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Abstract

We give the first polynomial time algorithm for list-decodable covariance estimation. For any
a > 0, our algorithm takes input a sample Y € R? of size n > dP°¥(1/%) obtained by adversarially
corrupting an (1 — a)n points in an i.i.d. sample X of size n from the Gaussian distribution
with unknown mean g, and covariance X.. In nP°Y(1/®) time, it outputs a constant-size list of
k = k(a) = (1/a)P°¥(1/2) candidate parameters that, with high probability, contains a ({i, £) such
that the total variation distance TV (N (u., Z.), N({, $)) < 1 - 04(1). This is the statistically
strongest notion of distance and implies multiplicative spectral and relative Frobenius distance
approximation with dimension independent error. Our algorithm works more generally for
(1 — a)-corruptions of any distribution D that possesses low-degree sum-of-squares certificates
of two natural analytic properties: 1) anti-concentration of one-dimensional marginals and 2)
hypercontractivity of degree 2 polynomials.

Prior to our work, the only known results for estimating covariance in the list-decodable setting
were for the special cases of list-decodable linear regression and subspace recovery [KKK19,
RY19, BK21, RY20b]. The best-known algorithms for both these problems only yield a weak
recovery guarantee that needs super-polynomial time for any sub-constant (in dimension 4)
target error for the parameters in natural norms. As a corollary, our result yields the first
polynomial time exact algorithm for list-decodable linear regression and subspace recovery
that, in particular, obtain 2~ pPoly(d) error in polynomial-time in the underlying dimension. List-
decodable setting also generalizes the problem of robust clustering non-spherical mixtures in
the strong contamination model [BK20b, DHKK20] and the state of the art [BK20b] for this latter
problem needs Ak samples and tolerates an ¢ < k~O®) fraction outliers. Our result implies an
algorithm with an improved running time and sample bound of dP°¥(¥) that handles a larger
& < 1/poly(k) fraction of outliers.
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*Carnegie Mellon University. Supported by NSF CAREER Award #2047933, a Alfred P. Sloan Research Fellowship
and a Google Research Scholar Award.
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1 Introduction

Can we accurately estimate the mean and covariance of a high-dimensional probability distribution
D from a input sample with outliers? What properties of D allow the robust estimation of such basic
parameters to be statistically and computationally tractable?

When outliers form a small constant (say < 10%) fraction of the input data, we now have a
good first-cut understanding of efficient robust estimation of basic parameters of distributions.
The works [DKK"16, LRV16] invented the first polynomial time algorithms for the problem with
dimension-independent error guarantees and invigorated the now active field of high-dimensional
robust statistics. The ensuing follow-ups provide optimal guarantees for estimating the mean [KS17a,
KS17b, HL17, DKS18], covariance and higher moments [KS17b] of a broad class of distributions
while tolerating a small constant fraction of outliers. This progress has resulted in new broadly
applicable techniques, abstracted out properties of the distributions! that make efficient robust
estimation possible and even inspired progress on related problems such as finding optimal
estimators for mean [Hop20, CHK"20, CFB19] and covariance of heavy-tailed distributions.

In contrast, much less is understood in the setting where a majority of the input data are outliers.
Since unique recovery of parameters is clearly impossible in this setting, the goal is to compute a
dimension-independent constant size list of candidate parameters one of which is close to those of
the unknown distribution. This model was introduced by Blum, Balcan and Vempala [BBV08] to
study an agnostic variant of clustering? without separation assumptions on the underlying input
data. Indeed, list-decodable learning implies clustering algorithms without any separation assumptions
and allows partial cluster recovery even when outliers obliterate multiple clusters completely.

The recent effort in designing algorithms that tolerate such overwhelming fraction of outliers
began with the influential work of Charikar, Steinhardt and Valiant [CSV17]. In addition to the
applications above, they argued that list-decodable learning is a natural model for learning from un-
trusted data and showed applications to semi-verified learning. Their work gave the first non-trivial
guarantees for list-decodable mean estimation for distributions with spherical covariances (i.e. multiples
of identity). Subsequent works obtained stronger guarantees for spherical Gaussians [DKS18]
and more generally, Poincaré distributions [KS17a] with corollaries [HL17, KS17a] to clustering
spherical mixtures at the statistically minimum mean separation. A recent sequence of works have
even sped-up these results to almost linear time in certain settings [CMY20, DKK20a, DKK*20b].

List-decodable covariance estimation Despite this progress on mean estimation, the problem of
covariance estimation in the list-decodable setting has turned out to be significantly more challenging.
Prior works [KKK19, RY19] built a framework via the sum-of-squares method for list-decodable
learning to make progress in two special cases: list-decodable linear regression [KKK19, RY19]
(corresponds to the case where the unknown covariance is spherical in a subspace of co-dimension
1) and list-decodable subspace recovery [BK20a, BK21] (unknown covariance is spherical in an arbitrary
subspace) by introducing the new tool of certifiable anti-concentration. However, there is an inherent

!In this case, efficiently verifiable certificates of upper bounds on directional moments.
2The “inliers” correspond to one of the clusters.



bottleneck in their approach (see Section 2.1) that leads to significantly weak error guarantees
even for the special cases they study: the best known algorithms need super-polynomial time for
any sub-constant error in the underlying dimension and do not appear to extend to settings when
the unknown covariance has eigenvalues of different scales®. Recent works for the special case
of clustering non-spherical Gaussian mixtures [BK20b, DHKK20] managed to wriggle out of the
difficulty* by crucially relying on the input data being generated from a mixture of k Gaussians
where every pair is separated in total variation distance and the fraction of outliers is at most < k~Po(k),

This Work In this work, we design the first polynomial time algorithm for list-decodable covariance
estimation. As immediate corollaries, we also obtain the first polynomial time exact algorithms
for list-decodable linear regression and subspace recovery in R¥ obtaining constant size lists of
candidates one of which achieves as small as 2-P°Y@ error in any natural norm and a dP°Y)
time algorithm for clustering non-spherical mixtures in the presence of ¢ = 1/poly(k) fraction

outliers (the best known prior work needs 4"

running time and sample complexity and tolerates
< k=9®)_fraction outliers).

Our list-decodable covariance estimation algorithm relies on the coalescence of a number of so-
phisticated tools developed in robust statistics over the past few years. This includes the algorithmic
certificates for basic probabilistic phenomenon such as certifiable subgaussianity [KS17b], certifiable
hypercontractivity [KOTZ14, BK20b, DHKK20] and certifiable anti-concentration [KKK19, RY19]
and the sum-of-squares framework for robust statistics.

The main idea that allows us to finally obtain an algorithm for all covariances is to abandon the
previous “one-shot rounding" approach in related list-decodable learning algorithms and instead
settle for a coarse spectral recovery guarantee via rounding a sum-of-squares relaxation to obtain a
combination of multiplicative approximation for large eigenvalues and additive approximation
for small eigenvalues. We then give an iterated pruning method that, that instead of relying on
the strong certifiable anti-concentration (the bottleneck in the previous works that holds only for
Gaussian-like distributions) property, crucially only needs the significantly milder Paley-Zygmund
anti-concentration inequality that holds for all subgaussian distributions. Our final algorithm is
obtained by an interleaved iteration of coarse spectral recovery, a new “subgaussian restriction”
subroutine and the pruning procedure based on mild anti-concentration. We expect our algorithmic
primitives to be useful in improving robust estimation algorithms that rely on certifiable anti-
concentration to faster methods that apply to broader family of distributions.

1.1 Owur Results

We now describe our main results in more detail. Our results formally hold in the following strong
contamination model for list-decodable learning.

Definition 1.1 (Strong Contamination Model for List-Decodable Learning). In the strong contami-
nation model, a (1 — a)-corrupted sample of size n from a distribution D is generated by choosing

3For e.g., covariances such as I +logd - vo" —uuT for unknown orthogonal unit vectors u, v.
4With substantial technical effort — see Section 2.2 of the overview in [BK20b] for a discussion.



anii.d. sample X of size n from D, and, adversarially switching any (1 — a)n points to obtain Y.

Remark 1.2. This is the harshest studied model for robust estimation (and also used in [RY20c]). It
generalizes the more commonly studied list-decodable learning model [CSV17, KKK19, RY19, BK21,
DKP*21, CMY20, DKK20a, DKK*20b] where the input sample Y is obtained by adding (1 — a)n
outliers to an i.i.d. sample of size an. In contrast, our model above allows both adding and deleting
points from an independent sample of size n: our input Y can be generated by first selecting
an arbitrarily “biased” subset of an points from an ii.d. sample X and then adding (1 — a)n
outliers. Our motivations for working with the harsher model are natural: we’d like to design
algorithms that provide strong recovery guarantees under weakest possible modeling assumptions.
A concrete advantage of our choice (see Corollary 1.9) is that the resulting algorithms (unlike
standard list-decodable learning) imply significantly improved algorithms that are more sample
efficient, faster, handle larger outlier rates for robust clustering of non-spherical mixtures in the
strong contamination model.

Main Result Our estimation guarantees are in the following notion of distance between parameters.
As we explain, this captures the information-theoretically strongest possible estimation guarantees
in our setting.

Definition 1.3 (Parameter Distance). We say that the distance parameter-distance((u, Z), (1/, L))
between two sets of mean-covariance pairs is at most A if the following three parameter distance
bounds hold.

1. Mahalanobis Mean Closeness: Yo € R?, (=, 02 < AT (Z+ X))o,
2. Multiplicative Spectral Closeness: Yov € R, %UTZ'U <v'Xv < AvTY'v,and,
3. Relative-Frobenius Closeness: ||Z1/2r/zt/2 | ||F <A.

If parameter-distance < A, we can conclude that the total variation distance between the
corresponding Gaussians is at most 1 — exp(—A°W) (see Fact 3.24). As a result, obtaining recovery
guarantees in parameter-distance translates into bounds on the total variation error with no
dimension dependence. Total variation is the strongest possible (and arguably, the “right”) notion
of distance in this context and is the metric of choice in prior works on robust mean and covariance
estimation [DKK"16]. Our main result is the following theorem that gives a polynomial time
algorithm for list-decodable learning of mean and covariance of an unknown Gaussian distribution.

Theorem 1.4. For every d € N, there is a nP°Y YY) time algorithm® that takes input a (1 — a)-corrupted
sample of size n > do~ " from a d-dimensional Gaussian distribution with mean u. and covariance
Y. and outputs a list of 200/ "‘O(l))-pammeters such that with probability at least 0.99 over the draw

50ur algorithm works in the standard word RAM model. The running time of our algorithm is polynomial in the total
bit complexity of the input and of the unknown .. The dependence on the bit-complexity of Z. is necessary, see Section 3.1
for a discussion. We note that our algorithm can also be formalized in the idealized “real RAM” model [BCSS98, EvM20]
of real computation that is implicitly used in prior works but we choose not to do this.



of the uncorrupted sample X and the randomness of the algorithm, there is a ({i, %) in the list satis-
fying: parameter-distance((ﬁ,i), (us, Zo)) < A, for A = poly(1/a). As a corollary, we obtain that
drv(N (e, o), N(u, L) < 1—exp(—a~OW) where dry(-, -) denotes the total variation or statistical distance
between two probability distributions.

Remark 1.5. Observe, that our algorithm needs no assumptions on the unknown covariance .. In
particular, X. can have exp(d) large condition number and can be rank deficient. In fact, if . is
singular, our algorithm must construct a candidate ¥ with the same range space as X and thus,
must recover the low-rank structure in X, exactly. For the numerical issues that arise in obtaining
this strong guarantee and how we handle them, we direct the reader to the discussion in Section 3.

Our main algorithmic innovation is a list-decodable learning algorithm for covariance estimation
that achieves a multiplicative spectral approximation to the unknown covariance with a dimension-
independent multiplicative factor. Even as a function of @, our guarantees are tight® up to constant
factors in the exponent of a in A. We then use this estimate to obtain the stronger relative Frobenius
distance recovery guarantees. Our result for mean estimation then follows by using our estimates to
“isotropize” (and thus effectively make the covariance almost spherical) and applying a list-decodable
mean estimation algorithm [KS17a] for covariances of bounded spectral norm.

