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Abstract

We give the first polynomial time algorithm for list-decodable covariance estimation. For any


 > 0, our algorithm takes input a sample . ⊆ ℝ3 of size = > 3poly(1/
) obtained by adversarially

corrupting an (1 − 
)= points in an i.i.d. sample - of size = from the Gaussian distribution

with unknown mean �∗ and covariance Σ∗. In =poly(1/
) time, it outputs a constant-size list of

: = :(
) = (1/
)poly(1/
) candidate parameters that, with high probability, contains a (�̂, Σ̂) such

that the total variation distance )+(N(�∗ ,Σ∗),N(�̂, Σ̂)) < 1 − $
(1). This is the statistically

strongest notion of distance and implies multiplicative spectral and relative Frobenius distance

approximation with dimension independent error. Our algorithm works more generally for

(1 − 
)-corruptions of any distribution � that possesses low-degree sum-of-squares certificates

of two natural analytic properties: 1) anti-concentration of one-dimensional marginals and 2)

hypercontractivity of degree 2 polynomials.

Prior to our work, the only known results for estimating covariance in the list-decodable setting

were for the special cases of list-decodable linear regression and subspace recovery [KKK19,

RY19, BK21, RY20b]. The best-known algorithms for both these problems only yield a weak

recovery guarantee that needs super-polynomial time for any sub-constant (in dimension 3)

target error for the parameters in natural norms. As a corollary, our result yields the first

polynomial time exact algorithm for list-decodable linear regression and subspace recovery

that, in particular, obtain 2−poly(3) error in polynomial-time in the underlying dimension. List-

decodable setting also generalizes the problem of robust clustering non-spherical mixtures in

the strong contamination model [BK20b, DHKK20] and the state of the art [BK20b] for this latter

problem needs 3:
$(:)

samples and tolerates an � ≪ :−$(:) fraction outliers. Our result implies an

algorithm with an improved running time and sample bound of 3poly(:) that handles a larger

� ≪ 1/poly(:) fraction of outliers.
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†Carnegie Mellon University. Supported by NSF CAREER Award #2047933, a Alfred P. Sloan Research Fellowship

and a Google Research Scholar Award.
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1 Introduction

Can we accurately estimate the mean and covariance of a high-dimensional probability distribution

� from a input sample with outliers? What properties of � allow the robust estimation of such basic

parameters to be statistically and computationally tractable?

When outliers form a small constant (say 6 10%) fraction of the input data, we now have a

good first-cut understanding of efficient robust estimation of basic parameters of distributions.

The works [DKK+16, LRV16] invented the first polynomial time algorithms for the problem with

dimension-independent error guarantees and invigorated the now active field of high-dimensional

robust statistics. The ensuing follow-ups provide optimal guarantees for estimating the mean [KS17a,

KS17b, HL17, DKS18], covariance and higher moments [KS17b] of a broad class of distributions

while tolerating a small constant fraction of outliers. This progress has resulted in new broadly

applicable techniques, abstracted out properties of the distributions1 that make efficient robust

estimation possible and even inspired progress on related problems such as finding optimal

estimators for mean [Hop20, CHK+20, CFB19] and covariance of heavy-tailed distributions.

In contrast, much less is understood in the setting where a majority of the input data are outliers.

Since unique recovery of parameters is clearly impossible in this setting, the goal is to compute a

dimension-independent constant size list of candidate parameters one of which is close to those of

the unknown distribution. This model was introduced by Blum, Balcan and Vempala [BBV08] to

study an agnostic variant of clustering2 without separation assumptions on the underlying input

data. Indeed, list-decodable learning implies clustering algorithms without any separation assumptions

and allows partial cluster recovery even when outliers obliterate multiple clusters completely.

The recent effort in designing algorithms that tolerate such overwhelming fraction of outliers

began with the influential work of Charikar, Steinhardt and Valiant [CSV17]. In addition to the

applications above, they argued that list-decodable learning is a natural model for learning from un-

trusted data and showed applications to semi-verified learning. Their work gave the first non-trivial

guarantees for list-decodable mean estimation for distributions with spherical covariances (i.e. multiples

of identity). Subsequent works obtained stronger guarantees for spherical Gaussians [DKS18]

and more generally, Poincaré distributions [KS17a] with corollaries [HL17, KS17a] to clustering

spherical mixtures at the statistically minimum mean separation. A recent sequence of works have

even sped-up these results to almost linear time in certain settings [CMY20, DKK20a, DKK+20b].

List-decodable covariance estimation Despite this progress on mean estimation, the problem of

covariance estimation in the list-decodable setting has turned out to be significantly more challenging.

Prior works [KKK19, RY19] built a framework via the sum-of-squares method for list-decodable

learning to make progress in two special cases: list-decodable linear regression [KKK19, RY19]

(corresponds to the case where the unknown covariance is spherical in a subspace of co-dimension

1) and list-decodable subspace recovery [BK20a, BK21] (unknown covariance is spherical in an arbitrary

subspace) by introducing the new tool of certifiable anti-concentration. However, there is an inherent

1In this case, efficiently verifiable certificates of upper bounds on directional moments.
2The “inliers” correspond to one of the clusters.
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bottleneck in their approach (see Section 2.1) that leads to significantly weak error guarantees

even for the special cases they study: the best known algorithms need super-polynomial time for

any sub-constant error in the underlying dimension and do not appear to extend to settings when

the unknown covariance has eigenvalues of different scales3. Recent works for the special case

of clustering non-spherical Gaussian mixtures [BK20b, DHKK20] managed to wriggle out of the

difficulty4 by crucially relying on the input data being generated from a mixture of : Gaussians

where every pair is separated in total variation distance and the fraction of outliers is at most 6 :−poly(:).

This Work In this work, we design the first polynomial time algorithm for list-decodable covariance

estimation. As immediate corollaries, we also obtain the first polynomial time exact algorithms

for list-decodable linear regression and subspace recovery in ℝ3 obtaining constant size lists of

candidates one of which achieves as small as 2−poly(3) error in any natural norm and a 3poly(:)

time algorithm for clustering non-spherical mixtures in the presence of � = 1/poly(:) fraction

outliers (the best known prior work needs 3:
poly(:)

running time and sample complexity and tolerates

6 :−$(:)-fraction outliers).

Our list-decodable covariance estimation algorithm relies on the coalescence of a number of so-

phisticated tools developed in robust statistics over the past few years. This includes the algorithmic

certificates for basic probabilistic phenomenon such as certifiable subgaussianity [KS17b], certifiable

hypercontractivity [KOTZ14, BK20b, DHKK20] and certifiable anti-concentration [KKK19, RY19]

and the sum-of-squares framework for robust statistics.

The main idea that allows us to finally obtain an algorithm for all covariances is to abandon the

previous “one-shot rounding" approach in related list-decodable learning algorithms and instead

settle for a coarse spectral recovery guarantee via rounding a sum-of-squares relaxation to obtain a

combination of multiplicative approximation for large eigenvalues and additive approximation

for small eigenvalues. We then give an iterated pruning method that, that instead of relying on

the strong certifiable anti-concentration (the bottleneck in the previous works that holds only for

Gaussian-like distributions) property, crucially only needs the significantly milder Paley-Zygmund

anti-concentration inequality that holds for all subgaussian distributions. Our final algorithm is

obtained by an interleaved iteration of coarse spectral recovery, a new “subgaussian restriction”

subroutine and the pruning procedure based on mild anti-concentration. We expect our algorithmic

primitives to be useful in improving robust estimation algorithms that rely on certifiable anti-

concentration to faster methods that apply to broader family of distributions.

1.1 Our Results

We now describe our main results in more detail. Our results formally hold in the following strong

contamination model for list-decodable learning.

Definition 1.1 (Strong Contamination Model for List-Decodable Learning). In the strong contami-

nation model, a (1 − 
)-corrupted sample of size = from a distribution � is generated by choosing

3For e.g., covariances such as � + log 3 · EE⊤ − DD⊤ for unknown orthogonal unit vectors D, E.
4With substantial technical effort – see Section 2.2 of the overview in [BK20b] for a discussion.
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an i.i.d. sample - of size = from �, and, adversarially switching any (1 − 
)= points to obtain ..

Remark 1.2. This is the harshest studied model for robust estimation (and also used in [RY20c]). It

generalizes the more commonly studied list-decodable learning model [CSV17, KKK19, RY19, BK21,

DKP+21, CMY20, DKK20a, DKK+20b] where the input sample . is obtained by adding (1 − 
)=
outliers to an i.i.d. sample of size 
=. In contrast, our model above allows both adding and deleting

points from an independent sample of size =: our input . can be generated by first selecting

an arbitrarily “biased” subset of 
= points from an i.i.d. sample - and then adding (1 − 
)=
outliers. Our motivations for working with the harsher model are natural: we’d like to design

algorithms that provide strong recovery guarantees under weakest possible modeling assumptions.

A concrete advantage of our choice (see Corollary 1.9) is that the resulting algorithms (unlike

standard list-decodable learning) imply significantly improved algorithms that are more sample

efficient, faster, handle larger outlier rates for robust clustering of non-spherical mixtures in the

strong contamination model.

Main Result Our estimation guarantees are in the following notion of distance between parameters.

As we explain, this captures the information-theoretically strongest possible estimation guarantees

in our setting.

Definition 1.3 (Parameter Distance). We say that the distance parameter-distance((�,Σ), (�′,Σ′))
between two sets of mean-covariance pairs is at most Δ if the following three parameter distance

bounds hold.

1. Mahalanobis Mean Closeness: ∀E ∈ ℝ3, 〈� − �′, E〉2
6 ΔE⊤(Σ + Σ′)E,

2. Multiplicative Spectral Closeness: ∀E ∈ ℝ3, 1
Δ
E⊤Σ′E 6 E⊤ΣE 6 ΔE⊤Σ′E, and,

3. Relative-Frobenius Closeness:


Σ†/2Σ′Σ†/2 − �




�
6 Δ.

If parameter-distance 6 Δ, we can conclude that the total variation distance between the

corresponding Gaussians is at most 1 − exp(−Δ$(1)) (see Fact 3.24). As a result, obtaining recovery

guarantees in parameter-distance translates into bounds on the total variation error with no

dimension dependence. Total variation is the strongest possible (and arguably, the “right”) notion

of distance in this context and is the metric of choice in prior works on robust mean and covariance

estimation [DKK+16]. Our main result is the following theorem that gives a polynomial time

algorithm for list-decodable learning of mean and covariance of an unknown Gaussian distribution.

Theorem 1.4. For every 3 ∈ ℕ, there is a =poly(1/
) time algorithm5 that takes input a (1 − 
)-corrupted

sample of size = > 3

−$(1)

from a 3-dimensional Gaussian distribution with mean �∗ and covariance

Σ∗ and outputs a list of 2$(1/
$(1))-parameters such that with probability at least 0.99 over the draw

5Our algorithm works in the standard word RAM model. The running time of our algorithm is polynomial in the total

bit complexity of the input and of the unknown Σ∗. The dependence on the bit-complexity of Σ∗ is necessary, see Section 3.1

for a discussion. We note that our algorithm can also be formalized in the idealized “real RAM” model [BCSS98, EvM20]

of real computation that is implicitly used in prior works but we choose not to do this.
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of the uncorrupted sample - and the randomness of the algorithm, there is a (�̂, Σ̂) in the list satis-

fying: parameter-distance((�̂, Σ̂), (�∗ ,Σ∗)) 6 Δ, for Δ = poly(1/
). As a corollary, we obtain that

3TV(N(�∗ ,Σ∗),N(�,Σ′) 6 1−exp(−
−$(1)) where 3TV(·, ·) denotes the total variation or statistical distance

between two probability distributions.

Remark 1.5. Observe, that our algorithm needs no assumptions on the unknown covariance Σ∗. In

particular, Σ∗ can have exp(3) large condition number and can be rank deficient. In fact, if Σ∗ is

singular, our algorithm must construct a candidate Σ̂ with the same range space as Σ∗ and thus,

must recover the low-rank structure in Σ∗ exactly. For the numerical issues that arise in obtaining

this strong guarantee and how we handle them, we direct the reader to the discussion in Section 3.

Our main algorithmic innovation is a list-decodable learning algorithm for covariance estimation

that achieves a multiplicative spectral approximation to the unknown covariance with a dimension-

independent multiplicative factor. Even as a function of 
, our guarantees are tight6 up to constant

factors in the exponent of 
 in Δ. We then use this estimate to obtain the stronger relative Frobenius

distance recovery guarantees. Our result for mean estimation then follows by using our estimates to

“isotropize” (and thus effectively make the covariance almost spherical) and applying a list-decodable

mean estimation algorithm [KS17a] for covariances of bounded spectral norm.

Running Time and List Size: For any constant 
, the running time and sample complexity of

our algorithm is polynomial in the underlying dimension. The dependence on 
 of the running

time and sample complexity is exponential. This appears necessary. As we explain below

(see Corollary 1.9), our list-decodable covariance estimation algorithm implies an algorithm for

robustly clustering well-separated (in total variation distance) mixtures of Gaussians. Even in the

application to this special-case and to the setting without any outliers, known statistical query lower

bounds [DKS17, DKP+21] suggest a lower bound of 3Ω(1/
) time that matches our guarantees up

to the exponent of the polynomial of 1/
. In terms of the list-size, our algorithm returns a list of

size 2poly(1/
). This is a dimension-independent constant but can likely be improved to the optimal

$(1/
) bound.

List-decodable learning of all “reasonable” distributions Our algorithm more generally works

for any distribution � on ℝ3 as long as it satisfies two natural analytic properties of probability

distributions identified in the context of robust non-spherical clustering in [BK20b]. Informally

speaking, these properties ask for low-degree sum-of-squares certificates of anti-concentration and

hypercontractivity of degree 2 polynomials of the distribution � (we postpone formal definitions to

Section 3.3). While certifiable hypercontractivity of degree 2 polynomials is known to be true for

uniform distribution on product domains (such as discrete/solid hypercube), we only have verified

certifiable anti-concentration property for rotationally invariant distributions such as Gaussian

distributions and affine transforms of uniform distribution on the unit sphere [KKK19, RY19, BK20b].

Our algorithm thus succeeds as is (and does not require the knowledge of moments of underlying

distribution) for all such distributions. We believe that finding natural analytic properties that

govern the success of algorithms adds to our understanding of robust estimation in general.

6Given only a (1 − 
)-corrupted sample, we cannot distinguish between the 1-D Gaussians N(0, 1) and N(0, 
2) the

variances of which are 1/
2 multiplicatively far and Ω(1/
) additively far.
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Theorem 1.6 (See Theorem 8.6 for a detailed version). For any 
 > 0, there is a =poly(1/
) time algorithm

that takes input a. ⊆ ℝ3 of size = and outputs a ℒ list of size 2poly(1/
) of estimates (�̂, Σ̂) with the following

guarantee. Suppose there is an i.i.d. sample - of size = > =0 = 3poly(1/
) from a certifiably (�, 
3/2�)-anti-

concentrated distribution � with mean �∗ and covariance Σ∗ with �-certifiably hypercontractive degree 2

polynomials such that |.∩- | = 
=. Then, with probability at least 0.99 over the randomness of the algorithm,

there exists a candidate (�̂, Σ̂) in the list ℒ such that parameter-distance((�̂, Σ̂), (�∗ ,Σ∗)) 6 poly(1/
).

As an immediate consequence of our algorithm for list-decodable covariance estimation, we

obtain improved guarantees for the previously studied problems of list-decodable linear regression

and subspace recovery and clustering non-spherical mixtures.

Applications to Linear Regression In list-decodable linear regression, we are given a (1 − 
)-
corruption of a system of linear equations 〈G8 , ℓ∗〉 = 18 where each G8 is drawn from Gaussian

distribution and ℓ∗ is an unknown unit vector. Introducing the key new tool of certifiable anti-

concentration, Karmarkar, Klivans and Kothari [KKK19] and Raghavendra and Yau [RY19] gave

an algorithm7 for this problem with a running time of =$(1/(�4
4) time to produce a list of size

$(1/
) [KKK19] (the list size is a slightly larger bound of $(1/
log(1/
)) in [RY19]) that contains a ℓ̂

that is



ℓ̂ − ℓ∗




2
6 �. This running time was improved to =$(log(1/�)+1/
4) (at the cost of a larger list

size of 
$(log 1/�)) via a general error reduction within SoS method by Bakshi and Kothari [BK20a].

Note that both results assume that the covariance of G8s is known to be � and more importantly, for

any target sub-constant error � → 0 as 3 → ∞, the running time required is super-polynomial. This

is in fact the consequence of the recovery guarantees being in a norm weaker than total variation.

Observe that the coefficients of the uncorrupted set of equations (G8 , 18) are distributed as

3 + 1-dimensional Gaussian with mean 0 and covariance matrix � restricted to a subspace of

co-dimension 1 – namely, the one orthogonal to the vector (ℓ∗ ,−1). Thus, list-decoding linear

equations above is equivalent to list-decoding the (kernel of) the covariance. Our multiplicative

spectral guarantees above for covariance estimation immediately yields an algorithm that can obtain

an error as low as � = 2−poly(3) in polynomial time. In fact, our algorithm is exact in the sense that

the sample complexity does not depend on the target error � and the estimation error is entirely

because of finite numerical precision in computing the output. In addition, unlike prior works, our

algorithm does not need to know the covariance of G8s or the length of the unknown vector ℓ∗.

Corollary 1.7 (Exact Algorithm for list-decodable linear regression). For any 
 > 0 and target error

�, there is a =poly(1/
) poly log(1/�)-time algorithm for list-decodable linear regression that succeeds with

probability at least 0.99 whenever = > 3poly(1/
) and produces a list of 2poly(1/
) candidate vectors such that

there is an ℓ̂ in the list satisfying



ℓ̂ − ℓ∗




2
6 �.

Applications to Subspace Recovery In list-decodable subspace recovery, we are given (1 − 
)=
corrupted samples from N(0,Π) where Π is a projection matrix to a subspace of ℝ3. In [RY20b], the

authors gave an algorithm that takes such a set of points and in =$(1) time and 3$(1) samples, finds

7We note that these algorithms can handle random additive noise in the equations of variance ≪ 
.

5



a list of constant size containing a candidate Π̂ such that



Π̂ −Π




2

�
6 $(1/
5). The work [BK21]

obtained the stronger guarantee of



Π̂ −Π




2

�
6 � for arbitrarily small � in time =$(log 1/�)/
4

time

whenever = > 3$(1/
4). However, even this improved algorithm requires super-polynomial time to

achieve any sub-constant recovery error.

As a direct corollary of our stronger multiplicative spectral approximation guarantee, we

immediately obtain the first exact algorithm for list-decodable subspace recovery, that, in particular

allows achieving even exponentially small errors in polynomial time.

Corollary 1.8 (Exact Algorithm for list-decodable subspace recovery). For any 
 > 0 and target

error �, there is a =poly(1/
) poly log(1/�)-time algorithm for list-decodable subspace recovery that succeeds

with probability at least 0.99 whenever = > 3poly(1/
) and produces a list of 2poly(1/
) candidate projection

matrices such that there is an Π̂ in the list satisfying



Π̂ −Π∗





�
6 �.

Applications to Robust Clustering of Non-Spherical Mixtures Our work immediately improves

the best known prior algorithms for robust clustering of non-spherical mixtures in the “small

outlier regime”. Specifically, the goal in this problem is to take input an �-corrupted sample from

a mixture of : Gaussians with equal weights with means and covariances �8 ,Σ8 such that each

pair is Δ-separated in parameter distance (equivalent to separated on total variation distance as

discussed above), and output an estimate �̂8 , Σ̂8 of the parameters of each component that are close

in parameter distance (Definition 1.3). Two recent works obtained the first efficient algorithms for

solving this problem. Specifically, the algorithm in [BK20b] obtains a = = 3:
$(:)

-sample and =:
$(:)

time algorithm for Δ = :poly(:)-separated mixtures to obtain :poly(:)�-close estimates in parameter

distance as long as � ≪ :−$(:). Their algorithm succeeds more generally for mixtures of all

“reasonable distributions” discussed above. The work of [DHKK20] obtains a 3�(:) sample and =�(:)

time algorithm that tolerates a � ≪ 1/�(:) of outliers for the same problem when the components

are Gaussians with Δ = �(:)-separation where �(:) is at most a poly(:) size tower of exponentials

in :. While both algorithms are polynomial time for a fixed :, their running times and sample

complexity are exponentially larger than the potentially optimal bound of 3poly(:) (that matches

the SQ lower bounds in [DKS17]). Progress in obtaining clustering algorithms for non-spherical

mixtures is a key component in the recent resolution of the problem of robust learning of mixtures

of arbitrary Gaussians [LM21, BDJ+20].

By combining our list-decodable covariance estimation algorithm (here, our algorithm running

in the strong contamination model of list-decodable learning is important) with a clustering

algorithm with known approximate parameters (based on the partial clustering framework of

[BK20b]) and a verification subroutine from [BK20b], we obtain the following improved algorithm

on three fronts: 1) the algorithm applies to arbitrary weighted mixtures of Gaussians, 2) handles as

large as � 6 $(?<8=/:) fraction outliers (note that � ≪ ?<8= is information theoretically necessary,

and 3) needs sample and running time scaling as 3poly(1/?<8=) – 3poly(:) for the equiweighted case.

We present a detailed proof sketch in Section 9.3.
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Corollary 1.9 (Improved Algorithms for Clustering Non-Spherical Mixtures, See Theorem 9.3). Let

3, : ∈ ℕ and � ≪ $(?<8=/:). For any � > 0, there is an algorithm that takes input an �-corrupted sample

. = {H1 , H2 , . . . , H=} ⊆ ℚ3 drawn from
∑
8 ?8N(�8 ,Σ8) for ?8 > ?<8= for each 8 and with probability at

least 0.99, outputs estimates �̂8 , Σ̂8 such that (�̂8 , Σ̂8) are $(:�)-close to �8 ,Σ8 for each 8. The algorithm

needs = > =0 = 3poly(:)/�2 samples and runs in time =poly(:/�).

1.2 Comparison with Related Work

Clustering Well-Separated Non-Spherical Mixtures List-decodable (mean and) covariance esti-

mation significantly generalizes the problem of robust clustering of non-spherical mixture models.

In the robust clustering problem, the input is an 1 − 
 = �-corruption (Definition 1.1) of an i.i.d.

sample from a mixture of : distributions (say Gaussians). By viewing any cluster as “inliers” and

all the other points as “outliers”, this corresponds to the setting of 
 = 1/2: if � 6 1/2:. Recent

works [BK20b, DHKK20] gave an =poly(:) time (= 5 (:) time in [DHKK20] where 5 (:) is a polynomial

size tower of exponentials in :) algorithm for clustering equiweighted non-spherical mixtures of :

Gaussians by relying on the new tools of certifiable anti-concentration [KKK19, RY19] and certifiable

hypercontractivity of degree 2 polynomials.

