GEVO-ML: A Proposal for Optimizing ML Code with
Evolutionary Computation

Jhe-Yu Liou Xiaodong Wang
ASU Facebook
jhe-yuliou@asu.edu xdwang@fb.com

ABSTRACT

Parallel accelerators, such as GPUs, are a key enabler of large-scale
Machine Learning (ML) applications. However, programmers often
lack detailed knowledge of the underlying architecture and fail
to fully leverage their computational power. This paper proposes
GEVO-ML, a tool for automatically discovering optimization oppor-
tunities and tuning the performance of ML kernels. GEVO-ML ex-
tends earlier work on GEVO (Gpu optimization using EVOlutionary
computation) by focusing directly on ML frameworks, intermediate
languages, and target architectures. It retains the multi-objective
evolutionary search developed for GEVO, which searches for edits
to GPU code compiled to LLVM-IR and improves performance on
desired criteria while retaining required functionality. In earlier
work, we studied some ML workloads in GPU settings and found
that GEVO could improve kernel speeds by factors ranging from
1.7X to 2.9X, even with access to only a small portion of the overall
ML framework. This workshop paper examines the limitations and
constraints of GEVO for ML workloads and discusses our GEVO-ML
design, which we are currently implementing.

CCS CONCEPTS

- Software and its engineering — Compilers; « Computing
methodologies — Heuristic function construction;

KEYWORDS

Genetic Improvement, Multi-objective Evolutionary Computation,
Machine Learning

ACM Reference Format:

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020.
GEVO-ML: A Proposal for Optimizing ML Code with Evolutionary Com-
putation. In Genetic and Evolutionary Computation Conference Companion
(GECCO 20 Companion), July 8-12, 2020, Canctin, Mexico. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3377929.3398139

1 INTRODUCTION

Machine learning (ML) applications are being deployed at unprece-
dented scales across a wide variety of domains. These applications
are enabled by advances in many research domains, from hardware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO 20 Companion, July 8-12, 2020, Canciin, Mexico

© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-7127-8/20/07...$15.00
https://doi.org/10.1145/3377929.3398139

Stephanie Forrest Carole-Jean Wu
ASU ASU/Facebook
steph@asu.edu carole-jean.wu@asu.edu

accelerators like Graphic Processing Unit (GPU) and Tensor Pro-
cessing Unit (TPU), framework infrastructures like PyTorch [47]
or TensorFlow [2], improved ML algorithms and network architec-
tures. To achieve better performance, meaning faster training/in-
ference time and/or higher model accuracy, application developers
fine-tune many of these design components to achieve the best
configuration, and they often use evolutionary computation (EC)
to find these improvements [64]. For example, in network archi-
tecture, developers have to decide how many layers will be in the
network, how many neurons will be in each layer, etc [65]. Simi-
larly, in Support Vector Machine (SVM), the designer must select
a cost value [25]. And finally, at the framework level, developers
have to select the operators to be used in the model they want and
allocate their available system resources such as CPU or GPU for
running the models.

As the scope of artificial neural network has grown, the raw
number of tunable knobs has exploded, and consequently, most
designers use empirical methods to identify a set of parameters that
works well for their situation. Many research projects also use auto-
mated parameter tuning methods, or hyperparameter search, to find
model parameters [7, 66]. These include simple grid search [32],
random search [7], reinforcement learning [6, 74], evolutionary
computation [64], and gradient descent [40]. At the framework
level, developers have introduced ML compilers, which find opti-
mizations such as operator fusion [4], or at code generation time
can determine the degree of loop unrolling or loop tiling based
on the hardware platform characteristics [12, 50]. These various
searches and optimizations occur at different levels and are usually
performed separately, as developers are not always the master of
all worlds. In addition, there are a number of other framework-level
features, such as threading libraries and scheduling policies that can
be used to further optimize ML training and inference execution
time [3, 20, 69].

Typically, developers leave low-level code optimization to com-
pilers, which for most applications are hard to beat. However, codes
running on GPUs often have inefficiencies that arise because of in-
teractions between the application and the underlying architecture.
Unless the developer has unusually detailed knowledge of the archi-
tecture, it is challenging to uncover these additional optimization
opportunities. In earlier work, we showed that EC search can find
many interesting optimization opportunities, yielding an average of
49% speedup on common parallel benchmarks [39]. These speedups
are achieved by relaxing the usual compiler restriction that pre-
serves exact program semantics. This approach is thus well-suited
for approximate computing applications such as ML. Thus, we pro-
pose to use EC to optimize the GPU kernels that implement ML
algorithms, by extending our earlier work on a tool called GEVO
(GPU EVOlution) [37-39]. GEVO can be thought of as a compiler

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

post-pass performance tuning framework, which encodes optimiza-
tion objectives, such as execution time, energy use or accuracy, in
its fitness function and implements a set of mutation and recom-
bination operators for GPU kernel transformations in the LLVM
intermediate representation (LLVM-IR).

Although the GEVO approach is quite general in the sense that
it can be applied to any GPU program represented in LLVM-IR, it
is well-suited to ML workloads because they are computationally
intensive, and by design they are error-tolerant. GEVO implements
multi-objective search, so it can help manage tradeoffs between
model accuracy and training time [24, 26, 53, 55, 73].