Running Time and List Size:  For any constant «, the running time and sample complexity of
our algorithm is polynomial in the underlying dimension. The dependence on « of the running
time and sample complexity is exponential. This appears necessary. As we explain below
(see Corollary 1.9), our list-decodable covariance estimation algorithm implies an algorithm for
robustly clustering well-separated (in total variation distance) mixtures of Gaussians. Even in the
application to this special-case and to the setting without any outliers, known statistical query lower
bounds [DKS17, DKP*21] suggest a lower bound of d21/2) time that matches our guarantees up
to the exponent of the polynomial of 1/a. In terms of the list-size, our algorithm returns a list of
size 2P°Y(1/4)_ This is a dimension-independent constant but can likely be improved to the optimal
O(1/a) bound.

List-decodable learning of all “reasonable” distributions Our algorithm more generally works
for any distribution D on R? as long as it satisfies two natural analytic properties of probability
distributions identified in the context of robust non-spherical clustering in [BK20b]. Informally
speaking, these properties ask for low-degree sum-of-squares certificates of anti-concentration and
hypercontractivity of degree 2 polynomials of the distribution D (we postpone formal definitions to
Section 3.3). While certifiable hypercontractivity of degree 2 polynomials is known to be true for
uniform distribution on product domains (such as discrete/solid hypercube), we only have verified
certifiable anti-concentration property for rotationally invariant distributions such as Gaussian
distributions and affine transforms of uniform distribution on the unit sphere [KKK19, RY19, BK20b].
Our algorithm thus succeeds as is (and does not require the knowledge of moments of underlying
distribution) for all such distributions. We believe that finding natural analytic properties that
govern the success of algorithms adds to our understanding of robust estimation in general.

6Given only a (1 — a)-corrupted sample, we cannot distinguish between the 1-D Gaussians N(0, 1) and N(0, a?) the
variances of which are 1/a? multiplicatively far and Q(1/a) additively far.
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Theorem 1.6 (See Theorem 8.6 for a detailed version). Forany a > 0, there is a nP°Y(1/®) time algorithm
that takes input a Y C R? of size n and outputs a L list of size 2P /) of estimates ({1, %) with the following
guarantee. Suppose there is an i.i.d. sample X of size n > ng = dP°Y1/% from a certifiably (C, a®/2C)-anti-
concentrated distribution D with mean u. and covariance L. with C-certifiably hypercontractive degree 2
polynomials such that |Y N X| = an. Then, with probability at least 0.99 over the randomness of the algorithm,
there exists a candidate (i, 3) in the list L such that parameter-distance(({i, 3), (u+, L.)) < poly(1/a).

As an immediate consequence of our algorithm for list-decodable covariance estimation, we
obtain improved guarantees for the previously studied problems of list-decodable linear regression
and subspace recovery and clustering non-spherical mixtures.

Applications to Linear Regression In list-decodable linear regression, we are given a (1 — a)-
corruption of a system of linear equations (x;, £.) = b; where each x; is drawn from Gaussian
distribution and /. is an unknown unit vector. Introducing the key new tool of certifiable anti-
concentration, Karmarkar, Klivans and Kothari [KKK19] and Raghavendra and Yau [RY19] gave
an algorithm? for this problem with a running time of n°(/ 1'a") time to produce a list of size
O(1/a) [KKK19] (the list size is a slightly larger bound of O(1/ al°8(1/0) in [RY19]) that contains a ?

that is H@ - &” < 1. This running time was improved to n©os(1/m+1/ ) (at the cost of a larger list
2

size of a®U°81/M) via a general error reduction within SoS method by Bakshi and Kothari [BK20a].
Note that both results assume that the covariance of x;s is known to be I and more importantly, for
any target sub-constant error 7 — 0 as d — oo, the running time required is super-polynomial. This
is in fact the consequence of the recovery guarantees being in a norm weaker than total variation.
Observe that the coefficients of the uncorrupted set of equations (x;, b;) are distributed as
d + 1-dimensional Gaussian with mean 0 and covariance matrix I restricted to a subspace of
co-dimension 1 — namely, the one orthogonal to the vector ({.,—1). Thus, list-decoding linear
equations above is equivalent to list-decoding the (kernel of) the covariance. Our multiplicative
spectral guarantees above for covariance estimation immediately yields an algorithm that can obtain
an error as low as 1 = 27P°Y@ in polynomial time. In fact, our algorithm is exact in the sense that
the sample complexity does not depend on the target error 17 and the estimation error is entirely
because of finite numerical precision in computing the output. In addition, unlike prior works, our
algorithm does not need to know the covariance of x;s or the length of the unknown vector /..

Corollary 1.7 (Exact Algorithm for list-decodable linear regression). For any a > 0 and target error
n, there is a nP°Y(1/®) poly log(1/n)-time algorithm for list-decodable linear regression that succeeds with
probability at least 0.99 whenever n > dPY(1/®) and produces a list of 2P°Y(1/%) candidate vectors such that

there is an { in the list satisfying “f — L. ) <.

Applications to Subspace Recovery In list-decodable subspace recovery, we are given (1 — a)n
corrupted samples from A(0, IT) where IT is a projection matrix to a subspace of R?. In [RY20b], the
authors gave an algorithm that takes such a set of points and in 79 time and d°V) samples, finds

’We note that these algorithms can handle random additive noise in the equations of variance < a.



. . 2
a list of constant size containing a candidate I such that HH - HHF < O(1/a®). The work [BK21]
2
‘F < 1 for arbitrarily small 17 in time 1n©0081/7)/ o time

obtained the stronger guarantee of Hf[ —1I1I

whenever 1 > d91/2"), However, even this improved algorithm requires super-polynomial time to
achieve any sub-constant recovery error.

As a direct corollary of our stronger multiplicative spectral approximation guarantee, we
immediately obtain the first exact algorithm for list-decodable subspace recovery, that, in particular
allows achieving even exponentially small errors in polynomial time.

Corollary 1.8 (Exact Algorithm for list-decodable subspace recovery). For any a > 0 and target
error 1, there is a nPY(/®) poly log(1/n)-time algorithm for list-decodable subspace recovery that succeeds
with probability at least 0.99 whenever n > dPY1/®) and produces a list of 2P°Y(1/®) candidate projection

M-IL|| <n.
-, <

matrices such that there is an Y1 in the list satisfying

Applications to Robust Clustering of Non-Spherical Mixtures Our work immediately improves
the best known prior algorithms for robust clustering of non-spherical mixtures in the “small
outlier regime”. Specifically, the goal in this problem is to take input an ¢-corrupted sample from
a mixture of k Gaussians with equal weights with means and covariances u;, Z; such that each
pair is A-separated in parameter distance (equivalent to separated on total variation distance as
discussed above), and output an estimate fi;, ii of the parameters of each component that are close
in parameter distance (Definition 1.3). Two recent works obtained the first efficient algorithms for
solving this problem. Specifically, the algorithm in [BK20b] obtainsa n = d ko(k)—sample and n+”"
time algorithm for A = kP°Y(¥)_geparated mixtures to obtain kP°Y(¥) e-close estimates in parameter
distance as long as ¢ < k™9®. Their algorithm succeeds more generally for mixtures of all
“reasonable distributions” discussed above. The work of [DHKK20] obtains a dF¥) sample and nf*)
time algorithm that tolerates a ¢ << 1/F(k) of outliers for the same problem when the components
are Gaussians with A = F(k)-separation where F(k) is at most a poly(k) size tower of exponentials
in k. While both algorithms are polynomial time for a fixed k, their running times and sample
complexity are exponentially larger than the potentially optimal bound of dP°Y®) (that matches
the SQ lower bounds in [DKS17]). Progress in obtaining clustering algorithms for non-spherical
mixtures is a key component in the recent resolution of the problem of robust learning of mixtures
of arbitrary Gaussians [LM21, BDJ*20].

By combining our list-decodable covariance estimation algorithm (here, our algorithm running
in the strong contamination model of list-decodable learning is important) with a clustering
algorithm with known approximate parameters (based on the partial clustering framework of
[BK20b]) and a verification subroutine from [BK20b], we obtain the following improved algorithm
on three fronts: 1) the algorithm applies to arbitrary weighted mixtures of Gaussians, 2) handles as
large as € < O(pmin/k) fraction outliers (note that ¢ < pyin is information theoretically necessary,
and 3) needs sample and running time scaling as dPOlY(1/pmin) — gPoly(k) for the equiweighted case.
We present a detailed proof sketch in Section 9.3.



Corollary 1.9 (Improved Algorithms for Clustering Non-Spherical Mixtures, See Theorem 9.3). Let
d, k € Nand ¢ < O(ppin/k). For any n > 0, there is an algorithm that takes input an e-corrupted sample
Y ={y1,y2,...,yn} C Q* drawn from 3; piN (i, Zi) for pi = Pmin for each i and with probability at
least 0.99, outputs estimates [i;, S, such that (ﬁi,ﬁi) are O(ke)-close to i, Z; for each i. The algorithm
needs n > ng = dP°YW®) /2 samples and runs in time nPOY*/M,

1.2 Comparison with Related Work

Clustering Well-Separated Non-Spherical Mixtures List-decodable (mean and) covariance esti-
mation significantly generalizes the problem of robust clustering of non-spherical mixture models.
In the robust clustering problem, the input is an 1 — @ = e-corruption (Definition 1.1) of an i.i.d.
sample from a mixture of k distributions (say Gaussians). By viewing any cluster as “inliers” and
all the other points as “outliers”, this corresponds to the setting of a = 1/2k if ¢ < 1/2k. Recent
works [BK20b, DHKK20] gave an nPYK) time (nf® time in [DHKK20] where f (k) is a polynomial
size tower of exponentials in k) algorithm for clustering equiweighted non-spherical mixtures of k
Gaussians by relying on the new tools of certifiable anti-concentration [KKK19, RY19] and certifiable
hypercontractivity of degree 2 polynomials.

Such clustering algorithms need two crucial assumptions: 1) every pair of the kK components is
separated in total variation distance by 1 — exp(—k®®) and 2) the fraction of outliers ¢ < k=0%), In
contrast, even when specialized to clustering, our algorithm for list-decodable covariance estimation
succeeds (and gives total variation distance guarantee) without any separation assumptions and
handles as large as 1 — 1/k fraction outliers — enough to obliterate all but one clusters. Indeed, this
agnostic clustering application was the main motivation in the initial work of Balcan, Blum and
Vempala [BBV08] that defined and studied the list-decodable learning model.

The significantly more general list-decodable setting makes the approach in [BK20b, DHKK20]
inapplicable. Let us briefly explain why: the key idea in [BK20b, DHKK20] is to give a sum-of-squares
proof that if w indicates a subset C of the input points that satisfy some “Gaussian-like” properties,
then C cannot simultaneously have a large intersection with two different components. This
fact crucially needs (even for its information-theoretic truth) that every pair of components is
pairwise well-separated. Indeed, the rounding algorithm in [BK20b, DHKK20] comes up with an
approximation to the ground-truth clustering of the input points — a goal that is not meaningful in
the setting of list-decodable covariance estimation.

Learning Arbitrary Gaussian Mixtures Our work is related (but incomparable and complemen-
tary, in both results and techniques) to the recent resolution of the problem of robust learning of
a mixture of k-arbitrary Gaussians [LM21, BD]"20]. When viewed from our vantage point, these
works give a polynomial time algorithm (for any fixed k) to learn the parameters of a mixture of
k Gaussians given an e-corrupted input sample. The algorithms of [LM21, BD]"20] do not need
strong separation assumptions but crucially need that the fraction of outliers is small (at most
~ exp(—k!)). In that setting, their algorithm recovers estimates of the components that are close
(within some £ in [BDJ*20]) to those of the unknown mixture. On the other hand, our algorithm
for list-decodable covariance estimation must handle an overwhelming 1 — a ~ 1 — 1/k-fraction



outliers and list-decodes to an error guarantee of 1 — 0, in total variation distance where 0, is a
function only of @ and bounded away from 0 for all @ > 0. This is essentially the best possible
guarantee in our setting as it is statistically impossible to obtain a total variation error < 1 — a.