Such clustering algorithms need two crucial assumptions: 1) every pair of the : components is

separated in total variation distance by 1 − exp(−:$(:)) and 2) the fraction of outliers � ≪ :−$(:). In

contrast, even when specialized to clustering, our algorithm for list-decodable covariance estimation

succeeds (and gives total variation distance guarantee) without any separation assumptions and

handles as large as 1 − 1/: fraction outliers – enough to obliterate all but one clusters. Indeed, this

agnostic clustering application was the main motivation in the initial work of Balcan, Blum and

Vempala [BBV08] that defined and studied the list-decodable learning model.

The significantly more general list-decodable setting makes the approach in [BK20b, DHKK20]

inapplicable. Let us briefly explain why: the key idea in [BK20b, DHKK20] is to give a sum-of-squares

proof that if F indicates a subset � of the input points that satisfy some “Gaussian-like” properties,

then � cannot simultaneously have a large intersection with two different components. This

fact crucially needs (even for its information-theoretic truth) that every pair of components is

pairwise well-separated. Indeed, the rounding algorithm in [BK20b, DHKK20] comes up with an

approximation to the ground-truth clustering of the input points – a goal that is not meaningful in

the setting of list-decodable covariance estimation.

Learning Arbitrary Gaussian Mixtures Our work is related (but incomparable and complemen-

tary, in both results and techniques) to the recent resolution of the problem of robust learning of

a mixture of :-arbitrary Gaussians [LM21, BDJ+20]. When viewed from our vantage point, these

works give a polynomial time algorithm (for any fixed :) to learn the parameters of a mixture of

: Gaussians given an �-corrupted input sample. The algorithms of [LM21, BDJ+20] do not need

strong separation assumptions but crucially need that the fraction of outliers is small (at most

∼ exp(−:!)). In that setting, their algorithm recovers estimates of the components that are close

(within some ��(:) in [BDJ+20]) to those of the unknown mixture. On the other hand, our algorithm

for list-decodable covariance estimation must handle an overwhelming 1 − 
 ∼ 1 − 1/:-fraction

7



outliers and list-decodes to an error guarantee of 1 − �
 in total variation distance where �
 is a

function only of 
 and bounded away from 0 for all 
 > 0. This is essentially the best possible

guarantee in our setting as it is statistically impossible to obtain a total variation error < 1 − 
.

Indeed, our techniques are significantly (and necessarily so) different from those in [LM21,

BDJ+20]. In fact, the algorithms in [LM21, BDJ+20] use robust clustering algorithms from [BK20b,

DHKK20] as a first step with their key new algorithmic components coming after the clustering step.

We note that using our new list-decodable covariance estimation algorithm in lieu of the clustering

algorithm in the first step both simplifies and speeds up that step in their proof.

2 Technical Overview

In this section, we give a high-level overview of our algorithm and the main ideas that go into

improving on the approaches from prior works.

Let - ⊆ ℝ3 be an i.i.d. sample from N(�∗ ,Σ∗). Let . ⊆ ℝ3 be obtained by taking any (1 − 
)-
corruption (i.e. corrupting an 1 − 
 fraction of the points) of -. The goal of our algorithm is to

take input any such . and come up with a list of candidate hypotheses (�̂8 , Σ̂8) of size some fixed

dimension-independent constant, such that there an 8 satisfying 3TV(N(�∗ ,Σ∗),N(�̂, Σ̂)) < 1 − �


where �
 is a function only of 
 bounded away from 0 for all 
 > 0. By Fact 3.24, it is enough

to obtain a list of parameters that contains (�̂, Σ̂) satisfying parameter-distance 6 poly(1/
) (see

Definition 1.3).

In this overview, we will assume that �∗ is 0. This is essentially without the loss of any generality.

If - is an i.i.d. sample from N(�∗Σ∗), then, G−G′√
2

is distributed as N(0,Σ∗). Thus, if we start by

taking a random matching of . and applying the scaled difference transform above for pairs in the

matching, we can simulate access to a (1 − 
2)-corrupted sample from N(0,Σ∗). We will further

restrict attention to obtaining mutiplicative spectral guarantee in our estimate – the key component

of our algorithm that requires the introduction of several new ideas.

The standard approach for list-decodable learning Let’s start with the approach in prior

works [KKK19, RY19, BK21, RY20b] on list-decodable linear regression and subspace recovery. The

algorithms in both those works find and round a solution to the sum-of-squares relaxation of a

system of polynomial constraints (see Section 4 for the system we use) that encode the task of

finding a subset, say �, of . of size 
= (indicated by 0-1 variables F1 , F2 , . . . , F=) that satisfies

two relevant properties of Gaussian distributions: anti-concentration and hypercontractivity. In

order to impose such properties as constraints, we use the standard (see discussion on succinct

representation of constraints in Chapter 4 of [FKP19]) technique (from [KS17b, HL17]) of constraint

compression by relying on sum-of-squares proofs.

Analysis by relating total variation distance to parameter distance To understand the main idea

in their analyses, consider a “real world” solution to the constraint system. Such a solution is simply

a subset � of . of size 
=. The conceptual crux of the algorithm in [KKK19, RY19, BK21, RY20b] is

the following observation: If |� ∩ - | > 
 |. ∩ - | – i.e., the set � intersects the “inlier” part of . that
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comes from the - in 
 fraction of its points – then, the empirical parameters of � must be close to

that of -. This is a basic statement in statistics that relates a non-trivial bound on the total variation

distance (which corresponds to intersection when specialized to uniform distributions on two sets

of points) to the closeness of the corresponding parameters. In fact, their analyses can be directly

used to infer the following purely information-theoretic result: if the uniform distributions on � and

- are both anti-concentrated and have hypercontractive degree 2 polynomials, and |� ∩ - | > 
 |� |, then,

the covariance of � multiplicatively approximates the covariance of -. The anti-concentration property

implies that if �′ ⊆ � is a subset of arbitrarily small but fixed constant fraction of �, then, the

“variance” �G∼�′〈G, E〉2 in any direction E on the subset �′ must be within a constant factor of

�G∼� 〈G, E〉2 – the variance in the same direction on the whole subset �. Such a property can be

used to show statistical identifiability of a small list – we direct the reader to the technical overview

sections of [KKK19, BK21, BK20b] that provide an essentially complete proof of such a statistical

identifiability result with related discussions. While this is exactly the statement we want, such an

argument does not yield an efficient algorithm 8.

Formalizing identifiability in low-degree sum-of-squares proof system In order to obtain effi-

cient algorithms, the works above formalize the above information-theoretic reasoning into the

low-degree sum-of-squares proof system.

In order to work in the low-degree sum-of-squares proof system, we need to work with sum-of-

squares certificates for anti-concentration and hypercontractivity inequalities. Informally speaking,

this strategy involves creating Boolean indicator variables F1 , F2 , . . . , F= that identify a subset

of the input corrupted sample . of size = and force that the subset of points indicated by F

admit SoS certificates of hypercontractivity and anti-concentration (i.e., satisfy the two relevant

properties of Gaussian distributions that an “uncorrupted” part of . is promised to satisfy). Now,

notice that there can be multiple solutions to this relaxation even for the unrelaxed polynomial

formulation since . could be a disjoint union of 1/
 different subsets of size about 
= such that

each of these subsets provide a feasible assignment for Fs. The solution to the relaxation yields

a “pseudo-distribution” – for the sake of exposition in this section, the reader can think of a

pseudo-distribution as a probability distribution supported on Fs that describes subsets of . that

satisfy the two relevant properties of Gaussians we imposed as constraints.

We must now give a rounding algorithm to take such a pseudo-distribution and produce a

small list of parameters, one of which is close to the ground truth. For this goal, we might want

to replicate the above information-theoretic strategy and argue that the parameters of Fs in the

pseudo-distribution must be close to that of -. Such a statement would of course require that

the on average, a subset � indicated by Fs in the support of the pseudo-distribution intersects

substantially in - (as otherwise, there’s no reason for � to have any information about parameters

of -). Such a statement does not generically hold for all pseudo-distributions (since we can,

in general, have solutions Fs that are entirely supported on the “outlier part” in .). But prior

works [KKK19, RY19] show that certain “spread-out-ness” constraints (formulated as minimizing

8This, by itself, is not surprising. Statistical identifiability in parameter estimation is often significantly simpler to

establish than the task of finding efficient algorithms.
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surrogates for entropy of pseudo-distributions) imply that on average, � indicated by F in the

support of the pseudo-distribution does intersect in about 
 fraction of its points with -.

At this point, we might naturally want to replicate the information-theoretic strategy above that

infers closeness of parameters of � and - from large intersection between them. But this creates a

major technical difficulty in prior works that while tackled with some effort in special cases with

weaker notions of error, prevents applications to general covariances. Let us explain this issue a

little more:

A concrete way to analyze the pseudo-distribution is to work the following variables F that

allow capturing the intersection of Fs in the support of the pseudo-distribution with the unknown,

uncorrupted - ∩ . ⊆ .. Let F′
8 = F8 · 1(G8 = H8). Then, notice that F′

8 is the indicator of indices of

points in the intersection � ∩-. Following on the information-theoretic strategy above, we’d like to

argue that the variance of points indicated by F′ in any direction E is multiplicatively close to that

of - in the same direction. Instead of “real-world” anti-concentration, this time, we must use a

low-degree sum-of-squares certificate for anti-concentration only. The low-degree sum-of-squares

certificate for anti-concentration from [KKK19, RY19] allows us to obtain a claim of the following

form in degree $(1/�2) (which translates into a running time of =$(1/�2).

1

=

∑
8

F′
8 〈G8 , E〉2

> �2

(
1

=

∑
8

F′
8 − $(�)

)
1

=

∑
8

〈G8 , E〉2 . (2.1)

Informally speaking, the LHS counts the contribution to the variance in the direction E from the

points in � ∩ -. The RHS, on the other hand, is a scaling of the variance of - in the direction E

with the major difference from the real world version is the presence of the additive −$(�) slack in

the right hand side in the multiplier to the variance.

2.1 Key Bottleneck: Exponential Dependence on Condition Number

The expression above reveals a “gap” between low-degree certificates for anti-concentration

inequality vs “real world” anti-concentration: the guarantee above is meaningful only when
1
=

∑
8 F

′
8 ≫ �. Further, the sum-of-squares degree dependence of $(1/�2) for such a certificate

happens to be tight9 – translating into a running time cost of =$(1/�2). This might appear innocuous

– after all, if F was indeed an indicator of . ∩ -, the associated 1
=

∑
8 F

′
8 > 
 so simply choosing

� ≪ 
 should work. But this is misleading. If we were to analyze, for example, the average mean

and covariance under the (pseudo-) distribution, we need that 1
=

∑
8 F

′
8 > � to hold pointwise in the

support of the distribution. But this is of course not enforceable as a constraint. In “real world”,

we could analyze the distribution by going over all Fs in the support of it and splitting into two

cases depending on whether a given F satisfies the above large intersection condition. But such an

argument involves an if-then statement that is hard to formulate as a low-degree sum-of-squares

proof (indeed, a version of this argument is precisely what is used in [BK20b] but its success strongly

9The certificates rely on the univariate polynomial approximators for indicator functions of �-length interval around 0

over standard Gaussian distributions. Such a polynomial can be shown to need degree $(1/�2) by standard techniques

in approximation theory. See the recent talk for a research direction on potentially stronger certificates that could escape

such lower bounds.
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relies on . being a sample from a Mixture of Gaussians with only a small fraction of outliers) and

the source of all the trouble in the list-decodable setting. We remark that this issue of “pointwise”

facts provable in low-degree sum-of-squares proof system also arises in the recent work [KMZ22]

on using the sum-of-squares relaxation for robust moment estimation to obtain optimal error

guarantees for Gaussian distributions.

In order to get around this issue of additive slack and obtain a meaningful anti-concentration

inequality from (2.1), we need an upper-bound on 1
=

∑
8 〈G8 , E〉2. For example, if we knew and encoded

into our constraint system that the unknown covariance Σ∗ has all its eigenvalues at most  , then,

we can conclude from (2.1) that:

1

=

∑
8

F8 〈G8 , E〉2 + $( �) ‖E‖2
2 > �2

(
1

=

∑
8

F8

)
1

=

∑
8

〈G8 , E〉2 . (2.2)

That is, we must incur an additive slack in the anti-concentration inequality that scales with

the largest eigenvalue of Σ∗. Observe that in order for this guarantee to be meaningful, we’d have to

choose � ≪ 1/
√
 and thus our running time must scale exponentially in the condition number Σ∗.

This is the key reason for the weaker error guarantees in the prior results on list-decodable

learning, and in fact prevents any meaningful guarantee (even of the sort known for regression and

subspace recovery) without a known bound on the condition number of Σ∗. In fact, approaches

based on prior works appear to fail even if the unknown covariance matrix has eigenvalues of two

different scales, such as � + (log 3)DD⊤ − EE⊤ for pairwise orthonormal unit vectors D, E.

This appears to be a fundamental issue in using anti-concentration inequalities within the

SoS framework. For e.g., in their initial version of the algorithm for clustering non-spherical

mixtures [BK20b], the authors made assumptions on the condition number of the covariances (with

running time growing exponentially in log�) of the components in order to obtain their guarantees

with substantial effort invested into getting around the issue of additive slack in certificates of

anticoncentration 10. They later managed to find an iterative “bootstrapping” technique that

crucially relied on the strong separation assumptions available in the clustering setting in order to

get an assumption-free robust clustering algorithm.

In the list-decodable setting, there are no such assumptions to work with and as a result

the follow-up work [BK21] on list-decodable subspace recovery only obtains the weaker error

guarantees discussed before. Our key innovation is a new algorithmic strategy that circumvents

the issues with certifiable anti-concentration. Our algorithm is based on iterative use of three

algorithmic components (that make an essential use of the isotropic position) that may be useful in

robust estimation in general. We explain these new components and how they fit together next.

2.2 Coarse Spectral Recovery: Theorem 4.2

Let’s depart from the approach above and abandon the goal of recovering multiplicative spectral

approximation to Σ∗ in one shot as in the prior works. Instead, we will shoot for a coarse spectral

10See also the discussion on the need for a priori upper bounds in [DHKK20].
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recovery algorithm where we obtain 1) multiplicative approximation for the large eigenvalues, and,

2) additive approximation for all small eigenvalues of Σ∗.
Of course, the algorithm does not know the scale of the eigenvalues of Σ∗. So what does “large”

mean? We will say that a quadratic form on E of Σ∗ is large if it is at least poly(
) relative to that

of the empirical covariance of the input corrupted sample. That is, E⊤Σ∗E > poly(
)�H∼. 〈E, H〉2.

Observe that . has (1 − 
)= outliers that can be arbitrarily large and can completely drown out all

eigenvalues of Σ∗. In that case, coarse spectral recovery will only achieve a vacuous guarantee and

we’d have to make progress via a different route.

To obtain such a “multiplicative+additive” guarantee, we introduce a new “bootstrapping”

technique that obtains low-degree sum-of-squares certificates of Frobenius norm error bounds

restricted to the subspace where Σ∗ has small eigenvalues. Combining with multiplicative spectral

recovery bounds on large eigenvalues then yields the required guarantee. This technique requires

the use of certifiable hypercontractivity of degree 2 polynomials (in our constraint system) in addition

to certifiable anti-concentration. This is in contrast to prior works [RY20a, KKK19]) that only need

certifiable anti-concentration for such a goal.

We will make “conditional progress” via this method. Specifically, we argue that if every

eigenvalue of every candidate Σ̂ in the list generated in the coarse spectral recovery step is large

(compared to that of the corrupted sample), we show that one of them must be a good multiplicative

approximation that we desire. As we argued before, the additive loss is a direct consequence of

the “slack” term in certificates of anticoncentration. In order to make progress, we will rely on

subroutines “outside of the SoS” system.

Naive Pruning of . When there is a candidate Σ̂ in the list recovered in coarse spectral recovery

that does have small eigenvalues, we will make progress by a new pruning step. Here’s the key

intuition: Suppose that a candidate Σ̂ has a small eigenvalue in direction E. Suppose further that Σ̂

is a “good” candidate (i.e. the one that achieves the multiplicative and additive guarantee w.r.t.

the unknown covariance Σ∗). Then, the variance of points in the inlier - ∩ . (i.e. the intersection

with the uncorrupted sample) in the direction E must be small because of - being anticoncentrated

in all directions including E. Thus, if we prune the H ∈ . such that the projection in direction E is

large (i.e., 〈E, H〉 ≫ E⊤Σ̂E), we will remove only a small fraction of inliers - ∩.. Thus, our pruning

functions as a biased filter that removes mostly outliers along with a small fraction of inliers. Of

course, we do not know which candidate is good a priori, so we simply run the process on every

candidate and obtain a different pruned subset of . for each.

How do we make progress in this step? Observe that we have no guarantees on . to begin with.

And for all we know, the variance of . in direction E is large (compared to E⊤Σ̂E) because of say,

just a single large H. If we were to repeatedly apply coarse spectral recovery with pruning, we’d

have run $(=) interleavings and in each such step expand the list by a factor of poly(1/
) leading

to an exponential run time and list-size.

In order to escape this pitfall, we must find a way to guarantee that when we do try to remove

points in . that are too large, we end up chopping off a constant fraction of . without hurting the

inliers. It turns out that this is true if the low-order empirical moments of . are subgaussian.
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Pruning with Subgaussianity: The Power of Mild Anti-Concentration (see Section 6) Infor-

mally, the pruning step removes too few points only if a small fraction of H contribute most of the

variance in a given direction E. But such “fat-tails" cannot exist if low-order moments of . are

subgaussian. In fact, we prove that if . has subgaussian moments of $(1)-degree, then, we can

prune away a poly(
) fraction of points in . while ensuring that for any good candidate Σ̂ the

fraction of inliers in the pruned points is small. Specifically, say . is normalized to be isotropic: that

is �H∼. HH⊤ = �. Then, using the Paley-Zygmund anti-concentration inequality, if the 4Cℎ moment

of . in the direction E is at most Δ, then, there must be a Ω(1/Δ) points in . such that |〈E, H〉|
exceeds say 1/2. On the other hand, if Σ̂ were a good candidate and additively approximates all

small eigenvalues of Σ∗, then, - itself would be subgaussian and given that E⊤Σ̂E is small, the

fraction of points G such that |〈E, G〉| is large should be tiny. Thus, if we pruned away points H

where |〈E, H〉| is larger than, say, 1/2, we’d have removed a poly(
) fraction of points in . while

essentially leaving the inliers untouched.

Note that in this step, we are using subgaussianity to infer a mild anti-concentration of the

entire corrupted sample. We have strong anti-concentration guarantees for the inliers (and the

original uncorrupted sample) but a priori, no guarantees for . that includes a majority of outliers.

The key gain from our splitting subroutine is making progress without needing to certify strong

anti-concentration properties – by resorting to mild anti-concentration that can be inferred only from

moment upper bounds. Such an anti-concentration, by itself, is not enough to do list-decodable

learning, but it’s enough for our splitting algorithm to succeed.

Of course, our splitting subroutine relied on the corrupted sample . being subgaussian – which,

of course, it needn’t be. Let us describe how we perform a different pruning to ensure this property.

2.3 Subgaussian Restriction: Theorem 5.2

The goal of our subgaussian restriction algorithm is to take input a subset of points. and prune away

some points, if needed, to ensure low-order subgaussianity: �H∼. 〈H, E〉2C
6 (�′C)C

(
�H∼. 〈H, E〉2

) C
for some appropriate constant �′ and C = $(1/
). Additionally, we must ensure that the points we

prune away are overwhelmingly just the outliers.

Observe that the requirement above is linearly invariant and significantly stronger than the

variant (accomplished as a step in list-decodable mean estimation algorithms such as [KS17a])

where we only want that �H∼. 〈H, E〉2C
6 (�′C)C ‖E‖2

2.

In order to accomplish this goal, we give a new algorithm based on a natural sum-of-squares

relaxation that maximizes �H∼. 〈H, E〉2C over vectors E ∈ ℝ3 (after putting . into isotropic position).

Our algorithm uses the solution (if the relaxation is infeasible, we are sure that . is already

subgaussian as we’d want) to the relaxation to effectively assign to each H ∈ ., the “weight”

�̃[〈E, H〉2C].
We then use a “reverse Markov” inequality to argue that there is a threshold / such that the set

of all H ∈ . such that �̃[〈E, H〉2C] > / must be significantly larger than what we expect for - and

thus, we have found a “outlier-dominated” portion of . that can be pruned away. We then iterate

on the resulting pruned ..

Observe that unlike our splitting algorithm above, we do not guarantee pruning away non-trivial
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fraction of points in .. Instead, our idea can be summarized as saying that if the adversary added

outliers so as to maintain subgaussianity, then, our basic splitting procedure above makes progress.

If not, then, we must make progress in the subgaussian restriction phase.

2.4 Combining the Subroutines for a Multiplicative Spectral Guarantee: Theorem 7.2

Given the above pieces, here’s how we can combine them all together: at all points, our algorithm

maintains a list of candidate covariances along with “current witness sets” – these are subsets of .

obtained by applying pruning and splitting steps above assuming that the corresponding candidate

was a “good” candidate. If a candidate Σ̂ has all its eigenvalues large compared to that of its current

witness, we can label it “final”. If not, we first apply subgaussian restriction to its witness set, put

the resulting .′ in isotropic position and run coarse spectral recovery. This gives a new list of

candidates. If any of the candidates has a small eigenvalue, the splitting step above prunes away

poly(
) fraction of the points from its witness set. On the other hand, we know that for a good

candidate, we never prune away too many of the inliers. Thus, once the size of the witness set drops

below, say, 
=/2, we can reject that candidate completely. Thus, for a “good” initial candidate Σ̂,

we must eventually end up with a “witness” set .′ such that Σ̂ has none of its eigenvalues are small

relative to that of the �H∼.′ H′H′⊤. Altogether, this gives us an algorithm with a “recursion depth”

of 1/poly(
) and at “generation”, we increase the list-size by a factor 1/poly(
). Altogether, the

algorithm thus runs in time =poly(1/
) and produces a list of size (1/
)poly(1/
).

3 Preliminaries

Throughout this paper, we will use - to denote an i.i.d. (uncorrupted) sample of = points in ℝ3

and . to denote its (1 − 
)-corruption. For any finite set ( of points, we will �B∼( 5 (B) to denote the

empirical average of 5 (B) as B varies uniformly over (.

3.1 Computational Model and Numerical Inputs

Our algorithms work in the standard word RAM model11. We assume that the inputs are rational

numbers and the running time of the algorithm is a function total bit complexity of the representation

of the input. This does require a moment’s thought since a draw from the standard Gaussian, for

e.g., is irrational with probability 1. In this work, we will assume that we have access to a bit-oracle

for the input irrational number that can furnish as many bits of precision as our algorithm desires.