In this workshop paper, we first review related research and
describe GEVO’s design and implementation. Next, we outline the
proposed GEVO-ML design, highlighting opportunities for further
optimizations and discussing various implementation strategies and
constraints. Finally, we summarize some of the ML optimizations
that GEVO has already discovered [39] to provide context and
motivation for the current work.

2 RELATED WORK

Over the past decade, Evolutionary Computation (EC) methods
have been applied to the task of improving computer programs,
particularly the task of automatically repairing bugs in legacy soft-
ware [15, 19, 21, 35, 70], with some industrial applications [17, 23].
Typically, the repair methods operate at the source-code level using
abstract syntax trees, but similar methods have also been used to
repair assembly programs [57] and even object code [60].

A surprising feature of software was revealed by these projects:
Random mutations of code often have no observable functional ef-
fect on program behavior [5, 8, 22, 59, 67]. These neutral mutations
are plentiful, occurring 20 — 40% of the time, even when mutations
are focused only on the sections of code covered by the tests. Some
neutral mutations are semantically equivalent to the original, like
equivalent mutations in mutation testing [42], but many others pro-
duce semantically similar programs, some of which may repair the
bug and others which can satisfy required functionality in slightly
different ways from the original. These results led researchers to
consider optimizing non-functional properties of software such as
energy by finding neutral mutations that satisfy required function-
ality and improve the non-functional property [58]. GEVO follows
in this tradition, using multi-objective search to find improvements
of non-functional software properties, in particular, focusing on
reducing run-time. This approach is a form of super-optimization,
one which can scale to much larger code sizes than existing super-
optimization methods [43].

GEVO operates on GPU code, and there has been some prior
research applying EC to GPU kernels. For example, Sitthi-Amorn
et al. optimized a graphics shader program, beginning with a basic
lighting algorithm and evolving it into a form resembling an ad-
vanced algorithm [61]. Langdon et al. tackled CUDA runtimes for
two target programs [30, 31] by representing the program object as
a custom-designed, line-based Backus Normal Form (BNF) grammar.
In contrast, GEVO applies to any CUDA program with minimal
manual intervention and uses modern Clang/LLVM tooling.

Clang/LLVM is a popular compiler infrastructure, but there is
only one earlier work we are aware of that has attempted to apply

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu

EC to programs in the LLVM intermediate representation (LLVM-
IR) [56]. LLVM-IR is challenging because random mutations often
break the Single Static Assignment discipline and must be repaired.
Schulte’s work gave a proof-of-concept for how to approach this
challenge, and GEVO extends the basic approach to provide a robust
implementation. To summarize, GEVO modifies CUDA programs
in the LLVM-IR, as shown in the left half of Figure 1. This avoids
developing novel parsing and syntax manipulating infrastructure
of some earlier work, but requires special handling of mutation and
recombination.

While GEVO can be applied to any computer program, Machine
Learning (ML) is an appealing target for several reasons: ML ap-
plications have become ubiquitous, they have high computational
cost, and they often run on specialized hardware such as GPU or
TPU. Of course, the field of neuro-evolution focused on evolving
neural networks for many years [45], typically using evolution
to improve network architecture [51, 64], module design [63, 68],
hyperparameters[52], and to learn weights[46]. GEVO adds to these
capabilities by finding optimizations in the low-level codes that
implement NN algorithms. And, in some cases it finds synergies
between low-level optimizations and modifications at higher levels
of the framework.

Today’s ML programming frameworks represent deep learn-
ing models as computational graphs of various types of opera-
tors. Domain-specific compilers identify optimization opportuni-
ties such as operator fusion or tiling. Examples include: XLA [1]
for TensorFlow [2]; Glow [54] for PyTorch [47]; and TVM [12] for
MXnet [11]. Further optimizations can be achieved by translating
high-level NN operators to machine-specific implementations us-
ing optimized libraries. These optimization techniques preserve the
functional behavior of a given neural network. A recent proposal,
called TASO [27], uses superoptimization methods to optimize the
computational graph of a deep neural network. Essentially TASO
enumerates the possible combinations of operator implementations
and selects the graph implementation that minimizes runtime. A
SAT solver is used to ensure that the original graph’s function-
ality is preserved. Although promising, this approach currently
does not scale well beyond small graphs comprised of more than
four operators. Our approach to optimizing NNs complements this
earlier work, finding joint optimization opportunities that involve
(1) better-performing operator implementations and (2) modifying
neural network architectures.

3 BACKGROUND: GEVO

GEVO is an EC tool for automatically improving kernel implemen-
tations targeting GPUs [37-39]. GEVO enables GPU code optimiza-
tion using EVOlutionary computation. In this section, we briefly
review GEVO’s design, highlighting its representation, genetic op-
erators, fitness function, and selection method. A complete descrip-
tion of the most recent version appears in [39].