Indeed, our techniques are significantly (and necessarily so) different from those in [LM21,
BDJ"20]. In fact, the algorithms in [LM21, BDJ"20] use robust clustering algorithms from [BK20b,
DHKK20] as a first step with their key new algorithmic components coming after the clustering step.
We note that using our new list-decodable covariance estimation algorithm in lieu of the clustering
algorithm in the first step both simplifies and speeds up that step in their proof.

2 Technical Overview

In this section, we give a high-level overview of our algorithm and the main ideas that go into
improving on the approaches from prior works.

Let X € R? be an i.i.d. sample from N(u., Z.). Let Y € R“ be obtained by taking any (1 — a)-
corruption (i.e. corrupting an 1 — «a fraction of the points) of X. The goal of our algorithm is to
take input any such Y and come up with a list of candidate hypotheses (fi;, ;) of size some fixed
dimension-independent constant, such that there an i satisfying drv(N(u., Z.), N({i, i)) <1-6,
where 0, is a function only of a bounded away from O for all « > 0. By Fact 3.24, it is enough
to obtain a list of parameters that contains (f, %) satisfying parameter-distance < poly(1/a) (see
Definition 1.3).

In this overview, we will assume that . is 0. This is essentially without the loss of any generality.
If X is an i.i.d. sample from N(u.L.), then, x;%‘/ is distributed as N(0, Z.). Thus, if we start by
taking a random matching of Y and applying the scaled difference transform above for pairs in the

matching, we can simulate access to a (1 — a?)-corrupted sample from N(0, ). We will further
restrict attention to obtaining mutiplicative spectral guarantee in our estimate — the key component
of our algorithm that requires the introduction of several new ideas.

The standard approach for list-decodable learning Let’s start with the approach in prior
works [KKK19, RY19, BK21, RY20b] on list-decodable linear regression and subspace recovery. The
algorithms in both those works find and round a solution to the sum-of-squares relaxation of a
system of polynomial constraints (see Section 4 for the system we use) that encode the task of
finding a subset, say C, of Y of size an (indicated by 0-1 variables w1, w», ..., w,) that satisfies
two relevant properties of Gaussian distributions: anti-concentration and hypercontractivity. In
order to impose such properties as constraints, we use the standard (see discussion on succinct
representation of constraints in Chapter 4 of [FKIP19]) technique (from [KS17b, HL17]) of constraint
compression by relying on sum-of-squares proofs.

Analysis by relating total variation distance to parameter distance To understand the main idea
in their analyses, consider a “real world” solution to the constraint system. Such a solution is simply
a subset C of Y of size an. The conceptual crux of the algorithm in [KKK19, RY19, BK21, RY20b] is
the following observation: If |C N X| > a|Y N X| —i.e., the set C intersects the “inlier” part of Y that



comes from the X in a fraction of its points — then, the empirical parameters of C must be close to
that of X. This is a basic statement in statistics that relates a non-trivial bound on the total variation
distance (which corresponds to intersection when specialized to uniform distributions on two sets
of points) to the closeness of the corresponding parameters. In fact, their analyses can be directly
used to infer the following purely information-theoretic result: if the uniform distributions on C and
X are both anti-concentrated and have hypercontractive degree 2 polynomials, and |C N X| > «|C|, then,
the covariance of C multiplicatively approximates the covariance of X. The anti-concentration property
implies that if C’ C C is a subset of arbitrarily small but fixed constant fraction of C, then, the
“variance” Ey.c/(x,v)? in any direction v on the subset C’ must be within a constant factor of
E,-c{x,v)? — the variance in the same direction on the whole subset C. Such a property can be
used to show statistical identifiability of a small list — we direct the reader to the technical overview
sections of [KKK19, BK21, BK20b] that provide an essentially complete proof of such a statistical
identifiability result with related discussions. While this is exactly the statement we want, such an
argument does not yield an efficient algorithm 8.

Formalizing identifiability in low-degree sum-of-squares proof system In order to obtain effi-
cient algorithms, the works above formalize the above information-theoretic reasoning into the
low-degree sum-of-squares proof system.

In order to work in the low-degree sum-of-squares proof system, we need to work with sum-of-
squares certificates for anti-concentration and hypercontractivity inequalities. Informally speaking,
this strategy involves creating Boolean indicator variables w1, w», ..., w, that identify a subset
of the input corrupted sample Y of size n and force that the subset of points indicated by w
admit SoS certificates of hypercontractivity and anti-concentration (i.e., satisfy the two relevant
properties of Gaussian distributions that an “uncorrupted” part of Y is promised to satisfy). Now,
notice that there can be multiple solutions to this relaxation even for the unrelaxed polynomial
formulation since Y could be a disjoint union of 1/« different subsets of size about an such that
each of these subsets provide a feasible assignment for ws. The solution to the relaxation yields
a “pseudo-distribution” — for the sake of exposition in this section, the reader can think of a
pseudo-distribution as a probability distribution supported on ws that describes subsets of Y that
satisfy the two relevant properties of Gaussians we imposed as constraints.

We must now give a rounding algorithm to take such a pseudo-distribution and produce a
small list of parameters, one of which is close to the ground truth. For this goal, we might want
to replicate the above information-theoretic strategy and argue that the parameters of ws in the
pseudo-distribution must be close to that of X. Such a statement would of course require that
the on average, a subset C indicated by ws in the support of the pseudo-distribution intersects
substantially in X (as otherwise, there’s no reason for C to have any information about parameters
of X). Such a statement does not generically hold for all pseudo-distributions (since we can,
in general, have solutions ws that are entirely supported on the “outlier part” in Y). But prior
works [KKK19, RY19] show that certain “spread-out-ness” constraints (formulated as minimizing

8This, by itself, is not surprising. Statistical identifiability in parameter estimation is often significantly simpler to
establish than the task of finding efficient algorithms.



surrogates for entropy of pseudo-distributions) imply that on average, C indicated by w in the
support of the pseudo-distribution does intersect in about « fraction of its points with X.

At this point, we might naturally want to replicate the information-theoretic strategy above that
infers closeness of parameters of C and X from large intersection between them. But this creates a
major technical difficulty in prior works that while tackled with some effort in special cases with
weaker notions of error, prevents applications to general covariances. Let us explain this issue a
little more:

A concrete way to analyze the pseudo-distribution is to work the following variables w that
allow capturing the intersection of ws in the support of the pseudo-distribution with the unknown,
uncorrupted X NY C Y. Let w! = w; - 1(x; = y;). Then, notice that w’ is the indicator of indices of
points in the intersection C N X. Following on the information-theoretic strategy above, we’d like to
argue that the variance of points indicated by w’ in any direction v is multiplicatively close to that
of X in the same direction. Instead of “real-world” anti-concentration, this time, we must use a
low-degree sum-of-squares certificate for anti-concentration only. The low-degree sum-of-squares
certificate for anti-concentration from [KKK19, RY19] allows us to obtain a claim of the following

form in degree O(1/6?) (which translates into a running time of 79/ 6%,

1 , 1 ,
- Z wi(x,-,v>2 > 62 (; Z w; — O(0)

1

%Z(xi,wz. (2.1)

Informally speaking, the LHS counts the contribution to the variance in the direction v from the
points in C N X. The RHS, on the other hand, is a scaling of the variance of X in the direction v
with the major difference from the real world version is the presence of the additive —O(0) slack in
the right hand side in the multiplier to the variance.

2.1 Key Bottleneck: Exponential Dependence on Condition Number

The expression above reveals a “gap” between low-degree certificates for anti-concentration
inequality vs “real world” anti-concentration: the guarantee above is meaningful only when
Ly, w/ > 6. Further, the sum-of-squares degree dependence of O(1/6?) for such a certificate
happens to be tight® — translating into a running time cost of n°(/ %%). This might appear innocuous
— after all, if w was indeed an indicator of Y N X, the associated 1 3, w/ > & so simply choosing
0 < a should work. But this is misleading. If we were to analyze, for example, the average mean
and covariance under the (pseudo-) distribution, we need that 1 3’ w’ > 6 to hold pointwise in the
support of the distribution. But this is of course not enforceable as a constraint. In “real world”,
we could analyze the distribution by going over all ws in the support of it and splitting into two
cases depending on whether a given w satisfies the above large intersection condition. But such an
argument involves an if-then statement that is hard to formulate as a low-degree sum-of-squares
proof (indeed, a version of this argument is precisely what is used in [BK20b] but its success strongly

The certificates rely on the univariate polynomial approximators for indicator functions of 6-length interval around 0
over standard Gaussian distributions. Such a polynomial can be shown to need degree O(1/62) by standard techniques
in approximation theory. See the recent talk for a research direction on potentially stronger certificates that could escape
such lower bounds.
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relies on Y being a sample from a Mixture of Gaussians with only a small fraction of outliers) and
the source of all the trouble in the list-decodable setting. We remark that this issue of “pointwise”
facts provable in low-degree sum-of-squares proof system also arises in the recent work [KMZ22]
on using the sum-of-squares relaxation for robust moment estimation to obtain optimal error
guarantees for Gaussian distributions.

In order to get around this issue of additive slack and obtain a meaningful anti-concentration
inequality from (2.1), we need an upper-bound on 1 3. (x;, v). For example, if we knew and encoded
into our constraint system that the unknown covariance L, has all its eigenvalues at most K, then,
we can conclude from (2.1) that:

; Z wi(x;, 0)? + O(K®) [[o]}3 > & (% D wl-) ’ Z(xi, 0)?. 22)

1

That is, we must incur an additive slack in the anti-concentration inequality that scales with
the largest eigenvalue of X... Observe that in order for this guarantee to be meaningful, we’d have to
choose 6 < 1/VK and thus our running time must scale exponentially in the condition number ...

This is the key reason for the weaker error guarantees in the prior results on list-decodable
learning, and in fact prevents any meaningful guarantee (even of the sort known for regression and
subspace recovery) without a known bound on the condition number of X.. In fact, approaches
based on prior works appear to fail even if the unknown covariance matrix has eigenvalues of two
different scales, such as I + (logd)uu™ —vv" for pairwise orthonormal unit vectors u, v.

This appears to be a fundamental issue in using anti-concentration inequalities within the
SoS framework. For e.g., in their initial version of the algorithm for clustering non-spherical
mixtures [BK20b], the authors made assumptions on the condition number of the covariances (with
running time growing exponentially in log x) of the components in order to obtain their guarantees
with substantial effort invested into getting around the issue of additive slack in certificates of
anticoncentration °. They later managed to find an iterative “bootstrapping” technique that
crucially relied on the strong separation assumptions available in the clustering setting in order to
get an assumption-free robust clustering algorithm.

In the list-decodable setting, there are no such assumptions to work with and as a result
the follow-up work [BK21] on list-decodable subspace recovery only obtains the weaker error
guarantees discussed before. Our key innovation is a new algorithmic strategy that circumvents
the issues with certifiable anti-concentration. Our algorithm is based on iterative use of three
algorithmic components (that make an essential use of the isotropic position) that may be useful in
robust estimation in general. We explain these new components and how they fit together next.

2.2 Coarse Spectral Recovery: Theorem 4.2

Let’s depart from the approach above and abandon the goal of recovering multiplicative spectral
approximation to X. in one shot as in the prior works. Instead, we will shoot for a coarse spectral

0See also the discussion on the need for a priori upper bounds in [DHKK20].
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recovery algorithm where we obtain 1) multiplicative approximation for the large eigenvalues, and,
2) additive approximation for all small eigenvalues of X..

Of course, the algorithm does not know the scale of the eigenvalues of .. So what does “large”
mean? We will say that a quadratic form on v of L, is large if it is at least poly(a) relative to that
of the empirical covariance of the input corrupted sample. That is, vTX.0 > poly(a) E,~y (v, y)?.
Observe that Y has (1 — a)n outliers that can be arbitrarily large and can completely drown out all
eigenvalues of X.. In that case, coarse spectral recovery will only achieve a vacuous guarantee and
we’d have to make progress via a different route.

To obtain such a “multiplicative+additive” guarantee, we introduce a new “bootstrapping”
technique that obtains low-degree sum-of-squares certificates of Frobenius norm error bounds

7

restricted to the subspace where L, has small eigenvalues. Combining with multiplicative spectral
recovery bounds on large eigenvalues then yields the required guarantee. This technique requires
the use of certifiable hypercontractivity of degree 2 polynomials (in our constraint system) in addition
to certifiable anti-concentration. This is in contrast to prior works [RY20a, KKK19]) that only need
certifiable anti-concentration for such a goal.