The complexity of the algorithm grows as the number of bits of precision it demands increases.

11Works in statistical learning theory often (and sometimes implicitly) present algorithmic guarantees in the real RAM

model [BCSS98]. This model deems a certain (carefully chosen) list of operations on real numbers to be doable in a single

step (this includes arithmetic operations). There are a few different choices considered in prior works for such operations,

see the discussion in the paragraph titled "formally modeling real RAM algorithms" on Page 1 in [EvM20]. Depending

on the choice of the list of such operations, our algorithm can be implemented in this model. However, a blackbox

running-time preserving translation from algorithms that work in the real RAM model to the one in the standard word

RAM model is not known (see the recent work of Erickson on a smoothed version of such a statement [EvM20]). So we

choose the more direct route of working in the word RAM model in this work.
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Numerical Issues in Vanilla Covariance Estimation in Total Variation Distance Following prior

works on learning mixtures of Gaussians, our recovery guarantee for parameters of an unknown

Gaussian distribution is naturally stated in total variation distance – the strongest possible notion of

distance in our context. When the covariance Σ∗ � 2−poly(3)�, our analysis succeeds even on rational

truncation of the inputs with essentially no change.

When Σ∗ is singular, however, we need some care12 in dealing with numerical issues. To see

this, consider the basic task of estimating the covariance of an unknown Gaussian distribution

N(0,Σ) on ℝ3 from independent samples G1 , G2 , . . . , G= . This is a basic subroutine (that has nothing

to do with robust estimation) in numerical algorithms. Standard matrix concentration results

imply that for = ≫ 3, (1 − $(3/=))Σ � Σ̂ = 1
=

∑
86= G8G

⊤
8 � (1 + $(3/=))Σ. Such a multiplicative

guarantee in Löwner ordering is necessary to obtain any bound < 1 on the total variation distance

)+(N(0, Σ̂),N(0,Σ)) between the unknown Gaussian distribution and the one we estimate from

samples. When implemented in the word RAM model, the samples must be truncated to rationals

and as a result, the estimated Σ̂ will have rational entries. It is easy to construct examples where such

a procedure (and in fact any rational Σ̂) must be maximally far from the true covariance (8.4.1) in total

variation distance. For example, let E = (
√

3/5,
√

2/5, 0, . . . , 0) and let Σ = � − EE⊤. Then, for every Σ̂

with rational entries, the multiplicative guarantee above fails and, in fact, )+(N(0, Σ̂),N(0,Σ)) = 1.

The above example shows that it is provably impossible to output a rational Σ̂ even for the basic

task of estimating covariance from i.i.d. samples if we desire a multiplicative spectral guarantee.

However, this also appears somewhat pathological since the “hardness” here seems to arise entirely

from issues in representing the input (without any role of the algorithm itself).

Our Resolution: In order to circumvent this issue, we will make an assumption that is arguably

weakest possible: we will assume that there exists a matrix with rational entries that satisfies the

guarantees we want. That is, thus some output – however hard to compute – could have satisfied

the requirements of the algorithm. For covariance estimation above, this is essentially equivalent to

assuming that the unknown covariance Σ is rational entries. Note that the input sample points will

still have irrational entries with probability 1 and will be truncated to rationals.

In this case, it is possible to recover the multiplicative spectral guarantees for the basic covariance

estimation task. It is easy to prove (see Proposition B.1) that the smallest non-zero singular value

of a 3 × 3 matrix of �-bit rationals is at least 2−poly(�3). Thus, if our estimate from the truncated

samples happens to produce singular values ≪ 2−poly(�3), we can hope to “round them down”

and learn the kernel of the unknown covariance. Note of course that for this to be possible, the

algorithm needs to know an a priori bound on the bit complexity of the unknown Σ∗ as otherwise

there is no way to find the right precision for input truncation. The rounding down step needs some

care – we formally perform it using the lattice basis reduction algorithm of [LLL82] (see Section B).

12We thank Sam Hopkins and Daniel Kane for discussions on computational models for statistical learning algorithms

that motivated our formalization in this section.

15



3.2 Sum-of-Squares Preliminaries

We refer the reader to the monograph [FKP19] and the lecture notes [BS16] for a detailed exposition

of the sum-of-squares method and its usage in average-case algorithm design. A degree-ℓ pseudo-

distribution is a finitely-supported function� : ℝ= → ℝ such that
∑
G �(G) = 1 and

∑
G �(G) 5 (G)2 > 0

for every polynomial 5 of degree at most ℓ/2. We define the pseudo-expectation of a function 5 on ℝ3

with respect to a pseudo-distribution �, denoted �̃�(G) 5 (G), as �̃�(G) 5 (G) =
∑
G �(G) 5 (G).

The degree-ℓ pseudo-moment tensor of a pseudo-distribution � is the tensor

��(G)(1, G1 , G2 , . . . , G=)⊗ℓ with entries corresponding to pseudo-expectations of monomials of

degree at most ℓ in G. The set of all degree-ℓ moment tensors of degree 3 pseudo-distributions is

also closed and convex.

Definition 3.1 (Constrained pseudo-distributions). Let � be a degree-ℓ pseudo-distribution over

ℝ= . Let A = { 51 > 0, 52 > 0, . . . , 5< > 0} be a system of < polynomial inequality constraints. We

say that � satisfies the system of constraints A at degree A (satisfies it �-approximately, respectively),

if for every ( ⊆ [<] and every sum-of-squares polynomial ℎ with deg ℎ + ∑
8∈( max{deg 58 , A},

�̃� ℎ ·
∏

8∈( 58 > 0 (�̃� ℎ ·
∏

8∈( 58 > ‖ℎ‖2

∏
8∈(



 58

2
where ‖ℎ‖2 for any polynomial ℎ is the Euclidean

norm of its coefficient vector. We say that � satisfies (similarly for approximately satisfying) A
(without mentioning degree) if � satisfies A at degree A.

Basic Facts about Pseudo-Distributions.

Fact 3.2 (Hölder’s Inequality for Pseudo-Distributions). Let 5 , , be polynomials of degree at most

3 in indeterminate G ∈ ℝ3. Fix C ∈ ℕ. Then, for any degree 3C pseudo-distribution �̃, �̃�̃[ 5 C−1,] 6
(�̃�̃[ 5 C])

C−1
C (�̃�̃[,C])1/C .

Observe that the special case of C = 2 corresponds to the Cauchy-Schwarz inequality. The

following idea of reweighted pseudo-distributions follows immediately from definitions and was

first formalized and used in [BKS17]).

Fact 3.3 (Reweightings [BKS17]). Let � be a pseudo-distribution of degree : satisfying a set of polynomial

constraints A in variable G. Let ? be a sum-of-squares polynomial of degree C such that �̃[?(G)] ≠ 0. Let

�′ be the pseudo-distribution defined so that for any polynomial 5 , �̃�′[ 5 (G)] = �̃�[ 5 (G)?(G)]/�̃�[?(G)].
Then, �′ is a pseudo-distribution of degree : − C satisfying A.

Sum-of-squares proofs A sum-of-squares proof that the constraints { 51 > 0, . . . , 5< > 0} imply the

constraint {, > 0} consists of polynomials (?()(⊆[<] such that , =
∑
(⊆[<] ?( ·Π8∈( 58 .

We say that this proof has degree ℓ if for every set ( ⊆ [<], the polynomial ?(Π8∈( 58 has degree

at most ℓ and write:

{ 58 > 0 | 8 6 A} ℓ {, > 0} . (3.1)

Fact 3.4 (Soundness). If� satisfies A for a degree-ℓ pseudo-distribution� and there exists a sum-of-squares

proof A
A′ ℬ, then � satisfies ℬ at degree AA′ + A′.
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Definition 3.5 (Total bit complexity of Sum-of-Squares Proofs). Let ?1 , ?2 , . . . , ?< be polynomials

in indeterminate G with rational coefficients. For a polynomial ? with rational coefficients, we say

that {?8 > 0} derives {? > 0} in degree : and total bit complexity � if ? =
∑
8 @

2
8 +

∑
8 A8?8 where

each @2
8 , A8 are polynomials with rational coefficients of degree at most : and : − 34,(?8) for every 8,

and the total number number of bits required to describe all the coefficients of all the polynomials

@8 , A8 , ?8 is at most �.

There’s an efficient separation oracle for moment tensors of pseudo-distributions that allows

approximate optimization of linear functions of pseudo-moment tensors approximately satisfying

constraints. The degree-ℓ sum-of-squares algorithm optimizes over the space of all degree-ℓ pseudo-

distributions that approximately satisfy a given set of polynomial constraints:

Fact 3.6 (Efficient Optimization over Pseudo-distributions [Sho87, Par00, Nes00, Las01]). Let � > 0.

There exist an algorithm that for =, < ∈ ℕ runs in time (= + <)$(ℓ ) poly log 1/�, takes input an explicitly

bounded and satisfiable system of < polynomial constraints A in = variables with rational coefficients and

outputs a level-ℓ pseudo-distribution that satisfies A �-approximately.

Basic Sum-of-Squares Proofs

Fact 3.7 (Operator norm Bound). Let � be a symmetric 3× 3 matrix with rational entries with numerators

and denominators upper-bounded by 2� and E be a vector in ℝ3. Then, for every � > 0,

2

E {
E⊤�E 6 ‖�‖2‖E‖2

2 + �
}

The total bit complexity of the proof is poly(�, 3, log 1/�).
Fact 3.8 (SoS Hölder’s Inequality). Let 58 , ,8 for 1 6 8 6 B be indeterminates. Let ? be an even positive

integer. Then,

?2

5 ,,


(
1

B

B∑
8=1

58,
?−1

8

)?
6

(
1

B

B∑
8=1

5
?

8

) (
1

B

B∑
8=1

,
?

8

)?−1

.

The total bit complexity of the sos proof is B$(?).

Observe that using ? = 2 yields the SoS Cauchy-Schwarz inequality.

Fact 3.9 (SoS Almost Triangle Inequality). Let 51 , 52 , . . . , 5A be indeterminates. Then,

2C

51 , 52 ,..., 5A


(∑
86A

58

)2C

6 A2C−1

(
A∑
8=1

5 2C
8

)

.

The total bit complexity of the sos proof is A$(C).

Fact 3.10 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let 51 , 52 , . . . , 5< be indeterminates.

Then, {
58 > 0 | 8 6 <

}
<

51 , 52 ,..., 5<

{(
1

<

<∑
8=1

58

)<
> Π86< 58

}
.

The total bit complexity of the sos proof is exp($(<)).
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Fact 3.11 (Univariate SoS Proofs). Let ? =
∑
86: 
8G

8 be a univariate polynomial of degree : with rational

coefficients 
8 with numerators and denominators upper-bounded by 2� for some � ∈ ℕ. For every � > 0:

3

G {
?(G) > 0

}
and the total bit complexity of the SoS proof is upper-bounded by poly(�, log 1/�).

Fact 3.12 (Cancellation within SoS, Constant RHS [BK20b]). Suppose � is indeterminate and C > 1.

Then, {
�2C
6 1

}
2C

� {
�2
6 1

}
Further, the total bit complexity of the SoS proof is at most 2$(C).

Lemma 3.13 (Cancellation within SoS [BK20b]). Suppose � and � are indeterminates and C > 1. Then,

{
� > 0 ∪ �C 6 ��C−1

}
2C

�,� {
�2C
6 �2C

}
.

Further, the total bit complexity of the SoS proof is at most 2$(C).

Fact 3.14 (Frobenius-Operator Norm Bounds in SoS [BK20b]). Suppose � ∈ ℚ3×3 have entries of bit

complexity at most �. Let & be a 3 × 3 matrix valued indeterminate. Then

2

&
{
‖�&‖2

� 6


�⊤�




>?

‖&‖2
�

}
The total bit complexity of the SoS proof is at most $(�232).

Fact 3.15 (Contraction and Frobenius Norms, Lemma 9.1 in [BK20b]). Let �, � be 3 × 3 matrix-valued

indeterminates. Let � be a scalar-valued indeterminate. Then,{
�(E⊤�⊤�E)C 6 Δ ‖E‖2C

2

} {
� ‖�&‖2C

� 6 ΔCC ‖&‖2C
�

}
,

and, {
�(E⊤�⊤�E)C 6 Δ ‖E‖2C

2

} {
� ‖&�‖2C

� 6 ΔCC ‖&‖2C
�

}
.

Fact 3.16 (See Lemma A.5 in [KS17b]). Let A be a set of polynomial equality axioms in variable G such

that:

A G,D
2C {

?(G, D) > 0
}
,

for a polynomial ? with total degree at most 2C. Then, for any pseudo-distribution � of degree 2C on G

satisfying A,

D
2C

{
�̃�(G) ?(G, D) > 0

}
.

3.3 Analytic Properties of Probability Distributions

Certifiable Anti-Concentration

Fact 3.17 (Univariate Approximator to Interval Indicator (see Lemma A.1 in [KKK19])). For each

� > 0, there is a univariate polynomial ?� and a sum-of-squares polynomial (� of degrees 6 B(�) = $(1/�2)
both with rational coefficients with numerators and denominators upper bounded by 2$(B(�)) satisfying:
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1. ?�(G) = ?�(−G) for every G. Thus the non-zero coefficients of ?� are on even-power monomials in G.

2. ?�(G) > 1/2 for all G such that |G | 6 �.

3. �G∼N(0,1) ?
2
�
(G) + (�(G) = �� for an absolute constant � > 0.

Corollary 3.18. Let � > 0, and G ∈ ℝ3. Let ',Σ be 3 × 3 symmetric matrix-valued indeterminates. Let

@�,Σ(G, E) be the following polynomial in 3-dimensional vector valued indeterminate E (parameterized by G).

@�,Σ(G, E) = (E⊤ΣE)B(�)/2?�(
〈G, E〉√
E⊤ΣE

)

Then, @�,Σ(G, E) satisfies:

1.
2B(�)
Σ,E {

〈G, E〉2(E⊤ΣE)B(�)−1 + �2@�,Σ(G, E)2 − �2(E⊤ΣE)B(�) = (>((E, ')
}
.

2.
{
'2 = Σ

}
2B(�)
E {

�G∼ℕ(0,�) @�,Σ('G, E)2 6 ��(E⊤ΣE)B(�)
}
.

Here, (>((E, ') denotes a sum-of-squares polynomial in indeterminates E and '. Further, the total bit

complexity of both the SoS proofs above is at most 3$(B(�)).

We provide a proof of the above corollary for completeness in Section A of the Appendix.

Definition 3.19 (Certifiable Anti-Concentration). A distribution� onℝ3 with mean 0 and covariance

Σ∗ of rational entries with numerator and denominators upper-bounded by 2� is said to be B(�)-
certifiably (�, �)-anti-concentrated if for @�,Σ∗ defined in Corollary 3.18 satisfies:

1. 4B
E {

〈G, E〉2(E⊤Σ∗E)B(�)−1 + �2@�,Σ∗(G, E)2 − �2(E⊤ΣE)B(�) = (>((E,Π)
}
,

2. 4B
E {

�G∼ℕ(0,�) @�,Σ∗(ΠG, E)2 6 ��(E⊤Σ∗E)B(�)
}
, and

the total bit complexity of each of two SoS proofs above is at most poly(�, B(�)). A set - ⊆ ℝ3 is

said to be B(�)-certifiably (�, �)-anti-concentrated if the uniform distribution on - is B(�)-certifiably

(�, �)-anti-concentrated.

Fact 3.20 (Certifiable Anti-concentration of Gaussians and Spherically Symmetric Distributions,

Theorem 6.2 in [BK21]). Gaussian distribution (with arbitrary covariances) and more generally, affine

transforms of any spherically symmetric random variable � on ℝ3 with sub-exponentially distributed ‖�‖2
2

is B(�)-certifiably (�, �)-anti-concentrated for B(�) 6 $(1/�2) and � = $(1).

Certifiable Hypercontractivity of Degree 2 Polynomials Next, we define certifiable hypercontrac-

tivity of degree-2 polynomials that formulates (within SoS) the fact that higher moments of degree-2

polynomials of distributions (such as Gaussians) can be bounded in terms of appropriate powers of

their 2nd moment.
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Definition 3.21 (Certifiable Hypercontractivity). An isotropic distribution D on ℝ3 is said to

be ℎ-certifiably �-hypercontractive if there is a degree-ℎ sum-of-squares proof of the following

unconstrained polynomial inequality in 3 × 3 matrix-valued indeterminate &:

�
G∼D

(G⊤&G)ℎ 6 (�ℎ)ℎ
(
�
G∼D

(
(G⊤&G) − �

G∼D
[G⊤&G]

)2
) ℎ/2

.

A set of points - ⊆ ℝ3 is said to be �-certifiably hypercontractive if the uniform distribution on -

is ℎ-certifiably �-hypercontractive.

Remark 3.22. Certifiable hypercontractivity is sometimes also defined (such as in [BK20b]) with the

RHS above being ℎ/2-th power of the 2nd moment of G⊤&G instead of variance as in the above

definition. In that case, an additional property (called “certifiable bounded variance”) is needed to

obtain the statement in terms of the variance on the RHS above. We choose the simpler formulation

with the RHS above directly stated in terms of the variance of G⊤&G.

Observe that the definition above is invariant under linear transforms of the the random variable

G. It can also be shown to be invariant under affine transforms of G (see Lemma 2.3 in [BDJ+20]).

Hypercontractivity is an important notion in high-dimensional probability and analysis on product

spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hypercontractivity

of Gaussians and more generally product distributions with subgaussian marginals. Certifiable

hypercontractivity strictly generalizes the better known certifiable subgaussianity property (formalized

and studied first in [KS17b]) that is the special case of certifiable hypercontractivity of (squares of)

linear polynomials, or, equivalently, when & = EE⊤ for a vector-valued indeterminate E.

Analytic Properties Under Sampling The following lemma can be proven via similar, standard

techniques as in several prior works [KKK19, BK21, RY19, RY20b].

Fact 3.23 (Certifiable Anti-concentration and Hypercontractivity Under Sampling (see for e.g.

Section 8 in [BK20b])). Let � be a B(�)-certifiably (�, �)-anti-concentrated distribution with mean �∗ and

covariance Σ∗ with � bit rational entries and 2C-certifiably �-hypercontractive degree 2 polynomials on ℝ3 for

every C ∈ ℕ. Let - be an i.i.d. sample from � with = > =0 = $(3B(�)) and let -̃ be obtained by truncating

each entry of each G ∈ - to a rational number of poly(�3) bits. Then, with probability at least 1−1/3 over the

draw of-, 1)- and -̃ are B(�)-certifiably (2�, �)-anti-concentrated with B(�)-certifiably 2�-hypercontractive

degree 2 polynomials, 2) (�G∼- G−�∗)(�G∼- G−�∗)⊤ � 0.01Σ∗, 3) �G∼-(G−�∗)(G−�∗)⊤ ∈ [0.99, 1.01]Σ∗

and 4)



Σ†/2

∗ �G∼G(G − �∗)(G − �∗)⊤Σ†/2
∗





�
6 0.1.

Further, if all entries of Σ∗ are �-bit rational numbers, then, all the above facts are true for poly(3)-bit

precision truncations of points in an i.i.d. sample -.

Total Variation vs Parameter Distance for Gaussians The total variation distance (a.k.a. statistical

distance) between any two probability density functions ?, @ on ℝ3 is defined by 3TV(?, @) =
1
2

∫
|?(G) − @(G)|3G. Then, 0 6 3TV(?, @) 6 1 for all probability density functions ?, @.
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The following fact relates the total variation distance between a pair of Gaussians and an

appropriate notion of distance between their parameters. A relationship of this form was recently

proved by [DMR18] but their bounds are only meaningful in the regime where the total variation

distance is at most some absolute constant ≪ 1. Instead, we use the following result established

in the recent works on clustering [BK20b, DHKK20] that gives a meaningful parameter distance

translation in the regime where the total variation distance is close to but bounded away from 1.

Fact 3.24 (TV vs Parameter Distance for Gaussians, see Prop. A.1 in [BK20b]). Fix Δ > 0 and let �, �′

and Σ,Σ′ ≻ 0 satisfy:

1. Mean Closeness: for all E ∈ ℝ3, 〈� − �′, E〉2
2 6 Δ2E⊤(Σ + Σ′)E.

2. Spectral Closeness: for all E ∈ ℝ3 1
Δ2 E

⊤ΣE 6 E⊤Σ′E 6 Δ2E⊤Σ(A′)E.

3. Relative Frobenius Closeness:


Σ†/2Σ′Σ†/2 − �



2

�
6 Δ2 ·



Σ†Σ′

2

2
.

Then, 3TV(N(�,Σ),N(�′,Σ′)) 6 1 − exp(−$(Δ2 logΔ)).

4 Coarse Spectral Recovery

In this section, we present the first component of our algorithm for list-decodable covariance

estimation. This subroutine produces a list of candidate covariances that includes a candidate that

multiplicatively approximates the spectrum of the unknown Σ∗ when restricted to the subspace with

sufficiently large eigenvalues (compared to that of the corrupted sample) while giving an additive

error guarantee on all small eigenvectors of Σ∗.
Formally, our algorithm succeeds whenever we are given an (1 − 
)-corruption . of a good set -

of points that we define next. Recall that for any finite set -, we use the notation �G∼- to mean

average over uniform draw of G from -.

Definition 4.1 (Good Set). For 3 ∈ ℕ, we say that a subset - ⊆ ℚ3 is a (�, �)-good set with mean

�G∼- G = �∗ and 2nd moment �G∼- GG⊤ = Σ∗ 13 if - satisfies the following for B(�) = $(1/�2):

1. Small Mean: �∗�⊤
∗ � 0.1�G∼-(G − �∗)(G − �∗)⊤.

2. Anti-Concentration: For � > �, E ∈ ℝ3, ℙG∼-[〈G, E〉2
6

�
2E

⊤Σ∗E] 6 �.

3. Certifiable Anti-Concentration: - is B-certifiably (�, �)-anti-concentrated for B = B(�).

4. Hypercontractivity: - has 2B(�)-certifiably �-hypercontractive degree 2 polynomials.

The following theorem is the main result of this section.