When CUDA code is compiled, the kernels that will run on
the GPU are separated from the host code and compiled into the
intermediate representation (LLVM-IR). GEVO operates on the IR,
applying genetic operators to transform the program and passing
the transformed code back to clang to complete the compilation
process. The binary is then run on a set of user-defined test cases
to evaluate functionality and performance.

A proposal for GEVO-ML

—_—

|

Host code CUDA Program Source Device code |
Compilation Compilation I
’ Kernel call Replacement ‘ ’ Clang CUDA Frontend ‘ |
|

|

[Host Code (C++)

’ C++ Compiler

Device LLVM-IR

Host binary

|
‘ ’ NVPTX Codegen }4—|—

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

Population

s f

v

Mutation

Selection

GEVO

1
1
1
1
1
1 .
h p) Mutation
1
1
1
1
1
1

1
y _»

Evaluation [«----=-=------ -+ Crossover

|

Figure 1: GEVO in the LLVM/Clang CUDA compilation flow. The left half is the CUDA code compilation process in clang/llvm.
The right half shows how GEVO searches the code optimization for the device code from the compilation, and how the modified

device code is evaluated.

The population is initialized with PopSize individuals that are
formed by taking the original program, making copies and applying
random mutations to each. By default, three mutations are applied
to each individual in the initial generation, providing diversity. The
search then uses multi-objective GEVO and forms the next genera-
tion of individuals by ranking individuals according to the objec-
tives, recombining instructions between kernel variants (Crossover),
and randomly adding, deleting or moving instructions in each vari-
ant (Mutation). Finally, GEVO compares the new variants to a set of
elites retained from the previous generation (Selection), eliminating
low-fitness individuals and retaining those with higher fitness for
the next generation. The next few subsections give details of how
we implemented these operations for GPU optimization.

Representation. Each individual in GEVO has two representa-
tions, one of which is the code itself (the program-based represen-
tation) and one which is simply a list of the edits (mutations) to
be applied to the program (the patch-based representation) [35].
This design decision relates to the many data dependencies built
into the LLVM-IR, which complicates mutation (see below) and
requires certain repair processes each time a mutation is applied.
These are expensive, so it is more efficient to use the patch-based
representation for crossover. As the number of mutations applied
to any kernel variant (individual) is typically low, and because the
kernels themselves tend to be small, this design choice does not
greatly impact the memory requirement of GEVO.

Mutation. GEVO uses several mutation operators, each of which
modifies a line of LLVM-IR code: Copy (copy an instruction from
one location to another location); Delete (move an instruction from
one location to another); Replace (one instruction or operand with
another); and Swap (instructions). The LLVM-IR uses Static Single
Assignment (SSA), which means that a variable can be assigned
only once at the time it is created. The mutation operators are

highly likely to create invalid programs by violating this restriction.

To address this problem, GEVO has a fairly complex ’repair’ step
built into its mutation operation, described in detail in [39]. As one

example, a Copy mutation can lead to a type mismatch in one of
the copied instruction’s operands. To repair this, GEVO first looks
for another in-scope variable of the proper type and substitutes
that if one is found, or it simply replaces the offending variable
with a constant, e.g., 1.0. Unlike most EC applications, a significant
portion of GEVO’s search budget is spent finding valid mutations.
When the mutation operator is invoked, one mutation type is se-
lected randomly (with equal probability) and applied (with repairs)
as an edit to generate a new kernel variant. After each mutation
is applied, GEVO immediately evaluates the individual to check if
it still passes all the test cases. If it fails, another mutation is tried,
and this process continues until a valid kernel variant is found.

Crossover: GEVO uses the patch-based representation (list of
edits) for crossover, because it is highly likely that recombining two
random program slices would require additional repairs to create
a valid individual. GEVO uses one-point messy crossover, which
combines shuffle [9] and variable-length [36] crossover operations.
GEVO begins with two randomly selected individuals, concatenates
the two lists of mutations (edits) in the patch representation; shuffles
the sequence; and then randomly selects a location to cut the list
back into two. GEVO then reapplies each patch in sequence to the
original GPU kernel, and generating two new individuals. Although
unusual, this strategy produces a wide diversity of recombinations
from a minimal number of mutations, since mutations are relatively
expensive. Each new individual is then evaluated to test if the new
combination of edits is valid, and we find that about 80% of the time
they are. If not, GEVO repeats the process until it finds a successful
recombination.

Fitness Evaluation. For most applications, GEVO requires that
all individuals produce identical output as the test cases, and only
individuals that meet that criterion have fitness assessed accord-
ing to the non-functional objective(s) selected by the user. Many
applications, however, including ML, can tolerate some error in the
output. For these approximate applications, GEVO requires only

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu

Input image

Class label

Generic CNN

Host code
(training)

_|—> fl Evaluation |

' GEVO

Test cases

Architecture (image, label)

1 1/

T

Caffe2 - GPU G

—

Device
LLVM-IR

Search

SGD

v

Framework | Nvidia cuDNN library |

| Custom CUDA impl |

Figure 2: How GEVO searches for the optimization with a generic CNN model built on top of the Caffe2 framework

that the morphed program executes successfully, and the output
error becomes one of the optimization objectives.

