Understanding the Power of Evolutionary Computation for GPU
Code Optimization

Jhe-Yu Liou! Muaaz Awan?

Steven Hofmeyr?

Stephanie Forrest! Carole-Jean Wu!

1 Avizona State University
2Lawrence Berkeley National Laboratory

Abstract

Achieving high performance for GPU codes requires devel-
opers to have significant knowledge in parallel programming
and GPU architectures, and in-depth understanding of the
application. This combination makes it challenging to find per-
formance optimizations for GPU-based applications, especially
in scientific computing. This paper shows that significant
speedups can be achieved on two quite different scientific
workloads using the tool, GEVO, to improve performance
over human-optimized GPU code. GEVO uses evolutionary
computation to find code edits that improve the runtime
of a multiple sequence alignment kernel and a SARS-CoV-2
simulation by 28.9% and 29% respectively. Further, when GEVO
begins with an early, unoptimized version of the sequence
alignment program, it finds an impressive 30 times speedup—
a performance improvement similar to that of the hand-
tuned version. This work presents an in-depth analysis of the
discovered optimizations, revealing that the primary sources
of improvement vary across applications; that most of the
optimizations generalize across GPU architectures; and that
several of the most important optimizations involve significant
code interdependencies. The results showcase the potential
of automated program optimization tools to help reduce
the optimization burden for scientific computing developers
and enhance performance portability for domain-specific
accelerators.

1. Introduction

Graphics Processing Units (GPUs) are widely used to
accelerate parallel applications in domains such as statistical
modeling, machine learning, molecular simulations and
bioinformatics, just to name a few. Although the tooling
and programming language support for GPUs have matured,
GPU programs remain challenging to optimize. Most GPU
programs consist of parallel tasks, which compilers can
optimize only to a certain extent, and issues such as thread
mapping, communication, and synchronization are typically
left for programmers to exploit manually. Consequently,
applications often require hand-tuning to take full advan-
tage of the GPU’s computational power, which is time-
consuming and requires significant expertise about parallel
programming, underlying GPU architectures, and domain
knowledge about the applications of interest.

To tackle the aforementioned challenges, prior works,
such as [10, 43], have explored automated compilation

optimization methods to reduce the programming and per-
formance optimization burden on application programmers.
One such approach uses evolutionary computation (EC)
to optimize GPU programs represented in the LLVM [21]
intermediate representation (LLVM-IR) [27]. The strength
of this approach is its ability to explore optimization
opportunities that don’t preserve exact program semantics.
An earlier study demonstrated that an EC-based approach
achieved run-time improvements on a wide variety of
general-purpose, but mostly unoptimized GPU programs
by an average of 51%, performing especially well for
error-tolerant applications. Despite these results, questions
remain about what optimizations such a method can find,
how well it performs on hand-tuned production applications,
how the optimizations are discovered, and how the method
can be integrated into a production-level GPU application
development.

In this paper, we address these research questions
by deploying GEVO [27] and analyzing the performance
optimization opportunities on two important bioinformatics
applications: gene sequence alignment and a SARS-CoV-2
infection simulation!. Aligning sequences of DNA, RNA
or proteins is a fundamental operation in computational
biology and underpins the success of many bioinformatics
and medical applications [42]. The SARS-CoV-2 model
(called SIMCoV) simulates how virus interacts with the
patient’s immune system while spreading in a human lung
and causing tissue damage. Accelerating the performance
of the SARS-CoV-2 simulation is crucial for understanding
the many complexities of COVID-19.

Both sequence alighment and the SIMCoV simulations
are highly computation-intensive. For example, in the first
six months of 2021, over 6.7 million CPU hours were used
for genome assembly on National Energy Research Scientific
Computing Cluster (NERSC)’s Cori Supercomputer, with
roughly 40% of the time spent in the sequence alignment
kernel. Because of its importance, significant effort has been
spent developing and manually optimizing ADEPT [2], a
state-of-the-art GPU accelerated sequence alignment library.
Similarly, it would take more than two weeks for SIMCoV
to fully simulate a single infection, even for a single two-

1. The application source code and the performance optimization
opportunities identified and presented in this paper are available at
https://doi.org/10.6084/m9.figshare.21136768

dimensional slice of human lung tissue, on a modern,
consumer-level CPU.

We deploy GEVO on two versions of ADEPT, down-
loaded from its public open-source code repository. ADEPT-
V0 is the version of the code before hand-tuning, whereas
ADEPT-V1 represents the hand-optimized version. We show
that the performance of ADEPT-V0 can be improved by 30
times on state-of-the-art GPUs—a level of performance that
is similar to the hand-tuned version. On the hand-tuned ver-
sion (ADEPT-V1), an additional 28.9% speedup is achieved
with GEVO-discovered optimizations. Similarly, GEVO finds
optimizations providing 29% performance improvement for
the SIMCoV simulation code running on the P100 GPU.

While GEVO does not enforce program semantics
guarantee, we demonstrate that the benefits of automated
program optimization tools are multi-dimensional, by using
a tailored instrumentation of the program source code to
localize the discovered optimizations and through a detailed
performance analysis. Our results showcase the potential
of automated program optimization tools to reduce the
optimization burden for application developers, allowing
them to focus on algorithms rather than details of hardware
features and architecture specifics which are often black box
or proprietary, and we show how such tools can actively
influence the development of GPU application codes.

An important contribution of this work is its in-depth
analysis of the discovered performance improvements,
which can shed light on under-studied phenomena by
slightly relaxing strict adherence to existing program seman-
tics. Our analysis shows that a key source of the impressive
performance improvements are multiple interdependent
code modifications, known as epistasis in evolutionary biol-
ogy. To gain insight into how the search process assembles
these interdependent code modifications, we recapitulate
and analyze the search history from an informative run. We
also convert the discovered code LLVM-IR modifications
back to the source code to characterize their contributions.
To our knowledge, this is the first such study to reveal
the importance of interdependencies in GPU code, which
has implications for automated compiler optimization in
general.

The contributions of the paper are summarized as
follows:

e While EC methods have been shown in prior
work [27] to improve the performance of naive
GPU programs, we demonstrate that these methods
can compete directly with human experts, outper-
forming even hand-tuned GPU programs (Section 4).

o We conduct a detailed study and code analysis
to characterize performance improvements and to
explain how the optimizations were discovered and
achieved. Compared to earlier EC-based work on
software, which typically uses one or two mutations
to repair small bugs or otherwise improve software,
we find optimizations that involve many more
mutations. In some cases, a single GEVO optimized
program contains nearly 1400 separate mutations

Kernel code
Compilation

Host code
Compilation

Clang CUDA Frontend

Replace kernel call ‘
e IR |

Population
i s

Host Code (C++)

Mutation

Selection

.
!]

C++ Compiler ‘

NVPTX Codegen
B, T
Evaluation
Figure 1: The GPU program compilation flow with GEVO

interposed to dynamically modify and evaluate variants of
the kernel code (gray blocks).

(edits), of which up to 17 contribute significantly to
the optimization. We define a multi-step process to
identify relevant interdependent clusters and report
how they were discovered (Section 5).

e We demonstrate the benefits of using EC methods
in different program development stages, identi-
fying performance hot-spots and strengthening a
programmer’s understanding of system performance
improvement opportunities. The lessons learned can
suggest further algorithmic improvements or man-
ual adjustment of suggested optimizations, removing
unwanted side effects if any.

By focusing on two computation-intensive workloads,
our analysis reveals the importance of manipulating in-
terdependencies to find performance enhancements at the
LLVM-IR level, highlighting why stochastic methods like
EC are particularly suitable for accelerating execution time
performance of domain-specific computations beyond what
is achievable by algorithm and hardware domain experts.