13In our application of this subroutine, we can ensure that - is a sample from a mean 0 distribution. We invite the

reader to think of the mean of - to be exactly 0 in a first reading. In this case, the 2nd moment of - is the covariance of

-. We continue to use the same notation for covariance and 2nd moment as in the small mean case (that is satisfied

whp by a large enough random sample from a zero-mean distribution) the 2nd moment spectrally approximates the

covariance within a factor of 1.01 which is enough for our guarantees for covariance recovery.
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Theorem 4.2 (Coarse Spectral Recovery). Let 1 > 
, � > 0. For every C ∈ ℕ, there is an algorithm that

takes input a collection of = points . ⊆ ℚ3 such that 1
=

∑
8 H8H

⊤
8 = (1 ± 2−3)� and outputs a list of positive

semidefinite matrices Σ̂1 , Σ̂2 , . . . , Σ̂: ∈ ℚ3×3 for : = $(1/
C+2) · log(1/�) with the following guarantee:

For � = 
3/2�, suppose there is a (�, �)-good set of points - = {G1 , G2 , . . . , G=} ⊆ ℚ3 satisfying

�G∼- GG⊤ = Σ∗ such that |. ∩ - | > 
=. Then, with probability at least 1 − � over only the randomness of

the algorithm, there is an 8 6 : such that:

Σ∗ � Σ̂8 � $

(
1


6C+18

)
Σ∗ + $(
2C−28)� . (4.1)

For C = 20, this gives a list ℒ of size $(1/
22) containing a candidate Σ̂8 satisfying:

Σ∗ � Σ̂8 � $

(
1


138

)
Σ∗ + $(
12)� . (4.2)

The algorithm runs in time (�=)$(1/
12)$(log 1/�) where � is the bit complexity of entries of H8s.

4.1 Algorithm

Our algorithm approximately solves and rounds a sum-of-squares relaxation of an appropriate

polynomial system. Our polynomial constraint system encodes finding a set of = points -′ ⊆ ℝ3×=

such that -′ (intended to be variables for -) satisfies the properties of the original sample - for

some covariance matrix Σ ∈ ℝ3×3 (intended to be Σ∗). Our polynomial system has the following

indeterminates.

1. G′8 for 1 6 8 6 =: 3-dimensional vector valued indeterminates forming -′.

2. ', Σ, * , /: 3 × 3 matrix-valued indeterminates. Here, Σ encodes the empirical covariance

matrix of -, ' stands for a matrix square root of Σ and* forces ' to be positive semidefinite.

3. F8 for 1 6 8 6 =: scalar indeterminates encoding that . intersects -′ in > 
= points.

We impose the following constraints on the indeterminates above (categorized for exposition).

Covariance Constraints: A1 =




' = **⊤

'2 = Σ(
8


2
� − Σ

)
= //⊤




(4.3)

Subset Constraints: A2 =



∀8 ∈ [=] F2

8 = F8∑
8∈[=] F8 = 
=

∀8 ∈ [=] F8(H8 − G′8) = 0




(4.4)

Parameter Constraints: A3 =

{
1

=

=∑
8=1

F8G
′
8G

′⊤
8 = Σ

}
(4.5)
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Cert. Anti-Concentration : A4 =

{
1

=

=∑
8=1

@2
�,Σ

(
G′8 , E

)
6 ��

(
E⊤ΣE

) B(�) }
(4.6)

Cert. Hypercontractivity : A5 =

{
∀9 6 B(�), 1

=

=∑
8=1

(
G′8

⊤&G′8 −
1

=

∑
86=

G′⊤8 &G
′
8

)29

6 (2�9)29 ‖'&'‖29

�

}

(4.7)

4.2 Algorithm

We next describe our algorithm.

Algorithm 4.3 (List-Decoding for Coarse Spectral Recovery).

Given: . = {H1 , H2 , . . . , H=} ⊆ ℚ3 such that 1
=

∑=
8=1 H8H

⊤
8 = (1 ± 2−3)� and 
, � > 0.

Output: A list ℒ of O(1/
C+2) positive semidefinite matrices in ℚ3×3 for C = 20.

Operation:

1. For � = 
3/2�, find a pseudo-distribution �̃ of degree $(B(�) + 2C + 1) that approx-

imately satisfies the constraint system A and minimizes | | �̃[F]| |2 with an error

6 2−(�3)
$(B(�))

.

2. For any multiset ( ⊆ [=] of size 2C + 1 such that �̃[F(] = �̃[Π8∈(F8] > 0, let

Σ̃( =
�̃[F(Σ]
�̃[F(]

.

3. For O(1/
C+2) times: 1) pick a multiset ( ⊆ [=] of size 2C + 1 with probability

proportional to �̃[F(] and 2) add $( 1

8 )Σ̃( to ℒ.

4. Return ℒ.

4.3 Deriving Key Properties Via Low-Degree Sum-of-Squares Proofs

The goal of the next few lemmas is to derive a key consequence of our constraint system A.

Informally speaking, we show that if -′ – the algorithm’s “guess” for the unknown - – intersects

with - non-trivially, then, the quadratic form of the empirical 2nd moments of - and -′ on any

vector E must be close. The closeness is quantified by an error term with a multiplicative part and

an additive part.

Notation 4.1. Let F(-′) = 1
=

∑=
8=1 F8 · 1(G8 = H8) be the linear polynomial in the indeterminates F8s. Note

that F(-′) measures the fraction of points -′ has in common with the (unknown) good set -.

Lemma 4.4 (Spectral Recovery Guarantee – Lower Bound). Under the hypothesis of Theorem 4.2,

A 4B

Σ,F,E,-′
{

1

�2
(E⊤ΣE)(E⊤Σ∗E)B−1 + ��(E⊤Σ∗E)B > F(-′)(E⊤Σ∗E)B

}
.
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Further, if entries of H8s have bit complexity 6 �, then, the bit-complexity of the SoS proof is (�3/�)$(BC).

Proof. One of the key properties of F8 is that for any polynomial ℎ(·) of degree at most $(B), it is

true that

A2 $(B)
F,-′ {

F81(G8 = H8)ℎ(G′8) = F81(G8 = H8)ℎ(H8) = F81(G8 = H8)ℎ(G8)
}
. (4.8)

So, recalling the first certifiable anti-concentration constraint (Corollary 3.18) on G8

$(B)
E {

〈G8 , E〉2(E⊤Σ∗E)B−1 + �2@�,Σ∗(G8 , E)2 > �2(E⊤Σ∗E)B
}

and applying Equation (4.8) after multiplying by F81(G8 = H8) gives

A4∪A2 $(B)
F,Σ,G′8 ,E {

F81(G8 = H8)〈G′8 , E〉2(E⊤Σ∗E)B−1 + �2F81(G8 = H8)@�,Σ∗(G8 , E)2 > �2F81(G8 = H8)(E⊤Σ∗E)B
}
.

Using next that A2 2
F {

F81(G8 = H8) 6 F8
}

(and that this is also at most 1) on the left hand side

components and averaging over 8 transforms this equation to

A4∪A2 $(B)
F,Σ,E,-′

{
1

=

=∑
8=1

F8 〈G′8 , E〉2(E⊤Σ∗E)B−1 + �2

=

=∑
8=1

@�,Σ∗(G8 , E)2 >
�2

=

=∑
8=1

F81(G8 = H8)(E⊤Σ∗E)B
}
.

Now we wish to simplify each of these three terms:

• By definition of Σ, we have A3 2
E {

1
=

∑=
8=1 F8 〈G′8 , E〉2 = E⊤ΣE

}
.

• By certifiable anti-concentration of the true samples (Corollary 3.18) we obtain

$(B)
E

{
1

=

=∑
8=1

@�,Σ(G8 , E)2 6 ��(E⊤Σ∗E)B
}
.

• Finally, by definition we have 1
=

∑=
8=1 F81(G8 = H8) = F(-′).

Putting these three facts together yields the desired conclusion:

A4 ∪A2 $(B)
F,Σ,E,-′

{
1

�2
(E⊤ΣE)(E⊤Σ∗E)B−1 + ��(E⊤Σ∗)B > F(-′)(E⊤Σ∗E)B

}
. (4.9)

�

Our next lemma proves an upper-bound version of the spectral guarantee. Note that

Lemma 4.5 (Spectral Recovery – Upper Bound). Under the hypothesis of Theorem 4.2, for any C ∈ ℕ,

A4 ∪A2 ∪A1 $(BC)
F,-′,Σ,E

{
F(-′)2CB(E⊤ΣE)2B 6 22B

(
1

�4B
(E⊤Σ∗E)2B +

(
4�C�C


2

)2B

‖E‖4B
2

)}
. (4.10)

Further, if entries of H8s have bit complexity 6 �, then, the bit-complexity of the SoS proof is (�3/�)$(BC).
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Proof. We begin similarly to the proof of Lemma 4.4: in particular, by swapping the roles of G8 , G
′
8 in

the proof we obtain

A4 ∪A2 $(B)
F,Σ,E,-′

{
1

�2
(E⊤Σ∗E)(E⊤ΣE)B−1

> (F(-′) − ��)(E⊤ΣE)B
}
. (4.11)

Now, note that we would like F(-′)C to appear. To do so, we use that

F(-′)C − (��)C = (F(-′) − ��)
(
C−1∑
8=0

F(-′)8(��)C−1−8

)

and the fact that from 2
F {0 6 F(-′) 6 1}, �� 6 1

2 it follows that

$(C)
F

{
0 6

C−1∑
8=0

F(-′)8(��)C−1−8
6

C−1∑
8=0

(��)C−1−8
6

1

1 − �� 6 2

}
.

Therefore, multiplying both sides of Equation (4.11) by
∑C−1
8=0 F(-′)8(��)C−1−8 yields

A4 ∪A2 $(B+C)
F,Σ,E,-′

{
2

�2
(E⊤Σ∗E)(E⊤ΣE)B−1

>

(
C−1∑
8=0

F(-′)8(��)C−1−8

)
· 1

�2
(E⊤Σ∗E)(E⊤ΣE)B−1

> (F(-′)C − (��)C)(E⊤ΣE)B
}

(4.12)

We may now rearrange this to

A4 ∪A2 $(B+C)
F,Σ,E,-′

{(
2

�2
(E⊤Σ∗E) + (��)C(E⊤ΣE)

)
(E⊤ΣE)B−1

> F(-′)C(E⊤ΣE)B
}
.

Multiplying both sides by F(-′)C(B−1) and applying Cancellation within SoS (Lemma 3.13) with

� = F(-′)C(E⊤ΣE) and � = 2
�2 (E⊤Σ∗E) + (��)C(E⊤ΣE) then brings us closer to our end goal by

proving

A4 ∪A2 $(BC)
F,Σ,E,-′

{
F(-′)2CB(E⊤ΣE)2B 6

(
2

�2
(E⊤Σ∗E) + (��)C(E⊤ΣE)

)2B
}
.

Now, applying the SoS Almost-Triangle Inequality (Fact 3.9) on the right hand side separates these

latter terms:

A4 ∪A2 $(BC)
F,Σ,E,-′

{
F(-′)2CB(E⊤ΣE)2B 6 22B

(
22B

�4B
(E⊤Σ∗E)2B + (��)2CB(E⊤ΣE)2B

)}
.

To finish, recall that A1 2
Σ {

8

2 � − Σ = //⊤}

so in particular E⊤ΣE 6 4

2 | |E | |22. Therefore, plugging

this in gives the final desired bound of

A4 ∪A2 ∪A1 $(BC)
F,Σ,E,-′

{
F(-′)2CB(E⊤ΣE)2B 6 22B

(
22B

�4B
(E⊤Σ∗E)2B +

(
8�C�C


2

)2B

| |E | |4B2

)}
.

�
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Bootstrapping Spectral Recovery via Frobenius Recovery Our spectral recovery guarantees

(from previous two lemmas) is actually insufficient to ensure that a rounded candidate multiplica-

tively approximates all the large eigenvalues of the unknown Σ∗. One of the key innovations in our

analysis is a “boostrapping” trick that relies on a stronger Frobenius norm guarantee restricted to the

subspace of small eigenvalues of Σ∗ which we prove below. We invite the reader to think of P as the

(unknown) projector to the subspace of small eigenvalues of the (unknown) Σ∗.

Lemma 4.6 (Frobenius Recovery). Under the hypothesis of Theorem 4.2, for any projection matrix P to a

subspace of ℝ3, and for any C ∈ ℕ,

A
$(BC+B2)
F,Σ

{
F(-′)2C+1 ‖P(Σ − Σ∗)P‖2

� 6 $(B2)
((

4�C�C


2

)2

+ 4

�4
‖PΣ∗P‖2

>?

)}
. (4.13)

Further, if entries of H8s have bit complexity 6 �, then, the bit-complexity of the SoS proof is (�3/�)$(BC).

We will use the following consequence of certifiable hypercontractivity in the proof of Lemma 4.6.

Lemma 4.7 (Frobenius bound). Under the hypothesis of Theorem 4.2, for any ℎ ∈ ℕ, and 3 × 3

matrix-valued indeterminate &,

A5 $(ℎ2)
&,F,-′

{
F(-′)2ℎ 〈Σ − Σ∗ , &〉2ℎ

6 F(-′)2ℎ−1 · 22ℎ(�ℎ)2ℎ
(


Σ1/2

∗ &Σ
1/2
∗




2ℎ

�
+ ‖'&'‖2ℎ

�

)}

Further, if entries of H8s have bit complexity 6 �, then, the bit-complexity of the SoS proof is (�3)$(ℎ2).

Proof. We begin by rewriting

F(-′)〈Σ − Σ∗ , &〉 = 1

=

=∑
8=1

F81(G8 = H8)〈Σ − Σ∗ , &〉

=
1

=

=∑
8=1

F81(G8 = H8)〈Σ − G′8G′⊤8 , &〉 + 1

=

=∑
8=1

F81(G8 = H8)〈G′8G′⊤8 − Σ∗ , &〉

=
1

=

=∑
8=1

F81(G8 = H8)〈Σ − G′8G′⊤8 , &〉 + 1

=

=∑
8=1

F81(G8 = H8)〈G8G⊤8 − Σ∗ , &〉

where in the last step we applied A2 2
F {

F81(G8 = H8)〈G′8G′⊤8 , &〉 = F81(G8 = H8)〈G8G⊤8 , &〉
}

ala the

remark at the beginning of Lemma 4.4 (passing through H8).

Therefore, by the SoS Almost Triangle Inequality (Fact 3.9) it follows that

F(-′)2ℎ 〈Σ−Σ∗ , &〉2ℎ
6 22ℎ ©­«

(
1

=

=∑
8=1

F81(G8 = H8)〈Σ − G′8G′⊤8 , &〉
)2ℎ

+
(

1

=

=∑
8=1

F81(G8 = H8)〈G8G⊤8 − Σ∗ , &〉
)2ℎª®¬

(4.14)

so it suffices to bound each of these terms separately.
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Beginning with the first term, we apply SoS Hölder’s inequality (Fact 3.8) with 58 = 〈Σ−G′8G′⊤8 , &〉
and ,8 = F81(G8 = H8) (which is idempotent, that is ,:8 = ,8) to obtain

A
$(ℎ2)

F,Σ,-′,&

{(
1

=

=∑
8=1

F81(G8 = H8)〈Σ − G′8G′⊤8 , &〉
)2ℎ

6

(
1

=

=∑
8=1

F81(G8 = H8)
)2ℎ−1 (

1

=

=∑
8=1

〈G′8G′⊤8 − Σ, &〉2ℎ

)

6 F(-′)2ℎ−1(�ℎ)2ℎ | |'&' | |2ℎ�

}
(4.15)

where we used the certifiable hypercontractivity (A5) of -′. Similarly, we may bound that

A
$(ℎ2)

F,Σ,-′,&

{(
1

=

=∑
8=1

F81(G8 = H8)〈G8G⊤8 − Σ∗ , &〉
)2ℎ

6

(
1

=

=∑
8=1

F81(G8 = H8)
)2ℎ−1 (

1

=

=∑
8=1

〈G′8G′⊤8 − Σ∗ , &〉2ℎ

)

6 F(-′)2ℎ−1(�ℎ)2ℎ



Σ 1

2∗ &Σ
1
2∗




2ℎ

�

}
(4.16)

by instead using the true anticoncentration of -. Finally, plugging Equations (4.15) and (4.16) into

Equation (4.14) yields the desired

A
$(ℎ2)

F,Σ,-′,&
{
F(-′)2ℎ 〈Σ − Σ∗ , &〉2ℎ

6 F(-′)2ℎ−122ℎ(�ℎ)2ℎ
(
| |'&' | |2ℎ� +




Σ 1
2∗ &Σ

1
2∗




2ℎ

�

)}
.

The bit complexity bound on the SoS proof follows by accounting the bounds for each of the

elementary inequalities used in the argument above. �

We now go on to prove Lemma 4.6.

Proof of Lemma 4.6. From the conclusion of Lemma 4.7, setting ℎ = 2B and letting P be fixed gives:

A5 $(BC+B2)
Σ,',<

{
F(-′)4B 〈P(Σ − Σ∗)P , &〉4B

= F(-′)4B 〈Σ − Σ∗ ,P&P〉4B

6 24BF(-′)4B−1(2�B)4B
(


Σ1/2

∗ P&PΣ
1/2
∗




4B

�
+ ‖'P&P'‖4B

�

)}
. (4.17)

Multiplying throughout by the SoS polynomial F(-′)4B(C−1)+1 yields:

A5 $(BC+B2)
Σ,',<

{
F(-′)4BC+1 〈P(Σ − Σ∗)P , &〉4B

= F(-′)4BC+1 〈Σ − Σ∗ ,P&P〉4B

6 24BF(-′)4BC(2�B)4B
(


Σ1/2

∗ P&PΣ
1/2
∗




4B

�
+ ‖'P&P'‖4B

�

)}
. (4.18)

As before, let’s analyze the two terms on the RHS separately.
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Using cyclic properties of Frobenius norm, we know that | |Σ1/2
∗ P&PΣ

1/2
∗ | |2

�
= | |PΣ∗P& | |2

�
.

Therefore, applying Lemma 3.14, we have that:

A
$(BC+B2)

Σ,F
{
F(-′)4BC




Σ1/2
∗ P&PΣ

1/2
∗




4B

�
6 F(-′)4BC

(
‖PΣ∗P‖4B

>? ‖&‖4B
�

)}
. (4.19)

For the second term, we start from the guarantee of Lemma 4.5 applied to the vector PE:

A
$(BC+B2)
',F

{
F(-′)2BC(E⊤PΣPE)2B 6 22B

((
8�C�C


2

)2B

| |E | |4B2 + 22B

�4B
(E⊤P⊤Σ∗PE)2B

)

6 22B | |E | |4B2

((
4�C�C


2

)2B

+ 22B

�4B
| |PΣ∗P||2B>?

)}
. (4.20)

From Contraction within SoS (Fact 3.15), we may derive that{
�(E⊤�⊤�E)C 6 Δ| |E | |2C2

} {
�2 | |�&�⊤ | |2C� 6 Δ2C2C | |& | |2C�

}
.

Applying this with � = F(-′)2BC , � = 'P, C = 2B, and Δ = 22B

((
8�C�C


2

)2B

+ 22B

�4B ‖PΣ∗P‖2B
>?

)
yields

A
$(BC+B2)
',F,&

{
F(-′)4BC ‖'P&P'‖4B

� 6 2 · (4B)4B
((

8�C�C


2

)4B

+ 24B

�8B
‖PΣ∗P‖4B

>?

)
‖&‖4B

�

}
(4.21)

where we also crucially used an application of the SoS Almost-Triangle Inequality to expand Δ2.

Plugging back the estimates from (4.19) and (4.21) into (4.18) gives:

A5 $(BC+B2)
Σ,F,&

{
F(-′)4BC+1 〈P(Σ − Σ∗)P , &〉4B

6 ($(B))4B
((

8�C�C


2

)4B

+ 24B

�8B
‖PΣ∗P‖4B

>?

)
‖&‖4B

�

}
.

(4.22)

Note that as 0 6 F(-′) 6 1 we may shrink the LHS by multiplying it through further by

F(-′)2B−1. Substituting & = P(Σ − Σ∗)P and multiplying throughout by the SoS polynomial

F(-′)4BC+2B now yields:

A5 $(BC+B2)
Σ,F,&

{
F(-′)8BC+4B ‖P(Σ − Σ∗)P‖8B

� 6 F(-′)4BC+2B($(B))4B
((

8�C�C


2

)4B

+ 24B

�8B
‖%Σ∗%‖4B

>?

)
‖P(Σ − Σ∗)P‖4B

�

}
.

(4.23)

We now apply Lemma 3.13 (Cancellation within SoS) with � = F(-′)4BC+2B ‖P(Σ − Σ∗)P‖4B
� and

the SoS Almost-Triangle Inequality to obtain that:

A
$(BC+B2)
F,Σ

{
F(-′)16BC+8B ‖P(Σ − Σ∗)P‖16B

� 6 ($(B))16B

((
8�C�C


2

)16B

+ 216B

�32B
‖PΣ∗P‖16B

>?

)}
. (4.24)

We finally apply Cancellation with Constant RHS (Lemma 3.12) to conclude that:

A
$(BC+B2)
F,Σ

{
F(-′)2C+1 ‖P(Σ − Σ∗)P‖2

� 6 ($(B))2
((

8�C�C


2

)2

+ 4

�4
‖PΣ∗P‖2

>?

)}
. (4.25)

�
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4.4 Analysis of Rounding

We first show that setting -′ = - (and using the naturally induced assignments for other

indeterminates) yields a feasible solution for the relaxation.

Lemma 4.8 (Feasibility of the Relaxation). For � 6 
2

2� , suppose there exists a (�, �)-good set - ⊆ ℝ3 of

size = such that G8 = H8 for 
= different 8 6 =. Then, there is a pseudo-distribution of degree $(B(�) + @)
consistent with the constraint system A and as a consequence, Step 1 of Algorithm 4.3 succeeds.

Proof. We give a solution to the constraint system A to prove that the constraints are satisfiable. We

set -′ = - and F8 = 1 if and only if G8 = H8 . Since - is a (�, �)-good set, we immediately obtained

that A2 ,A3 ,A4 ,A5 are satisfied. Therefore, it remains to check A1.

For A1, we set ' = Σ
1/2
∗ – the PSD square root of Σ∗ and* to be a matrix such that**⊤ = Σ

1/2
∗

(which exists). Let us now prove that there is a / such that A1 is feasible. To do so, we make use of

the isotropic position of ..

To begin, note via |- ∩ . | = 
= that

�
G∼-∩.

GG⊤ =
1

|- ∩ . |
∑

G∈-∩.
GG⊤ =

1




(
1

=

∑
G∈-∩.

GG⊤

)
� 1




(
1

=

∑
G∈.

GG⊤

)
=

1



�.

Now, recall that true anti-concentration of - tells us that ℙG∼-[〈G, E〉2
6

�
2E

⊤Σ∗E] 6 �. Therefore,

at most 

2 = points in - have 〈G, E〉2

6


4 E

⊤Σ∗E, and hence at least 
= − 

2 = = 


2 = points in - ∩ .
have 〈G, E〉2

>


4 E

⊤Σ∗E. Therefore, this implies that

�
G∼-∩.