For ML, the two objectives become reduced kernel execution
time and ML model error, i.e., argmin(time, error). Given an ML
model that has been modified by GEVO, fitness is evaluated by
retraining the model on a given training dataset and recording the
training time and model error. At the end of the search, the most
fit individual is evaluated against the testing dataset and that value
is reported.

Selection. GEVO uses the Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [14] to select individuals according to multi-
objective fitness criteria and reports the pareto frontier of indi-
viduals that best satisfy the two objectives. GEVO retains the top
quarter of the population at time ¢ and copies it unchanged to the
population at time ¢ + 1. It then chooses the remaining 3/4 of the
population using tournament selection.

Implementation. We developed GEVO using DEAP [13], by im-
plementing the genetic operators described above in C++. We instru-
mented the LLVM compiler (LLVM 8.0) so the mutation operations,
written in C++ appear as a LLVM pass. All GEVO experiments to
date have been run on NVIDIA Tesla p100 GPUs, under CUDA 9.2
and NVIDIA GPU driver 410. The Nvidia profiler (nvprof) collects
kernel execution time, that is, the runtime metric used by the fit-
ness function. In our experiments nvprof introduces no overhead
to kernel execution time, and the measurement varies less than 1%.

4 GEVO-ML

As aforementioned, GEVO optimizes runtime and minimizes error
of LLVM-IR codes running on GPUs [37, 39]. Previous experimental
evaluation focused primarily on the general-purpose GPU code, but
included experiments on ML workloads (summarized in Section 5).
These early results were encouraging, but they revealed several lim-
itations of GEVO with respect to optimizing ML workloads. In the
following, we discuss these limitations and how they are addressed
in the design of GEVO-ML, an EC framework for enhancing the
performance of ML code.

In ML models, there may be diverse optimization opportunities
for the same operator, depending on the context in which the op-
erator is executed. That is, in principle, GEVO could optimize ML

| NN model in TensorFlow |

Y

TF Graph Compiler |

| Applications |

| LLVM compiler | |

[LIVMIR MLIR ;:]
sz N || ,
GEVO GEVO-ML
P
GPU DSP TPU |

Figure 3: The current GEVO system stack in application com-
pilation and execution, and our plan to extend our design
to other accelerators like DSP and TPU through integrating
deeply with ML framework with mutation on MLIR.

operators that appear in different layers of the ML model, each of
which has a different purpose or configuration. For example, in
Figure 2, the Stochastic Gradient Descent (SGD) operator is used
to update the parameters in several ways. The convolution layers
can each have a different filter size, producing a different number
of weights for SGD to update. The current workflow of GEVO pre-
vents it from discovering these nuanced opportunities because it
doesn’t distinguish the different contexts in which the operator is
used. With access to these contexts, GEVO-ML can, for example,
modify how many parameters are passed into SGD, but the degree
of weight pruning is likely different in the different cases because
the number of parameters is not identical in the different layers.
A second issue concerns the hardware for accelerating ML work-
loads. Many new hardware platforms are emerging, particularly for
the edge. For instance, the digital signal processors (DSPs) shipped
on many mobile devices can be used to accelerate ML applica-
tions [49, 72], especially when the GPU is busy with other tasks such
as rendering the device screen. A second example is the Tensor Pro-
cessing Unit (TPU), an accelerator dedicated to ML workloads [28].
The challenge here, given a neural network model composed of a set
of operators, is to generate optimized code for each operator and to

A proposal for GEVO-ML

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

Copy Rebuild
Func (%in: <28x28>, fill: <3x3>) Func (%in: <28x28>, fill: <3x3>)
%1 = Conv2d(%in, %fill): <28x28> -> <28x28> %1 = Conv2d(%in, $fill): <28x28> -> <28x28>
%2 = Relu(%1l): <28x28> -> <28x28> %2 = Relu(%1l): <28x28> -> <28x28>
I:%3 = MaxPool (%2): <28x28> -> <14x14> ‘ %$3—=_MaxPool (%2) : <28x28> -> <14x14>
%31 = MaxPool (%2): <28x28> -> <14x14> $3i_= MaxPool(%3): <14x14> -> <7x7>
%4 = Conv2d (%3, %$fill) <14x14> -> <14x14> $4 = Conv2d(®31i, $%$fill) <7x7> -> <Ix7>

Figure 4: A mutation example in a MLIR program representing part of a neural network model in TensorFlow. Each MLIR
instruction also specifies the shape of input/output tensor such as <7x7>. In this example, instruction 3 is copied and inserted
right after itself. Besides rerouting the operand, the tensor shape must also be configured as the instruction sequence changes.

schedule the execution order of the operators for different hardware
architectures. The proposed design GEVO-ML, then, must accom-
modate a much broader set of target architectures. It is currently
unknown which, if any, optimizations that GEVO-ML finds for one
architecture will generalize to others. A more practical problem is
that, for today’s ML workloads, most operators are implemented
on Nvidia cuDNN library. These operators cannot be optimized
by GEVO because their source codes are not available. Although
’just an implementation’ issue, this restriction severely limited our
earlier experiments.