2. Background

This section briefly describes GEVO, provides relevant
background on ADEPT and SIMCoV, and gives details about
their corresponding GPU-based implementations.

2.1. Evolutionary Search for GPU Code Optimiza-
tions
There is considerable interest in methods that auto-

matically tune code after traditional compiler passes. Our
work uses EC because it generalizes to large code sizes

ATGOCT ¢ e olofoJo oo
oJofolooTo ’ - Aoz fo]o]o
Alo 2 d1e0 ot G |3 1i cloltJofa]z]1
GlolT[0[sd2d . ~1 clofololz[5]4
T 1 (5)
clo]dfolz g4 2eakdy T\ Tlofo |21 [4]7
Tlofo [291 [4]7 N AT G C T
max
CCT

(a) (b) (c)

Figure 2: Example of the Smith-Waterman algorithm align-
ing two sequences, ATGCT and AGCT. (a) The forward pass
calculates the scoring matrix with arrows showing how
the scores are derived. (b) A single score calculation from
the three neighboring cells. (c) The reverse pass from the
calculated scoring matrix determines the alignment, with
the final alignment result shown in the red text under the
matrix.

and can be applied generically to many software problems,
including automated bug repair [23, 55], energy reduction [6,
45], and run-time optimization [18, 54]. Many tools have
been developed over the past decade for evolving program
text [17, 23, 30, 50, 52, 55], and the vast majority of them
operate on source code. In a nutshell, these methods start
with a single program, generate an initial population of
program variants using random mutation operators, validate
each variant by running it on multiple test cases, evaluate
the valid variants according to a fitness metric, and use this
information to select the best individuals, which are then
subjected to further mutation and recombined with one
another to produce novel variants. This process is iterated
until a time-out is reached or an acceptable solution is
discovered. Mutation operators are readily implemented in
source code or assembly, but the single static assignment
discipline of LLVM-IR complicates their implementation
considerably. The only mature EC tool that operates on
LLVM-IR is GEVO (Gpu EVOlution) [27], which we adapted
for the present work.

GEVO takes as input a GPU program, user-defined test
cases, and a fitness function to be optimized, which in
our case is runtime. Kernels that run on the GPU are first
separated and compiled into LLVM-IR by the Clang compiler.
GEVO takes these kernels as input, applies mutation and
crossover to produce new kernel variants, and translates the
implementations into PTX files. The mutations can either
operate on an instruction (copy, delete, move, replace, or
swap) or replace the operands between instructions. The
host code running on the CPU is modified to load the
generated PTX file into the GPU. GEVO then evaluates
the kernel variant according to the fitness function. This
process is illustrated in Figure 1.

2.2. Sequence Alignment

ADEPT implements Smith-Waterman, a widely used
sequence alignment algorithm based on dynamic program-
ming which guarantees an optimal local alignment between
two given sequences [51].

2.2.1. Smith-Waterman Algorithm. Given two sequences
A = (aj.ay,...ap), B = (by.bs,....by) to be aligned, a
scoring matrix H is calculated with size (n + 1) X (m+ 1),
where n and m are the length of A and B (Figure 2(a)).
The cell H;jj in the scoring matrix H represents the highest
alignment score with sequences ending in the pair of g;
and b;.

Tﬁe cell score H;; is calculated by maximizing over
the values from three directions of prior alignments
(Hi-1j-1,H;j-1,H; 1 j) (Figure 2(b)). The diagonal direction
considers the similarity score s of the current pair a;,b; in
the sequences, awarding the cell score (+2) if the paired a;, b;
is matched and penalizing it (-2) otherwise. The vertical
or horizontal direction introduces a gap in the current
location of one sequence or another. Gap insertion penalizes
the cell score with a smaller penalty (-1) than a sequence
pair mismatch. How the score is awarded or penalized
is arbitrarily determined and can be changed based on
particular scenarios.

After the scoring matrix is obtained by iterating the cell
score calculation from top left to bottom right, the optimal
alignment is generated by tracing back from the highest
score in the matrix H, traversing along the highest score
in the region in the reverse direction from how the matrix
was calculated, until score zero is reached (Figure 2(c)).

2.2.2. GPU-accelerated Smith-Waterman Algorithm.
ADEPT parallelizes Smith-Waterman by offloading the
computation of each column of the scoring matrix into
one thread. As Figure 3 shows, the computation in each
cell also depends on the scores of neighboring cells. Thus,
the threads must be delayed, following the order of column
index so the dependant values are ready to be shared from
other threads.

In the GPU CUDA programming model, developers
can exchange thread data through global/host memory,
GPU device memory, shared memory, or private-thread
register [39]. The first two memory types have no restriction
on which threads can exchange data, but data stored in the
shared memory and private thread register are visible only
within a thread block and a warp, respectively. Despite much
faster data access latency, private registers are unfriendly
to programmers because they involve low-level, intrinsic
instructions. To reduce data movement latency, ADEPT
optimizations exploit both shared memory and private
registers for data exchange.

2.3. Coronavirus Simulation Model

Moses et al. developed a computationally intensive,
spatially explicit model (SIMCoV) to study why infection
trajectories vary so widely across different patients, even
those with identical co-morbidities. [31]. SIMCoV simulates
both the spread of virus (SARS-CoV-2) through the complex
physical structure of the lung and important aspects of the
immune response, modeling the dynamics of four important
elements: epithelial cells, virions, inflammatory signals, and
T cells. Given a simulation space, e.g., for simplicity, consider
a grid that represents a two-dimensional slice of lung tissue,

Grid l Shared mem ‘
Thread block
warp warp warp ILWMP
$33ks) EEEES
ATGOCT ATGOCT
t0 | A
. g 0100 (0[O0 tl G
clo "l C G A
clo t3 ClG A
t4 C|G|A

Figure 3: Illustration of the GPU-accelerated Smith-
Waterman algorithm. The kernel runtime performance can
be improved depending on the data communication patterns:
spatial (bottom, left) vs. temporal (bottom, right).

the model is initialized with an epithelial cell at each grid
point, and a set of infection sites. On each iteration, the
model simulates four tasks for each grid point:

e Circulating T cells extravasate from the vascular
system into the epithelial tissue with a probability
determined by the presence of inflammatory signal.

o If the grid point contains a T cell, the T cell moves
randomly to an adjacent location.

o Each epithelial cell’s state is updated to one of:
healthy, infected, apoptotic (in the process of dying),
dead. Virions cause healthy cells to become infected,
and infected cells eventually die. T Cells trigger cell
death by binding to cells, preventing the further
production of the virus.

e Virus and inflammatory signals diffuse from estab-
lished sites of infection to neighboring grid points.

2.3.1. GPU-accelerated SIMCoV. SIMCoV’s GPU imple-
mentation parallelizes its multi-core CPU implementation
to construct GPU kernels by assigning each grid point’s
calculation to a thread. Over 90% of the GPU kernel
runtime is spent moving T cells and spreading virus and
inflammatory signals.

2.3.2. Stochastic Nature of the SIMCoV Simulation.
Many components of the model simulation are stochastic,
e.g., T cell generation and movement. This mimics biology
but also poses validation challenges for GEVO, which must
determine the correctness of any code modification. Fixing
the random seed removes most of the stochasticity, but not
all. For example, the simulation does not allow two T cells
to move into the same grid point, which can cause a race
condition. When such race conditions occur, the outcome
is determined by the implementation of the GPU thread
scheduler. This is an architecture-dependent approach and
not transparent to application developers.