We will make “conditional progress” via this method. Specifically, we argue that if every
eigenvalue of every candidate . in the list generated in the coarse spectral recovery step is large
(compared to that of the corrupted sample), we show that one of them must be a good multiplicative
approximation that we desire. As we argued before, the additive loss is a direct consequence of
the “slack” term in certificates of anticoncentration. In order to make progress, we will rely on
subroutines “outside of the SoS” system.

Naive Pruning of Y When there is a candidate 5 in the list recovered in coarse spectral recovery
that does have small eigenvalues, we will make progress by a new pruning step. Here’s the key
intuition: Suppose that a candidate 5 has a small eigenvalue in direction v. Suppose further that ¥
is a “good” candidate (i.e. the one that achieves the multiplicative and additive guarantee w.r.t.
the unknown covariance X.). Then, the variance of points in the inlier X N Y (i.e. the intersection
with the uncorrupted sample) in the direction v must be small because of X being anticoncentrated
in all directions including v. Thus, if we prune the y € Y such that the projection in direction v is
large (i.e., (v, y) > 0" %0), we will remove only a small fraction of inliers X N'Y. Thus, our pruning
functions as a biased filter that removes mostly outliers along with a small fraction of inliers. Of
course, we do not know which candidate is good a priori, so we simply run the process on every
candidate and obtain a different pruned subset of Y for each.

How do we make progress in this step? Observe that we have no guarantees on Y to begin with.
And for all we know, the variance of Y in direction v is large (compared to v 5v) because of say,
just a single large y. If we were to repeatedly apply coarse spectral recovery with pruning, we’d
have run O(n) interleavings and in each such step expand the list by a factor of poly(1/a) leading
to an exponential run time and list-size.

In order to escape this pitfall, we must find a way to guarantee that when we do try to remove
points in Y that are too large, we end up chopping off a constant fraction of Y without hurting the
inliers. It turns out that this is true if the low-order empirical moments of Y are subgaussian.
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Pruning with Subgaussianity: The Power of Mild Anti-Concentration (see Section 6) Infor-
mally, the pruning step removes too few points only if a small fraction of y contribute most of the
variance in a given direction v. But such “fat-tails" cannot exist if low-order moments of Y are
subgaussian. In fact, we prove that if Y has subgaussian moments of O(1)-degree, then, we can
prune away a poly(a) fraction of points in Y while ensuring that for any good candidate £ the
fraction of inliers in the pruned points is small. Specifically, say Y is normalized to be isotropic: that
is Ey.y yy' = I. Then, using the Paley-Zygmund anti-concentration inequality, if the 4th moment
of Y in the direction v is at most A, then, there must be a Q(1/A) points in Y such that |[(v, y)|
exceeds say 1/2. On the other hand, if & were a good candidate and additively approximates all
small eigenvalues of L., then, X itself would be subgaussian and given that v"5v is small, the
fraction of points x such that |(v, x)| is large should be tiny. Thus, if we pruned away points y
where |(v, y)| is larger than, say, 1/2, we’d have removed a poly(a) fraction of points in Y while
essentially leaving the inliers untouched.

Note that in this step, we are using subgaussianity to infer a mild anti-concentration of the
entire corrupted sample. We have strong anti-concentration guarantees for the inliers (and the
original uncorrupted sample) but a priori, no guarantees for Y that includes a majority of outliers.
The key gain from our splitting subroutine is making progress without needing to certify strong
anti-concentration properties — by resorting to mild anti-concentration that can be inferred only from
moment upper bounds. Such an anti-concentration, by itself, is not enough to do list-decodable
learning, but it’s enough for our splitting algorithm to succeed.

Of course, our splitting subroutine relied on the corrupted sample Y being subgaussian — which,
of course, it needn’t be. Let us describe how we perform a different pruning to ensure this property.

2.3 Subgaussian Restriction: Theorem 5.2

The goal of our subgaussian restriction algorithm is to take input a subset of points Y and prune away
some points, if needed, to ensure low-order subgaussianity: E, .y (y, v)* < (C't)" (Ey~y(y, v)z)t
for some appropriate constant C’ and t = O(1/a). Additionally, we must ensure that the points we
prune away are overwhelmingly just the outliers.

Observe that the requirement above is linearly invariant and significantly stronger than the
variant (accomplished as a step in list-decodable mean estimation algorithms such as [KS17a])
where we only want that E, .y (y, v)* < (C't)’ ||v||§.

In order to accomplish this goal, we give a new algorithm based on a natural sum-of-squares
relaxation that maximizes E, .y (y, v)* over vectors v € R? (after putting Y into isotropic position).
Our algorithm uses the solution (if the relaxation is infeasible, we are sure that Y is already
subgaussian as we’d want) to the relaxation to effectively assign to each y € Y, the “weight
El(0, )¥].

We then use a “reverse Markov” inequality to argue that there is a threshold Z such that the set
of all y € Y such that E[(v, y)?] > Z must be significantly larger than what we expect for X and
thus, we have found a “outlier-dominated” portion of Y that can be pruned away. We then iterate
on the resulting pruned Y.

7

Observe that unlike our splitting algorithm above, we do not guarantee pruning away non-trivial
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fraction of points in Y. Instead, our idea can be summarized as saying that if the adversary added
outliers so as to maintain subgaussianity, then, our basic splitting procedure above makes progress.
If not, then, we must make progress in the subgaussian restriction phase.

24 Combining the Subroutines for a Multiplicative Spectral Guarantee: Theorem 7.2

Given the above pieces, here’s how we can combine them all together: at all points, our algorithm
maintains a list of candidate covariances along with “current witness sets” — these are subsets of Y
obtained by applying pruning and splitting steps above assuming that the corresponding candidate
was a “good” candidate. If a candidate 5 has all its eigenvalues large compared to that of its current
witness, we can label it “final”. If not, we first apply subgaussian restriction to its witness set, put
the resulting Y’ in isotropic position and run coarse spectral recovery. This gives a new list of
candidates. If any of the candidates has a small eigenvalue, the splitting step above prunes away
poly(a) fraction of the points from its witness set. On the other hand, we know that for a good
candidate, we never prune away too many of the inliers. Thus, once the size of the witness set drops
below, say, an /2, we can reject that candidate completely. Thus, for a “good” initial candidate i,
we must eventually end up with a “witness” set Y’ such that 5 has none of its eigenvalues are small
relative to that of the E, .y’ v’ y’T. Altogether, this gives us an algorithm with a “recursion depth”
of 1/poly(a) and at “generation”, we increase the list-size by a factor 1/poly(a). Altogether, the
algorithm thus runs in time nP°Y(1/#) and produces a list of size (1/a)P°Y(1/®),

3 Preliminaries

Throughout this paper, we will use X to denote an i.i.d. (uncorrupted) sample of 1 points in R¥
and Y to denote its (1 — a)-corruption. For any finite set S of points, we will Es.s f(s) to denote the
empirical average of f(s) as s varies uniformly over S.

3.1 Computational Model and Numerical Inputs

Our algorithms work in the standard word RAM model'. We assume that the inputs are rational
numbers and the running time of the algorithm is a function total bit complexity of the representation
of the input. This does require a moment’s thought since a draw from the standard Gaussian, for
e.g., is irrational with probability 1. In this work, we will assume that we have access to a bit-oracle
for the input irrational number that can furnish as many bits of precision as our algorithm desires.
The complexity of the algorithm grows as the number of bits of precision it demands increases.

"Works in statistical learning theory often (and sometimes implicitly) present algorithmic guarantees in the real RAM
model [BCSS98]. This model deems a certain (carefully chosen) list of operations on real numbers to be doable in a single
step (this includes arithmetic operations). There are a few different choices considered in prior works for such operations,
see the discussion in the paragraph titled "formally modeling real RAM algorithms" on Page 1 in [EvM?20]. Depending
on the choice of the list of such operations, our algorithm can be implemented in this model. However, a blackbox
running-time preserving translation from algorithms that work in the real RAM model to the one in the standard word
RAM model is not known (see the recent work of Erickson on a smoothed version of such a statement [EvIM20]). So we
choose the more direct route of working in the word RAM model in this work.
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Numerical Issues in Vanilla Covariance Estimation in Total Variation Distance Following prior
works on learning mixtures of Gaussians, our recovery guarantee for parameters of an unknown
Gaussian distribution is naturally stated in total variation distance — the strongest possible notion of
distance in our context. When the covariance L, > 2~ PY@] our analysis succeeds even on rational
truncation of the inputs with essentially no change.

When L, is singular, however, we need some care'? in dealing with numerical issues. To see
this, consider the basic task of estimating the covariance of an unknown Gaussian distribution
N(0, Z) on R? from independent samples x1, x2, . . ., x,. This is a basic subroutine (that has nothing
to do with robust estimation) in numerical algorithms. Standard matrix concentration results
imply that for n > d, (1 - O(d/n))L < ¥ = %Zign xix] < (1+ 0O(d/n))L. Such a multiplicative
guarantee in Lowner ordering is necessary to obtain any bound < 1 on the total variation distance
TV(N(0,%), N(0, X)) between the unknown Gaussian distribution and the one we estimate from
samples. When implemented in the word RAM model, the samples must be truncated to rationals
and as a result, the estimated £ will have rational entries. It is easy to construct examples where such
aprocedure (and in fact any rational &) must be maximally far from the true covariance (i.e.1) in total
variation distance. For example, let v = (\/3%, \/%, 0,...,0)and let X = [ —vv'. Then, for every )3
with rational entries, the multiplicative guarantee above fails and, in fact, TV/(N/(0, $),N(0,%)) = 1.

The above example shows that it is provably impossible to output a rational Y. even for the basic
task of estimating covariance from i.i.d. samples if we desire a multiplicative spectral guarantee.
However, this also appears somewhat pathological since the “hardness” here seems to arise entirely
from issues in representing the input (without any role of the algorithm itself).

Our Resolution: In order to circumvent this issue, we will make an assumption that is arguably
weakest possible: we will assume that there exists a matrix with rational entries that satisfies the
guarantees we want. That is, thus some output — however hard to compute — could have satisfied
the requirements of the algorithm. For covariance estimation above, this is essentially equivalent to
assuming that the unknown covariance X is rational entries. Note that the input sample points will
still have irrational entries with probability 1 and will be truncated to rationals.

In this case, it is possible to recover the multiplicative spectral guarantees for the basic covariance
estimation task. It is easy to prove (see Proposition B.1) that the smallest non-zero singular value
of a d X d matrix of B-bit rationals is at least 2~ PB4 Thus, if our estimate from the truncated
samples happens to produce singular values < 2 PB4 we can hope to “round them down”
and learn the kernel of the unknown covariance. Note of course that for this to be possible, the
algorithm needs to know an a priori bound on the bit complexity of the unknown X. as otherwise
there is no way to find the right precision for input truncation. The rounding down step needs some
care — we formally perform it using the lattice basis reduction algorithm of [LLL82] (see Section B).

12We thank Sam Hopkins and Daniel Kane for discussions on computational models for statistical learning algorithms
that motivated our formalization in this section.
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3.2 Sum-of-Squares Preliminaries

We refer the reader to the monograph [FKP19] and the lecture notes [BS16] for a detailed exposition
of the sum-of-squares method and its usage in average-case algorithm design. A degree-{ pseudo-
distribution is a finitely-supported function D : R" — Rsuchthat ), D(x) = 1and 3, D(x)f(x)* > 0
for every polynomial f of degree at most £/2. We define the pseudo-expectation of a function f on R?
with respect to a pseudo-distribution D, denoted ]ED(x) f(x),as ]ED(X) f(x) =2, D(x)f(x).

The degree-f{ pseudo-moment tensor of a pseudo-distribution D is the tensor
Epw (1, x1,x2,...,%,)® with entries corresponding to pseudo-expectations of monomials of
degree at most £ in x. The set of all degree-f moment tensors of degree d pseudo-distributions is
also closed and convex.