To address these concerns, GEVO-ML is designed to be tightly
integrated with ML frameworks so that it can optimize ML models
directly. Figure 3 illustrates the overall design, which will leverage
the Multi-Level IR (MLIR) [33]. MLIR provides a formal represen-
tation for machine learning models so that existing compiler opti-
mizations can be applied [12, 50]. This makes MLIR an ideal target
for GEVO-ML. The design of MLIR has many features shared or
inherited from LLVM-IR. In fact, it has recently been incorporated
into LLVM as a sub-project for domain-specific intermediate repre-
sentation [41], with the functionality to convert MLIR to LLVM-IR.
GEVO-ML will extend mutation operations to support MLIR.

Figure 4 shows an example for the Copy mutation, as it can
be implemented in MLIR representing a TensorFlow model. This
will allow GEVO-ML to discover optimizations in both the model
structure and its underlying implementation. Why might this be
useful? As just one example, Figure 5 illustrates an optimization that
GEVO found in our preliminary work which leverages a synergy
between changes at the model layer and the implementation to
improve performance. Finally, as a proof-of-concept prototype, we
plan to integrate GEVO-ML into TensorFlow for two reasons. First,
TensorFlow is currently the only ML framework that supports
MLIR. In addition, multiple platforms are supported by TensorFlow,
including GPU, DSP and TPU. This broadens the application of the
proposed GEVO-ML.

Figure 2 illustrates the current approach of GEVO to optimizing
NN in Caffe2. As the figure shows, the only input to the search
(mapped through the LLVM-IR box) is the SGD kernel, and the
rest of the NN model is used only for the purpose of evaluation.
Under GEVO-ML, however, the input to the search will be the entire
neural network architecture as represented in MLIR.

The GEVO-ML design allows us to address three other shortcom-
ings of GEVO.

e Operator fusion: Today’s ML frameworks typically have a
set of rules for optimizing a given model by combining multi-
ple operators into a single one [4]. This reduces the overhead
incurred by operator invocations to the dedicated hardware
and the overhead required to transfer intermediate results
between the operators. In principle, the existing approach
of GEVO could discover a partial form of this optimization
by moving the internal implementation of one operator to
another operator, but it cannot completely eliminate the ex-
tra invocation. In GEVO-ML, the entire model architecture
is exposed to the evolutionary process, so GEVO-ML can
remove the operators after merging.

Optimization during training: By integrating with the
ML framework, GEVO-ML can be configured as part of the
training process. Under this scenario, code is modified on a
per-epoch basis or on a per-batch evaluation similarly to how
weights are updated or how learning rates can be scheduled
differently for different epochs [62].

Automation: GEVO had to be manually configured to find
optimizations in the most important operators used in the
model. Because GEVO-ML has access to the entire model
architecture in the MLIR representation, the evolutionary
process of the neural network implementation in the MLIR
representation as a whole can be automated naturally.

WHY ARE WE OPTIMISTIC ABOUT
GEVO-ML?

Why do we think that a low-level approach like GEVO-ML might be
able to find additional improvements in already highly optimized
NN codes? Why do we think that GEVO-ML is likely synergistic
optimizations that combine low-level code changes with higher-
level algorithm or hyperparameter changes? In this section, we
briefly review our earlier ML results. Refer to [39] for detailed
descriptions of the experimental procedures and evaluations.

Support Vector Machines (SVM). In one set of experiments, we
targeted the supervised ML framework, ThunderSVM [71], which
is an SVM library that is fully open-sourced and optimized for GPU
implementation. We used two popular datasets taken from [10],

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

handwriting recognition using MNIST [34] and income predic-
tion using a%a [16, 48]. In our setup, we gave GEVO a 48-hour
search budget and asked it to optimize the c_smo_solve kernel
for both training time and inference prediction accuracy of the
trained model, using two-fold cross validation. We rejected any
solutions that introduced greater than 1% additional error beyond
that achieved by the baseline implementation.

Although GEVO reported pareto optimal values for several run-
time/error tradeoffs, the best combined improvement for MNIST
ran 3.24X faster than the baseline with a slight improvement in
accuracy. Similarly, the income prediction (a9a)’s experiment led
to a 2.93X speedup with a very slight improvement in model ac-
curacy. These results were surprising because we expected to find
tradeoffs between speed and accuracy. Because GEVO was only
optimizing one component of the model, these results translated to
an overall improvement in model training speed of 50% and 24.8%
respectively. When we tested the models that were learned using
GEVO-optimized code on their official test datasets, accuracy was
slightly improved, ranging from 98.37% to 98.5% (MNIST) and from
84.59% to 84.64% (a9a).

We hypothesize that an SVM that is optimized for training a
specific dataset might achieve similar improvements on a different
dataset in the same class. After all, that would be the main advan-
tage of optimizing the training procedure for a particular type of
application. To address this, we also tested the SVM optimized for
the MNIST common dataset (60,000 samples) by using it to train
the large MNIST dataset (8,000,000 handwriting samples). Using 10-
fold cross validation, we found that accuracy from the unmodified
ThunderSVM was 100% and our GEVO-optimized training model
produced a network that achieved 99.997% accuracy.