3. Experimental Setup

3.1. Compilation Preprocessing

First, we compile both the ADEPT and SIMCoV GPU
kernels from CUDA into LLVM-IR using the Clang compiler.
To enable code correspondence between the CUDA source
and the GEVO-transformed codes, we instrumented the
Clang compiler to enable source code debugging informa-
tion and modified GEVO’s mutation operator to encode
the source code location information. Next, we modified
both ADEPT’s and SIMCoV’s host code to invoke the GPU
kernel from an external PTX file—the final product of the
newly-mutated LLVM-IR that is executable by the CUDA
binary. The host code is compiled using NVIDIA’s nvcc
compiler [34]. Figure 1 illustrates the compilation process.

3.2. Application Code

To study GEVO's effectiveness at different code devel-
opment stages, we considered two versions of ADEPT:

e« ADEPT-VO is the original parallel implementation
(423 lines of code from one CUDA kernel, 1097
LLVM-IR instructions)

e« ADEPT-V1 is a manually-optimized version by an
expert in both the application domain and GPU
(623 lines of code from two CUDA kernels, 1707
LLVM-IR instructions).

ADEPT-V1 contains NVIDIA hardware-specific intrin-
sics, which use both shared memory and private registers
for data exchanges (Section 2.2). ADEPT-V1 executes ap-
proximately 20-30 times faster than ADEPT-VO across the
GPUs used in this paper.

For SIMCoV, the only available GPU code to us was an
initial GPU port from its multi-core CPU implementation,
similar to ADEPT-V0, with 1197 line of code from 8 GPU
kernels, translating to 1712 LLVM-IR instructions.

3.3. Validating Code Transformations

For ADEPT, We used the 30,000 pairs of DNA gene
sequences in the ADEPT repository for fitness evaluation.
In addition, we held out 4.6 million pairs of sequences to
validate the final optimized ADEPT code. Although GEVO
can trade off error tolerance against performance objectives,
gene sequence alignment often requires strict accuracy so
we require 100% accuracy for our ADEPT validation.

SIMCoV does not have a formal testing dataset for verifi-
cation. Therefore, we controlled the simulation environment
by fixing the initial random seed so that the simulation
progress, including virus spread, epithelial cell state, and
number of T cells is as similar as possible across runs. We
use the simulation output generated from the unmodified
SIMCoV as ground truth. To manage the remaining non-
determinism, we introduce the concepts of per-value mean
and per-value variance to measure how close the output is
to ground truth.

To evaluate fitness of a SIMCoV variant, we run the
simulation on a small, 100x100 grid for 2500 simulation

TABLE 1: ARCHITECTURAL CHARACTERISTICS OF THE GPUs

GPU P100 1080Ti V100
Arcl?ltecture Pascal Pascal Volta
Family

CUDA cores 3584 3584 5120

Core Frequency 1386 MHz 1999 MHz 1530 MHz
Memory Size 16GB HBM 11GB GDDR5X 16GB HBM2

steps, which is generally insufficient for the simulation to
reach a steady state. Similar to ADEPT’s held-out tests, we
further validate the final GEVO optimized SIMCoV program
after the run by both running the same 100x100 grid size for
10,000 simulation steps and by simulating a much larger,
2500x2500, grid. We were unable to run our optimized
SIMCoV on a 10,000x10,000 grid, as the original paper did,
due to the size limit of the GPU memory.

3.4. System Hardware

We evaluated and analyzed performance improvement
using three generations of NVIDIA GPUs: P100 [37], 1080Ti
GPU [36], and V100 [38], summarized in Table 1. We
disabled the GPU Boost Technology [35] to maintain
constant GPU operating frequency for the experiments.
The machine with P100 GPU has a 20-core CPU with
256GB memory. For V100 GPU, we used NERSC’s Cori
Supercomputer’s GPU partition [33]. In most cases, these
runs used one V100 GPU with 10 CPU cores and 16GB
memory.

3.5. GEVO Specification

Kernel execution time is the fitness target, averaged
across all test cases. Individuals that fail one or more test
cases are not part of the calculation. We set the population
size to 256, retained the four best individuals into the next
generation (elitism), applied crossover with 80% probability
for each individual, and used a mutation probability of
30% per individual per generation. Different search budgets
are given to GEVO for ADEPT (7 days) and SIMCoV (2
days), which roughly translates into 300 and 130 generations
respectively.

4. Performance Evaluation Results

Summary: Figures 4 and 5 present the performance im-
provements for ADEPT-V0, ADEPT-V1, and SIMCoV on
three generations of the GPUs. Execution time improved
for ADEPT-VO0 by 32.8X, 32X, and 18.36X on the P100, 1080ti,
and V100 GPUs, reducing the kernel runtime from 2,362 ms
to 72 ms, from 1442 ms to 45 ms, and from 918 ms to 50 ms,
respectively. For the hand-tuned, well-optimized version,
ADEPT-V1, GEVO finds an optimization that achieves 1.28X,
1.31X, and 1.17X performance improvement on the P100,
1080ti, and V100 GPUs. For SIMCoV, the performance
improvement is 1.29X, 1.42X, and 1.16X on the P100, 1080ti,
and V100 GPUs, respectively.

Because GEVO implements a stochastic search, we next
ask how much variation there is across the experimental

OADEFT-V0 OADEPT-VO-GEVO OADEFT-V1 @ ADEPT-VI1-GEVO

40

Jox

32x

24x

20

10

(2362 ms) (1442 ms)

Speedup (normalized to
ADEPT-V0 within each GPU)

=

P100 1080Ti V100

Figure 4: The performance results of ADEPT on the three
generations of the GPUs.

O SIMCoV @ SIMCoV-GEVO

1.43x
1.28%

1.17x

(344 ms)

(716 ms) (512 ms)

each GPU)

Speedup (normalized within

P100 1080T1 V100

Figure 5: The performance results of SIMCoV on the three
generations of the GPUs.

runs. Because the experiments are computationally expen-
sive, we focused our analysis on on the P100 GPU and
conducted ten independent runs for each configuration
(Figure 6). For ADEPT-V1, compared with the initial run
(1.29X improvement indicated by the solid blue line in
Figure 6(a)), the highest speedup is 1.33X while the lowest
is 1.1X. The mean is 1.20X and the variance is +0.08.
Figure 6(b) shows that, for SIMCoV, the highest speedup
is 1.35X and the lowest is 1.18X, with a mean of 1.28X
and variance of +0.06. These results convey the value of
running GEVO multiple times to discover the best possible
optimization. The sources of the performance improvement
for the ADEPT and SIMCov GPU codes are distinct, which
we analyze and present in detail in Section 6.

Generality: To assess the portability of the discovered
optimizations, we ran ADEPT-V0) (GEVO optimized for
the P100) on the V100 GPU and compared its performance
to ADEPT-V) GEVO optimized for the V100. The former
achieves 99% of the performance gain of the latter and
similarly for the other 1080 Ti GPUs, suggesting that many
of the optimizations generalize across the three GPUs which
feature distinct compute and memory architectures. We
observed similar performance portability with SIMCoV.
However, with ADEPT-V1, the same analysis showed that
a small subset of the optimized code from the P100 GPU
cannot run directly on the V100 GPU, suggesting that some
performance optimizations are GPU architecture-dependent.

5. Understanding the Optimizations

To study the GEVO-discovered optimizations, we define
a multi-step process, which first eliminates edits that
contribute less than 1% performance improvement (weak

14
Distribution
=== Mean 1.33
L3 Reported
1.2

Speedup

.

