B(x0, R0)∩ ∂Ω and r ∈ (0, R0) there are two
points X1, X2 so that B(X1, r/M0) ⊂ B(x, r)∩Ω and B(X2, r/M0) ⊂ B(x, r)\Ω̄.

The first step in the construction is to introduce the appropriate notion of
boundary “cubes” for sets with (n − 1)-dimensional Ahlfors regular boundary.
These constructions were introduced in the work of David [Dav88] and were
refined by Christ [Chr90]. The dyadic “families” built later by Hytönen and
Kairema in [HK12] are better adapted to our needs; thus, we describe them below.

Lemma B.2 (Dyadic cubes [Dav88, Chr90, HK12]). Suppose E ⊂ Rn is an
(n− 1)-dimensional, closed Ahlfors regular set. Then, there exist N, a0, γ, C2, and

18Recall that in [HMT10], the authors use the word domain to mean an open set; we have adopted
this convention only in the context of “UR domains”.
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C3 depending on n and the Ahlfors regularity constant such that the following holds.
For each t ∈ {1, . . . , N} there exists a collection of Borel sets (“cubes” )

Dtk(E) := Dtk := {Qkj ⊂ E | j ∈ Ik},

where Ik denotes some (possibly finite) index set depending on k, satisfying the follow-
ing:

(i) E =
⋃
j Q

k
j for each k ∈ Z.

(ii) If m ≥ k then either Qmi ⊂ Qkj or Qmi ∩Qkj =∅.
(iii) For each (j, k) and each m < k, there is a unique i such that Qkj ⊂ Qmi .
(iv) diam(Qkj ) ≤ C22−k.
(v) Each Qkj contains some “surface ball”

∆(xkj , a02−k) := B(xkj , a02−k)∩ E.

(vi) Hn−1({x ∈ Qkj : dist(x, E \Qkj ) ≤ 52−k}) ≤ C25γHn−1(Qkj ), for all
k, j and for all 5 ∈ (0, a0).

(vii) For every surface ball ∆(x, r) = B(x, r)∩ E, x ∈ E, and r ∈ (0,diamE)
there exists t and Q ∈ Dt :=

⋃
kD

t
k with B ⊂ Q and diam(Q) ≤ C3r .

If Q ∈ Dtk for some t ∈ {1, . . . , N} and k ∈ Z we set /(Q) = 2−k. Evidently,
diam(Q) ≈ /(Q), provided 2−k 2 diam(E)19, and we refer to /(Q) as the “side
length” of Q.

Remark B.3. When we use these dyadic cubes we always start by knowing
that the DLTSCS condition holds on some ball B(x0, R0). The flexibility of the
families (the index t above) allows us to use property (vii) to find a cube Q such
that B(x0, C

−1
3 R0)∩ ∂Ω ⊂ Q ⊂ B(x0, R0)∩ ∂Ω.

From this point onward, we work with E ⊂ Rn, an (n − 1)-dimensional
Ahlfors regular set (E will eventually be the boundary of an open set) and a par-
ticular dyadic grid D := Dt for some t to be chosen when needed to ensure the
existence of a cube as in Remark B.3. There will be no constants that depend on
t.

For E ⊂ Rn an (n − 1)-dimensional Ahlfors regular set, we denote by W =
W (Ec) the collection of (closed) n-dimensional dyadic Whitney cubes of Rn \E;
that is, the collectionW = {I} form a pairwise non-overlapping (their boundaries
may intersect) covering of Rn \ E with the property that

4 diam(I) ≤ dist(4I, E) ≤ dist(I, E) ≤ 40 diam(I)

(see [Ste70, Chapter VI]). Moreover, whenever I1, I2 ∈W with I1 ∩ I2 ≠ ∅, we
have diam(I1) ≈ diam(I2). For I ∈W we let /(I) denote the side length of I.

19We ignore the cubes for which 2−k > diam(E), because (v) implies that eventually Dtk consists
of a single cube if diam(E) <∞ and k is sufficiently large.
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Now we relate these two notions of cubes to form Carleson and Whitney-
type regions associated with each boundary cube Q. These are almost exactly as
in [HM14]20.

We let K > 1 be a large parameter, and for Q ∈ D(E) we define

WQ :=WQ(K)

:= {I ∈W (Ec) | K−1/(Q) ≤ /(I) ≤ K/(Q), dist(I,Q) ≤ K/(Q)}.

Since E is Ahlfors regular, one can show that WQ is non-empty provided K is
chosen large enough. We do not fix K at this point because we will eventually set
E = ∂Ω and want to choose K to take advantage of the existence of the (local)
corkscrew points afforded by the DLTSCS condition.