〈G, E〉2 =
1

|- ∩ . |
∑

G∈-∩.
〈G, E〉2

>
1


=
·
(
=

2
· 


4
E⊤Σ∗E

)
=




8
E⊤Σ∗E

and thus we have 

8Σ∗ � 1


 �. Rearranging gives that 8

2 � − Σ∗ = //⊤ for some / and hence we have

feasibility of A1.

This completes the proof. �

Next, we prove that in expectation, F(-′) – the normalized intersection of -′ and the (unknown)

sample - must be at least 
2. This is a consequence of our relaxation hunting for a maximum

entropy (or more precisely, max “collision probability”) solution.

Lemma 4.9 (High-entropy Pseudo-distributions Intersect -). Under the hypothesis of Theorem 4.2, let �̃

be a pseudo-distribution of degree > $(B(�)) satisfying A that minimizes



�̃�̃ F





2
. Then, �̃�̃[F(-′)] > 
2.

Proof. Towards a contradiction, we will show that if the conclusion does not hold then there exists a

pseudo-distribution with smaller value of



�̃�̃ F





2
.

Suppose � = 1

=

∑=
8=1 �̃�̃[F81(G8 = H8)] = 1


=

∑=
8=1 �̃�̃[F8] · 1(G8 = H8) < 
 where we used that

1(G8 = H8) is a constant (as opposed to an indeterminate in our polynomial program). To show a

contradiction, we will exhibit a pseudodistribution � that is 1) feasible for our SoS relaxation and 2)

has a smaller value of



�̃�[F]





2
.
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Toward this, notice that we can write



 1


=
�̃�̃[F]






2

2

=
1


2=2

=∑
8=1

�̃�̃[F8]2 =
1


2=2

=∑
8=1

(
�̃�̃[F8]1(G8 = H8)2

)2

+ 1


2=2

=∑
8=1

(
�̃�̃[F8](1 − 1(G8 = H8))2

)2

(4.26)

where we used that �̃ satisfies F2
8 = F8 for every 8.

By Cauchy Schwarz inequality for pseudo-distributions, we observe

�2 =

(
1


=

=∑
8=1

�̃�̃[F8]1(G8 = H8)2
)2

6

(
1


2=2

=∑
8=1

(
�̃�̃[F8]1(G8 = H8)

)2
) (

=∑
8=1

1(G8 = H8)2
)

= 
=

(
1


2=2

=∑
8=1

(
�̃�̃[F8]1(G8 = H8)

)2
)

(4.27)

and similarly

(1 − �)2 =

(
1


=

=∑
8=1

�̃�̃[F8](1 − 1(G8 = H8))2
)2

6

(
1


2=2

=∑
8=1

(
�̃�̃[F8](1 − 1(G8 = H8))

)2
) (

=∑
8=1

(1 − 1(G8 = H8))2
)

= (1 − 
)=
(

1


2=2

=∑
8=1

(
�̃�̃[F8](1 − 1(G8 = H8))

)2
)
. (4.28)

We can apply Equations 4.27 and 4.28 to 4.26 to obtain





 1


=
�̃�̃[F]






2

2

>
�2


=
+ (1 − �)2

(1 − 
)= =
1


=

(
�2 + (1 − �)2 


1 − 


)
. (4.29)

Now we proceed to construct our � achieving lower norm. Let �∗ be the (true) distribution

supported on a single point F, where F8 = 1(G8 = H8) (8 is an inlier). Due to - being a good sample,

it follows that �∗ satisfies the constraint system.

Then, we let � = (
 − �)�∗ + (1 + � − 
)�̃, and set � = 
 − �. Note that as 0 6 � < 
 < 1, this

“mix” is indeed a pseudodistribution. From here, notice that





 1


=
�̃�[F]






2

2

=
1


2=2

=∑
8=1

(
� �̃�∗[F8] + (1 − �) �̃�̃[F8]

)2

=
1


2=2

=∑
8=1

[
�2 �̃�∗[F8]2 + (1 − �)2 �̃�̃[F8]2 + 2�(1 − �) �̃�∗[F8] �̃�̃[F8]

]
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=
�2


=
+ (1 − �2)





 1


=
�̃�̃[F]






2

2

+ 2�(1 − �) �


=
.

Therefore, it follows that



 1


=
�̃�̃[F]






2

2

−




 1


=
�̃�[F]






2

2

= (2� − �2)




 1


=
�̃�̃[F]






2

2

− �2


=
− 2�(1 − �) �


=

>
�


=

(
(2 − �)

(
�2 + (1 − �)2 


1 − 


)
− � − 2�(1 − �)

)
.

Plugging in � = 
 − � yields





 1


=
�̃�̃[F]






2

2

−




 1


=
�̃�[F]






2

2

>
(1 − �2)(
 − �)2

(1 − 
)
= > 0

when 0 6 � < 
 < 1. Hence, we have found a pseudodistribution � satisfying the constraints and of

lower norm, contradiction. Therefore it must be the case that � > 
. �

We will now use the above fact along with our spectral and Frobenius recovery guarantees to

derive properties of the rounded solutions. Our rounding prcedure depends on sampling multisets.

Notation 4.2 (Sampling from Pseudo-distribution). Let : ∈ ℕ and �̃ be a pseudodistribution. Consider

the distribution �(:, �̃) on multisets ( ⊆ [=] of size : chosen via the following process:

1. Pick ( = (81 , 82 , . . . , 8:) ⊆ [=] with probability �̃�̃[
∏

9∈( F 9]/(
=): .

2. Output (.

Further define the conditional distribution �′(:, �̃) = �(:, �̃) | G8 = H8∀8 ∈ (.

Note that
∑

|( |=: �̃�̃[
∏

9∈( F 9] = (
=): to show that this is a well defined probability distribution.

Lemma 4.10 (Analysis of Rounding, Lower-Bound). Assume the hypothesis of Theorem 4.2. Let �̃ be

a pseudo-distribution of degree > $(B(�)) consistent with A minimizing



�̃�̃ F





2

and fix � = 
3/2� 6


2/2�. Then,

ℙ
(∼�′(2C+1,�̃)

[(
16�2


8

)
�̃�̃[F(Σ]
�̃�̃[F(]

� Σ∗

]
> 
2/4 .

Proof. We know that for any ( ⊆ [=], �̃[F(Σ] = �̃[F(''⊤] � 0. Next, from Lemma 4.4 we have that

A 4B

Σ,F {
(E⊤ΣE)(E⊤Σ∗E)B−1

> �2(F(-′) − ��)(E⊤Σ∗E)B
}
.

Let’s multiply both sides by the SoS polynomial F( = F2
(

and take pseudo-expectations with respect

to �̃. Then, by Fact 3.16 acting on F( ,Σ, -
′, we must have that for every E ∈ ℝ3,

(E⊤ �̃[F(Σ]E)(E⊤Σ∗E)B−1
> �2

(
�̃[F(-′)F(] − �� �̃[F(]

) (
E⊤Σ∗E

) B
.
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For any ( such that �̃[F(] > 0, let Σ̂( = �̃[F(Σ]/�̃[F(]. Then, dividing through by �̃[F(] yields

that for every E ∈ ℝ3, we have

(E⊤Σ̂(E)(E⊤Σ∗E)B−1
> �2

(
�̃[F(-′)F(]

�̃[F(]
− ��

)
(E⊤Σ∗E)B . (4.30)

Let us analyze the random variable 0( =

(
�̃[F(-′)F(]

�̃[F(]
− ��

)
when ( ∼ �′(2C + 1, �̃) (note that the

only randomness here is over the choice of (, the pseudo-distribution �̃ is fixed).

Let � = {8 ∈ [=] : G8 = H8} ⊆ [=] be the set of “good” indices. Then, noting that �̃[F(-′)2C+1] =∑
(=(81 ,82 ,...,82C+1)∈�2C+1[�̃[F(]] (by moving out 1(G8 = H8)), we have:

�
(∼�′(2C+1,�̃)

[0(] =
1

�̃[F(-′)2C+1]

∑
(∈�2C+1

�̃[F(]
�̃ [F(-′)F(]

�̃[F(]
− ��

=
1

�̃[F(-′)2C+1]

∑
(

�̃[F(-′)F(] − ��

=
1

�̃[F(-′)2C+1]
· �̃

[
F(-′)

∑
(

F(

]
− ��

=
�̃[F(-′)2C+2]
�̃[F(-′)2C+1]

− ��

We claim then that �̃[F(-′)2C+2] > �̃[F(-′)2C+1] �̃[F(-′)] (which is true in real expectations by

monotonicity). Indeed, �̃[F(-′)] 6 �̃[F(-′)2C+2]1/(2C+2) by application of Hölder’s inequality

(Fact 3.2) with 5 = 1, , = F(-′) and �̃[F(-′)2C+1] 6 �̃[F(-′)2C+2](2C+1)/(2C+2) by application of

Hölder’s with 5 = F(-′) and , = 1. Multiplying these gives the result. Hence, we have

�
(∼�′(C ,�̃)

[0(] =
�̃[F(-′)2C+2]
�̃[F(-′)2C+1]

− �� > �̃[F(-′)] − �� > 
2 − �� > 
2

2
.

where the second to last step is by Lemma 4.9.

Now, since 0( 6 1 for every (, we may apply a Reverse Markov Bound to obtain that

ℙ
(∼�′

[0( 6 
2/4] = ℙ
(∼�′

[1 − 0( > 1 − 
2/4] 6 1 −�[0(]
1 − 
2/4

6
1 − 
2/2

1 − 
2/4

and hence ℙ(∼�′[0( > 
2/4] > 
2/4

1−
2/4
>


2

4 .

Thus, with probability at least 
2/4 over the choice of ( ∼ �′, it must hold that

�̃[F(F(-′)]/�̃[F(] − �� > 
2/4. Under this event and letting � = 
3

2� , it follows by (4.30) that

(
E⊤

�̃�̃[F(Σ]
�̃�̃[F(]

E

)
(E⊤Σ∗E)B−1

> �2 · 

2

4
(E⊤Σ∗E)B >


8

16�2
(E⊤Σ∗E)B .

Dividing through by (E⊤Σ∗E)B−1 (and the upcoming guarantee holds even if this is 0), we obtain

E⊤
�̃�̃[F(Σ]
�̃�̃[F(]

E > 
8

16�2 E
⊤Σ∗E for every E ∈ ℝ3. Therefore, this implies that 16�2


8

�̃�̃[F(Σ]
�̃�̃[F(]

� Σ∗ with

probability at least 
2/4 over the choice of ( ∼ �′(C , �̃) and we are done. �
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Lemma 4.11 (Analysis of Rounding, Upper-Bound). Fix � = 
3/2�. Let �̃ be a pseudo-distribution of

degree > $(B(�)2) consistent with A minimizing



�̃�̃ F





2
. Let P be the projection matrix to the subspace

spanned by all the eigenvectors of Σ∗ with eigenvalues at most $(
6C+8). Then, with probability at least

1 − 
2/10 over the choice of ( ∼ �′(2C + 1, �̃), we have that for Σ̂( = �̃[F(Σ]/�̃[F(]:

PΣ̂(P � $(
2C−20)� + PΣ∗P . (4.31)

Proof of Lemma 4.11. From Lemma 4.6, we have:

A
$(BC)
F,Σ

{
F(-′)2C+1 ‖P(Σ − Σ∗)P‖2

� 6 $(B2)
((

8�C�C


2

)2

+ 4

�4
‖PΣ∗P‖2

>?

)}
. (4.32)

Using that B(�) = $(1/�2), it follows that $(B2)
(

8�C�C


2

)2

= $(�2C) · �2C−4 · 
−4, and using � =


3/(2�) yields that this term is at most$(�4 ·
6C−16). The second term is at most$(1/�8)· | |PΣ∗P||2>?
using again that B(�) = $(1/�2). Thus, altogether, we have:

A
$(BC)
F,Σ

{
F(-′)2C+1 ‖P(Σ − Σ∗)P‖2

� 6 $(
6C−16) + $
(

1

�8

)
‖PΣ∗P‖2

2

}
. (4.33)

Taking pseudo-expectations with respect to �̃ yields:

�̃[F(-′)2C+1 ‖P(Σ − Σ∗)P‖2
�] 6 $(
6C−16) + $

(
1

�8

)
‖PΣ∗P‖2

2 . (4.34)

Expanding, using that �̃ satisfies F2
(
= F( and denoting once more � = {8 ∈ [=] | G8 = H8} ⊆ [=]

as the “good” set yields:

1

�̃[F(-′)2C+1]

∑
(=(81 ,82 ,...,82C+1)∈�2C+1

�̃[F(]





P

(
�̃[F(Σ]
�̃[F(]

− Σ∗

)
P







2

�

6

$(
6C−16) + $
(

1
�8

)
‖PΣ∗P‖2

2

�̃[F(-′)2C+1]·
.

(4.35)

From Lemma 4.9 and an application of Hölder’s, we know that �̃[F(-′)2C+1] > 
4C+2. Thus, we

conclude that

1

�̃[F(-′)2C+1]

∑
(=(81 ,82 ,...,82C )∈�2C

�̃[F(]





P

(
�̃[F(Σ]
�̃[F(]

− Σ∗

)
P







2

�

6 $(
2C−18) + $
(

1


4C+2�8

)
‖PΣ∗P‖2

2 .

(4.36)

Since P is the projection to the subspace where Σ∗ has eigenvalues smaller than $(
6C−16�8) =
$(
6C+8), the second term is $(
2C−18). So altogether, the RHS above is $(
2C−18). Thus,

1

�̃[F(-′)2C+1]

∑
(=(81 ,82 ,...,82C )∈�2C

�̃[F(]





P

(
�̃[F(]Σ
�̃[F(]

− Σ∗

)
P







2

�

6 $(
2C−18) . (4.37)
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Note that by definition of �′, we have that is exactly

�
(∼�′(2C+1,�̃)

[


P(Σ̂( − Σ∗)P



2

�

]
6 $(
2C−18)

Hence, by Markov’s Inequality, it follows that

ℙ
(∼�′(2C+1,�̃)

[


P(Σ̂( − Σ∗)P



2

�
6 $(
2C−20)

]
> 1 − 
2

10
.

For such an (, we must then have that

PΣ̂(P � $(
2C−20)� + PΣ∗P .

This completes the proof. �

Putting Things Together We now put the upper and lower bounds above together to prove

Theorem 4.2. We will use the following simple bound:

Lemma 4.12 (Splitting on Projections). Let P be a projection matrix to a subspace of ℝ3. Let � be any

3 × 3 PSD matrix. Then, we have:

� � 2P�P + 2(� − P)�(� − P) .

Proof. For any vector E ∈ ℝ3, we have:

E⊤�E = E⊤(P + � − P)�(P + � − P)E
= E⊤P�PE + E⊤(� − P)�(� − P)E + 2E⊤P�(� − P)E .

We now have using the Cauchy-Schwarz followed by the AM-GM inequality:

E⊤P�(� − P)E = E⊤P�1/2�1/2(� − P)E
6

√
E⊤P�PE

√
E⊤(� − P)�(� − P)E

6
E⊤P�PE + E⊤(� − P)�(� − P)E

2
.

�

Proof of Theorem 4.2. From the constraints A and that the fact that �̃ is consistent with A along with

Fact 3.16, we must have that for every 2C + 1-tuple (,

�̃[F(Σ] � �̃[F(]
8


2
.

Thus,

Σ̂( =
�̃[F(Σ]
�̃[F(]

� 8


2
.
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Next, from Lemma 4.11, we know that with probability 1−
2/10 over sampling ( ∼ �′(2C+1, �̃)
we must have:

PΣ̂(P � PΣ∗P + $(
2C−20)� .

Thus, applying Lemma 4.12 and noting that (� − P)2 = � − P, we have that for such an (:

Σ̂( � 2PΣ∗P + $(
2C−20)� + 16


2
(� − P) .

Next, observe that (� − P)Σ∗(� − P) � $(
6C+8)(� − P) since P is the subspace of all eigenvectors

of Σ∗ with eigenvalues 6 $(
6C+8).
Note also thatΣ∗ = PΣ∗P+(�−P)Σ∗(�−P) (for any vector E, E⊤(�−P)Σ∗E = 0 by orthonormality

of eigenvectors and the fact that eigenvectors must lie in either P or � − P).

Thus, we must have that with probability at least 1 − 
2/10 over the choice of ( ∼ �′(2C + 1, �̃):

Σ̂( � 2PΣ∗P + $(
2C−20)� + $
(

1


6C+8

)
· 16


2
(� − P)Σ∗(� − P) � $

(
1


6C+10

)
Σ∗ + $(
2C−20)� .

Next, from Lemma 4.10, we have that with probability at least 
2/4 over the choice of (

conditioned on ( satisfying G8 = H8 for 8 ∈ (:

$(1/
8)Σ̂( � Σ∗ .

By a union bound, we obtain that with probability at least 
2/10 over the choice of ( ∼ �′(2C + 1, �̃):

Σ∗ � $(1/
8)Σ̂( � $( 1


6C+18
)Σ∗ + $(
2C−28)� . (4.38)

Finally, note that since �̃[F(-′)C] > 
2, the chance that ( satisfies G8 = H8 for every 8 ∈ ( (as in,

our draw from � is also from �′) is at least �̃[F(-′)C]/(
C) > 
C . Thus, together, we obtain that

with probability at least 
C+2/10, the candidate $(1/
8)Σ̂( corresponding to the set ( output by the

rounding algorithm satisfies (4.38). This completes the proof.

�

5 Subgaussian Restriction

In this section, we describe and analyze a subroutine that effectively allows us assume that the

corrupted sample ., after a pruning step, itself has subgaussian moments with respect to its

covariance. To do so, we use a new definition of a good set as compared to the previous section.

Definition 5.1 (Well-behaved Set). For 3 ∈ ℕ, we say that a subset - ⊆ Q3 with mean �∗ and

covariance Σ∗ is a (�, �, C)-well behaved set if:

1. Small Mean: �∗�⊤
∗ � 0.1Σ∗.

2. Anticoncentration: - is (�, ��)-anticoncentrated.
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3. Subgaussianity: For indeterminate E and all B 6 2C,

$(B)
E

{
�
G∼-

〈G, E〉2B
6 (�B)2B ·

(
�
G∼-

〈G, E〉2

) B}
.

With this definition in mind, we will prove the following main theorem:

Theorem 5.2 (Subgaussian Restriction). Fix 1 > 
 > 0 and 3, =, C ∈ ℕ. Let � > 0. Let- be (�, �, C)-well

behaved set and let . be an arbitrary collection of = points in ℝ3 such that |. ∩ - | > 
= and 1
=

∑
8 H8H

⊤
8 =

(1 ± 2−3)�. Then, for any 0 < � 6 $(
2C+11) there is a .′ ⊆ . with |- ∩ .′ | > max(
 |.′ |, (
 − 
10)=)
and satisfying

$(C)
E

{
�

H′∼.′
〈H′, E〉2C

6
1

�

(
16�C


2

) C (
�

H′∼.′
〈H′, E〉2

) C}
.

Further, given 
, . as above, a .′ ⊆ . satisfying the above properties can be found in time (�=)$(C) where �

is the bit complexity of entries of ..

Our algorithm to establish the above theorem uses a subroutine that shows that if . is not

subgaussian with the parameters above, then, we can find a subset of . that is “outlier-heavy”, that

is, contains significantly bigger fraction of outliers than in all of .. Removing these points can only

“increase” the density of the inliers so cannot hurt us.

We will use the following simple inequality that relates the tails of a distribution to its mean.

Lemma 5.3 (Expectation vs Tail). Let / be a non-negative real-valued random variable. Then,

�[/] 6 1

2
+

∫ ∞

1/2

ℙ[/ > !]3! .

Proof. �[/] =
∫ ∞

0
ℙ[/ > !]3! =

∫ 1/2

0
ℙ[/ > !]3! +

∫ ∞
1/2

ℙ[/ > !]3! 6 1/2 +
∫ ∞

1/2
ℙ[/ > !]3!. �

We will use the above bound to show that if . is not certifiably subgaussian, then, the outliers

must make an outsized contribution to one of a few natural sections of the tail of ..

Lemma 5.4 (Outliers Must Dominate Some Portion of Tail). Fix 1 > 
 > 0 and 3, =, C ∈ ℕ. Let � > 0

and - be (�, �, C)-well behaved set.

Let . be an arbitrary collection of = points in ℝ3 such that |. ∩ - | > 
′= for 
′
> 
/2 and

1
=

∑
8 H8H

⊤
8 = (1 ± 2−3)�. Suppose there is a pseudo-distribution �̃ of degree > 4C over 3-dimensional

vector-valued indeterminate E such that �̃�̃[�H∼. 〈E, H〉2C] > Γ for Γ = 1
� (16�C/
2)C . Then, there is a ! > 0

such that ℙH∼.[�̃�̃[〈E, H〉4C] > !] > Γ/4!. In contrast, for every ! > 0, ℙG∼-[�̃�̃[〈G, E〉4C] > !] 6 �2Γ2/!.

Proof. Let’s prove the first claim. Note that Γ > 1 and suppose for the sake of contradiction that for

every ! > 0, ℙH∼.[�̃�̃[〈E, H〉4C] > !] 6 Γ/4!. Observe that by Cauchy-Schwarz inequality for pseudo-

distributions and the fact that �̃ has degree > 4C, we must have that �̃�̃[〈E, H〉4C] >
(
�̃�̃[〈E, H〉2C]

)2

.

Thus, whenever �̃�̃[〈E, H〉2C] > !, �̃�̃[〈E, H〉4C] > !2.
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Applying Lemma 5.3 to the random variable �̃�̃[〈E, H〉2C] as H is chosen uniformly at random

from . (notice the randomness here is simply H being chosen uniformly from .), we have:

�
H∼.

[�̃�̃[〈E, H〉2C]] = 1/2 +
∫ ∞

1/2

ℙ[�̃�̃[〈E, H〉2C] > !]3!

6 1/2 +
∫ ∞

1/2

ℙ[�̃�̃[〈E, H〉4C] > !2]3!

6 1/2 +
∫ ∞

1/2

Γ

4!2
3! 6 1/2 + Γ/2 < Γ ,

since Γ > 1. This is a contradiction and proves the first claim.

Next, let Σ∗ = 1
=

∑=
8=1 G8G

⊤
8 . From the argument in Lemma 4.8, we have that Σ∗ � 8


2 �.

By �-certifiable 4C-subgaussianity of - and the fact that �̃ is a pseudo-distribution of degree

> 4C, we must have that �̃�̃[�G∼-[〈G, E〉4C]] 6 (2�C)2C
(
�G∼- 〈G, E〉2

)2C
= (2�C)2C( 8


2 )2C = (�Γ)2. By

Markov’s inequality, ℙG∼-[�̃�̃[〈G, E〉4C] > !] 6 �2Γ2/!.