How did GEVO achieve these optimizations? In essence, GEVO
discovered that for the MNIST dataset it could relax the convergence
condition in the SVM solver. Surprisingly, for MNIST this change
actually improves model accuracy as well as performance, perhaps
by avoiding overfitting.

ResNet18. Although many deep learning frameworks, like Ten-
sorFlow [2], PyTorch [47], and Caffe2 [18], rely on closed source
libraries, and are thus unavailable to GEVO, Caffe2 contains a mod-
ule that is custom implemented as a CUDA kernel and open sourced
within Caffe2 source repository. Thus, we were able to use GEVO
to optimize stochastic gradient descent with the momentum (mo-
mentumSGD) code in Caffe2. We used an 18-layer residual neural
network (referred to as ResNet18) for image classification on the
CIFAR-10 dataset [29], which contains 50000 training and 10000
testing images. MomentumSGD updates the weights and bias for
different layers of the neural network by evaluating the difference
between the true label and predicted label. This experiment was
computationally intensive, so we only trained the model for three
epochs, and even then, GEVO was only able to run for 20 genera-
tions when we allowed up to 10% error. Even with these restrictions,
GEVO found a kernel that was 1.79X faster than the original one.
Since the kernel constitutes less than 1% of the entire training time,
these gains don’t immediately translate into impressive overall
improvements in model training time. Of more interest, however,
are the optimizations that GEVO found, as Figure 5 shows. In this

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu

1T /% N = number of parameters

2 * m[i] = momentum

3 * g[i] = gradient

4 * BETA = momentum decay rate

5 * LR = learning rate

6 */

7 for (i=tid; i<N; i+= GREB=SEZE N) {
8 float mi = m[il;

e

float mi_new = BETAxmi + LRxg[il;
10 mLi] = mi—new LR*g[il;
11 gli]l = (1+BETA)*mi_new - BETA=xmi;

12

13 —if—~param>

14 param[i] -= gl[il;
15 3}

Figure 5: Code snippet from the Caffe2 momentumSGD op-
erator illustrates two optimizations discovered by GEVO.

example, three changes are responsible for the accuracy and per-
formance improvements: (1) Terminate the loop which updates the
parameters early, similar to weight pruning [44]. (2) Change the
algorithm of momentum by preserving the most recent momentum
but discarding the rest. (3) A low level code optimization through
removing the unnecessary branch condition.

We would like to point this out again, as Figure 2 shows. The
SGD kernel can be used in various layers with different number of
parameters needed to be updated. In fact, as there are 18 layers in
ResNet18, 18 instances of momentumSGD are invoked for updating
parameters of the layers. Different degrees of weight pruning might
further improve the model accuracy and performance, which leads
to GEVO-ML design.

6 CONCLUSION

Deep learning applications today are often developed using a com-
plex deep learning framework, which is compiled to run on complex
proprietary architectures that lack transparency. This often leads to
unanticipated interactions with runtime environments and work-
loads. GEVO-ML contributes a new dimension to neuro-evolution
by tackling this complexity in a general way. However, there are
many complexities in the emerging ML framework implementa-
tions which complicate the implementation of GEVO-ML. The paper
argues, however, that these are tractable.

In our earlier work with GEVO, we showed that EC can find
application-specific, architecture-specific, and dataset-specific op-
timizations, and in some cases optimizations at different layers
combine in synergistic ways. Sometimes the optimizations are as
simple as removing a redundant synchronization call, and some-
times they exploit nuanced interactions between an algorithm and
the dataset it runs on, as we saw in the SVM example. By mov-
ing to a general MLIR code representation, where GEVO-ML will
have access to the full ML framework, we look forward to harness-
ing the power of EC to find even more impressive performance
improvements in the future.

A proposal for GEVO-ML

ACKNOWLEDGMENTS

We thank F. Esponda, W. Weimer, and E. Schulte for many in-
sights, code and helpful comments. The authors gratefully acknowl-
edge the partial support of the National Science Foundation (CCF-
1618039, SHF-1652132, and CCF 1908633); DARPA (FA8750-15-C-
0118); AFRL (FA8750-19-1-0501); and the Santa Fe Institute for
Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu at ASU.

REFERENCES

(1]

2

3

i~
RN

=
—

[12

[13

[14

[15]

[16

[17]

(18
[19]

[20

[21]

2018. XLA is a compiler that optimizes TensorFlow computations. https://www.
tensorflow.org/xla/. (2018).

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proc. of the 12th USENIX Conf. on Operating Systems Design and
Implementation.

P Anju. 2018. Tips to Improve Performance for Popular Deep Learning Frame-
works on CPUs. Intel Developer Zone (2018).

Arash Ashari, Shirish Tatikonda, Matthias Boehm, Berthold Reinwald, Keith
Campbell, John Keenleyside, and P. Sadayappan. 2015. On Optimizing Machine
Learning Workloads via Kernel Fusion. In Proceedings of the 20th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming (PPoPP 2015). Association
for Computing Machinery, New York, NY, USA, 173-182. https://doi.org/10.1145/
2688500.2688521

Benoit Baudry, Simon Allier, Marcelino Rodriguez-Cancio, and Martin Monperrus.
2015. Automatic software diversity in the light of test suites. arXiv preprint
arXiv:1509.00144 (2015).