1.1

81 101 121 141 161 181 201 221 241 261 281 301

Evolution Generation

(a) ADEPT-V1

I 21 41 61

14

Distribution 1.35
= = = Mean 1.29
1.3 = Reported :

1.2

1.1

101

1 21 41 61 81

Evolution Generation

(b) SIMCoV

Figure 6: Distribution of performance improvements across ten GEVO runs for (a) ADEPT-V1 and (b) SIMCoV on P100.
The shaded area encloses the historical path for all runs, while the dashed line indicates the average.

mutations), then separate out mutations (edits) that are
independent, i.e. those that achieve greater than 1% fitness
improvement independent of the other edits in the set.
We can then conclude that the remaining mutations are
interdependent (epistatic), but we do not know if the entire
set is mutually interdependent, or if there are subsets. To
find the subsets, we conduct an exhaustive search of all
possible combinations of the epistatic edits, which is feasible
because the total number of epistatic edits is small. (For
example, the edit number is reduced to 12 from 1394 on
ADEPT-V1) The following subsections describe each step
in detail, primarily using ADEPT-V1 and SIMCoV on P100
as examples.

5.1. Edit Minimization

Overall, the best performing code variants from ADEPT-
V1 and SIMCoV on a P100 GPU contained a total of 1394
and 384 mutations, respectively. It is surprising that the
code is robust against so many mutations while preserving
required functionality. To focus on the performance-critical
changes, and to avoid side effects, we removed weak edits
from consideration (Algorithm 1).

Algorithm 1 Identify weak edits

Parameter: Edit set S = {eq,...,en}
Function f(S): measure the fitness (performance) of
the program with edit set S applied
1. weaks + ()
2: for each ¢; € S do
N i f(S — weaks) — f(S — weaks — e;)
' f(S—weaks —e;)
4 weaks <— weaks + ¢;

< 1% then

We systematically measured the performance difference
between the program variant with and without each target
mutation, in the context of all the remaining mutations. Any
individual edit may not have an immediate impact on kernel
execution time, but it could enable other higher-performing
program mutants, serving as a kind of stepping stone. Our
systematic reduction identifies these false-negative cases
for weak edits. It is also possible that when weak edits are

removed from consideration, we avoid a situation where
multiple weak edits can potentially lead to an identical
program variant. For example, suppose edits ¢; and e;
are both stepping stones leading to e3. In this case, e;
and e, are redundant, and one of the two can be safely
removed from the edit set without performance impact. We
measure the 1% performance threshold using the nvprof
profiling tool. This process reduces the number of code
edits in our set from 1394 to 17 for ADEPT-V1 with
minimal reduction of performance (0.9%), corresponding to
performance improvement of 28% instead of 28.9%.

5.2. Edit Interactions

Algorithm 2 Separate independent and epistatic edits.

Parameter: Edit set S = {eq,...,en}
Function f(S): measure the fitness (performance) of
the program with edit set S applied
1: Indep < 0
2: for each ¢; € S do
3: if f(e;) or f(S—Indep — e;) fails then
4 continue
5

f0)—f(e)

Perflncr + -

_ f(8S = Indep — e;) — f (S — Indep)
6: PerfDecr + 7S~ Indep—e;)

7: if Perflncr ~ PerfDecr then

8: Indep + Indep + e;

9: Epistasis <— S — Indep

Next, we describe how to identify interactions (epistasis)
among edits, producing a set of independent edits and a set
of epistatic edits (Algorithm 2). The algorithm first identifies
the set of independent edits, and whatever remains after the
procedure is considered to be epistatic. An independent edit
must individually be both applicable and removable from
the edit set (lines 4 and 5 of Algorithm 2) without causing
an error. If it passes this check, we next evaluate how
performance changes with and without the edit applied,
first to the empty set of edits (i.e. to the original program)
and then in the context of the remaining edit set (lines 6 to

@ Exec failed
<> < 1% perfimprv
T %

D 10%

™ 15%

> 17% (all)
Dependent

@ Force data to be stored in shared memory

Modify two if-else statements to “if” always, which is
equivalent to solely rely on the shared memory of

o Modify the data access pattern that associating with the else
clause of 0 and @

@ Similar to @ but in a different code region

@ similar to) and @ butrely on @

Figure 7: The edit relation graph and corresponding perfor-
mance improvements for GEVO-optimized ADEPT-V1 on
P100 GPU. Each node is an individual edit labeled with its
index (the bottom table briefs each edit’s behavior). The
different backgrounds show the performance improvement
for the different edit combinations, where the orange color
indicates execution failure when applying certain edits
individually, like edit 8.

9 of Algorithm 2). If the run-time from the above two tests
agrees, the edit is identified as independent. In our running
example, this algorithm divided the 17 significant edits from
Section 5.1 into 5 independent and 12 epistatic edits. The
two sets contribute 7% and 17% performance improvement
to ADEPT-V1, respectively. Interestingly, we did not find
performance-impactful epistatic edits for ADEPT-VO or
SIMCoV.

5.3. Epistatic Edit Set Analysis

While prior work in EC for software improvement rarely
discovers epistasis (e.g., in bug repair it is usually one or
two mutations), epistasis is common in biology [4]. We
analyze the epistatic set for ADEPT-V1. This set consists
of twelve edits. We show a dependency graph (Figure 7)
for the most important epistatic clusters—determined by
evaluating every subset of the epistatic set. The numbers in
circles represent the edit index, and the black lines indicate
a dependency relation.

There are two independent epistatic subgroups. One
subgroup (edits 5, 6, 8, and 10) is the most significant, con-
tributing 88.2% of the overall 17% performance improvement.
Edits 8 and 10 both depend on the success of edit 6. The
program mutants with either edit 8 or edit 10 individually
fail the verification step. Edit 5 also fails individually and
requires all three remaining edits (6, 8, and 10), to function
properly. We consider this most significant cluster of edits
in detail. Figure 8 shows when the edits were discovered
and how the discovery affected fitness. As expected, edit 6
with no dependencies was discovered first, followed by edit

Speedup

41 61

81 101 121 141 161 181 201 221 241 261 281 301

Evolution Generation

Figure 8: The discovery sequence for edits in the epistasis
set (edits 5, 6, 8, and 10) across 303 generations. These
are the same edits to ADEPT-V1 on P100 GPU shown in
Figure 7. The group of edits in each box indicates in which
generation this group was found, and edits colored red
indicate the first time that edit was discovered.

8 in the 47th generation, edit 10 in the 213th generation,
and edit 5 in the 221st generation.

The performance variation from run to run (figure 6(a)),
was affected by the completeness of the discovered epistatic
subgroups. For example, in the best run, GEVO further
expanded the epistatic subgroup (e0, el1) to a 4-edit cluster
similar to the subgroup (e5, e6, e8, e10). In the lowest
performing run, GEVO discovered (e6, e10) but missed e8
and e5.

6. Functional Analysis of the Optimizations

This section explores the functional impact of the key
mutations from Section 5. We do so by tracing each relevant
code edit in the LLVM-IR level back to its corresponding
CUDA source code. Although requiring significant manual
effort, this is an important step in understanding the per-
formance optimization opportunities that EC can uncover.

6.1. Rearrange Usage of Sub-Memory Systems
on GPU

The epistatic edits identified in Section 5.2 alter how
ADEPT-V1 uses the GPU’s shared memory and private
registers. By doing so, 15% performance improvement is
achieved on the P100. These edits are applicable on the V100
as well, achieving similar performance improvement. Recall
that, in Section 2.2, ADEPT-V1 uses both private registers
and shared memory to exchange data. Its implementation
is shown in Figure 9 with GEVO mutations indicated in red.
These edits essentially eliminate the use of private registers
and rely only on shared memory.