�

We can now describe the subgaussian restriction algorithm.

Algorithm 5.5 (Subgaussian Restriction Algorithm).

Given: A set of points . = {H1 , H2 , . . . , H=} ⊆ ℚ3 and 
, � > 0.

Output: A subset .′ ⊆ . that is certifiably subgaussian:

2C
E

{
�
H∼.′

〈H, E〉2C
6

1

�

(
16�C


2

) C (
�
H∼.′

〈H, E〉2

) C}
.

Operation: Initialize .′ = .. While true, do:

1. Isotropize: By a linear transformation of all H ∈ .′, ensure that �H∼.′ HH⊤ =

(1 ± 2−3)�.
2. Subgaussianity Check: Find a degree 4C pseudo-distribution �̃ over 3-

dimensional vector-valued indeterminate E satisfying ‖E‖2
2 = 1 and maximizing

�H∼.′[�̃�̃[〈E, H〉2C]]. If the objective value is 6 Γ, halt and return .′.

3. Find Outlier-Heavy Level Set: If not, by binary search, find ! such that

ℙH∼.′[�̃�̃[〈E, H〉4C] > !] > Γ/4!. Such an ! is guaranteed to exist by Lemma 5.4. Let

' be the set of all such points in ..

4. Prune: Set .′ = . \ '. Go to step 1.

Proof of Theorem 5.2. Starting with .′ = ., Algorithm 5.5 repeatedly (approximately) isotropizes .′

and whenever .′ does not satisfy the desired subgaussianity condition, it finds an “outlier-heavy”

subset of .′ to prune away.
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Let’s analyze this algorithm. We will prove the following two facts about the run of the algorithm

to analyze it.

1. In each iteration either we halt and return or remove at least one point from .′. This

immediately implies that the algorithm terminates in = iterations and thus, in time (�=)$(C)

(where � is the bit complexity of entries of .).

2. Let ' ⊆ .′ be the subset of points removed in any iteration. Then, at most 
10 |' | of the points

belong to - ∩ .. Notice that this immediately implies that the total number of “inliers” (i.e.

points in - ∩ .) removed are at most 
10=.

We will prove both the claims by induction over the iterations of the algorithm. Consider

any iteration starting with .′. Let |- ∩ .′ | = 
′. Then, by inductive assumption, we know that


′
> (
 − 
10) > 
/2. By an argument similar to the one in the proof of Lemma 4.8, we can

infer that (after the isotropic linear transformation), the transformed Σ∗ � 8

2 �. If .′ does not pass

the subgaussianity check, then, by duality of pseudo-distributions and SoS proofs, we can find

a pseudo-distribution �̃ on E such that �H′∼.′ �̃�̃[〈E, H′〉2C] > Γ. Thus, by Lemma 5.4, the binary

search to find ! for an outlier-dense level set must succeed. So we must remove at least one point

from .′ (proving (1)). We know then that the fraction of ' contained in - ∩ .′ is at most

�2Γ2

!


/2·Γ
8!

where we used that |.′ | > 

2 · =. Rearranging this yields that we need 128�C�


2C+1 6 
10 implying that

we can take � = $(
2C+11) to finish (2). This completes the proof.

�

6 Splitting via Paley-Zygmund Anti-Concentration

In this section, we describe and analyze a subroutine that takes input a corrupted sample . and

prunes away a constant fraction of .. Crucially, our splitting algorithm requires only a mild

anti-concentration property that can be inferred from only moment upper bounds. This is in contrast

to strong (and certifiable) anticoncentration needed in our coarse spectral recovery algorithm.

Our algorithm below first performs a simple check on a candidate obtained from coarse spectral

recovery step. If a candidate passes the check, we obtain a certificate that a coarse spectral estimate

in fact must in fact be a multiplicative spectral estimate. If not, our algorithm efficiently splits .

into two approximately balanced parts such that the most of - ∩ . is included on one side. Thus,

we either “finish” by finding a good candidate covariance or can recurse and make progress be

decreasing the fraction of the sample that is corrupted.

Our algorithm itself is simple:

Algorithm 6.1 (Spectral Splitting). 1. Input: . ⊆ ℝ3, a vector E ∈ ℝ3.

2. Operation: Return .2 – the set of all points H8 such that 〈H8 , E〉2 > 0.5.

We first prove that the splitting algorithm always makes progress.
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Lemma 6.2 (Splitting Algorithm: Progress). Let . be a set of points in ℝ3 such that 1) 1
=

∑
8 H8H

⊤
8 = (1±

2−3)� and 2) 1
=

∑=
8=1〈H8 , E〉2C

6 Δ ‖E‖2C
2 forΔ = 1

�

(
16�C

′2

) C
and all E ∈ ℝ3. Let.2 = {H ∈ . | 〈H, E〉2 > 1/2}.

Then, |.2 | > $(
10)|. |.

Next, we prove that if . intersects with the original uncorrupted sample - appreciably, then the

splitting algorithms prunes away only a small fraction of points from . ∩ -.

Lemma 6.3 (Splitting Algorithm: Correctness). Suppose that- is a set of = points satisfying 2C-certifiable

�-subgaussianity: 1
=

∑=
8=1〈G8 , E〉2C

6 (�C)C
(

1
=

∑=
8=1〈G8 , E〉2

) C
for C = $(1/
). For some 
, � > 0, suppose

. is a set of = points in ℝ3 satisfying |. ∩ - | > 
′= > 
=/2. Let Σ̂ be a PSD matrix such that Σ∗ � Σ̂ and

suppose there is a unit vector E such that E⊤Σ̂E 6 � for � < $(
6). Then, there is a poly(=) time algorithm

to split . into .1 ∪ .2 such that |- ∩ .1 | > (
′ − $(
12)|. |.

We will use the following basic consequence of the Paley-Zygmund anti-concentration inequality:

Lemma 6.4 (Mild Anti-Concentration via Paley-Zygmund). Let . be a set of = points in ℝ3 such that
1
=

∑
8 H8H

⊤
8 = (1 ± 2−3)�. Suppose further that 1

=

∑=
8=1〈H8 , E〉4

6 Δ ‖E‖4
2 for every E ∈ ℝ3. Then, for any

E ∈ ℝ3, the fraction of H8s such that |〈H8 , E〉| > 1
2 is at least 1

4Δ .

Proof. Observe that the contribution of H8s such that |〈H8 , E〉| 6 1
2 to 1

=

∑
8 〈H8 , E〉2

6
1
4 . Thus, by

Cauchy-Schwarz inequality, we have:

1

2
‖E‖2

2 6
1

=

∑
8

〈H8 , E〉21(|〈H8 , E〉| > 1/2) 6
√

1

=

∑
8

〈H8 , E〉4

√√
1

=

=∑
8=1

1(|〈H8 , E〉| > 1/2)

6

√
Δ ‖E‖2

2

√√√(
1

=

=∑
8=1

1(|〈H8 , E〉| > 1/2)
)
.

Rearranging yields that:

1

=

=∑
8=1

1(|〈H8 , E〉| > 1/2) > 1

4Δ
.

�

Proof of Lemma 6.2. Let us analyze.2. By Hölder’s inequality, 1
=

∑=
8=1〈H8 , E〉4

6
(

1
=

∑=
8=1〈H8 , E〉2C

)2/C
6

1
�2/C

(
16�C

′2

)2

‖E‖4
2. Thus, by Lemma 6.4, we must have that at least a $(
4)�2/C/C2 fraction of H8s

satisfy 〈H8 , E〉2
>

1
2 . This fraction, for C = $(1/
) and � = $(
2C+11) is at least $(
10). Thus,

|.2 | > $(
10)|. | as desired. �

Proof of Lemma 6.3. Observe that E⊤Σ∗E 6 E⊤Σ̂E 6 �. Thus, using �-subgaussianity of 4th moments

of - we have that

�
G8∼-

[〈G8 , E〉4] 6 (2�)2(E⊤Σ∗E)2 6 4�2�2.
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So, if a � fraction of G8 had 〈G8 , E〉2
>

1
2 we would have that

(
1

2

)2

� 6 4�2�2

which upon rearranging yields that the fraction of G8s such that 〈G8 , E〉2
> 1/2 is at most 16�2�2.

Thus, .1 contains at least 
′ − $(�2) = 
′ − $(
12) fraction of the points in . as desired. �

7 List-Decodable Covariance Estimation with Spectral Accuracy

In this section, we put the three components from the previous sections together to obtain an

algorithm for list-decodable covariance estimation with multiplicative spectral recovery guarantee.

Algorithm 7.1 (List-Decodable Covariance Estimation with Spectral Recovery Guarantee).

Given: . = {H1 , H2 , . . . , H=} ⊆ ℚ3 such that 1
=

∑=
8=1 H8H

⊤
8 = (1 ± 2−3)� and 
 > 0.

Output: A list ℒ of positive semidefinite matrices in ℚ3×3.

Operation: Maintain a list ℒ′ of candidates with “witness subsets” of .. Initialize ℒ′ with

(., �, 0). During the course of the algorithm, some candidates in ℒ′ will become “final”.

1. Set C1 = $(1/
), C2 = 20, and � = $(
2C1+11). For , = 0, 1, . . . , do:

2. Process ,-th Generation Candidates: While there is (.(8) , Σ̂(8) , ,) in ℒ′ that is not

marked final, remove (.(8) , Σ̂(8) , ,) from ℒ′ and run the following steps:

(a) Subgaussian Restriction: Run the Subgaussian Restriction Algorithm (Algo-

rithm 5.5) to find .′ ⊆ .(8) satisfying

2C
E

{
�H∼.′〈H, E〉2C

6
1
�

(
16�C

2

) C (
�H∼.′ 〈H, E〉2

) C}
for C = C1 and � = � above.

(b) Isotropization: By a linear transform, ensure that .′ satisfies �H′∼.′ H′H′⊤ = �.

(c) Coarse Spectral Recovery: Apply Coarse Spectral Recovery Algorithm (Al-

gorithm 4.3) to input .′ with C = C2, fraction of inliers set to 
/2 and failure

probability � = 
10/100. If the algorithm outputs infeasible, go back to the

beginning of the loop. Otherwise:

(d) Check Certificate of Spectral Approximation: For each of the candidates Σ̂8s

produced, check if the minimum eigenvalue of Σ̂8 is at least � for � = 2
6. If yes,

add (Σ̂8 , .′, , + 1) to ℒ′ after undoing the isotropic transformation from Step (b)

above and label the candidate “final”.

(e) Apply Spectral Splitting: For each candidate Σ̂8 that is not labeled final, find an

eigenvector E of Σ̂8 with eigenvalue < � and apply Spectral Splitting Algorithm

(Algorithm 6.1) with respect to Σ̂8 to .′ to obtain .′′. If |.′′ | < 
=/2, reject the
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candidate and continue to loop. Otherwise, add (Σ̂8 , .′′, , + 1) to the list ℒ after

undoing the isotropic linear transformation on both .′
8 and Σ̂8 from Step 2 above.

3. When the for loop exits, add all the candidate covariances Σ̂ from ℒ′ to ℒ.

We first explain the idea of the algorithm and the analysis. We start with the input corrupted

sample. along with the 0-th generation candidate � and apply the subgaussian restriction procedure.

Intuitively, the goal of the algorithm is to make progress on getting a good candidate covariance in

the list as the generations , progress. Theorem 5.2 ensures that in this process, we only increase the

density of inliers (i.e. points intersecting with the original good set of points -) and that the number

of inliers is at least (
 − 
10)=.. We then make the resulting . approximately isotropic and apply the

coarse spectral recovery algorithm to obtain a list of $(1/
2) size that is guaranteed to contain an Σ̂8

such thatΣ∗ � Σ̂8 � poly(1/
)+
6� (where we have set � = 
6). If all eigenvalues of every candidate

Σ̂8 are at least 2
6, then, the coarse guarantee implies a multiplicative spectral approximation (see

Lemma 7.7) as we’d like and so we are done (our algorithm labels such candidates “final”).

Otherwise, there must be a Σ̂8 that has an eigenvalue smaller than 2
6. In this case, because .

satisfies certifiable subgaussianity (as a result of our subgaussian restriction subroutine), spectral

splitting can prune out > $(
10) fraction of points from . while removing at most $(
12)= points

from - ∩ .. We call the pruned set .′ a “witness subset” for Σ̂8 . If Σ̂8 happened to be a “candidate

good estimate” for the unknown covariance, then, the witness subset is sufficient to work with from

this point on in the algorithm. Of course we do not know whether Σ̂8 is the “right” candidate and

in general, the witness subset is different for different candidates Σ̂8 . Thus, our algorithm maintains

the the current witness subset for each potential candidate Σ̂8 in our list. In the subsequent runs of

the algorithm, we repeat the algorithm on witness subset for each candidate that is not marked

final. At any point of time, each member (Σ̂(8) , .(8)) in the list ℒ′ is obtained by a sequence of

subgaussian-restrictions, coarse-spectral-recovery and spectral splitting applied to the initial input

set .. And each time a candidate is processed, we must decrease the size of its witness set by at at

least 1−$(
10) factor while increasing the list size by $(1/
22). Since we know that for the “correct

candidate”, we never throw away more than 
=/2 inliers, if the size of a witness set drops below


=/2, we can comfortably reject the corresponding candidate. Thus the number of generations in

the algorithm cannot be more than $̃(1/
10) giving us the bound on the list-size.

We now formally argue the guarantees of the algorithm. The following theorem summarizes

the guarantees of Algorithm 7.1.

Theorem 7.2. Let 1 > 
 > 0. Suppose - = {G1 , G2 , . . . , G=} ⊆ ℚ3 is a good set (Definition 4.1) of =

points satisfying �G∼- GG⊤ = Σ∗ such that |. ∩ - | > 
=. Let . ⊆ ℚ3 be a set of = points such that
1
=

∑
8 H8H

⊤
8 = �. Then, Algorithm 7.1 on input ., 1) runs in time (�=/
)$(1/
12), 2) outputs a list ℒ of size


$̃(1/
6), with the guarantee that with probability at least 0.99 only over the randomness of the algorithm, 3)

ℒ contains a Σ̂ satisfying Σ∗ � Σ̂ � $(1/
150)Σ∗.

We prove the theorem in the following sequence of lemmas.

The first set of claims below analyze the size of the list ℒ output by the algorithm.

Lemma 7.3 (Size of witness sets in ,-th generation). Let (Σ̂8 , .(8) , ,) be a ,-th generation candidate that

is not marked final. Then, |.(8) | 6 (1 − $(
10)),=.
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Proof. We prove this by induction on the generation iterator ,. For the base case, observe that at the

beginning, , = 0 and |.(0) | = |. | = =. Next, for the inductive case, observe that a ,-th generation

candidate for , > 1 is obtained by taking a 1) , − 1-th generation candidate (Σ̂8 , .(8)), 2) applying

subgaussian restriction to .(8), applying coarse-spectral recovery to obtain a list of ,-th generation

candidates by applying Algorithm 4.3 to input .(8). By Theorem 5.2, .(8) satisfies

$(C)
E

{
�

H∼.(8)
〈H, E〉2C

6
1

�

(
16�C


2

) C (
�

H∼.(8)
〈H, E〉2

) C}
.

If a ,-th generation candidate covariance Σ̂9 is not marked final, then, there must be an unit length

eigenvector E of Σ̂9 with an eigenvalue of at most � = 
6 �H∼.(8) 〈H, E〉2. Thus, the assumptions of

Lemma 6.2 are met and the splitting algo must prune away at least $(
10)|.(8) | points from .(8)

before producing a ,-th generation candidate (Σ̂9 , .
(9) , ,). This completes the proof. �

Lemma 7.4 (Bounding the Number of Generations). The maximum value of , during the run of the

algorithm is $(log 1/
)/
10.

Proof. From Lemma 7.3, the size of the witness set drops as (1 − $(
10)), in the ,-th generation. If

, > $(log 1/
)/
10, then, the above size is 6 
=/2 in which case, Step 2(e) of the algorithm exits

the loop disallowing further generations. This completes the proof. �

As an immediate corollary, we obtain a bound on the size of the list obtained by the algorithm

above:

Lemma 7.5 (List Size Bound). The size of the list ℒ of covariances output by the algorithm is at most


$̃(1/
10).

Proof. Every candidate in the list ℒ corresponds to a candidate from ℒ′ that the algorithm marks

“final”. Each candidate in ℒ′ marked final is at most of $(log 1/
)/
10 generation from Lemma 7.4.

Each ,-th generation candidate in ℒ′ produces at most $(1/
20) , + 1-th generation candidates

from the guarantees of Theorem 4.2. This immediately yields the upper bound on the list size as

desired. �

Next, we bound the running time of the algorithm.

Lemma 7.6 (Running Time). The running time of Algorithm 7.1 is (�=/
)$(1/
12).

Proof. Given our parameters, the running time of each iteration is dominated by the running time of

coarse spectral recovery. The number of iterations is upper bounded by 
−$̃(1/
11) by an argument

similar to the one bounding the size of the list output by the algorithm. This gives the final running

time bound as desired. �

Finally, we prove the correctness – that one of the candidates in the list gives a multiplicative

approximation to the unknown covariance. Our proof will rely on the following simple observation

that we will use to infer that if all eigenvalues of every candidate Σ̂ are not too small relative to its

witness set then the set of candidates must contain a multiplicative spectral approximation to the

unknown covariance Σ∗.
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Lemma 7.7 (Certificates of Spectral Recovery). Suppose Σ̂ satisfies Σ∗ � Σ̂ � $
(

1

150

)
Σ∗ + ��. Further,

suppose that for all unit vectors E, E⊤Σ̂E > 2�. Then,

Σ∗ � Σ̂ � $

(
1


150

)
Σ∗ .

Proof. Let E be a unit vector such that � = E⊤Σ̂E > 2�. Then, we have:

E⊤ΣE
E⊤Σ∗E

6 $

(
�

(� − �)
150

)
6 $

(
1/
150

)
.

This completes the proof. �

Lemma 7.8 (Correctness). Let 1 > 
 > 0. Suppose - = {G1 , G2 , . . . , G=} ⊆ ℚ3 is a good set of = points

satisfying �G∼- GG⊤ = Σ∗ such that |.∩- | > 
=. Let. ⊆ ℚ3 be a set of = points such that 1
=

∑
8 H8H

⊤
8 = �.

Then, Algorithm 7.1 on input . outputs a list of 
−$̃(1/
10) covariance matrices such that there is a candidate

Σ̂ in the list satisfying:

Σ∗ � Σ̂ � $

(
1


150

)
Σ∗ . (7.1)

Proof. Let us call a , + 1-th generation candidate (Σ̂9 , .
(9) , ,) good if it satisfies 1) Σ∗ � Σ̂8 �

$(1/
150)Σ∗ + $(
16)�H∼.(8) HH⊤, 2) |.(8) ∩ - | > (
 − , · $(
10))=, 3) |.(8) | 6 (1 − $(
10)),=. Here

(Σ̂8 , .(8) , ,) is the ,-th generation candidate processing of which generated Σ̂9 as a candidate in the

,-th iteration of the while loop in Algorithm 7.1.

We will prove the following by induction on ,: suppose there is a ,-th generation candidate

that is good and not marked final. Then, there is a , + 1th generation candidate that is good.

We first observe that this claim is enough to complete the proof. To see why, observe that

the number of generations , is no more than $(log 1/
)/
10. So |.(8) ∩ - | > (
/2)= for all ,

encountered in the run of the algorithm. Now consider a good candidate (Σ̂8 , .(8) , 1) in generation

, = 1 and let’s track the sequence of good candidates guaranteed by the inductive claim above

for each of the generations , > 1 starting with (Σ̂8 , .(8) , 1). Let ,∗ be the largest , such that the

good candidate in generation , is not marked final. Since ,∗ 6 $̃(1/
10) and � = 
10/100 and the

assumptions on such .(8) for Algorithm 4.3 succeeding are met, each run of of Algorithm 4.3 along

such a path succeed with probability at least 1 − �. By a union bound, and that ,∗ 6 $̃(1/
10), all

the runs succeed with probability at least 0.99. Let’s condition on this event. Then, in iteration

,∗, starting with such a good candidate, the coarse spectral recovery algorithm must produce a

generation ,∗ + 1 candidate that is marked final. In which case, we must have that all eigenvalues

of Σ̂9 are at least � = $(
6) relative to �H∼.(9) HH⊤. Since |.(9) ∩ - | > 
/2, by Lemma 7.7, we can

conclude that Σ̂9 � $(1/
150)Σ∗. This completes the proof modulo the inductive claim.

Let us now prove the inductive claim to finish the proof.

For the base case, observe that the first iteration runs with the only 0-th generation candidate

in the list ℒ′, namely, ( 1

2 � , ., 0) and |. ∩ - | > 
=. Let us now analyze the steps of the algorithm
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when .(8) = . is processed in , = 1st iteration. In the first (subgaussian restriction) step, we apply

Algorithm 5.2 which, from Lemma 5.2, allows us to obtain a .′ ⊆ . such that .′ satisfies certifiable

subgaussianity and .′ satisfies |.′ ∩ - | > (
 − 
10)=. Thus, our coarse spectral recovery algorithm

(Algorithm 4.3) gets input a (1 − 
′) corrupted sample for 
′
> 
 − 
10 fraction of . and as a result

of Theorem 4.2, with probability at least 1 − �, returns a list of candidates one of which, say Σ̂9 ,

satisfies the first conclusion of the lemma. If this candidate is not marked final, then, by Lemma 6.3,

we know that (Σ̂9 , .
(9)) is added to ℒ′ with .(9) satisfying (2) and (3) as desired. The analysis of the

inductive case is entirely analogous. �

8 List-Decodable Mean and Covariance Estimation

In this section, we prove that given a good spectral estimate of the covariance (i.e., guaranteed

by Theorem 7.2) and an (1 − 
)-corruption of a good set of points -, we can obtain a list of

$(1/
poly(1/
))-candidates that contains an estimate of the mean that is accurate within poly(1/
)-
Mahalanobis distance and covariance that is accurate in (stronger) relative Frobenius distance. The

stronger guarantee immediately implies our main theorem on list-decoding mean and covariance

for Gaussian distributions with a total variation error guarantee.

We first start by describing the strong relative Frobenius error guarantee for covariance estimation.

8.1 Covariance Recovery in Relative Frobenius Error

Our algorithm builds on ideas in the prior work [BK21] on list-decodable subspace recovery (which

can be thought of as the special case where the unknown covariance is allowed to have eigenvalues

that are either 0 or 1).

Our notion of good set for Frobenius error guarantee (under additional spectral closeness

hypothesis) is significantly weaker:

Definition 8.1 (Good set for relative Frobenius Recovery for known spectral approximation). We

say that a subset - ⊆ ℝ3 is a �-good with mean �G∼- G = �∗ and 2nd moment �G∼- GG⊤ = Σ∗
if 1) �∗�⊤

∗ � 0.1�G∼-(G − �∗)(G − �∗)⊤ and 2) - has $(1)-certifiably �-hypercontractive degree 2

polynomials.