Definition 3.1 (Constrained pseudo-distributions). Let D be a degree-{ pseudo-distribution over
R". Let A={f1>0,/,>0,..., fix >0} be a system of m polynomial inequality constraints. We
say that D satisfies the system of constraints ‘A at degree r (satisfies it n-approximately, respectively),
if for every S C [m] and every sum-of-squares polynomial & with degh + }.;cs max{deg fi;, r},
Ep h-lliesfi =0 (]ED h-Tlies fi = llhllo [Ties ||fl||2 where || 11|, for any polynomial / is the Euclidean
norm of its coefficient vector. We say that D satisfies (similarly for approximately satisfying) A
(without mentioning degree) if D satisfies A at degree r.

Basic Facts about Pseudo-Distributions.

Fact 3.2 (Holder’s Inequality for Pseudo-Distributions). Let f, g be polynomials of degree at most
d in indeterminate x € RY. Fix t € N. Then, for any degree dt pseudo-distribution C, E:[f g1 <

(ELf'DF (Belg'D"
Observe that the special case of t = 2 corresponds to the Cauchy-Schwarz inequality. The

following idea of reweighted pseudo-distributions follows immediately from definitions and was
first formalized and used in [BKS17]).

Fact 3.3 (Reweightings [BKS17]). Let D be a pseudo-distribution of degree k satisfying a set of polynomial
constraints A in variable x. Let p be a sum-of-squares polynomial of degree t such that E[p(x)] # 0. Let
D’ be the pseudo-distribution defined so that for any polynomial f, ]EDr[f(x)] =Ep [f(x)p(x)]/]ED [p(x)].
Then, D' is a pseudo-distribution of degree k — t satisfying ‘A.

Sum-of-squares proofs A sum-of-squares proof that the constraints {f; >0, ..., fi, > 0} imply the
constraint {g > 0} consists of polynomials (ps)sc(m) such that g = Yscp) ps - ies fi-

We say that this proof has degree ¢ if for every set S C [m], the polynomial psIl;cs f; has degree
at most ¢ and write:

{iz0li<r}lz{g>0}. (3.1)

Fact 3.4 (Soundness). If D satisfies A for a degree-{ pseudo-distribution D and there exists a sum-of-squares
proof A |7 B, then D satisfies B at degree rr’ + 1’
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Definition 3.5 (Total bit complexity of Sum-of-Squares Proofs). Let p1, p2, ..., pm be polynomials
in indeterminate x with rational coefficients. For a polynomial p with rational coefficients, we say
that {p; > 0} derives {p > 0} in degree k and total bit complexity Bif p = }; qz.z + 2. ripi where
each g7, r; are polynomials with rational coefficients of degree at most k and k — deg(p;) for every i,
and the total number number of bits required to describe all the coefficients of all the polynomials
qi, i, pi is at most B.

There’s an efficient separation oracle for moment tensors of pseudo-distributions that allows
approximate optimization of linear functions of pseudo-moment tensors approximately satisfying
constraints. The degree-{ sum-of-squares algorithm optimizes over the space of all degree-¢ pseudo-
distributions that approximately satisfy a given set of polynomial constraints:

Fact 3.6 (Efficient Optimization over Pseudo-distributions [Sho87, Par00, Nes00, Las01]). Let > 0.
There exist an algorithm that for n, m € N runs in time (n + m)°") poly log 1/n, takes input an explicitly
bounded and satisfiable system of m polynomial constraints A in n variables with rational coefficients and
outputs a level-{ pseudo-distribution that satisfies A n-approximately.

Basic Sum-of-Squares Proofs

Fact 3.7 (Operator norm Bound). Let A be a symmetric d X d matrix with rational entries with numerators
and denominators upper-bounded by 28 and v be a vector in R?. Then, for every ¢ > 0,

5 {7 Ao < llAlLllol} + €}
The total bit complexity of the proof is poly(B, d,log1/¢).
Fact 3.8 (SoS Holder’s Inequality). Let f;, g; for 1 < i < s be indeterminates. Let p be an even positive

integer. Then,
. 1 s P 1 s 1 s p-1
. -1
Ip_z (gZﬁgf ) < (g Zfip) (gzgf)
i=1 i=1 i=1
The total bit complexity of the sos proof is sO).

Observe that using p = 2 yields the SoS Cauchy-Schwarz inequality.
Fact 3.9 (S0S Almost Triangle Inequality). Let f1, f2, ..., f be indeterminates. Then,

2t ;
f1/f22/t~-~/fr (Zf’) < 21 (Z fiZt)
i=1

i<r

The total bit complexity of the sos proof is 1O,

Fact 3.10 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let fi, fo, ..., fm be indeterminates.

Then, m
i=1

The total bit complexity of the sos proof is exp(O(m)).
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Fact 3.11 (Univariate SoS Proofs). Let p = Y;<x aix' be a univariate polynomial of degree k with rational
coefficients a; with numerators and denominators upper-bounded by 2B for some B € N. For every ¢ > 0:
I% {p(x) > 0} and the total bit complexity of the SoS proof is upper-bounded by poly(B, log1/¢).

Fact 3.12 (Cancellation within SoS, Constant RHS [BK20b]). Suppose A is indeterminate and t > 1.

Then,
(A% <1} {A2< 1)
Further, the total bit complexity of the SoS proof is at most 201).

Lemma 3.13 (Cancellation within SoS [BK20b]). Suppose A and C are indeterminates and t > 1. Then,
[A>0UA! < CAT S (A% < ¥},
Further, the total bit complexity of the SoS proof is at most 201,

Fact 3.14 (Frobenius-Operator Norm Bounds in SoS [BK20b]). Suppose A € Q™ have entries of bit
complexity at most B. Let Q be a d X d matrix valued indeterminate. Then

5 {14QI? <[44, QI

The total bit complexity of the SoS proof is at most O(B>d?).

Fact 3.15 (Contraction and Frobenius Norms, Lemma 9.1 in [BK20b]). Let A, B be d X d matrix-valued
indeterminates. Let B be a scalar-valued indeterminate. Then,

{BTATAvY < AlolB'} - {BIIAQIE < At QI

and,

{poTATA0) < Allol'} = {BIIQAIF < A IIQIE} -
Fact 3.16 (See Lemma A.5 in [KS17b]). Let A be a set of polynomial equality axioms in variable x such

that:
2
Al {p(x,u) > 0},

for a polynomial p with total degree at most 2t. Then, for any pseudo-distribution D of degree 2t on x
satisfying ‘A,

2 =

IT {]ED(x)p(x,u) > O} )

3.3 Analytic Properties of Probability Distributions
Certifiable Anti-Concentration

Fact 3.17 (Univariate Approximator to Interval Indicator (see Lemma A.1 in [KKK19])). For each
6 > 0, there is a univariate polynomial ps and a sum-of-squares polynomial Sy of degrees < s(6) = O(1/52)
both with rational coefficients with numerators and denominators upper bounded by 20¢®) satisfying:
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1. ps(x) = ps(—=x) for every x. Thus the non-zero coefficients of ps are on even-power monomials in x.
2. ps(x) > 1/2 for all x such that |x| < 6.
3. Ex-n(0,1) pg(x) + Ss(x) = C0 for an absolute constant C > 0.

Corollary 3.18. Let 6 > 0, and x € R?. Let R,Zbed xd symmetric matrix-valued indeterminates. Let
gs,x.(x, v) be the following polynomial in d-dimensional vector valued indeterminate v (parameterized by x).

(x,v) )

5,5(x,0) = (0T Zv) @ 2ps(
1 P VoTXo

Then, qs s (x,v) satisfies:
1. I% {(x,0)2 (0T L0)* @1 + 6244 5. (x, v)? = *(vTL0)*©® = SoS(v, R)}.

2. {R*=1} I#(é) {E,-no,1) 95,2(Rx,0)? < Co(vT Loy @},

Here, SoS(v, R) denotes a sum-of-squares polynomial in indeterminates v and R. Further, the total bit
complexity of both the SoS proofs above is at most d°¢(©)),

We provide a proof of the above corollary for completeness in Section A of the Appendix.

Definition 3.19 (Certifiable Anti-Concentration). A distribution D on R¥ with mean 0 and covariance
Y. of rational entries with numerator and denominators upper-bounded by 25 is said to be s(5)-
certifiably (C, 0)-anti-concentrated if for g5 », defined in Corollary 3.18 satisfies:

1. I:—S {(x, 0)2 (0T L) O 4+ 6244 5 (x,0)? — 62(vTZ0)*®) = SoS(v,H)},
2. léf_s {]Ex~]N(0,I) []5,2*(1_[3(,0)2 < C(S(UTZ*U)S((S)}, and

the total bit complexity of each of two SoS proofs above is at most poly(B, s(5)). A set X € R is
said to be s(0)-certifiably (C, 6)-anti-concentrated if the uniform distribution on X is s(0)-certifiably
(C, d)-anti-concentrated.

Fact 3.20 (Certifiable Anti-concentration of Gaussians and Spherically Symmetric Distributions,
Theorem 6.2 in [BK21]). Gaussian distribution (with arbitrary covariances) and more generally, affine
transforms of any spherically symmetric random variable H on R with sub-exponentially distributed ||H||3
is s(0)-certifiably (C, 6)-anti-concentrated for s(6) < O(1/6%) and C = O(1).

Certifiable Hypercontractivity of Degree 2 Polynomials Next, we define certifiable hypercontrac-
tivity of degree-2 polynomials that formulates (within SoS) the fact that higher moments of degree-2
polynomials of distributions (such as Gaussians) can be bounded in terms of appropriate powers of
their 2nd moment.
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Definition 3.21 (Certifiable Hypercontractivity). An isotropic distribution D on R? is said to
be h-certifiably C-hypercontractive if there is a degree-h sum-of-squares proof of the following
unconstrained polynomial inequality in d X d matrix-valued indeterminate Q:

2\ h/2
XJED(XTQX)h < (Ch)" E ((xTQx)—xPD[xTQx])) .

A set of points X C RY is said to be C-certifiably hypercontractive if the uniform distribution on X
is h-certifiably C-hypercontractive.

Remark 3.22. Certifiable hypercontractivity is sometimes also defined (such as in [BK20b]) with the
RHS above being /1 /2-th power of the 2nd moment of x " Qx instead of variance as in the above
definition. In that case, an additional property (called “certifiable bounded variance”) is needed to
obtain the statement in terms of the variance on the RHS above. We choose the simpler formulation
with the RHS above directly stated in terms of the variance of x " Qx.

Observe that the definition above is invariant under linear transforms of the the random variable
x. It can also be shown to be invariant under affine transforms of x (see Lemma 2.3 in [BD]*20]).
Hypercontractivity is an important notion in high-dimensional probability and analysis on product
spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hypercontractivity
of Gaussians and more generally product distributions with subgaussian marginals. Certifiable
hypercontractivity strictly generalizes the better known certifiable subgaussianity property (formalized
and studied first in [KS17b]) that is the special case of certifiable hypercontractivity of (squares of)
linear polynomials, or, equivalently, when Q = vv T for a vector-valued indeterminate v.

Analytic Properties Under Sampling The following lemma can be proven via similar, standard
techniques as in several prior works [KKK19, BK21, RY19, RY20b].

Fact 3.23 (Certifiable Anti-concentration and Hypercontractivity Under Sampling (see for e.g.
Section 8 in [BK20b])). Let D be a s(5)-certifiably (C, 0)-anti-concentrated distribution with mean u. and
covariance X with B bit rational entries and 2t-certifiably C-hypercontractive degree 2 polynomials on RY for
every t € N. Let X be an i.i.d. sample from D with n > ng = O(d*®) and let X be obtained by truncating
each entry of each x € X to a rational number of poly(Bd) bits. Then, with probability at least 1—1/d over the
draw of X, 1) X and X are s(5)-certifiably (2C, 6)-anti-concentrated with s(5)-certifiably 2C-hypercontractive
degree 2 polynomials, 2) (Ex~x x — i) (Ex~x x — 1) T < 0.01%,, 3) Eyxox(x — ) (x —ps) T € [0.99, 1.01]Z.
and 4)”21/2 Evox(x — u)(x — u) 72| <0.1,

Further, if all entries of Z, are B-bit nl;tz'onal numbers, then, all the above facts are true for poly(d)-bit
precision truncations of points in an i.i.d. sample X.