Next, we fix τ a small parameter depending on dimension so that the (1+τ)-
dilates of I ∈W , I∗ := I∗(τ) = (1+ τ)I maintain the Whitney property

/(I) ≈ /(I∗) ≈ dist(I∗, E) ≈ dist(I, E)

and I∗ meets J∗ if and only if I ∩ J ≠ ∅. We also may ensure (by choice of τ
small) that if I ∩ J ≠∅ and I ≠ J then I∗ ∩ ( 3

4J) =∅.
Finally, we define the Whitney regions relative to Q

UQ(K) :=
⋃

I∈WQ(K)

I∗(B.1)

and the Carleson boxes relative to Q

TQ(K) := int
( ⋃

Q′∈DQ
UQ′(K)

)
,(B.2)

where DQ := {Q′ ∈ D : Q′ ⊆ Q}.
Now we are ready to state our approximation lemma.
Lemma B.4. Let M0 ≥ 2 and R0 > 0. If Ω ⊂ Rn is an open set with (n− 1)-

dimensional Ahlfors regular boundary ∂Ω satisfying ∂∗Ω = ∂Ω with x0 ∈ ∂Ω such
that Ω satisfies the (x0,M0,2R0)-DLTSCS condition, then there exist K > 1 and
M ′

0 ≥ M0 depending on n, R0, M0, and the Ahlfors regularity constant such that the
following holds.

Let E = ∂Ω, D(E), W = W (Ec), and so on be as above. Suppose Q ∈ Dt for
some t such that B(x0, C

−1
3 R0)∩ ∂Ω ⊆ Q ⊆ B(x0, R0)

21. Then, the sets

T+Q := T+Q(K) := TQ(K)∩Ω and T−Q := T−Q(K) := TQ(K)∩ (Ω̄)c

20The difference here is that the regions are not “augmented” by exploiting connectivity which was
present in [HM14].

21See Remark B.3.
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are non-empty. Also, they satisfy the (M ′
0,/(Q))-two sided corkscrew condition (see

Definition 2.13) and ∂T±Q are (n − 1)-Ahlfors regular with constant depending on
M0, R0, and the Ahlfors regularity constant for ∂Ω. In particular, T±Q are UR domains
with constants depending on n, R0, M0, and the Ahlfors regularity constant for ∂Ω22,
and ∂T±Q ∩Q = Q. Moreover, for Hn−1-almost every x ∈ Q the measure theoretic
outer normals to T±Q , denoted by νT±Q (x), exist and satisfy νT±Q(x) = ±νΩ(x).

Proof. Fix Q ⊆ B(x0, R0). Choose K big enough to ensure that for Q′ ∈ DQ
with Q′ ⊆ B(x0, R0) the sets

U+Q′ := U+Q′(K) := UQ′(K)∩Ω and U−Q′ := U−Q′(K) := UQ′(K)∩ (Ω̄)c

are non-empty. To see that such a choice (depending on M0, R0, and the Ahlfors
regularity constant for ∂Ω) exists, we note that if x ∈ Q′ ⊆ B(x0, R0), then
necessarily /(Q′) ≤ CR0 and the ball B(xQ′ , (1/C)/(Q′)) contains two corkscrew
points, one forΩ and one for (Ω̄)c . Choosing K−1 ; 1/(CM0) ensures that these
points are contained in UQ(K).

We also have that ∂T±Q are both Ahlfors regular by the work of [HM14] (see
the Appendix therein). It is also easy to see that ∂T±Q ∩ Q = Q, since for every
x ∈ Q, x ∈ Qj ∈ DQ with /(Qj) → 0 as j →∞. Using that U±Qj are non-empty,
we see there exist Xj ∈ UQj → x as j → ∞, and hence x ∈ ∂T±Q (see (B.1) and
(B.2)).

Next, we show that T±Q both satisfy the (M ′
0,/(Q))-two sided corkscrew con-

dition. The hypotheses are symmetric so we may just show that T+Q satisfies
the (M ′

0,/(Q))-two sided corkscrew condition. To this end, let x ∈ ∂T+Q and
r ∈ (0,/(Q)), and fix A0 to be chosen23. We break into cases, following closely
[HM14, HMM16].

Case 1. r < A0δ(x), where δ(x) := dist(x, ∂Ω). In this case, δ(x) > 0 and x
is “far” from ∂Ω. Necessarily (since δ(x) > 0), x ∈ ∂I∗ for some “fat” Whitney
cube I∗ with int(I∗) ⊂ T+Q and also x ∈ J for some J ∈W\(

⋃
Q′∈DQWQ′). The

Whitney property of I∗ and J yields /(I∗) ≈ /(J) ≈ δ(x) < r/A0. It follows
(from our choice of τ) that J contains an exterior corkscrew point and I∗ contains
an interior corkscrew point for T+Q at x at scale r , with constants depending on
A0, for now.

Case 2: r ≥ A0δ(x). In this case, we are close enough to the boundary so that we
may exploit the (M0, R0)-DLTSCS condition for Ω. We break into further cases.

22See the discussion following Definition 2.9 and note that since diam(TQ) ≈K /(Q), TQ satisfies
the two-sided corkscrew condition.

23Note that the choice of A0 depends on K, which is now fixed.