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
2016. Neural combinatorial optimization with reinforcement learning. arXiv
preprint arXiv:1611.09940 (2016).

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, Feb (2012), 281-305.
Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing Energy
Consumption Using Genetic Improvement. In Proc. of the 17th Annual Conf. on
Genetic and Evolutionary Computation.

Forbes J Burkowski. 1999. Shuffle crossover and mutual information. In Proc. of
the 1999 Congress on Evolutionary Computation-CEC99.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A Library for Support
Vector Machines. ACM Trans. Intell. Syst. Technol. (2011).

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. Mxnet: A flexible and
efficient machine learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274 (2015).

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In Proc. of 13th
{USENIX} Symp. on Operating Systems Design and Implementation.
Francois-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: A Python Framework for Evolu-
tionary Algorithms. In Proc. of the 14th Annual Conf. Companion on Genetic and
Evolutionary Computation.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation (2002).

Vidroha Debroy and W Eric Wong. 2010. Using Mutation to Automatically
Suggest Fixes for Faulty Programs. In Proc. of 3rd Intl. Conf. on Software Testing,
Verification and Validation.

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. (2017).
http://archive.ics.uci.edu/ml

Facebook. 2018. Finding and Fixing Software Bugs Automati-
cally With Sapfix and Sapienz. https://code.fb.com/developer-tools/
finding-and-fixing- software-bugs-automatically-with- sapfix- and- sapienz/.
(2018).

Facebook. 2019. Caffe2. (2019). https://caffe2.ai/.

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A Genetic Programming Approach to Automated Software Repair. In Proc. of the
11th Annual Conf. on Genetic and Evolutionary Computation.

Google. 2019. TensorFlow Performance Guide. https://docs.w3cub.com/
tensorflow~guide/performance/performance_guide/#general_best_practices.
(2019). TensorFlow Documentation.

C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. 2012. GenProg: A Generic
Method for Automatic Software Repair. IEEE Transactions on Software Engineering

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

(37]

(38]

"~
&

S
Kot

=
i)

'S
&

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

(2012).

Saemundur O. Haraldsson, John R. Woodward, Alexander, E.I. Brownlee, A. V.
Smith, and V. Gudnason. 2017. Genetic improvement of runtime and its fitness
landscape in a bioinformatics application. In Proc. of the Genetic and Evolutionary
Computation Conf. Companion.

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and
Kristin Siggeirsdottir. 2017. Fixing Bugs in Your Sleep: How Genetic Improve-
ment Became an Overnight Success. In Proc. of the Genetic and Evolutionary
Computation Conf. Companion.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective.
In Proc. of IEEE Intl. Symp. on High Performance Computer Architecture.
Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. 2003. A practical guide
to support vector classification. (2003).

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
2017. Speed/accuracy trade-offs for modern convolutional object detectors. In
Proc. of the IEEE Conf. on computer vision and pattern recognition.

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and
Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions. In Proc. of the 27th ACM Symp. on Operating
Systems Principles (SOSP ’19).

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. 2017.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the 44th Annual International Symposium on Computer Architecture. 1-12.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical Report.

William B Langdon and Mark Harman. 2010. Evolving a CUDA kernel from an
nVidia template. In Proc. of IEEE Congress on Evolutionary Computation.
William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.
2015. Improving CUDA DNA Analysis Software with Genetic Programming. In
Proc. of the 17th Annual Conf. on Genetic and Evolutionary Computation.

Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. 2007. An Empirical Evaluation of Deep Architectures on Problems with
Many Factors of Variation. In Proc. of the 24th Intl. Conf. on Machine Learning.
Chris Lattner and Jacques Pienaar. 2019. MLIR Primer: A Compiler Infrastructure
for the End of Moore’s Law. (2019).

Yann Le Cun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. of the IEEE (1998).

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A Systematic Study of Automated Program Repair: Fixing 55 out of 105
Bugs for $8 Each. In Proc. of the 34th Int. Conf. on Software Engineering.

C.-Y. Lee and E. K. Antonsson. 2000. Variable Length Genomes for Evolution-
ary Algorithms. In Proc. of 2nd Annual Conf. on the Genetic and Evolutionary
Computation Conf.

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019. Genetic Improvement
of GPU Code. In Proc. of the 6th Intl. Workshop on Genetic Improvement (GI ’19).
Best paper award.

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019. Uncovering Per-
formance Opportunities by Relaxing Program Semantics of GPGPU Kernels.
Wild and Crazy Idea session at the 24th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems. (2019).

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020.
GEVO: GPU Code Optimization using EvolutionaryComputation. (2020).
arXiv:cs.NE/2004.08140

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

LLVM. 2020. Multi-Level IR Compiler Framework. (2020). https://mlir.llvm.org/.
Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2014.
Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering (2014).

Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program. In Proc.
of the 2nd Intl. Conf. on Architectual Support for Programming Languages and
Operating Systems.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. 2016.
Pruning Convolutional Neural Networks for Resource Efficient Inference. In Proc.
of Intl. Conf. on Learning Representations.