Total Variation vs Parameter Distance for Gaussians The total variation distance (a.k.a. statistical
distance) between any two probability density functions p,q on R? is defined by drv(p,q) =
% f |p(x) — q(x)|dx. Then, 0 < dtv(p, q) < 1 for all probability density functions p, g.
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The following fact relates the total variation distance between a pair of Gaussians and an
appropriate notion of distance between their parameters. A relationship of this form was recently
proved by [DMR18] but their bounds are only meaningful in the regime where the total variation
distance is at most some absolute constant < 1. Instead, we use the following result established
in the recent works on clustering [BK20b, DHKK20] that gives a meaningful parameter distance
translation in the regime where the total variation distance is close to but bounded away from 1.

Fact 3.24 (TV vs Parameter Distance for Gaussians, see Prop. A.1in [BK20b]). Fix A > 0 and let p, i’
and X, Y > 0 satisfy:

1. Mean Closeness: forallv € RY, (u—p/,0)3 < A%07(Z + X)o.

2. Spectral Closeness: forallv € R? 350 X0 < vTL'v < A0 X(r)o.

3. Relative Frobenius Closeness: ||Zt/25/rt/2 — I||12E < A% ||Z*Z’H§.

Then, drv(N (4, Z), N(1', L") < 1 — exp(—O(A%log A)).

4 Coarse Spectral Recovery

In this section, we present the first component of our algorithm for list-decodable covariance
estimation. This subroutine produces a list of candidate covariances that includes a candidate that
multiplicatively approximates the spectrum of the unknown X.. when restricted to the subspace with
sufficiently large eigenvalues (compared to that of the corrupted sample) while giving an additive
error guarantee on all small eigenvectors of L..

Formally, our algorithm succeeds whenever we are given an (1 — a)-corruption Y of a good set X
of points that we define next. Recall that for any finite set X, we use the notation E,.x to mean
average over uniform draw of x from X.

Definition 4.1 (Good Set). For d € IN, we say that a subset X € Q% is a (C, )-good set with mean
Ey-x x = p. and 2nd moment E,.x xxT = X, if X satisfies the following for s(6) = 0(1/8%):

1. Small Mean: p.pu] <0.1Ey x(x — p)(x — ) 7.

2. Anti-Concentration: Forf > 0,v € R4, P..x[(x,v)? < gvTZ*v] < B.

3. Certifiable Anti-Concentration: X is s-certifiably (C, 0)-anti-concentrated for s = s(0).
4. Hypercontractivity: X has 2s(0)-certifiably C-hypercontractive degree 2 polynomials.

The following theorem is the main result of this section.

3In our application of this subroutine, we can ensure that X is a sample from a mean 0 distribution. We invite the
reader to think of the mean of X to be exactly 0 in a first reading. In this case, the 2nd moment of X is the covariance of
X. We continue to use the same notation for covariance and 2nd moment as in the small mean case (that is satisfied
whp by a large enough random sample from a zero-mean distribution) the 2nd moment spectrally approximates the
covariance within a factor of 1.01 which is enough for our guarantees for covariance recovery.
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Theorem 4.2 (Coarse Spectral Recovery). Let 1 > a,v > 0. For every t € N, there is an algorithm that
takes input a collection of n poznts Y € Q4 such that L 3, yiy] = (1+27%)] and outputs a list of positive
semidefinite matrices 1,5, ..., Sk € Q™ for k = O(1 Ja!*2) -log(1/v) with the following guarantee:

For 6 = a3/2C, suppose there is a (C, 0)-good set of points X = {x1,x2,...,%Xn} C Q satisfying
Ey.x xxT = X, such that |Y N X| > an. Then, with probability at least 1 — v over only the randomness of
the algorithm, there is an i < k such that:

LﬁﬁﬁO(6LJZ+Om2BM (4.1)

For t = 20, this gives a list £ of size O(1/a®2) containing a candidate 5; satisfying:

Lﬁiﬁo(sz+O(%1 (4.2)

The algorithm runs in time (Bn)°(/ "‘u)O(log 1/v) where B is the bit complexity of entries of y;s.

4.1 Algorithm

Our algorithm approximately solves and rounds a sum-of-squares relaxation of an appropriate
polynomial system. Our polynomial constraint system encodes finding a set of n points X’ € R?*"
such that X’ (intended to be variables for X) satisfies the properties of the original sample X for
some covariance matrix £ € R (intended to be L.). Our polynomial system has the following
indeterminates.

1. x}for 1 < i < n: d-dimensional vector valued indeterminates forming X'.

2. R, X, U, Z: d X d matrix-valued indeterminates. Here, . encodes the empirical covariance
matrix of X, R stands for a matrix square root of X and U forces R to be positive semidefinite.

3. w; for 1 < i < n: scalar indeterminates encoding that Y intersects X’ in > an points.

We impose the following constraints on the indeterminates above (categorized for exposition).

R=UUuT
, , R?=X
Covariance Constraints: A = (4.3)
(%I Z) ZZ7
a
Vi € [n] wi2 = w;
Subset Constraints: A = Dic[n] Wi = an (4.4)

Vie[n] wily—x)=0

Parameter Constraints: Az = { Z wixix" = } (4.5)
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BN

|-

Cert. Anti-Concentration : Ay = {

i=1

g3 5 (x},0) < Co (UTZU)S((S) } (4.6)

N

2j
Cert. Hypercontractivity : As = {V]’ < s(0), % (x;TQx; -~ %Z x;TQx;) < (2Cj)% ||RQR||? }

i=1 i<n

(4.7)

4.2 Algorithm

We next describe our algorithm.

Algorithm 4.3 (List-Decoding for Coarse Spectral Recovery).

Given: Y ={y1,y2,...,yn} C Q7 such that % - yiyiT =(1x2 %I and a,n>0.
Output: A list £ of O(1/a!*?) positive semidefinite matrices in Q< for ¢t = 20.
Operation:

1. For 6 = a®/2C, find a pseudo-distribution C of degree O(s() +2f + 1) that approx-

imately satisfies the constraint system A and minimizes || E[w]||, with an error
—(BA)O60)
< 27(BA7E

2. For any multiset S C [n] of size 2f + 1 such that E[ws] = E[[Lieswi] > 0, let
g = Elusz]
E[ws]
3. For O(1/a!'*?) times: 1) pick a multiset S C [n] of size 2t + 1 with probability
proportional to E[ws] and 2) add O(#)is to L.

4. Return L.

4.3 Deriving Key Properties Via Low-Degree Sum-of-Squares Proofs

The goal of the next few lemmas is to derive a key consequence of our constraint system A.
Informally speaking, we show that if X’ — the algorithm’s “guess” for the unknown X — intersects
with X non-trivially, then, the quadratic form of the empirical 2nd moments of X and X’ on any
vector v must be close. The closeness is quantified by an error term with a multiplicative part and

an additive part.

Notation 4.1. Let w(X’) = % Yt wi - 1(x; = y;) be the linear polynomial in the indeterminates w;s. Note
that w(X'’) measures the fraction of points X’ has in common with the (unknown) good set X.

Lemma 4.4 (Spectral Recovery Guarantee — Lower Bound). Under the hypothesis of Theorem 4.2,

A X {é(fm)(fz*v)s-l +Co(0TE0) > w(X’)(vTZ*v)S}.
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Further, if entries of y;s have bit complexity < B, then, the bit-complexity of the SoS proof is (Bd /5)°©Y.

Proof. One of the key properties of w; is that for any polynomial /(-) of degree at most O(s), it is
true that

Ay l% {wil(x; = yi)h(x) = wil(x; = yi)h(y;) = wil(x; = yi)h(x;)} . (4.8)

So, recalling the first certifiable anti-concentration constraint (Corollary 3.18) on x;
oo {0, 0 (0T T0) ™ + 6%q5 5. (x1,0)? > 0% (0T 0)*}
and applying Equation (4.8) after multiplying by w;1(x; = y;) gives
w,):,x;,v , B
AUA, W {wil(x; = yi){x, 0)* (0 L0)" ™ + wil(x; = yi)gs,z.(xi,0)* > S*wil(x; = yi)(v L.o)'} .

Using next that A, I% {wil(xi = Yi) < wi} (and that this is also at most 1) on the left hand side
components and averaging over i transforms this equation to

W,Z,U,X/ ]. u , 2 T -1 62 « 2 62 “ T
AUA, lW {; Z; wix;,v) (v L) + - Z:‘ 9s,5.(xi,0)" > o Z; wil(x; = y;)(v L) .
1= 1= i=

Now we wish to simplify each of these three terms:
e By definition of X, we have Aj I% {% Y wilx),v)? = UTZU}.

e By certifiable anti-concentration of the true samples (Corollary 3.18) we obtain
I ERN ) o
o6) | n Z gs,x(xi,v)" < Co(v L.v)° ¢ .
i=1

e Finally, by definition we have 1 3\, w/1(x; = y;) = w(X).

Putting these three facts together yields the desired conclusion:
soXx |1 _ ,
Ay U A, I% {ﬁ(UTZU)(UTZ*U)S Ly Co(wTL)f > w(X )(UTZ*ZJ)S} . (4.9)

Our next lemma proves an upper-bound version of the spectral guarantee. Note that

Lemma 4.5 (Spectral Recovery — Upper Bound). Under the hypothesis of Theorem 4.2, for any t € N,

w, X', Lo , 1 ACt st 2s
Ay UA U A |W {w(X Y5 (0T Lv)?s < 2% (%(UTZ*U)% +( — ) ol b.  (4.10)

Further, if entries of y;s have bit complexity < B, then, the bit-complexity of the SoS proof is (Bd /5)°¢H).
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Proof. We begin similarly to the proof of Lemma 4.4: in particular, by swapping the roles of x;, x/ in
the proof we obtain

AU Ay l% {%(UTZ*U)(UTZU)S_l > (w(X') - C(S)(UTZU)S} : (4.11)

Now, note that we would like w(X”) to appear. To do so, we use that

t—-1
w(X') = (Co) = (w(X') - Cd) (Z w(X’)l‘(Cé)f—l—i)

i=0
and the fact that from I% {0 < w(X’) <1}, Co < 3 it follows that

t—

-1
2o S wixy ‘ 1
w ’ t—1- —1—
o) {0 S ‘ w(X')(Co) 7' < EO(C(S) '< s < 2},
1=

1
i=0

Therefore, multiplying both sides of Equation (4.11) by Y.!25 w(X’)'(C)!~'~" yields

t—-1
zoX | 2 _ i 1 1 _
Ay U A “’O(SL) {g(UTzw)(UTzv)s > (Z w(X") (Co)!1 ) - g(vTZw)(vTZv)s !

i=0
> (w(X') - (C(S)f)(vTZz;)S} (4.12)
We may now rearrange this to
Z,0,X 2 _ ,
AU A 5 {(g(vTZ*v) + (C(S)t(vTZv)) (v o)1 > w(X )f(vT):v)S}.
Multiplying both sides by w(X’)!6=D) and applying Cancellation within SoS (Lemma 3.13) with

A= wX) (v Zv)and C = é(UTZw) + (Cd)!(v"Lo) then brings us closer to our end goal by
proving

2s
: 2
AsU A 5 {w(x')ZfS(szU)ZS < (g(vTZw) + (C(S)t(vTZv)) } :

Now, applying the SoS Almost-Triangle Inequality (Fact 3.9) on the right hand side separates these
latter terms:

’ 22s
ﬂ4 U ﬂZ l% {w(X/)ZtS(UTZU)Zs < 225 (%(UTZ*U)ZS + (Cé)ZtS(UTZU)ZS)} .

To finish, recall that A I% {%I — X =ZZ"} soin particular v Xov < i ||0]13. Therefore, plugging
this in gives the final desired bound of

w, o, X N2ts (T 2s 2s 2% T 2s 8C'o! # 4s
ﬂ4Uﬂ2Uﬂ1|W w(X )" (v Lo)® <2 %(U L.0)™ + 2 [o15° | ¢ -
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Bootstrapping Spectral Recovery via Frobenius Recovery Our spectral recovery guarantees
(from previous two lemmas) is actually insufficient to ensure that a rounded candidate multiplica-
tively approximates all the large eigenvalues of the unknown X... One of the key innovations in our
analysis is a “boostrapping” trick that relies on a stronger Frobenius norm guarantee restricted to the
subspace of small eigenvalues of ©.. which we prove below. We invite the reader to think of # as the
(unknown) projector to the subspace of small eigenvalues of the (unknown) ..