The else clauses at lines 19 and 28 are for the thread
that meets the conditions to share data through private
registers using the shfl_sync function. Due to a limitation
of the GPU architecture, GPU threads that cannot exchange
data through private registers communicate through shared
memory. The effect of edits 8 (line 17) and 10 (line 26)
is to drop the use of private registers. It is achieved by
replacing the corresponding if condition with the existing
boolean expression from line 14. If the boolean expression

// if (laneld == 31)

1

2

3 if (landId == @) { // edit 5

4 sh_prev_E[warpId] = _prev_E;

5 sh_prev_prev_H[warpId]l = _prev_prev_H;}
6

7 // if(diag >= maxSize)

8 if (tID < minSize) { // edit 6

9 local_prev_E[tID] = _prev_E;

1@ local_prev_prev_H[tID] = _prev_prev_H; }
11

12 __syncthreads();

13

14 if (is_valid[tID] && tID < minSize) {

16 // if(diag >= maxSize) {

17 if (is_valid[tID]) // edit 8

18 eVal = local_prev_E[tID-1] + extendGap;
19 else {

20 if (warpId != @ 8& landId == @)

21 eVal = sh_prev_E[warpId-1];

22 else // private register

23 eVal = __shfl_sync(...); }

24

25 // if(diag >= maxSize) {

26 if (is_valid[tID]) // edit 1@

27 final_H = local_prev_prev_H[tID-1];
28 else {

29 if (warpId != @ 8& landId == @)

30 final_H = sh_prev_prev_H[warpId-1];
31 else // private register

32 final_H = __shfl_sync(...);

33 B ocoo

Figure 9: Simplified code snippet from ADEPT-V1 for how
data is exchanged using both private registers and shared
memory. In edits 5, 6, 8, and 10 (red text, lines 3, 8, 17,
and 26), GEVO eliminates private registers and uses shared
memory instead.

in line 14 is true, both lines 17 and 26 are evaluated as
true. This effectively causes every relevant GPU thread
in the code snippet to write/read the data to/from the
shared memory regardless of any other condition. However,
edits 8 and 10 cannot be applied alone without edit 6
that implicitly enables every thread writing its data to
the shared memory named local_prev_XX. After applying
the three aforementioned edits, the shared memory named
sh_prev_XX is not required, leading to edit 5. At this stage,
a human developer would likely remove the entire if clause
at lines 3 since the shared memory within the if clause is no
longer referred to. Instead of removing the shared memory,
edit 5 is introduced that only changes which thread will
access the shared memory. This modification achieves the
same performance improvement as if the affected code
snippet were removed. We suspect that by changing the
memory access pattern, as edit 5 does, the GPU can schedule
the memory access differently to hide the memory latency
of this particular access [24].

Accessing private registers on GPUs is much faster
than the shared memory. So then, how do edits that
leverage shared memory achieve performance advantage?
This might be related to branch divergence. Recall from
Section 2.2 and Figure 3, while some threads in a warp

can use private registers for data sharing, there is often
one thread, usually the first thread in the warp, that must
communicate through shared memory. Combining with the
GPU lock-step execution model, ie., every thread in the
same warp executes the same instruction at the same time,
the aforementioned behavior guarantees branch divergence
in the if-else region between lines 17-23 and 26-32. This
essentially forces every thread in the same warp to run
through both if and else regions, and whichever thread
uses private registers has to wait for the slowest thread
that accesses the shared memory to finish. As a result,
the advantage of the fast access latency using the private
registers is lost.

6.2. Remove Warp-Level Synchronization
The CUDA programming guide suggests that, before

exchanging data through the private register, programmers
should invoke a query function, such as activemask or
ballot_sync, in order to return a mask indicating which
threads are still alive in the warp. In particular, after
the NVIDIA Volta GPU architecture (V100 GPU in our
evaluation environment), ballot_sync should be used as
the query function inside any conditional branch where
branch divergence can happen. The reasoning is that the
Volta architecture allows GPUs to subdivide a warp into
subgroups to be scheduled independently, and ballot_sync
implicitly forces the GPU to synchronize threads in the
same warp.

Perhaps to be conservative, the developers of ADEPT
used both activemask and ballot_sync before accessing the
private registers in a conditional branch. An independent
edit shows that removing ballot_sync yields 4% performance
improvement on the V100 GPU but not on the P100 GPU.
This supports the idea that ballot_sync performs warp-level
synchronization on the Volta GPU architecture but not
on the older GPU architectures. This edit is interesting
because it violates the CUDA programming guide [40]. Yet,
the edit passes all the verification tests. However, due to
the proprietary design of the Volta GPU warp scheduler,
we cannot conclude in which situations it is safe to remove
warp-level synchronization.

6.3. Remove Unnecessary Memory Initialization
and Synchronization Procedures

For ADEPT-V0, GEVO removed a small code region
consisting of memset and syncthread functions for shared
memory initialization and synchronization. This change
improved the kernel performance by more than thirty-fold.
In this case, it appears that we can completely ignore shared
memory initialization, even on the algorithm level, because
other edits were not engaged to compensate for the behavior
change. In fact, the human expert also removed this code
region in ADEPT-V1. Even if the initialization is required,
the way it was implemented is vastly inefficient. The
original code asks all the GPU threads to perform memory
initialization on the same memory region. Combined with
synchronization, GPU threads block each other to initialize

GPU memory

Other
= application

i - alojojojojo)n

1]
[1]

=Rl
707
1 SIMCoV < Grid Data

[1]
[1]
[1]
il

small grid AN

large grid

(a) (b)

(c)

Figure 10: (a) illustrates that boundary check is a necessary step in the SIMCoV code. (b) illustrates how the boundary
check removal is acceptable in a small grid but would fail for a large grid, which can be resolved by (c) padding the grid

borders with extra grid points of 0 manually.

the same memory region over and over again, creating a
significant performance bottleneck. The common practice
is to initialize the memory through the CUDA API outside
the kernel or through the in-kernel code using only one
active thread. For application developers, the ability to
quickly identify promising performance hot-spots that are
challenging to discover using conventional tools is valuable,
and this example highlights how GEVO supports this task.

6.4. Boundary Check Removal and Grid Padding

In SIMCoV, GEVO removed multiple conditional
branches, which disabled a grid boundary check. Its purpose
is to prevent errors when accumulating inflammatory
signals from the neighboring grid points (the fourth task
in Section 2.3). As Figure 10(a) shows, the boundary
check prevents the edge grid points from attempting to
accumulate values from points outside of the grid (illegal
memory accesses). The performance analysis presented
in this section addresses the following questions: (1) The
boundary check optimization alone achieves 20% perfor-
mance improvement. How does a simple boundary removal
achieve such disproportional execution time improvement?
(2) How can out-of-bound memory access not break the
program’s behavior?

To answer the first question, we examined the kernel
with the modified code region. Surprisingly, a significant
portion (31%) of the kernel instructions were performing
logic operations related to the boundary comparison, al-
though, as shown in Figure 10(a), the vast majority of the
grid points are not located on the boundary. Removing
the boundary check, however, is only legitimate if there
is a compensating code modification to prevent illegal
accesses outside the boundary. This example demonstrates
how the GEVO approach can inform application developers.
By actively searching through the code for performance
optimization opportunities, the search can expose promising
performance hot-spot regions that may be overlooked
otherwise.

We answer the second question using validation test
sets. That is, by running the SIMCoV simulation at a
larger grid size: 2500x2500. Even though the SIMCoV code
passes the initial test using a smaller simulation area,

the boundary check optimization triggers a segmentation
fault on this larger held-out test (Figure 10(b)). It is not
surprising that larger held-out tests are needed during the
optimization search process to detect such out-of-bound
memory accesses, and this is a routine part of our evaluation
strategy. After probing the code and the boundary check
optimization more deeply, we observed that, by simply
padding the grid borders with extra points of value 0
(Figure 10(c)), the application can achieve a 14% performance
improvement with a negligible increase in the memory
requirement.

6.5. Remaining Edits

We attempted to analyze all the edits, but there are
some that we were unable to decipher. For example, one
edit duplicates a memory write operation to a region
that no subsequent code ever accesses. Such an operation
seems redundant and could slow down program runtime.
Surprisingly, it improves the kernel performance by 1%
when run on the P100 GPU.