Theorem 8.2 (List-decoding covariances with relative Frobenius error guarantee). There is an

algorithm that takes input . ⊆ ℝ3 of size =, runs in time =$(1) and outputs a list of PSD matrices

Σ̂1 , Σ̂2 , . . . , Σ̂: for : = $(1/
4) with the following guarantees. Let - be a �-good set of = points

in ℝ3 such that �G∼- GG⊤ = Σ∗ satisfying � � Σ∗ = �G∼- GG⊤ � $(1/
150)�. Suppose . be an

(1 − 
)-corruption of -, i.e., . ⊆ ℝ3 of size = satisfying |. ∩ - | = 
=. Then, there is an 8 such that


Σ−1/2
∗ (Σ̂8 − Σ∗)Σ−1/2

∗




2

�
6 $(1/
304).

Algorithm Our algorithm solves the SoS relaxation of the constraints A′
1 ∪A2 ∪A3 ∪A4 defined

in Section 4 – we have dropped the anti-concentration constraints A5 and will modify A1 to replace
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the third constraint with (Σ− �) = ++⊤ and ($( 1

150 )� −Σ) = //⊤ for matrix valued indeterminates

+ and / that encode the additional information that � � Σ � $(1/
150)�.
The proof of Lemma 4.8 extends to show that setting -′ = - and F8 to be the indicator of 8 such

that H8 = G8 along with appropriate values to *,+, / gives a feasible solution to the polynomial

constraints A′
1 ∪A2 ∪A3 ∪A4.

Our full algorithm is as follows:

1. Find a pseudo-distribution �̃ of degree $(1) consistent with A = A′
1 ∪ A2 ∪ A3 ∪ A4 and

minimizing



�̃�̃[F]




2

2
.

2. Rounding: Repeat $(1/
4) times:

(a) choose (88 , 82) with probability proportional to �̃�̃[F81F82].
(b) Output �̃�̃[F81F82Σ]/�̃�̃[F81F82].

The main claim in our analysis is the following lemma (analogous to Lemma 4.6).

Lemma 8.3 (Deriving Frobenius Error Bounds within Low-Degree SoS).

A
$(1)
F,Σ

{
F(-′)2




Σ−1/2
∗ (Σ − Σ∗)Σ−1/2

∗




2

�
6 $(1/
300)

}
. (8.1)

Proof. From the conclusion of Lemma 4.7 (with ℎ = 1):

A5 $(1)
Σ,',&,F

{
F(-′)4

〈
Σ
−1/2
∗ (Σ − Σ∗)Σ−1/2

∗ , &
〉4

= F(-′)4
〈
Σ − Σ∗ ,Σ

−1/2
∗ &Σ

−1/2
∗

〉4

6 $(1)F(-′)4
(
‖&‖4

� +



'Σ−1/2

∗ &Σ
−1/2
∗ '




4

�

)}
. (8.2)

For the second term, we start from A′
1 using that � � Σ∗ and thus




Σ−1/2
∗





2
6 1, we must have:

A
$(1)
',F

{
F(-′)2(E⊤Σ−1/2

∗ '⊤'Σ−1/2
∗ E)2 = F(-′)2(E⊤Σ−1/2

∗ ΣΣ
−1/2
∗ E)2

6 $(1/
600)F(-′)2



Σ−1/2

∗ E



4

2
6 $(1/
600)F(-′)2 ‖E‖4

2

}
. (8.3)

Using Contraction within SoS (Fact 3.15) with � = F(-′)2, � = ', C = 2, and Δ = $(1/
600)
twice:

A
$(ℎ)
',F,&

{
F(-′)4




'Σ−1/2
∗ &Σ

−1/2
∗ '




4

�
6 $(1/
600) ‖&‖4

�

}
(8.4)

Plugging back the estimate from (4.21) in (4.18) gives:

A5 $(1)
Σ,F,&

{
F(-′)4

〈
Σ
−1/2
∗ (Σ − Σ∗)Σ−1/2

∗ , &
〉4

6 $(1/
600) ‖&‖4
�

}
. (8.5)
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Substituting & = Σ
−1/2
∗ (Σ − Σ∗)Σ−1/2

∗ and multiplying by the SoS polynomial F(-′)4 yields:

A5 $(1
Σ,F

{
F(-′)8




Σ−1/2
∗ (Σ − Σ∗)Σ−1/2

∗




8

�
6 F(-′)4 · $(1/
600)




Σ−1/2
∗ (Σ − Σ∗)Σ−1/2

∗




4

�

}
. (8.6)

We now apply Lemma 3.13 (Cancellation within SoS) with � = F(-′)4 ‖Σ − Σ∗‖4
� to obtain that:

A
$(1)
F,Σ

{
F(-′)16




(Σ−1/2
∗ Σ − Σ∗)Σ−1/2

∗




16

�
6 $(1/
2400)

}
. (8.7)

We finally apply Cancellation with Constant RHS (Lemma 3.12) to conclude that:

A
$(1)
F,Σ

{
F(-′)2




Σ−1/2
∗ (Σ − Σ∗)Σ−1/2

∗




2

�
6 $(1/
300)

}
. (8.8)

�

Proof. Observe that by Lemma 3.16, we know that � � �̃[F81F82Σ∗]
�̃[F81F82 ]

� $(1/
150)�. Next, let � ⊆ [=] be

the set of indices 8 such that G8 = H8 (unknown to the algorithm). Taking pseudo-expectations with

respect to �̃ of the conclusion of Lemma 8.3, we obtain that:∑
81 ,82∈�

�̃�̃[F81F82



Σ−1/2

∗ (Σ − Σ∗)Σ−1/2
∗




2

�
6 $(1/
300)] .

Dividing both sides by �̃[F(-′)2], using that
∑
81 ,82∈� �̃[F81F82] = �̃[F(-′)2] and the conclusion

of Lemma 4.9 along with Cauchy-Schwarz inequality for pseudo-distributions that yields that

�̃[F(-′)2] > �̃[F(-′)]2 > 
4, we obtain:

1

�̃[F(-′)2]

∑
81 ,82∈�

�̃�̃[F81F82]





Σ−1/2

∗ (
�̃�̃[F81F82Σ]
�̃�̃[F81F82]

− Σ∗)Σ−1/2
∗







2

�

6 $(1/
304) .

The left hand side can now be interpreted as expectation over the choice of 81 , 82 with probability

proportional to �̃�̃[F81F82] conditioned on 81 , 82 , ∈ �. By Markov’s inequality, with probability at

least 0.99, a draw from this distribution of (81 , 82) must satisfy:




Σ−1/2
∗ (

�̃�̃[F81F82Σ]
�̃�̃[F81F82]

− Σ∗)Σ−1/2
∗







2

�

6 $(1/
304) .

Further, since �̃[F(-′)] > 
2, the probability that (81 , 82) chosen with probability proportional

to �̃�̃[F81F82] satisfy that 81 , 82 ∈ � is at least 
4. Thus, altogether, the chance that a random draw

of (81 , 82) yields an estimate
�̃�̃[F81F82Σ]
�̃�̃[F81F82 ]

satisfying the relative Frobenius error bound above is at

least $(
4). Thus, repeating the sampling process $(1/
4) times is sufficient to ensure that the list

contains a candidate close in relative Frobenius distance as desired with probability at least 0.99.

�
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8.2 Mean Estimation Given Spectral Approximation to Covariance

Given a multiplicative spectral approximation to the covariance, one can apply algorithms from prior

works (or a significantly simpler variant of our list-decoding algorithm for covariance estimation

above) to obtain good estimates of the mean. We only note the consequence here.

Technically speaking, Theorem 1.2 in [KS17a] works for the weaker model of list-decodable

estimation where . must contain as a subset 
= i.i.d. points from a certifiably subgaussian

distribution �. For our stronger model, we observe that any subst of size 
= of a good set

(Definition 4.1) satisfies $(�/
)-certifiable subgaussianity. To do this, we only need the following

basic observation (applied to centered version of a good set):

Lemma 8.4. Suppose - ⊆ ℚ3 is a set of = points with mean 0 such that ℙG∼-[|〈G, E〉| 6

/100�G∼- 〈G, E〉2] 6 
/2. Let / ⊆ - be any subset of - of size 
=. Then, �I∈/ II⊤ �
(
/200)�G∼- GG⊤.

Proof. Fix E ∈ ℝ3. Apply the anti-concentration of the set - to conclude that at most 
=/2

points in - can satisfy 〈G, E〉2
6 
/100�G∼- 〈G, E〉2. Thus, at least 
=/2 points in / satisfy

〈G, E〉2 > 
/100�G∼- 〈G, E〉2 and as a result, �I∼/ II⊤ � 
/100�G∼- GG⊤. �

The above lemma immediately yields that for any subset / ⊆ - of size at least 
=, whenever -

is 2C-certifiably �-subgaussian, / itself is 2C-certifiably $(�/
)-subgaussian:

2C

{
�
I∼/

〈I, E〉2C
6

1



�
G∼-

〈G, E〉2C
6

1



(�C)C

(
�
G∼-

〈G, E〉2

) C
6

1



(200�C/
)C

(
�
I∼/

〈I, E〉2

) C}
.

We can thus apply Theorem 1.2 in [KS17a] (at the cost of loss of an additional factor of $(1/
)
in the error).

Theorem 8.5 (List-decoding mean estimation given spectral approximation to covariance, Theorem

1.2 in [KS17a]). There is an algorithm that takes input . ⊆ ℝ3 of size =, runs in time =$(log(1/
)) and

outputs a list of 3-dimensional vectors �̂1 , �̂2 , . . . , �̂: for : = $(1/
) with the following guarantees.

Let - be a �-good set of = points in ℝ3 such that �G∼- G = �∗ and �G∼- GG⊤ = Σ∗ satisfying

� � Σ∗ = �G∼- GG⊤ � $(1/
150)�. Suppose. be an (1−
)-corruption of-, i.e.,. ⊆ ℝ3 of size = satisfying

|. ∩ - | = 
=. Then, there is an 8 such that for every D ∈ ℝ3,


�̂8 − �∗ , D



2

2
6 $(log(1/
)/
152)D⊤Σ∗D2.

8.3 Proof of Main Theorem

We now have all the components to prove Theorem 1.6.

Theorem 8.6 (Main Theorem). Fix 
 > 0. For any �, there is a (�=)$̃(1/
12) time algorithm that takes

input a collection of = points . ⊆ ℚ3 with entries of bit-complexity at most poly(�3) and either “rejects” or

outputs a list of parameters {(�̂8 , Σ̂8)}86: for : = 
−poly(1/
) with the following guarantee: suppose that for

some absolute constant � > 0, � is a distribution on ℝ3 with mean �∗ and covariance Σ∗ with rational entries

of bit complexity 6 � that is 1) B(�)-certifiably (�, �)-anti-concentrated for � = $(
3), B(�) = $(1/�2) and
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2) has 2C-certifiable �-hypercontractive degree 2 polynomials for C > $(1/
). Suppose . is a poly(3)-bit

rational truncation of an �-corrupted sample from � of size = > =0 = 3$̃(1/
6).
Then, with probability at least 0.99 over the draw of - and over the random choices of the algorithm, the

algorithm does not reject and outputs a list of parameters of size : such that there exists an 8 such that for

every D ∈ ℝ3:

〈�̂8 − �∗ , D〉 6 $̃(log(1/
)/
152)
√
D⊤Σ∗D ,

Σ∗ � Σ̂ � $(1/
152)Σ∗ ,

and, 


Σ†/2
∗ (Σ̂ − Σ∗)Σ†/2

∗





�
6 $(1/
304) .

Combined with the characterization of total variation distance in terms of the three parameter

distance bounds (Proposition A.1 in [BK20b]), we immediately obtain Theorem 1.6.

Corollary 8.7 (List-decoding Gaussian with total variation error guarantee). There is a =poly(1/
) time

algorithm that takes input a (1 − 
)-corrupted sample of size = > 3

−$(1)

from a 3-dimensional Gaussian

distribution with mean �∗ and covariance Σ∗ and outputs a list of 2$(1/
$(1))-parameters such that there is a

(�̂, Σ̂) in the list satisfying:

3TV(N(�̂, Σ̂),N(�∗ ,Σ∗)) 6 1 − exp(−$(1/
304)) .

Proof of Theorem 8.6. Let - be an i.i.d. sample from � and let -̃ is a truncation of � to poly(�3)
bits. If Σ∗ � 2−poly(�3)�, then, Fact 3.23 shows that -̃ has small mean (i.e. �G∼-̃ G = �̃ such that

�̃�̃⊤ � 0.1�G∼-̃(G − �̃)(G − �̃)⊤), covariance in [0.99, 1.01] · Σ∗, satisfies the properties of good set

required in Definition 4.1.

Our algorithm works in three steps.

In the first step, we list-decode covariances with spectral guarantee using the Algorithm from

Theorem 7.2. Observe that Theorem 7.2 requires that input sample be from a small-mean good set -.

To meet these guarantees, we work with the “pairwise difference” version of ..

Assume = is even, randomly permute the points in . (and assume, for the sake of simplicity

that H1 , H2 , . . . , H= is the permuted version) and let .′ be the set of =/2 points
H1−H2√

2
,
H3−H4√

2
, . . .

H=−1−H=√
2

.

Then, observe that with probability at least 1 − 1/= over the choice of the random permutation,

there are at least 
2=/2 pairs (28 − 1, 28) such that H28−1 , H28 are both in the intersection . ∩ -.

Without loss of generality, let’s say that H28−1 = G28−1 and H28 = G28 . Thus, .′ can be thought of

as an (1 − 
2/2)-corruption of randomly paired and 1√
2
-scaled differences, say, -̃ from -. Thus,

Theorem 7.2 guarantees that with probability at least 0.99, there is an element in the list of size


−poly(1/
) output by it that contains a PSD matrix Σ̂ that satisfies Σ∗ � Σ̂ � $(1/
150)Σ∗.
In the 2nd step, we take 
−150Σ̂8 for each element Σ̂8 of the list obtained in the first step

and transform .′ by applying the linear transformation H′8 → Σ̂
−1/2
8 . When applied to -̃, this

transformation ensures that the covariance of -̃ is sandwiched (in Löwner order) between � and

$(1/
150). Further, since -̃ satisfies the properties of a good set in Definition 4.1 and certifiable

hypercontractivity of degree 2 polynomials is invariant under linear transformation, the linearly

transformed -̃ continues to satisfy the requirements of Definition 8.1. Running the algorithm from
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Theorem 8.2 for each possible candidate Σ̂8 from the list obtained in the first step enlarges the list by

a factor of $(1/
4) and when starting with a good candidate Σ̂8 from the first step, Theorem 8.2

guarantees with probability at least 0.99, that there is a candidate Σ̂9 in the enlarged list satisfying


Σ−1/2
∗ Σ̂9Σ

−1/2
∗ − �




2

�
6 $(1/
304).

In the final step, we take 
−150Σ̂8 for each element Σ̂8 of the list obtained in the first step (we

do not need Frobenius guarantees for mean estimation) and transform .′ by applying the linear

transformation H′8 → Σ̂
−1/2
8 and observe that by the same argument as in the analysis of the 2nd step

above, the assumptions of Fact 8.5 are met and thus, we obtain an list with estimates of means of

size $(1/
) factor larger than the one in Step 1 guaranteed with probability at least 0.99 to contain

a candidate �̂8 satisfying 〈�̂8 − �∗ , D〉 6 $(log(1/
)/
152)
√
D⊤Σ∗D for every D ∈ ℝ3.

All 3 steps succeed with probability at least 0.9 by a union bound. Returning every possible

paired combination of the covariances from Step 2 and means from step 1 then satisfies the

requirements of the theorem with a list of size 2poly(1/
).
�

9 Applications

In this section, we derive improved algorithms for list-decodable linear regression, subspace

recovery and clustering of non-spherical mixtures as immediate consequences of our algorithm for

list-decodable covariance estimation.

9.1 Linear Regression

For list-decodable linear regression, given a accuracy parameter �, the best known prior

works [KKK19, RY19] obtain a list containing an �-accurate estimate of the unknown vector

with a running time of =$(1/(�
)4) and sample complexity 3$(1/(�
)4). An error reduction technique

from [BK21] allows improving both the exponents to $(log 1/�)/
4. But all these bounds depend

exponentially on the target accuracy �. As a result whenever � → 0 as 3 → ∞, the sample

complexity and the running time are both super-polynomial in the underlying dimension 3.

Our list-decodable covariance estimation algorithm allows obtaining the first exact algo-

rithm for list-decodable linear regression. As a consequence, we can obtain an error of � time

=$̃(1/
12) poly log(1/�) and sample complexity 3$̃(1/
6). In particular, the sample complexity does

not depend on the target accuracy and the running time scales polylogarithmically in 1/�. As

a result, our algorithm allows obtaining exponentially small error in the underlying dimension

3 in polynomial time. The size of the list recovered, while still an absolute constant depending

only on 
, is larger and grows as 
−poly(1/
). Our algorithm works without knowing (any upper

bound on) the length of the unknown vector ℓ∗ and extends easily to the setting of unknown

arbitrary non-spherical covariance (if we simply apply our list-decodable covariance estimation as a

preprocessing step). It also succeeds in the strong contamination model for list-decodable learning

as opposed to the additive model studied in the prior works.
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Corollary 9.1. For every � > 0, there is an algorithm that takes input a collection of = equations. ⊆ ℚ3×ℚ,

runs in time =$̃(1/
12) poly log(1/�) and either outputs “reject” or a list ℒ of size : = 
−poly(1/
) of

candidate vectors ℓ̂1 , ℓ̂2 , . . . , ℓ̂: with the following guarantees: suppose - is a set of = > =0 = $(3$(1/
6)/
)
linear equations 〈0, ℓ∗〉 = 1 where ℓ∗ is an unknown arbitrary vector and 0 ∼ � on ℝ3 such that �

has mean 0, a full-rank covariance Σ∗, is B(�)-certifiably (�, �)-anti-concentrated and has 2C-certifiable

�-hypercontractivity of degree 2 polynomials for all C. Suppose . is an (1 − 
)-corruption of -. Then, with

probability at least 0.99 over the draw of - and the random choices of the algorithm, the algorithm does not

reject and outputs a list that contains a candidate ℓ̂: satisfying:


Σ−1/2
∗ (ℓ̂: − ℓ∗)





2
6 � .

Proof Sketch. We observe that if (0, 1) ∈ ℚ3 × ℚ are the coefficient vectors and “right-hand-sides”

of the equations in -, then, the distribution �′ of (0, 1) satisfies the conditions in Definition 4.3.

Further, the covariance of �′ has rank exactly 3 (in 3+ 1 dimensional ambient space) with the kernel

in the direction (ℓ∗ ,−1). Thus, finding a multiplicative spectral approximation to the covariance of

�′ and using the kernel of the estimate to obtain ℓ̂ immediately gives the required guarantee.

Observe that we only pay (and poly logarithmically so) in the running time for the target

accuracy. There is no cost in sample complexity as a function of the target accuracy. �

9.2 Subspace Recovery

A similar argument also upgrades the guarantees for list-decodable subspace recovery obtained

in prior works. The best known prior work [BK21] obtained an algorithm that runs in fixed

polynomial time (exponent independent of 
) and gets an Frobenius estimation error of $(1/
).
The independent work [RY20b] obtains a worse error guarantee that grows as

√
A (where A is the

dimension of the unknown subspace). In particular, for obtaining an arbitrary target error � > 0,

the algorithm from [BK21] runs in time =log(1/
�)$(1/
4) that is superpolynomial for any � → 0.

Our result below obtains an algorithm that runs in time =$̃(1/
12) poly log(1/�). This, in particular,

allows obtaining error � as small as 2−3 in polynomial time in the dimension 3. Our list-size however

is 
−poly(1/
) compared to $(1/
log(1/
)+log(1/�)) in [BK21].

Corollary 9.2. For any � > 0, there is an algorithm that takes input a collection of = points . ⊆ ℚ3,

runs in time =$̃(1/
12) poly log(1/�) and either outputs “reject” or a list ℒ of size : = 
−poly(1/
)

of candidate projection matrices Π̂1 , Π̂2 , . . . , Π̂: with the following guarantee: suppose - is a set of

= > =0 = $(3$(1/
6)/
) i.i.d. draws from a distribution � on ℝ3 such that � has mean 0, covariance Π∗ –

a projection matrix to a subspace of ℝ3, is B(�)-certifiably (�, �)-anti-concentrated and has 2C-certifiable

�-hypercontractivity of degree 2 polynomials for all C. Suppose . is an 1 − 
)-corruption of -. Then, with

probability at least 0.99 over the draw of - and the random choices of the algorithm, the algorithm does not

reject and outputs a list that contains a candidate Π̂: satisfying:


Π̂: −Π∗




�
6 � .
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9.3 Clustering Non-Spherical Mixtures

Let " =
∑
8 ?8�8 be a mixture of �1 , �2 , . . . , �: such that for each 8, �8 is B(�)-certifiably �-anti-

concentrated distributions with 2C-certifiably �-hypercontractive degree 2 polynomials for all C ∈ ℕ

and ?8 > ?<8= for each 8. Then, so long as � < ?<8=/2, an � corrupted sample from " intersects

with an i.i.d. sample from any �8 in at least ?<8=/4 points. Thus, we can immediately apply our

list-decodable mean and covariance estimation algorithm (Theorem 8.6) with 
 = ?<8=/4 runs

in time 3poly(1/?<8=) and get a list of (1/?<8=)poly(1/?<8=) candidates such that there is a Δ-close (in

parameter distance) mean-covariance pair to (�8 ,Σ8) for every 8 for Δ = poly(1/?<8=). Note that this

consequence does not require any separation assumptions.

If the component �8s are guaranteed to have well-separated parameters (as in the main result

in [BK20b]), then we can cluster the input corrupted sample . with at most $(�/?<8=) fraction

of misclassified points in any cluster. This, in particular, also allows obtaining estimates of the

parameters up to $̃(�/?<8=) in parameter-distance.

Let us briefly explain this procedure before supplying a more detailed proof sketch. The main

idea is simple: suppose we were given the parameters of each �8 exactly. We can then apply a

natural clustering procedure based on the parameters. We will argue that this natural clustering

procedure continues to function even if we have an estimate of the parameters that is accurate

to within poly(1/?<8=) factor in parameter-distance as long as the pairwise separation (again, in

parameter-distance) between the parameters of �8s is at least 1/?$(:)
<8= . For the sake of keeping the

exposition in this section simple, we only describe the algorithm for the case when �8s are Gaussian

distributions.