Lemma 4.6 (Frobenius Recovery). Under the hypothesis of Theorem 4.2, for any projection matrix P to a
subspace of RY, and for any t € N,
} . (4.13)

Further, if entries of y;s have bit complexity < B, then, the bit-complexity of the SoS proof is (Bd/5)°¢.

A

{Z{J(X’)Zt+1 IP(Z - Z)PF < O(s?)

4Ctot 4
( ) =2 IPZPIG,

O(st+sz)

We will use the following consequence of certifiable hypercontractivity in the proof of Lemma 4.6.

Lemma 4.7 (Frobenius bound). Under the hypothesis of Theorem 4.2, for any h € N, and d X d
matrix-valued indeterminate Q,
RQR
_ + IRQRI )}

Further, if entries of y;s have bit complexity < B, then, the bit-complexity of the SoS proof is (Bd)Oh?),

As IT(hZ) { (X' (x - Z*,Q>2h < w(XP1 . 221 (C )2 (H21/2Q21/2

Proof. We begin by rewriting
w(X' (L -X,, Q) = % ZZ:‘ wil(x; =y - Z., Q)
= % ZZ:‘ wil(x; = y)(Z —xjx;", Q) + % ZZ: wil(x; = yi){xjx]T — L., Q)
= % ZZ:‘ wil(x; = y)(Z —x}x]", Q) + % ZZ: wil(x; = yi){xix] — L., Q)

where in the last step we applied A, I% {wil(xZ yi(xXxiT, Q) = wil(x; = yi){xix], Q)} ala the

ivi

remark at the beginning of Lemma 4.4 (passing through ;).
Therefore, by the SoS Almost Triangle Inequality (Fact 3.9) it follows that

2h 2h
Nl gy o on | (LN g 1T 1N e = T
w(X')M(z-%., Q) < 2 n;wluxl—ylxz YT, Q)|+ n;wluxz-yzxxlxi L., Q)

(4.14)
so it suffices to bound each of these terms separately.

26



Beginning with the first term, we apply SoS Hélder’s inequality (Fact 3.8) with f; = (X —x/x/T, Q)
and g; = w;1(x; = y;) (which is idempotent, that is gl’.‘ = g;) to obtain

2h 2h-1
wexQ (1o I 1IN, 2h
A 00 {(n ;wzl(xl = yi)(Z — xjx; /Q)) < (n ;wzl(xz = yl)) (n ;<xixi %,Q)
<w<X')2h—1<Ch>2h||RQR||§h} (4.15)

where we used the certifiable hypercontractivity (As) of X’. Similarly, we may bound that

2h 2h-1
wrx,0 |1 < _ - 1< _ 10, ,or 2h
A oud) {(E;wil(xi = yi){Xix; —Z*,Q>) < (E;wil(xi = yi)) (; ;(xixi -2, Q)

112k
LIQXL! (4.16)

< w(X/)Zh—l(Ch)Zh

F

by instead using the true anticoncentration of X. Finally, plugging Equations (4.15) and (4.16) into
Equation (4.14) yields the desired

2h

2

The bit complexity bound on the SoS proof follows by accounting the bounds for each of the

1

w,2,X,Q 1 i
r2Qx?

A O(h?)

{w(X'>2h<>: — %, Q) <w(X)22(Ch) (IIRQRII%h +|

elementary inequalities used in the argument above. m]
We now go on to prove Lemma 4.6.

Proof of Lemma 4.6. From the conclusion of Lemma 4.7, setting h = 25 and letting ¥ be fixed gives:

Asfos {w(x’)‘“ (P(E-Z)P, Q)% = w(X')* (T - L., POP)*

4s
< 25w (XS 1(2Cs)s ( zi/stQsozl/ZHF + ||R¢>QPR||;£S)} . (417)
Multiplying throughout by the SoS polynomial w(X’)*¢=D+1 yields:

X,R,m s . s s
A5 ot {W(X PEHHPE - )P, Q)Y = w(X)BH(Z - 2., PQP)*

< 24Sw(X/)4St(2CS)4S (

4s
rPpoerl?| ||RPQPR||%S)}- (4.18)

As before, let’s analyze the two terms on the RHS separately.
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Using cyclic properties of Frobenius norm, we know that ||Z}/ ZPQPZ}/ 2||% = ||PZ*PQ||%.
Therefore, applying Lemma 3.14, we have that:

Lw 4st
A O(st+s2) { (X’)

For the second term, we start from the guarantee of Lemma 4.5 applied to the vector Pv:

} . (4.20)

Applying this with § = w(X")%, A = RP, t = 25, and A = 2% ((%6') 2 |pr.e|? ) yields

21/2PQ¢>21/2H <w(X)* (PPl 10l )} (4.19)

A O(st+sz)

8C!o!\*
w(X')* (0T PLPO) < 2% (—aZ ) o]l + 64S(UTPT2 Po)*

4CHsH\® 92
<225||v||‘2*s(( - ) < IPL.PI5,

2 645

From Contraction within SoS (Fact 3.15), we may derive that

{BTATA0)' < Allol3'} = {BIIAQATII < A*IQII} -

R,w,Q 8Ctst 4s 245
PPl

Aot {w(X’)“f IRPQPR|F < 2-(45)* (( 2| T

IIQII?} (4.21)

where we also crucially used an application of the SoS Almost-Triangle Inequality to expand A2.
Plugging back the estimates from (4.19) and (4.21) into (4.18) gives:

L, tst 4s
sl {w(X’>4”“ (PE-Z)P, Q" < (O6)" ((&;—f) + 2 PP )IIQII‘?}.

685
(4.22)
Note that as 0 < w(X’) < 1 we may shrink the LHS by multiplying it through further by
w(X’)*~1. Substituting Q = P(X — L) and multiplying throughout by the SoS polynomial
w(X')*1+25 now yields:

Zw,Q , 8Ctot 245
As liO(stJrsZ) { (X’ )85t+4s |P(E - L. )P” <w(X )4st+25(O(s))45 ((7) 55 ||IPX. P”

IP(Z - z*wn;‘f} .
(4.23)

We now apply Lemma 3.13 (Cancellation within SoS) with A = w(X’)*!*2 ||P(Z - )P || and
the SoS Almost-Triangle Inequality to obtain that:
= 8C!o\'* 2165
A lﬁ{ (X7)1H48 | P(Z — TP < (O(s))16 ((T) + 5 IPEPly ¢ (424)
We finally apply Cancellation with Constant RHS (Lemma 3.12) to conclude that:
8C's'\* 4
( ) = ||¢>zj>||ﬁp)} : (4.25)

O

A O(SH_sz) {W(X')Zt+1 IP(E - Z)PIF < (O(s))?
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4.4 Analysis of Rounding

We first show that setting X’ = X (and using the naturally induced assignments for other
indeterminates) yields a feasible solution for the relaxation.

Lemma 4.8 (Feasibility of the Relaxation). For 6 < %, suppose there exists a (C, 6)-good set X € R¥ of
size n such that x; = y; for an different i < n. Then, there is a pseudo-distribution of degree O(s(0) + q)
consistent with the constraint system A and as a consequence, Step 1 of Algorithm 4.3 succeeds.

Proof. We give a solution to the constraint system A to prove that the constraints are satisfiable. We
set X’ = X and w; = 1 if and only if x; = y;. Since X is a (C, 0)-good set, we immediately obtained
that Ay, Az, Ay, As are satisfied. Therefore, it remains to check A;.

For A1, we set R = X./2 — the PSD square root of L, and U to be a matrix such that UU " = e
(which exists). Let us now prove that there is a Z such that (Aj is feasible. To do so, we make use of
the isotropic position of Y.

To begin, note via [ X N Y| = an that

1 11 11 1
T = T=21= Tl< == ==
x~]}l?myxx X NY]| Z o a(n Z o )_ a(n Zxx ) aI'

xeXnNY xeXNY

0] < B. Therefore,

Now, recall that true anti-concentration of X tells us that P,.x[(x, v)? < gv
n=gnpointsin XNY

at most 57 points in X have (x,v)? < 40T, and hence at least an — §
have (x,v)? > GvTL*v. Therefore, this implies that

_|
> M

1 1 an  « a
]E , 2: , 22_‘(_._7'2*):_7—2*
x~Xm/<x 0) X NY]| xz (x,) an o e g’ =

and thus we have g%, < L], Rearranging gives that %I — Y. =ZZ" for some Z and hence we have
feasibility of A;.
This completes the proof. m|

Next, we prove that in expectation, w(X’) — the normalized intersection of X’ and the (unknown)
sample X must be at least a?. This is a consequence of our relaxation hunting for a maximum
entropy (or more precisely, max “collision probability”) solution.

Lemma 4.9 (High-entropy Pseudo-distributions Intersect X). Under the hypothesis of Theorem 4.2, let
be a pseudo-distribution of degree > O(s(0)) satisfying A that minimizes H]Ez wHZ. Then, ]Ez[w(X’)] > a?.

Proof. Towards a contradiction, we will show that if the conclusion does not hold then there exists a
pseudo-distribution with smaller value of H]E z wH2

Suppose T = al—n hya ]Ez[wil(xi =yl = ﬁ hya ]Ez[wi] -1(x; = yi) < a where we used that
1(x; = y;) is a constant (as opposed to an indeterminate in our polynomial program). To show a
contradiction, we will exhibit a pseudodistribution v that is 1) feasible for our SoS relaxation and 2)

E,[w]

has a smaller value of ’ R
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Toward this, notice that we can write

2 n n n
1 = 1 1 = 1 ~ 2
—Effol| =—— > BfwilP= —— > (Eclwliee = ) +—— > (Eclwl(-1(x = y)?)
i=1 i=1 i=1
(4.26)
where we used that C satisfies wf = w; for every i.
By Cauchy Schwarz inequality for pseudo-distributions, we observe
1 < ’
= (% Z Ez[w]1(x; = ]/i)z)
< LN E 1(x; = (S 1(x; = yi)?
S\ a2z ( g[wi] (xi = yi)) Z (xi = yi)
i=1 i=1
1 v (= 2
=an | 0 (Eclwdte = wo) @.27)
and similarly
1\ ’
(1-1)= (% Eg[wi](1-1(x; = yi))z)
i=1
1 n - 2 n
< (aznz Zl (]Ei[wz'](l —1(x; = ]/z'))) ) (;(1 —1(x; = yz’))Z)
1 v (= 2
—(1-an (aznz Z; (Belwil1 - 15 = ) ) . (4.28)
We can apply Equations 4.27 and 4.28 to 4.26 to obtain
2
E]Ec[w]2>—n+(l_a)n——n(’[ +(1—T)1_a). (4.29)

Now we proceed to construct our v achieving lower norm. Let C* be the (true) distribution
supported on a single point w, where w; = 1(x; = y;) (i is an inlier). Due to X being a good sample,
it follows that C* satisfies the constraint system.

Then, welet v = (0 = 7)C* + (1 + 7 — @), and set A = a — 7. Note thatas 0 < 7 < a < 1, this
“mix” is indeed a pseudodistribution. From here, notice that

2 n

1 = 1 ~ —~ 2
T e Zl] (ABcefoi] + (1 - 1) Belw])
- a2n2 [Az Bl P+ (1= A Bl + 2001 - 1) ]EC*[wi]]Ez[wi]]

i=1
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2

/\2 2 1 = T
_a_n+(1_/\) _an]EC[w] 2+2/\(1—/\)—0m.
Therefore, it follows that
2 2 2
1 ~ 1 ~ 1 = A2 T
—E; -||—E = (21 - A% ||— E: - — 2M(1-A)—
o el Hm ol =@r=) | el - S5 -200-2)
A 2 2 ) )
z — - - -A- - .
- ((2 /\)(T +A- Pt ) - A =201 - )

Plugging in A = a — 7 yields
Sl
an

2 S (1-12)(a—-1)?

’ ~ (1-a)an

al—n E¢[w] E,[w] >0

2

when 0 < 7 < @ < 1. Hence, we have found a pseudodistribution v satisfying the constraints and of
lower norm, contradiction. Therefore it must be the case that 7 > «a. O

We will now use the above fact along with our spectral and Frobenius recovery guarantees to
derive properties of the rounded solutions. Our rounding prcedure depends on sampling multisets.