7. Discussion

Based on the mutational edit analysis described in
Section 6, many relevant mutations are related to the
GPU architecture. This implies that, although the GPU
programming model has matured in the past decade or
two, it is still difficult to master, especially for hardware-
related programming language features. Scientific applica-
tions, such as those we consider here, are often written
by domain experts who are not necessarily trained as
software developers. In these circumstances, an approach
such as GEVO is an interesting and promising choice for
GPU code optimization [25-28]. We contacted the original
developers of both ADEPT and SIMCoV, presented the
discovered optimizations, and asked for their opinions and
feedback. The developers were surprised that EC could
synthesize code modifications with such large performance
improvements. The main developer of ADEPT told us, "If
I was aware such an automatic optimization tool existed, it
might have saved a couple of months of effort, especially for
optimizing toward a specific GPU architecture!" And, from

the developer of SIMCoV, "When I looked at the optimizations
found for SIMCoV, I saw how I could change my algorithm to
improve its performance at scale. On CPUs, SIMCoV requires
many cores to run useful simulations in a reasonable time.
The CPU implementation bogs down when the simulated lung
contains many agents, but the GPU version always loops over
the full space so it does not suffer in this scenario.”

Our results and the developer feedback from both
ADEPT and SIMCoV illustrate two scenarios in the software
development cycle where EC-based optimization can help:
rapid prototyping in the early development stage and
advanced fine-tuning in the final development stage. In
the prototyping stage, the developer can quickly implement
a workable but less-optimized version of the software
and let EC perform code optimization searches, identify
potentially-interesting performance critical regions, and
address those inefficiencies. In the late development stage,
EC can be deployed after hand-tuning by experts to search
for additional optimizations.

A feature of our approach is that it does not require
programmer domain knowledge for optimization. We ac-
knowledge that EC-driven optimization does not necessarily
preserve exact program semantics, which is both a strength
and a limitation. It is a strength because small changes in
semantics can lead to large runtime reduction, often without
sacrificing functionality. It is a limitation because test suites
are used to evaluate fitness and verify program behavior.
With domain knowledge, developers can reason about the
discovered optimizations, and either adopt them for better
program performance, use them to improve the test suite,
or use the insights to inspire related code enhancements,
e.g., by introducing zero padding (Section 6.4). The results
reported here for ADEPT did not require us to augment
the test suite, an advantage of working with a deterministic
program with an extensive test suite. However, if there are
mutations that improve performance but do not make sense
to programmers, like the one that introduced an additional
memory write into an unused code location (Section 6.5), it
may make sense for the programmer to eliminate the edit
or design new tests.

GPUs are complex hardware with an equally complex
programming environment. This is one reason why auto-
mated code optimization can be effective. Performant code
can easily fail to provide expected performance, sending
developers on a lengthy performance debugging journey.
There is no golden rule for finding optimal performance on
GPUs. For instance, higher concurrency does not guarantee
higher performance, because in some cases using larger
shared memory per block while minimizing occupancy
may yield better throughput. Similarly, as demonstrated in
the case of ADEPT, using a faster method of inter-thread
communication (register to register transfer) does not imply
the best performance. EC can automate this search for
counter-intuitive optimizations while exploring hundreds
of times more code modifications than a human developer
can reasonably consider. We expect that the results achieved
for ADEPT may generalize to other bioinformatics kernels
and programs that use dynamic programming,.

10

The final optimized sequence alignment program con-
tains a large number of interacting edits, which is vastly
more than what was reported by any earlier EC work for
software (one or two edits is much more typical). This could
arise from several factors: basic properties of the LLVM-
IR representation and mutation operators, properties of
GPU architectures, opportunities presented by the particular
algorithms, or the implementation choices made by the
developer—an avenue for future work. In particular, more
effective epistasis is discovered in ADEPT-V1 than in
ADEPT-V0. The developer-optimized codes in ADEPT-V1
might provide more paths for epistasis to surface since those
optimized codes seem to be more resilient to our mutation
operators. More generally, high-level languages are designed
to help programmers express algorithms in a modular away
that minimizes interactions between different parts of the
code. So, it would not be surprising if their very structure
works against epistasis. At the same time, the search space
defined for a lower-level program representation like LLVM-
IR is much larger than it is for source code, which would
intuitively make search problems more challenging. How
these factors balance out, and how to measure them remains
an open question.

Regardless of their source, the fact that we found
optimizations with such a high number of interacting edits
shows how automated methods can discover complicated
modifications to the target program, but it also presents
challenges for deeper analysis. The approach used in the
last step of our analysis involved exhaustively iterating
through all the edit combinations. This will not scale well
beyond the roughly twenty edits we considered.

8. Related Work

Beyond traditional compilers, the domain of automatic
code optimization has three main branches: program syn-
thesis [1, 3, 8, 15, 29], superoptimization [11, 43, 44, 48],
and evolutionary computation [17, 54]. One key difference
among the branches is the validation method. Program
synthesis and superoptimization typically use a SAT/SMT
solver [32] to check the logical equivalence of program
rewrites, while EC relies on testing sets to encode the
intended program specification. The trade-off is that the
SAT/SMT solver guarantees program semantics but does not
scale well, while test-based methods give up strict semantic
equivalence but are more scalable. As a result, most earlier
work in this domain applies only to programs of a limited
length, usually under 200 lines of codes.

Deep learning methods have recently been used to
analyze programs as well, including neural-network based
logical reasoning [13, 41] and SAT solvers [47, 49] but also
for superoptimization [9]. However, for optimizing parallel
codes like GPU programs, EC may be more viable because
logically reasoning about thread communications in a SAT
solver requires deducing the entire parallel programming
model in a logical form which is time-consuming and
challenging.

EC is a popular approach for improving computer
programs, e.g., to automatically repair bugs [12, 14, 22,
23, 53). Surprisingly, prior analysis [46] showed that 20% to
40% of randomly generated program mutations (edits) have
no observable functional effect (even when limited to only
regions of the code that are actively tested), which suggested
the possibility of using EC to optimize non-functional
properties of software. As a result, EC has also been adopted
to optimize software properties such as performance [54]
and energy cost [5-7, 45].

Earlier EC work targeting GPU programs dates back
to Sitthi-Amorn’s work [50], which began with a basic
lighting algorithm and used EC to gradually modify the
shader program into a form that resembles an advanced
algorithm proposed by domain experts. Later, Langdon et
al. applied EC to a series of CUDA programs, ranging from
compression methods [18] to RNA and DNA analysis [19,
20]. Specifically, BarraCUDA [16], a DNA sequence align-
ment program, was one of the target programs in the DNA
analysis study [20]. However, their approach is different
and less general than the one we used here. For example,
the above works searched for parameter configurations
outside the CUDA kernel such as the number of threads per
thread block. The work manually parsed and transformed
the CUDA kernel code into a custom-designed, line-based
Backus Normal Form grammar as the code representation,
where EC was applied. The performance improvements
were attributed almost entirely to parameter tuning rather
than modifying the kernel code. Orthogonal to the prior
work, our approach finds performance optimization oppor-
tunities by transforming the implementation of functions.
We instrument the modern LLVM compiler infrastructure
to preprocess the CUDA program into LLVM-IR, a more
general appoach that can be applied to any LLVM-IR
program.

9. Conclusion

Optimizing GPU codes is a time-consuming process
that requires deep knowledge in both the application
domain and GPU architectures. This paper demonstrates
the performance optimization potential of using GEVO
on ADEPT, a GPU accelerated bioinformatics sequence
alignment library, and SIMCoV, an agent-based COVID
simulation of viral spread. We find improvements between
17% - 29% for ADEPT-V1, the expert-optimized version of
ADEPT, and SIMCoV on various GPU platforms. Moreover,
on ADEPT-VO0, an earlier and less-optimized version, we
find an incredible 30X improvement. This demonstrates the
excellent potential of stochastic search methods such as
GEVO to augment developer efforts to optimize GPU codes.