David J Montana and Lawrence Davis. 1989. Training Feedforward Neural
Networks Using Genetic Algorithms.. In IJCAL

Gregory Morse and Kenneth O. Stanley. 2016. Simple Evolutionary Optimization
Can Rival Stochastic Gradient Descent in Neural Networks. In Proceedings of the
Genetic and Evolutionary Computation Conference 2016 (GECCO ’16). Association
for Computing Machinery, New York, NY, USA, 477-484. https://doi.org/10.1145/
2908812.2908916

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

[47]

[48]
[49]

[50

[51]

[52

[53

[54]

[55]

[56

[57]

[58]

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in PyTorch. (2017).

John C. Platt. 1999. Advances in Kernel Methods. Chapter Fast Training of
Support Vector Machines Using Sequential Minimal Optimization.

Qualcomm. 2016. Snapdragon Neural Processing Engine SDK. (2016). https:
//developer.qualcomm.com/docs/snpe/overview.html.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices (2013).

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proc. of the AAAI Conf. on
Artificial Intelligence, Vol. 33. 4780-4789.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution of
image classifiers. In Proc. of the 34th Intl. Conf. on Machine Learning-Volume 70.
JMLR. org.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov,
James Hegeman, Roman Levenstein, Bert Maher, Satish Nadathur, Jakob Olesen,
et al. 2018. Glow: Graph Lowering Compiler Techniques for Neural Networks.
arXiv preprint arXiv:1805.00907 (2018).

David Saad. 1998. Online algorithms and stochastic approximations. Online
Learning 5 (1998), 6-3.

Eric Schulte. 2014. Neutral Networks of Real-World Programs and their Application
to Automated Software Evolution. Ph.D. Dissertation. University of New Mexico,
Albuquerque, USA.

Eric Schulte, Jonathan DiLorenzo, Stephanie Forrest, and Westley Weimer. 2013.
Automated Repair of Binary and Assembly Programs for Cooperating Embedded
Devices. In Proc. of Intl. Conf. on Architectural Support for Programming Languages
and Operating Systems.

Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and Westley
Weimer. 2014. Post-compiler Software Optimization for Reducing Energy. In Proc.
of the 19th Intl. Conf. on Architectural Support for Programming Languages and
Operating Systems.

Eric Schulte, Zachary P. Fry, Ethan Fast, Westley Weimer, and Stephanie Forrest.
2014. Software Mutational Robustness. Genetic Programming and Evolvable
Machines (2014).

Eric M Schulte, Westley Weimer, and Stephanie Forrest. 2015. Repairing COTS
Router Firmware without Access to Source Code or Test Suites: A Case Study in

Jhe-Yu

[61

[62

[63

[64

o
2

[66

[67

[68

[69]

<
=

[71

[72

[73

[74

Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu

Evolutionary Software Repair. In Proc. of the 1st Genetic Improvement Workshop.
Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence.
2011. Genetic Programming for Shader Simplification. In Proc. of the 2011 SIG-
GRAPH Asia Conf.

Leslie N Smith. 2017. Cyclical learning rates for training neural networks. In
2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE,
464-472.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. 2009. A hypercube-
based encoding for evolving large-scale neural networks. Artificial life (2009).
Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computation 10, 2 (2002), 99-127.
D Stathakis. 2009. How many hidden layers and nodes? International Journal of
Remote Sensing 30, 8 (2009), 2133-2147.

Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Classi-
fication Algorithms. In Proc. of the 19th ACM SIGKDD Intl. Conf. on Knowledge
Discovery and Data Mining (KDD ’13).

Nadarajen Veerapen, Fabio Daolio, and Gabriela Ochoa. 2017. Modelling genetic
improvement landscapes with local optima networks. In Proc. of the Genetic and
Evolutionary Computation Conf. Companion.

Phillip Verbancsics and Kenneth O Stanley. 2011. Constraining connectivity to
encourage modularity in HyperNEAT. In Proc. of the 13th annual Conf. on Genetic
and evolutionary computation. ACM.

Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood, and David
Brooks. 2019. Exploiting Parallelism Opportunities with Deep Learning Frame-
works. arXiv preprint arXiv:1908.04705 (2019).

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically Finding Patches Using Genetic Programming. In Proc. of the 31st
Intl. Conf. on Software Engineering.

Zeyi Wen, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen. 2018. Thun-
derSVM: A Fast SVM Library on GPUs and CPUs. Journal of Machine Learning
Research (2018).

Carole-Jean Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan, K.
Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao, B. Reagen,
J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang, B. Wasti, Y. Wu, R.
Xian, S. Yoo, and P. Zhang. 2019. Machine Learning at Facebook: Understanding
Inference at the Edge. In 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 331-344.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. 2015. Deep learning with
elastic averaging SGD. In Advances in neural information processing systems.
685-693.

Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

	Abstract
	1 Introduction
	2 Related Work
	3 Background: GEVO
	4 GEVO-ML
	5 Why Are We Optimistic about GEVO-ML?
	6 Conclusion
	References