Theorem 9.3 (Robust Clustering of TV-Separated Gaussian Mixtures). Fix ?<8= > 0, : ∈ ℕ, � ∈ ℕ.

For every large enough 3 ∈ ℕ, there is an algorithm that takes input an �-corruption . of an i.i.d. sample

- = �1∪�2 . . . �: of size = > =0 = 3poly(1/?<8=) from a 3-dimensional mixture
∑
8 ?8�8(�8 ,Σ8) of Gaussians

with parameters �8 ,Σ8 having rational entries of bit complexity at most � and runs in time (�=)poly(1/?<8=).
If � 6 2?<8= for a small enough constant 2 > 0 and parameter-distance(N(�8 ,Σ8),N(�9 ,Σ9)) > ?−$(:)

<8= ,

the algorithm, with probability at least 0.99 over the draw of the original uncorrupted sample - and

the random choices of the algorithm, outputs a clustering . = �̂1 ∪ �̂2 ∪ . . . �̂: of . with the property

min�:[:]→[:] max86:(1 − |�̂8 ∩ ��(8) |/|��(8) |) 6 $̃(�/?<8=).

Notice that in comparison, the algorithm from [BK20b] is presented only for the equiweighted

case (i.e., ?<8= = 1/:), needs = = 3:
$(:)

samples and =:
$(:)

time, and works only when the fraction

of outliers � ≪ :−$(:). The parameters in the algorithm of [DHKK20] are worse (with, roughly

speaking, every instance of :$(:) replaced by a poly(:) size tower of exponential in : for equiweighted

mixture of Gaussians).

Proof Sketch. First, we apply the algorithm from Theorem 8.6 to . with parameter 
 = ?<8= − � >

0.99?<8= . By thinking of the uncorrupted points in the any true cluster�8 as the inliers and all the rest

of . as outliers, we observe that . is an 1− (?<8= − �) corruption of �8(�8 ,Σ8) and thus, Theorem 8.6

provides an algorithm that runs in time (�=)poly(1/?<8=) and generates a list of size ?
−poly(1/?<8=)
<8= such

that for every 8, there is a (�̂8 , Σ̂8) in the list that is Δ = poly(1/?<8=)-close in parameter-distance to
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(�8 ,Σ8). Call a :-tuple of parameters from this list good if for every (�8 ,Σ8), there is a Δ-close (�̂8 , Σ̂8)
in the :-tuple. Notice that by the approximate triangle inequality for parameter-distance, every pair

of parameters in such a good :-tuple must be Δ100: apart in parameter-distance.

The goal of the algorithm now is to use this list to cluster the input points. Here’s how the

algorithm proceeds: the algorithm enumerates over all :-tuples of parameters in the list that satisfy

the property that every pair in the :-tuple is at a distance of at least Δ100: from each other. We will

give a procedure to cluster assuming the : set of parameters are good. Running a cluster verification

procedure (Lemma 9.5) similar to the one emploiyed in [BK20b] on each cluster so constructed

allows verifying whether each cluster satisfies hypercontractivity and anti-concentration properties

finishing the algorithm. Thus, the key remaining piece is to establish that if we chose a subset of :

parameters from the list that are good, then we can efficiently construct an approximate clustering

of ..

Let’s now describe the clustering procedure assuming a good set of known : parameters, say

{(�̂8 , Σ̂8)}86: . Our ideas rely on partial cluster recovery procedure employed in [BK20b] that exploits

the three kinds of separations possible between mixtures of reasonable distributions (Definition 1.3).

First, suppose there is a unit vector E such that E⊤Σ̂8E 6 Δ$(:)E⊤Σ̂9E for some 1 6 8 < 9 6 :.

Such a vector, if it exists, can be found by going over all pairs 8 , 9, taking the top eigenvector of

Σ̂
−†/2
9 Σ̂8Σ̂

−†/2
9 and applying Σ̂

1/2
9 to it. In this case, we will use the following variance clustering

procedure. Observe that there is a partition of [:] into (, (̄ such that E⊤Σ̂8E 6 � for all 8 ∈ (

and E⊤Σ̂8E > Δ$(1)� for all 8 ∈ (̄. Since (�8 ,Σ8) are Δ-close to (�̂8 , Σ̂8), by Lemma 9.6, we must

thus have that E⊤Σ8E 6 �′ for all 8 ∈ ( and E⊤Σ̂8E > �′Δ$(1) where �′ = �Δ$(1). Our clustering

algorithm does the following: for each H ∈ ., we include H in cluster ! if there is an 8 ∈ ( such

that
�

2ΔE
⊤Σ̂8E 6 〈H − �̂8 , E〉2

6 $(log 1/�)Δ2E⊤Σ̂8E for � = �. If there is no such 8, we include H ∈ '.

We now claim that | ∪8∈( �8 ∩ !| > | ∪8∈( �8 | − 2�=, and, | ∪8∉( �8 ∩ ' | > | ∪8∉( �8 | − 2�=. To see

why, observe first that E⊤Σ̂8E ≪ Δ$(1)E⊤Σ̂9E for all 8 ∈ (, 9 ∉ (. The claim then immediately follows

by observing that from Lemma 9.4, at most � fraction of G ∈ ∪8∉( get put in ! and similarly, at

most an � fraction of G ∈ ∪8∈( get put in ' – in particular, we have achieved a partial clustering

of the input samples with an error of at most 2�= points on either side. We can repeat the

above “variance clustering” procedure until there’s no vector E satisfying E⊤Σ̂8E 6 Δ$(:)E⊤Σ̂9E

for some 1 6 8 < 9 6 :. Thus, in the following, we can assume that for every E and every 8,

Δ−$(:) 1
: (

∑
8 Σ̂8)E 6 E⊤Σ̂8E 6 Δ$(:) 1

: (
∑
8 Σ̂8)E.

Next, suppose there is a unit vector E such that 〈�̂8−�̂9 , E〉2
> Δ$(:)E⊤ 1

:

∑
8 Σ̂8E)E. Such a vector, if

it exists, can be found by going over all pairs 8 , 9, and checking if E = ( 1
:

∑
8 Σ̂8)−†/2(�̂8−�̂9) satisfies the

inequality above. Given such a vector E, we can again partition [:] into two groups, ( and (̄ such that

for every 8 ∈ (, 9 ∉ (, 〈�̂8 − �̂9 , E〉2
> Δ$(1)E⊤ 1

:

∑
8 Σ̂8E)E. We now do a “mean-clustering” procedure

as follows: we put H ∈ ! iff there is an 8 ∈ ( such that $(Δ2 log 1/�)E⊤Σ′E > 〈H − �̂8 , E〉2
>

�
2ΔE

⊤Σ′E
for � = �. By an analysis similar to the above, we arrive at a partial clustering as before this time

ensuring that every group consists of clusters with mean-close parameters.

Finally, suppose there is a pair 8 , 9 such that



Σ̂8 − Σ̂9





�
> Δ$(:). Then, in particular, for� = Σ̂8−Σ̂9 ,

it holds that tr(�·(Σ̂8−Σ̂9)) > Δ$(:). As before, we find a partitions of [:] into two groups ( and (̄ such

that for every 8 ∈ (, 9 ∉ (, tr(� · (Σ̂8 − Σ̂9) > Δ$(1). We now apply a “Frobenius clustering” procedure
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that puts H ∈ ! if there is an 8 ∈ ( such that |(H−�̂8)⊤�(H−�̂8)−tr(�Σ̂8)| > $(Δ log 1/�)



Σ̂1/2�Σ̂1/2





�
.

Using Lemma 9.4 and a similar analysis in the above two cases, we arrive at a partial clustering as

before ensuring that every group consists of relative Frobenius close parameters.

At the end of the three modes of clustering, we end up with partial clustering from the original

data with at most $(:�=) points misclassified in total. Further, within each group, we every

pair of clusters that contribute must be within a Δ$(:) distance in each of the three possible ways

of separation and thus, also Δ$(:)-close in parameter-distance. Since every pair of (�8 ,Σ8)s are

≫ Δ$(:)-far in parameter-distance, the resulting groups must in fact be an approximate clustering

of the data with at most $(:�=) misclassified points as desired.

�

Lemma 9.4 (Approximate Isotropization). For Δ > 1, � > 0 and two sets of parameters (�,Σ), (�′,Σ′)
of 3-dimensional Gaussian distributions, let parameter-distance((�,Σ), (�′,Σ′)) 6 Δ. Let G ∼ N(�,Σ).
Then,

ℙ[
�

2Δ
E⊤Σ′E 6 〈G − �′, E〉2

6 $(Δ2 log 1/�)E⊤Σ′E] > 1 − � ,

and,

ℙ[
��(G − �′)⊤�(G − �′) − tr(�Σ′)

�� > $(Δ log 1/�)



Σ′1/2�Σ′1/2





�
] > 1 − � .

Proof. We know by subgaussianity and anti-concentration of Gaussian random variables that

ℙ[�/2E⊤ΣE 6 〈G − �, E〉2
6 $(log 1/�)E⊤Σ′E] > 1 − � .

Since parameter-distance((�,Σ), (�′,Σ′)) 6 Δ, we also know that 1
Δ
E⊤ΣE 6 E⊤Σ′E 6 ΔE⊤ΣE.

Thus,

ℙ[
�

2Δ
E⊤Σ′E 6 〈G − �, E〉2

6 $(Δ log 1/�)E⊤Σ′E] > 1 − � .

Further, 〈� − �′, E〉2
6 ΔE⊤(Σ + Σ′)E 6 (1 + Δ2)E⊤Σ′E. Thus,

ℙ[
�

2Δ
E⊤Σ′E 6 〈G − �′, E〉2

6 $(Δ2 log 1/�)E⊤Σ′E] > 1 − � .

Next, by tail bounds for degree 2 polynomials of hypercontractive distributions, we have:

ℙ[
��(G − �)⊤�(G − �) − tr(�Σ)

�� > $(log 1/�)


Σ1/2�Σ1/2




�
] > 1 − � . (9.1)

Now, observe that using parameter-distance((�,Σ), (�′,Σ′)) 6 Δ, we have:

tr(�(Σ−Σ′)) = tr(Σ′1/2�Σ′1/2·(Σ′†/2
ΣΣ′†/2−�)) 6




Σ′1/2�Σ′1/2




�




� − Σ′†/2
ΣΣ′†/2)





�
6 Δ




Σ′1/2�Σ′1/2




�
.

Further, again using parameter-distance((�,Σ), (�′,Σ′)) 6 Δ, we have:



Σ1/2�Σ1/2



�
=




Σ1/2Σ′†/2(Σ′1/2�Σ′1/2)Σ′†/2)Σ1/2




�
6




Σ1/2Σ′†/2



2

2




Σ′1/2�Σ′1/2




�
6 Δ




Σ′1/2�Σ′1/2




�
.
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Finally, since parameter-distance((�,Σ), (�′,Σ′)) 6 Δ, we have that



Σ′1/2(� − �′)




2

2
6 Δ and that


Σ′†/2(G − �)⊤




2

2
6 $(log 1/�)Δ by subgaussianity of N(�,Σ). Thus, for �′ = Σ′1/2�Σ′,

���Σ′†/2(G − �′)⊤�′Σ′†/2(G − �′) − Σ′†/2(G − �)⊤�′Σ′†/2(G − �)
���

6 |Σ′†/2(� − �′)⊤�′Σ′†/2(G − �)| + |Σ′†/2(G − �)⊤�′Σ′†/2(� − �′)| + |Σ′†/2(� − �′)⊤�′Σ′†/2(� − �′)|
6 $(Δ log 1/�) ‖�′‖� .

Thus, combined with (9.1), we have:

ℙ[
��(G − �′)⊤�(G − �′) − tr(�Σ′)

�� > $(Δ log 1/�)



Σ′1/2�Σ′1/2





�
] > 1 − � .

�

We will use the following cluster verification algorithm from [BK20b].

Fact 9.5 (Verifying Clusters, analogous to Lemma 6.5 in [BK20b]). There is an algorithm that takes

input a set of = 3-dimensional points . and a subset �̂ ⊆ ., runs in time =poly(1/?<8=), and outputs

acccept or reject with the following guarantee: Suppose - is a good sample from a Δ-separated mixture

of Gaussian distributions
∑
8 ?8N(�8 ,Σ8) with weights ?8 > ?<8= for every 8. Let . be a �-corruption

of -. Let �̂ ⊆ . be such that |�̂ ∩ �8 | 6 (1 − $(�/?<8=))|�8 | for every 8. Then, the algorithm rejects

with probability at least 1 − 1/poly(=) over the draw of -. If, on the other hand, there exists an 8 such

that |�̂ ∩ �8 | > (1 − $(�/?<8=))max{|�8 |, |�̂ |}, then, the algorithm accepts with probability at least

1 − 1/poly(=) over the draw of -.

Lemma 9.6 (Approximate Triangle Inequality for Parameter Distance). Suppose

parameter-distance((�̂, Σ̂), (�8 ,Σ8)), parameter-distance((�̂, Σ̂), (�9 ,Σ9)) 6 Δ for Δ > 1. Then,

parameter-distance((�8 ,Σ8), (�9 ,Σ9)) 6 3Δ2.

Proof. For any vector E, we know that E⊤Σ9E 6 ΔE⊤Σ̂E 6 Δ2E⊤Σ8E. Similarly, E⊤Σ8E 6 Δ2E⊤Σ9E.

This establishes the multiplicative spectral part of the guarantee in parameter-distance.

Next, let’s consider the relative Frobenius guarantee. Towards that first observe that


Σ−1/2
8 Σ̂1/2E




2

2
6




Σ−1/2
8 Σ̂Σ

−1/2
8





2
‖E‖2

2 6 (1 + Δ) ‖E‖2
2. Next, because of the multiplicative spec-

tral guarantee, we can assume that Σ8 , Σ̂,Σ9 all have the same range space. We can thus assume

that they are all full rank WLOG (as otherwise, we can simply work in their common range space

instead).
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8 Σ̂Σ
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Σ−1/2
8 Σ̂1/2




2

2




Σ̂−1/2Σ9Σ̂
−1/2 − �





�
+




Σ−1/2
8 Σ̂Σ

−1/2
8 − �





�

6 (1 + Δ)Δ + Δ 6 3Δ2 .
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Here, in the first inequality, we used the triangle inequality for Frobenius norm and in the

second inequality, used the contraction principle for Frobenius norms twice: for any matrices �, �,

‖��‖� 6 ‖�‖2 ‖�‖� along with the fact that



Σ−1/2

8 Σ̂1/2E



2

2
6 (1 + Δ) ‖E‖2

2.

Finally, observe that for any vector E:

〈�8 − �9 , E〉2
6 2〈�8 − �̂, E〉2 + 2〈�̂ − �9 , E〉2

6 ΔE⊤(Σ8 + Σ9 + 2Σ̂)E 6 2ΔE⊤(Σ8 + Σ9)E .

�
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A Deferred Proofs

Proof of Corollary 3.18. Observe that the polynomial inequality in indeterminate I, I2+2�2?2
�
(I)−�2

>

0 holds. To see this, consider the following two cases: 1) I2
> �2: in this case, we are done because

?2
�

is non-negative. 2) I2 < �: in this case, we use the fact that ?2
�
(I) > (1 − �)2 which, for � < 0.1

implies that 2�2?2
�
(I) > �2.

Now, using Fact 3.11, we know that O(B(�))
I {I2 + 2�2?2

�
(I) − �2

> −�}.
As a result, we know that I2 + 2�2?2

�
(I) − �2 + � = A(I) for some sos polynomial A in I with

coefficients upper-bounded by 2 · (4I)B and degree = B(�) (because a polynomial is identically 0

on reals if and only if all its coefficients are 0). Further, we observe that A is an even polynomial

because ? is even.

Now, let’s substitute I =
〈G,E〉√
E⊤ΣE

in ? and A. Since ?, A are even, all monomials in I appearing

with non-zero coefficients in ?, A are even powers and are thus monomials in I2. As a result,

(E⊤ΣE)B(�)(I2 + 2�2?2
�
(I) − �2 + � − A(I)) is a polynomial in indeterminate E for any given G. Further,

(E⊤ΣE)B(�)A is SoS in E⊤ΣE and therefore, also SoS in indeterminate E. So, putting this all together

upon rearranging gives O(B)+poly log(1/�)
E

{
(E⊤ΣE)B−1〈G, E〉2 + 2�2@2

�,Σ
(G, E) > (�2 − �)(E⊤ΣE)B

}
for all

� > 0. Taking � = 0.01�2 suffices for the conclusion.

The second inequality follows from O(B(�))
I {�[?2

�
(〈G, E〉)] 6 O(�)} upon substitution. �

B Bit Complexity Analysis

We will use the following basic observations in our bit complexity analysis to analyze the rank

deficient covariance Σ∗ of Theorem 8.6.

Recall that in this case, we assume that the target matrix Σ∗ has rational entries with bit

complexity at most �. The following proposition shows that in this case, the smallest non-zero

eigenvalue of Σ∗ cannot be too small.

Proposition B.1 (Smallest non-zero singular value of a rational matrix). For 3 ∈ ℕ, let � ∈ ℚ3×3 be a

non-zero matrix with each entry of bit length at most �. Then, every non-zero eigenvalue of � has absolute

value at least 2−3�33
.

Proof. Let ! be the least common multiple of the denominators of the rational numbers appearing

in entries of �. Then, since each denominator is upper-bounded by 2�, ! 6 2�3
2
. Thus, �′ = !� is a

matrix with integer entries. Observe further that by the Gershgorin circle theorem, the spectral

norm of �′ (and thus, the eigenvalue of largest magnitude) is at most =2�3
2
2� 6 22�32

.

Let A 6 3 be the rank of�′. Consider the characteristic polynomial 2ℎ0A(�′) of� in indeterminate

�. Then, 2ℎ0A(�′) is monic and has integer coefficients. Consider the coefficient of �A in 2ℎ0A(�′).
Then, this coefficient equals the sum of A-wise products of eigenvalues of �′. Since �′ has rank A, it

has exactly A non-zero eigenvalues and thus, the coefficient of �A is the product of the non-zero

eigenvalues of �′. Since the coefficients of �′ is a non-zero integer, this product is at least 1 in

magnitude. Since all eigenvalues of �′ are of magnitude at most 22�32
, the smallest magnitude of

any eigenvalue must thus be at least 2−2�32A
> 2−2�33

.
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Thus, every non-zero eigenvalue of � has magnitude at least !−12−2�33
> 2−3�33

.

�

We will also need the following basic facts about the classical algorithm for lattice basis reduction

due to Lenstra, Lenstra and Lovász [LLL82].

Preliminaries on Integer Lattices Let � ∈ ℚ3×3 be a matrix of rationals. The lattice defined by

� is the discrete additive subgroup ℒ(01 , 02 , . . . , 03) =
∑3
8=1 I808 as I8s vary over ℤ and 08s are

the columns of �. We write �1(ℒ) to be the length of the smallest non-zero vector in ℒ. More

generally, let �8(ℒ) be the minimum of the maximum length of any vector from among all linearly

independent sets of 8 vectors E1 , E2 , . . . , E8 ∈ ℒ.

The determinant of a lattice ℒ is defined as det(ℒ) = det(�⊤�) if � is full-rank. Notice that

det(ℒ) is independent of the basis used for ℒ.

Fact B.2 (Minkowski’s Theorems). �1(ℒ) 6 det(ℒ). More generally,
∏

863 �8(ℒ) 6 3
√
3 det(ℒ).

Given a matrix � ∈ ℚ3×: , the orthogonal lattice ℒ⊥(�) defined by � is the set of all integer

vectors E such that �E = 0. We can relate the size of the basis for ℒ⊥(�) to that of ℒ(�) via

Hadamard’s inequality:

Fact B.3 (Hadamard’s Inequality). det(ℒ⊥(�)) 6 det(ℒ(�)).

Finally, we recall the guarantees of the lattice basis reduction algorithm of [LLL82].

Fact B.4 (LLL Algorithm). Let ℒ be a lattice defined by a 3 × 3 matrix �. There is a polynomial

time algorithm that takes input the Gram matrix �⊤� and outputs a basis 11 , 12 , . . . , 13 of ℒ such that

‖18 ‖2 6 2$(�)�8(ℒ).

Analyzing the algorithm in Theorem 8.6 in the word RAM model We begin by setting � to

be 2−�·3
�/


for a sufficiently large constant �. We start by running the algorithm described in

the proof of Theorem 8.6 on input sample after adding a (poly(�3) bit rational truncation of) an

independent sample from #(0,��) to each H8 ∈ .. This allows us to effectively assume that the

smallest eigenvalue of the unknown covariance is � and thus our analysis applies.

As a result, we obtain a list of candidates one of which gives a good approximation (in

parameter-distance) to the Σ∗ + ��. Observe that if Σ∗ had 2−poly(3) large smallest eigenvalue, then

the resulting list is already a good approximation in parameter-distance to Σ∗. If not, then, since Σ∗
has rational entries of bit complexity 6 �, the determinant of the sublattice of which Σ∗ is a gram

matrix is at most (�3)3. Thus, by Minkowski’s theorem, there must an integer basis E1 , E2 , . . . , with

entries of bit complexity 6 $(�32) for the orthogonal lattice of Σ∗.
Let 3 − A be the rank of Σ∗. Since we ran the algorithm above on Σ∗ + ��, for small enough

� ≪ 2−poly(�32), we must have there is a candidate Σ̂ in the list with A eigenvalues at most 2�.

We take every such candidate Σ̂ and consider the quadratic form on integer vectors E: &(E) =
E⊤Σ̂E +

√
� ‖E‖2

2. If Σ∗ has an integer vector E in its kernel of length 6 2$(�32), then, the same E must

satisfy &(E) 6 �1/4 for the “good” candidate Σ̂. Thus, using the LLL Algorithm (Fact B.4), we can
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find a reduced basis for all such vectors E where &(E) is within a 2$(3) factor from the minimum

possible value of &(E) over all non-zero integer vectors E. If for such a E, &(E) > 2Ω(3)�1/4, we know

that the the corresponding Σ̂ couldn’t possibly be a good candidate. On the other hand, for any

E such that &(E) 6 2$(3)�1/4, we must have E)Σ̂E < 2$(3)�1/4 and ‖E‖2 6 2$(3)�−1/2 by our choice

of &(E). Further, the projection of any such E on to ker(Σ∗) is either 0 or has magnitude at least

2$(�3) because of Proposition B.1. But if it were the latter, &(E) ≫ 2Ω(3)�1/4. Thus, if Σ̂ were a good

candidate, it must be that every E in our reduced basis is in the kernel of Σ∗. We can now project the

candidate Σ̂ on to the orthogonal complement of the subspace defined by the reduced basis. This

projection can be done exactly over rationals of bit complexity poly(�3). For any “good” candidate

Σ̂, this will ensure that the range space of Σ̂ is exactly equal to that of Σ∗ as we desired.
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