Our analysis of the evolved optimizations points to
multiple interdependent edits, which leads to performance
improvements that are challenging for human experts to
discover. This is one of the strengths of our method, which
we believe can augment code optimization to find useful
interdependencies beyond what is achievable by application
developers. As GPU architectures are still rapidly evolving,

11

the availability of an automated code optimization tool
to discover hidden performance optimization opportunities
will continue to be useful as an aid to the code development
process. We expect such methods to play an increasingly
important role in lifting developer burden from focusing
disproportionately on optimization, especially in cross-
domain developments such as bioinformatics and many
important application domains.

Acknowledgments

This work is supported in part by the National Sci-
ence Foundation under grants CCF-1652132, CCF-1618039,
and CCF-2211750. The authors acknowledge support for
computational resources from the ASU Research Technol-
ogy Office and the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley
National Laboratory, operated under Contract No. DE-AC02-
05CH11231. The authors would also like to thank Antonio
Espinoza, Joshua Daymude, Joseph Renzullo, Kirtus Leyba,
Pemma Reiter, and the anonymous reviewers for their
valuable comments and suggestions.

References
[1] R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman, S. A.
Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, Syntax-
guided synthesis, 2013.

M. G. Awan,]. Deslippe, A. Buluc, O. Selvitopi, S. Hofmeyr, L. Oliker,
and K. Yelick, “Adept: a domain independent sequence alignment
strategy for gpu architectures,” BMC bioinformatics, vol. 21, no. 1, pp.
1-29, 2020.

G. Barthe, J. M. Crespo, S. Gulwani, C. Kunz, and M. Marron, “From
relational verification to simd loop synthesis,” in Proceedings of the
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP "13. New York, NY, USA: Association for
Computing Machinery, 2013, p. 123-134.

(2]

(3]

[4] W. Bateson, Mendel’s Principles of Heredity. Cambridge: Cambridge

University Press, 1909.

[5] A. Brownlee, J. Adair, S. Haraldsson, and J. Jabbo, “Exploring
the accuracy-energy trade-off in machine learning” in Genetic
Improvement Workshop at 43rd International Conference on Software

Engineering. ACM, 2021.

B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption
using genetic improvement,” in Proceedings of the 17th Annual
Conference on Genetic and Evolutionary Computation, 2015.

(6]

[7] B.R. Bruce, J. Petke, M. Harman, and E. T. Barr, “Approximate oracles
and synergy in software energy search spaces,” IEEE Transactions on

Software Engineering, 2018.

S. Buchwald, A. Fried, and S. Hack, “Synthesizing an instruction
selection rule library from semantic specifications,” in Proceedings
of the 2018 International Symposium on Code Generation and Op-
timization, ser. CGO 2018. New York, NY, USA: Association for
Computing Machinery, 2018, p. 300-313.

R. Bunel, A. Desmaison, M. P. Kumar, P. H. S. Torr, and P. Kohli,
“Learning to superoptimize programs,” in International Conference on
Learning Representations, 2017.

T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al, “{TVM}: An automated end-to-end
optimizing compiler for deep learning,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp. 578-594.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

B. Churchill, R. Sharma, J. Bastien, and A. Aiken, “Sound loop
superoptimization for google native client,” SIGARCH Comput. Archit.
News, vol. 45, no. 1, p. 313-326, 2017.

V. Debroy and W. E. Wong, “Using mutation to automatically
suggest fixes for faulty programs,” in Proceedings of 3rd International
Conference on Software Testing, Verification and Validation, 2010.

R. Evans, D. Saxton, D. Amos, P. Kohli, and E. Grefenstette, “Can
neural networks understand logical entailment?” in International
Conference on Learning Representations, 2018.

S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic pro-
gramming approach to automated software repair]’ in Proceedings of
the 11th Annual Conference on Genetic and Evolutionary Computation,
2009.

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of
loop-free programs,” SIGPLAN Not., vol. 46, no. 6, p. 62-73, 2011.

P. Klus, S. Lam, D. Lyberg, M. S. Cheung, G. Pullan, I. McFarlane,
G. S. Yeo, and B. Y. Lam, “Barracuda-a fast short read sequence
aligner using graphics processing units,” BMC research notes, vol. 5,
no. 1, pp. 1-7, 2012,

J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statistics and computing, vol. 4,
no. 2, pp. 87-112, 1994,

W. B. Langdon and M. Harman, “Evolving a cuda kernel from an
nvidia template,” in Proceedings of IEEE Congress on Evolutionary
Computation, 2010.

——, “Grow and graft a better cuda pknotsrg for rna pseudoknot free
energy calculation,” in Proceedings of the Companion Publication of
the 17th Annual Conference on Genetic and Evolutionary Computation,
2015.

W. B. Langdon, B. Y. H. Lam, J. Petke, and M. Harman, “Improving
cuda dna analysis software with genetic programming,” in Proceedings
of the 17th Annual Conference on Genetic and Evolutionary Computa-
tion, 2015.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004, pp.
75-86.

C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proceedings of the 34th International Conference on Software
Engineering, 2012.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE transactions on
software engineering, vol. 38, no. 1, pp. 54-72, 2011.

S.-Y. Lee and C.-J. Wu, “Characterizing the latency hiding ability of
gpus,” in 2014 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), 2014.

J.-Y. Liou, S. Forrest, and C.-J. Wu, “Genetic improvement of gpu code,”
in 2019 IEEE/ACM International Workshop on Genetic Improvement
(GI), 2019, pp. 20-27.

——, “Uncovering performance opportunities by relaxing program
semantics of gpgpu kernels,” in Proceedings of the ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems: Workshop on Wild and Crazy Ideas (WACI), 2019.

J-Y. Liou, X. Wang, S. Forrest, and C.-J. Wu, “GEVO: Gpu
code optimization using evolutionary computation,” ACM Trans.
Archit. Code Optim., vol. 17, no. 4, Nov. 2020. [Online]. Available:
https://doi.org/10.1145/3418055

——, “GEVO-ML: A proposal for optimizing ml code with evolu-
tionary computation,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2020.

Z. Manna and R. Waldinger, “A deductive approach to program
synthesis,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 2, no. 1, pp. 90-121, 1980.

12

[30]

[31]

[32]

[33]

(34]

[35] —

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

(45]

[46]

(47]

(48]

(49]

[50]

[51]

A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao, A. Mols,
and A. Scott, “Sapfix: Automated end-to-end repair at scale” in
2019 IEEE/ACM 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). 1EEE, 2019, pp. 269-278.

M. E. Moses, S. Hofmeyr, J. L. Cannon, A. Andrews, R. Gridley,
M. Hinga, K. Leyba, A. Pribisova, V. Surjadidjaja, H. Tasnim et al.,
“Spatially distributed infection increases viral load in a computational
model of sars-cov-2 lung infection” PLoS computational biology,
vol. 17, no. 12, p. e1009735, 2021.

L. D. Moura and N. Bjerner, “Z3: an efficient smt solver,” in Proceedings
of the Theory and practice of software, 14th International Conference
on Tools and algorithms for the construction and analysis of systems,
2008.

NERSC. Cori gpu nodes. [Online]. Available: https://docs-dev.nersc.
gov/cgpu/hardware/

NVIDIA, “CUDA LLVM compiler;” https://developer.nvidia.com/
cuda-llvm-compiler/.

, “GPU Boost” https://www.nvidia.com/en-us/geforce/
technologies/gpu-boost/technology/.

——, “NVIDIA 1080ti GPU,” https://www.nvidia.com/en-in/geforce/
products/10series/geforce-gtx-1080-ti/.