302 S. BORTZ, M. ENGELSTEIN, M. GOERING, T. TORO, & Z. ZHAO

Case 2a: δ(x) > 0. In this case x ∈ ∂I∗ for some I as in Case 1. Let x̂ ∈ Q̄ be
such that δ(x) ≈ |x − x̂|, where the implicit constants depend on K (which we
have fixed). Note that the existence of x̂ is afforded by the Whitney property of
I∗. Moreover, I ∈WQ′ for some Q′ ⊂ Q. Since

|x − x̂| ≤ CKδ(x) ≤ CK
r

A0
< CK

/(Q)

A0
,

choosing A0 large enough we may findQ∗ whose closure contains x̂,Q∗ ⊂ Q and

/(Q∗) ≈ r

A0
, where the implicit constants depend on n, the Ahlfors regularity

constant, and K. Note that by the (x0,M0,2R0)-DLTSCS condition of Ω, and
choice of K, U±Q∗ are both non-empty, and we may find two points X±Q∗ ∈ U±Q∗
with

dist(X±Q∗ , ∂T
+
Q) ≥ CK/(Q∗) ≈

r

A0
.

Here, one may take each X±Q∗ to be the center of a Whitney cube in WQ∗ . We
then choose A0 > 2 such that

|x −X±Q∗| ≤ |x − x̂| + |x̂ −X±Q∗| 2
r

A0
<
r

2
.

Having fixed such an A0, depending on the allowable parameters, we have

dist(X±Q∗ , ∂T
+
Q) ≥ CK/(Q∗) < r

so that X±Q∗ may serve as interior and exterior corkscrews (respectively) for T+Q at
x at scale r .

Case 2b: δ(x) = 0. In this case, things are easier than Case 2a:, provided we
can show x ∈ Q̄. Indeed, we may forgo the step of finding x̂ above, by setting
x̂ = x and repeating the above argument verbatim. To show x ∈ Q̄, we use
that δ(x) = 0 and x ∈ ∂T+Q , so there exists a sequence of points Xi ∈ U+Qi with
Qi ⊂ Q and /(Qi) → 0, |Xi − x| → 0 as i → ∞. Here, we used δ(Xi) ≈ /(Qi)
by the Whitney property of cubes in WQi and that δ(·) is continuous. Moreover,
for each i there exists X̂i ∈ Qi with |X̂i −Xi| 2 /(Qi) so that

|x − X̂i| ≤ |x −Xi| + |Xi − X̂i|→ 0 as i →∞.

Since X̂i ∈ Q this shows x ∈ Q̄, and we can proceed as in Case 2a:.
Again, by [DJ90, Theorem 1], an open set with Ahlfors regular boundary

that satisfies a two-sided corkscrew condition on scales up to its diameter is a
UR domain. Thus, the only thing left to do is show that the measure theoretic
unit normals for T±Q agree with the unit normal of Ω up to a sign. Again, the
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symmetry of the hypotheses in the theorem and the fact that ∂∗Ω = ∂Ω allow us
to only consider T+Q .

Since T+Q has (n − 1)-Ahlfors regular boundary and satisfies the two-sided
corkscrew condition, Federer’s criteria ensures that T+Q is a set of locally finite
perimeter [EG92, Theorem 1, Section 5.11]. The structure theorem for sets of
locally finite perimeter ensures that the measure theoretic unit normal to ∂T+Q
existsHn−1-almost everywhere [EG92, Theorem 2, Section 5.7.3]. SinceQ ⊂ ∂Ω
and ∂T+Q ∩ Q = Q the measure theoretic tangents to ∂T+Q and ∂Ω must agree
Hn−1-almost everywhere in Q. Thus, the measure theoretic outer unit normal
for T+Q and Ω must agree up to a sign for Hn−1-almost every x ∈ Q.

To show that νT+Q (x) = νΩ(x) H
n−1-almost everywhere in Q, assume that

x ∈ ∂∗TQ ∩ Q; then, νT+Q (x) = ±νΩ(x). Suppose, for the sake of obtaining a
contradiction, that νT+Q (x) = −νΩ(x), and set

H+ := {y ∈ Rn | (y − x) · νΩ(x) ≥ 0}.

This is a half-space through x, perpendicular to νΩ(x). The blow-up of the
reduced boundary [EG92, Section 5.7, Corollary 1] gives

lim
r→0+

Ln(B(x, r)∩Ω∩H+)

Ln(B(x, r)) = 0,

which of course implies

lim
r→0+

Ln(B(x, r)∩ T+Q ∩H+)

Ln(B(x, r)) = 0.

On the other hand, using νT+Q (x) = −νΩ(x), and applying Corollary 1 in Section
5.7 of [EG92] to the set T+Q give

lim
r→0+

Ln(B(x, r)∩ T+Q ∩H+)

Ln(B(x, r)) = 1
2
,

which is impossible. Thus, νT+Q(x) = νΩ(x), and we have proved the lemma. !
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