——, “NVIDIA Tesla P100 GPU,” https://www.nvidia.com/en-us/
data-center/tesla-p100/.

Nvidia, “NVIDIA V100 Tensor Core GPU,” https://www.nvidia.com/
en-us/data-center/v100/.

NVIDIA, “Register Cache: Caching for Warp-Centric CUDA Pro-
grams,” https://developer.nvidia.com/blog/register-cache-warp-cuda/.

——, “Using CUDA Warp-Level Primitives,” https://developer.nvidia.
com/blog/using-cuda-warp-level-primitive.

A. Paliwal, S. Loos, M. Rabe, K. Bansal, and C. Szegedy, “Graph
representations for higher-order logic and theorem proving’ in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 03, 2020, pp. 2967-2974.

C. S. Pareek, R. Smoczynski, and A. Tretyn, “Sequencing technologies
and genome sequencing,” Journal of applied genetics, vol. 52, no. 4,
pp. 413-435, 2011.

E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,’
in Proceedings of ACM SIGARCH Computer Architecture News, 2013.

——, “Stochastic optimization of floating-point programs with tunable
precision,” SIGPLAN Not., vol. 49, no. 6, p. 53-64, 2014.

E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-
compiler software optimization for reducing energy,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014.

E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest, “Software
mutational robustness,” Genetic Programming and Evolvable Machines,
2014.

D. Selsam, M. Lamm, B. Biinz, P. Liang, L. de Moura, and D. L. Dill,
“Learning a SAT solver from single-bit supervision,” in International
Conference on Learning Representations, 2019.

R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Conditionally cor-
rect superoptimization,” in Proceedings of ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2015.

X. Si, Y. Yang, H. Dai, M. Naik, and L. Song, “Learning a meta-solver
for syntax-guided program synthesis,” in International Conference on
Learning Representations, 2019.

P. Sitthi-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” in Proceedings of the 2011
SIGGRAPH Asia Conference, 2011.

T. F. Smith, M. 5. Waterman et al, “Identification of common
molecular subsequences,” Journal of molecular biology, vol. 147, no. 1,
pp. 195-197, 1981.

[52] P. Walsh and C. Ryan, “Paragen: a novel technique for the autopar-
allelisation of sequential programs using gp.” in Proceedings of the
1st annual conference on genetic programming, 1996, pp. 406—409.

[53] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the

31st International Conference on Software Engineering, 2009.

[54] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improvement

of programs,” IEEE Transactions on Evolutionary Computation, 2011.

[55] Y. Yuan and W. Banzhaf, “ARJA: Automated Repair of Java Programs
via Multi-objective Genetic Programming,” Transactions on Software

Engineering, vol. 46, no. 10, pp. 1040-1067, 2020.

Appendix

1. Abstract

We describe the necessary components and steps to
evolve the two GPU programs (GPU-BSW and simcovGPU)
which can be found in the artifact. This artifact also includes
the evolving results that we discussed and analyzed in the

paper.

2. Artifact check-list (meta-information)

Program: GPU-BSW(ADEPT), simcovGPU

Compilation: Python, C++, CUDA 11

Data set: Gene sequence for GPU-BSW

Run-time environment: Python 3.8, Ubuntu 20.04

Hardware: We have tested on Nvidia P100, 1080Ti, and

V100 GPU

Metrics: Run-time reduction

Output: Modified GPU program in LLVM-IR format

¢ How much disk space required (approximately)?: 5
GB per 7-day run

¢ How much time is needed to prepare workflow
(approximately)?: 10 minutes

¢ How much time is needed to complete experiments
(approximately)?: 7 days

e Publicly available?: Yes

e Code licenses (if publicly available)?:

e o o o @

- GPU-BSW: BSD-3-Clause-LBNL
- simcovGPU: BSD-3-Clause-LBNL-UNM-ASU

e Archived (provide DOI):
figshare.21136768

https://doi.org/10.6084/m9.

3. Description

3.1. How to access. The target GPU programs’ source
code

e GPU-BSW-iiswc.tgz,simcovGPU-iiswc.tgz
and the evolving results
o GPU-BSW-result.tgz,simcovGPU-result.tgz

are available at https://doi.org/10.6084/m9.figshare.21136768

3.2. Hardware dependencies. The CUDA-compatible
Nvidia GPU is required.

13

3.3. Software dependencies. GEVO is required to evolve
the GPU program and can be installed through Python
Package Index with the following command

> pip install gevo

It will also install all the python packages that GEVO
requires. Furthermore, GEVO depends on CUDA-11 and
LLVM-11 compiler infrastructure. Please refer to Nvidia
and LLVM website for how to install CUDA-11 and LLVM-
11 in the system.

4. Installation

The GPU-BSW-iiswc.tgz and simcovGPU-iiswc.tgz
are the source code archives for GPU-BSW and simcovGPU.
After downloading and extracting these two archives, we
need to compile them into executable binary first.

For GPU-BSW:

cd GPU-BSW-iiswc
mkdir build

cd build

cmake ../ && make

For simcovGPU:

cd simcovGPU-iiswc
> make gpu

VvV VV YV

-J

v

Secondly, we need to compile the GPU kernel into
LLVM-IR format that GEVO accepts as input with the
following command in both program directories.

> make llvmir-opt

The cuda-device-only-kernel.ll will then be generated
and ready for GEVO to evolve.

5. Experiment workflow

evolve.sh is the convenient script to start GEVO
evolving the two target programs. It can be found in each
program directory. This script has hard-coded the evolving
parameters we used in the paper. The script also specifies
the needed JSON file which tells GEVO how the target
program is executed with needed arguments and which
data-set is used in the verification process. Specifically,
dna_profile. json and profile_seed. json are the JSON
file for evolving GPU-BSW and simcovGPU respectively.

6. Evaluation and expected results

6.1. Evaluate modified GPU kernel. The gevo-evaluate
is the tool under the GEVO framework to evaluate the
modified GPU kernel. The following command demonstrates
the basic usage of this tool.

> gevo-evaluate -P dna_profile. json -1

gXX_maxerr.ll

This command evaluates both unmodified and modified
GPU kernels and compares their performance difference.
As before, the JSON file is to specify how the GPU program
will be executed with necessary arguments and input
data. It is not necessary to use the same JSON profile for

evolution and evaluation. For example, in GPU-BSW, we
use dna_profile. json to evolve but use dna_set2. json,
which specifies a much larger data-set, for the post-
evolution evaluation.

6.2. Expected results. After GEVO starts, in each genera-
tion during the evolution, GEVO will print the best candi-
date’s runtime performance. The best program candidate
of each generation will be stored into gXX_maxerr.ll and
gXX_maxerr.edit where "XX" is the number of generation.
Here, gXX_maxerr.11 is the modified GPU kernel in LLVM-
IR format whereas gXX_maxerr.edit contains all the GEVO
edits that will transform the unmodified GPU kernel into
gXX_maxerr.1l1l.
The artifact files:

e GPU-BSW-result.tgz
e simcovGPU-result.tgz

14

include the evolving result we reported, discussed, and
analyzed in the paper, for GPU-BSW and simcovGPU re-
spectively. Within each archive file, we label each GEVO run
by the date it started as the folder name. The random seed
used for each run is specified in the individual evolve.sh
script and can be used to attempt reproducing the exactly
same evolving history. However, the runtime measurement
variation (For example, evaluating the same GPU kernel in
multiple runs gives slightly different performance numbers)
is not deterministic and cannot be eliminated. In the selec-
tion process during the evolution run, when comparing two
equally performed GPU kernel candidates and determining
who will stay in the population, this variation becomes the
deciding factor no matter how small it is. Thus, completely
reproducing the same evolving history cannot be achieved.