Notation 4.2 (Sampling from Pseudo-distribution). Let k € N and  be a pseudodistribution. Consider
the distribution D(k, C) on multisets S C [n] of size k chosen via the following process:

1. Pick S = (i1, 12, ...,1x) C [n] with probability ]Ei[njes w]-]/(an)k.

2. Output S.

Further define the conditional distribution D’ (k, (f) = D(k, Z) | x; = y;Vi €S.

Note that 3} g—¢ ]Ei [[Tjes wil = (an)¥ to show that this is a well defined probability distribution.

Lemma 4.10 (Analysis of Rounding, Lower-Bound). Assume the hypothesis of Theorem 4.2. Let C be
a pseudo-distribution of degree > O(s(0)) consistent with A minimizing H]EZ sz and fix 6 = a®/2C <
a?/2C. Then,

]P ~
S~D(2t+1,{)

> a?/4.

—_~ — *

Ez[ws]

162\ Ez[wsZ]
)

Proof. We know that for any S C [n], ]E[wSZ] = ]E[ZUSRRT] > 0. Next, from Lemma 4.4 we have that
A {07 Z0) (0 o) ! > B(w(X') - C8)(0 L)} .

Let’s multiply both sides by the SoS polynomial ws = w? and take pseudo-expectations with respect
to C. Then, by Fact 3.16 acting on ws, X, X’, we must have that for every v € RY,

(0 BlwsZ]o) (0T Lo) ! > 62 (]E[w(X’)ws] —Cs lE[ws]) (07E.0) .
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For any S such that ]E[w s]1>0,letsg = ]E[w sZ]/ ]E[ws]. Then, dividing through by ]E[ws] yields
that for every v € R?, we have
Elw(X")ws]
E[ws]

(0 E50) 0T L) > 62

- ca) (vTE0). (4.30)

Let us analyze the random variable as = (% - Cé) when S ~ D’(2t + 1, {) (note that the
S

only randomness here is over the choice of S, the pseudo-distribution Z is fixed).
Let G = {i € [n] : x; = y;} C [n] be the set of “good” indices. Then, noting that E[w(X’)**1] =
25=(ir,in,.., i1 G2+ [E[ws]] (by moving out 1(x; = y;)), we have:

1 ~  E[w(X)ws]
E = E ———— —-Cb
5~D'(2t+1,Z)[a5] E[w(X’)?+1] S€;+1 fos] E[ws]
-1 Z E[w(X")ws] -

]E[w(X/)ZHl] 3

w(X)Zws

[w(X )2t+1
B ]E[w(X )2t+2] ~
- ]E[w(X’)z”l]

We claim then that E[w(X")%*2] > E[w(X’)%*!]E[w(X’)] (which is true in real expectations by
monotonicity). Indeed, E[w(X’)] < E[w(X’)2*2]Y/(2+2) by application of Holder’s inequality
(Fact 32) with f = 1, g = w(X’) and E[w(X")2*!] < E[w(X')**2]@+D/2+2) by application of
Holder’s with f = w(X’) and g = 1. Multiplying these gives the result. Hence, we have
E fas])= L o5 Bluee)) - co s a? - Co > .
S~D/(t,%) E[w(X’)2+1] 2

where the second to last step is by Lemma 4.9.

Now, since as < 1 for every S, we may apply a Reverse Markov Bound to obtain that

1-E[as]  1-a2/2
P <a’?/4l= P [1- 1-a?/4 <
Iylas < at/af= B [1-as> <TI0 <102

24 /4 az
Z 1-a2ja = 4

Thus, with probability at least a?/4 over the choice of S ~ D’, it must hold that
E[wsw(X")]/E[ws] — C6 > a?/4. Under this event and letting 6 = 2C’ it follows by (4.30) that

and hence Ps.p/[as > a?/4] >

E:[wsX] 2
UT.E—U) (v L) > 62 a—(UTZ*U)S 2(UTZ v)°.
Ez[ws] 4 16C
Dividing through by (vT£,0)*™! (and the upcoming guarantee holds even if this is 0), we obtain
TIEE[WSZ] 8 T d L . 16C2E [wsX] )
Eofws] 0 2 16C7 v'x.v for every v € R?. Therefore, this implies that 25 —]E el > L. with
probability at least a?/4 over the choice of S ~ D'(t, ¢) and we are done. O
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Lemma 4.11 (Analysis of Rounding, Upper-Bound). Fix 6 = a®/2C. Let C be a pseudo-distribution of
degree > O(s(5)?) consistent with A minimizing ]E w|| . Let P be the projection matrix to the subspace

spanned by all the eigenvectors of L. with ezgenvalues at most O(a®*®). Then, with probability at least
1 — a?/10 over the choice of S ~ D'(2t + 1, 0), we have that for S5 = E[wsX]/E[ws]:

PP < O(a? ) + PL.P. (4.31)

Proof of Lemma 4.11. From Lemma 4.6, we have:

AlsG {W(X’)zt+1 IP(Z - 2Pl < O(s?)

8C!o! 4
(a ) g||51>):*5L’||ﬁ,g)}. (4.32)

2
Using that s(6) = O(1/6?), it follows that O(s?) (%;‘St) = O(C?)- 6% . a7, and using 6 =
a3/(2C) yields that this term is at most O(C*- a®~1°). The second term is at most O(1/6%)- || PL.P| |§p
using again that s(6) = O(1/62). Thus, altogether, we have:

A (st {w(X)Zf“nP(z L)P|E < O(a~ 16)+o( )||¢>290||2} (4.33)

Taking pseudo-expectations with respect to C yields:
Blo(x P 1P - 2Pl < 09 +0 (3 IPm.pi 4340

Expanding, using that C satisfies wg = ws and denoting once more G = {i € [n] | x; = y;} C [n]
as the “good” set yields:

2 0@ +0 (&) IPrel;
< .

1 ~
BwGor] Hel

S=(i1,i2,...,izr41)€G?1

E[wsZ]

Pl —=
E[ws]

P

*

: ]E[w(X/)ZHl]_

(4.35)

From Lemma 4.9 and an application of Holder’s, we know that E[w(X)2*1] > a**2. Thus, we
conclude that

— 2
1 — E[wsZ 1
— Elws] || | Eles=] z*) P| <O0@)+0 (m) IPL.PI3 -
]E[w(X’)Zt-H] S=(i],i2 ’’’’’ izt)EGZt ]E[wS] F a 6
(4.36)
Since P is the projection to the subspace where L. has eigenvalues smaller than O(a®~1668) =
O(a®%*8), the second term is O(a?~18). So altogether, the RHS above is O(a?~!8). Thus,
— 2
ﬁ E[ws] ||P Elws|Z z*) Pl < O@@*9). (4.37)
E[wX)*H o i, i imec? Elws] F
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Note that by definition of D’, we have that is exactly

2
E [H?’(is - Z*)‘PHP < O(a?18)

S5~D’(2t+1,0)

Hence, by Markov’s Inequality, it follows that

2

P [Hp(is - &)7’”2 < O(aZt_m)] >1-%L
S~D’(2t+1,8) F 10
For such an S, we must then have that
PP < O(a? ) + PL.P.
This completes the proof. m]

Putting Things Together We now put the upper and lower bounds above together to prove
Theorem 4.2. We will use the following simple bound:

Lemma 4.12 (Splitting on Projections). Let P be a projection matrix to a subspace of R?. Let A be any
d X d PSD matrix. Then, we have:

A Z2PAP +2(I - P)A(I - P).
Proof. For any vector v € R?, we have:

vV Av =0 (P +I-P)AP +1-P)v
=0 "PAPv+v (I - P)AI -=P)v + 20" PA( - P)v.

We now have using the Cauchy-Schwarz followed by the AM-GM inequality:

v TPA(l - P = v PAVPAY (I - P
< VoTPAPu\UT(I - P)A(I - P

vTPAPY + 0T (I - P)AI - P)o
5 :

<

O

Proof of Theorem 4.2. From the constraints A and that the fact that  is consistent with A along with
Fact 3.16, we must have that for every 2t + 1-tuple S,

E[wsX] < ]E[ws]% .

Thus,

~  E[wsT
o= [wsX]

8
— < — -
Elws] &
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Next, from Lemma 4.11, we know that with probability 1 — a?/10 over sampling S ~ D’(2t +1, 0)
we must have:
PEsP < PLP + O(a* ).

Thus, applying Lemma 4.12 and noting that (I — )? = I — P, we have that for such an S:
S 2t-20y; , 16
Ys X 2PL.P + O(a )+ ;(I -P).

Next, observe that (I — P)Z.(I = P) = O(a®*8)(I - P) since P is the subspace of all eigenvectors
of L. with eigenvalues < O(a®*8).

Note also that ., = PL.P +(I - P)L.(I-P) (for any vector v, v " (I - P)L,v = 0 by orthonormality
of eigenvectors and the fact that eigenvectors must lie in either # or I — P).

Thus, we must have that with probability at least 1 — a%/10 over the choice of S ~ D’(2t + 1, {):

1
61 +8

3 2t-20
£5 < 2PLP +0(@* ) +0 ( g

) - g(l —-P)(I-P)<0 (L) Y.+ O0@@* 0.

Next, from Lemma 4.10, we have that with probability at least a?/4 over the choice of S
conditioned on S satisfying x; = y; fori € S:

0(1/a®)Lg = %..
By a union bound, we obtain that with probability at least a2/10 over the choice of S ~ D’(2t +1, {):

1

-
L. 20(1/a®)ls = O(a6t+18

)T + O(a® 7281 . (4.38)

Finally, note that since ]E[w(X’)t] > a2, the chance that S satisfies x; = y; for every i € S (as in,
our draw from D is also from D’) is at least E[w(X’)!]/(a') > a'. Thus, together, we obtain that
with probability at least a'*2/10, the candidate O(1/a®)%s corresponding to the set S output by the
rounding algorithm satisfies (4.38). This completes the proof.

O

5 Subgaussian Restriction

In this section, we describe and analyze a subroutine that effectively allows us assume that the
corrupted sample Y, after a pruning step, itself has subgaussian moments with respect to its
covariance. To do so, we use a new definition of a good set as compared to the previous section.

Definition 5.1 (Well-behaved Set). For d € N, we say that a subset X € Q“ with mean . and
covariance L, is a (C, 9, t)-well behaved set if:

1. Small Mean: p.u <0.1%,.

2. Anticoncentration: X is (6, Cd)-anticoncentrated.
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3. Subgaussianity: For indeterminate v and all s < 2t,
s
o) {xlyzx<x,v>25 <(Co- (xlgx<x,v>2) }

With this definition in mind, we will prove the following main theorem:

Theorem 5.2 (Subgaussian Restriction). Fix1 > a > Oandd,n,t € N. Let T > 0. Let X be (C, 6, t)-well
behaved set and let Y be an arbitrary collection of n points in R such that |Y N X| > anand 1 3, y;yT =
(1+ 271 Then, for any 0 < T < O(a?*11) thereisa Y’ C Y with |X NY’| > max(a|Y’|, (a — a'%)n)

and satisfying
. ) 1(16Ct\' ;)
o() {y]E (v, ) < _( ) (y,]NEy,@ ,v)z) } :

Y T a2

Further, given o, Y as above, a Y’ C Y satisfying the above properties can be found in time (Bn)°") where B
is the bit complexity of entries of Y.

Our algorithm to establish the above theorem uses a subroutine that shows that if Y is not
subgaussian with the parameters above, then, we can find a subset of Y that is “outlier-heavy”, that
is, contains significantly bigger fraction of outliers than in all of Y. Removing these points can only
“increase” the density of the inliers so cannot hurt us.

We will use the following simple inequality that relates the tails of a distribution to its mean.

Lemma 5.3 (Expectation vs Tail). Let Z be a non-negative real-valued random variable. Then,

E[Z] < + +/ P[Z > L]dL.
2 Jip

Proof. E[Z] = [

1/2 00 )
P[Z > LldL= [ P[Z > LldL+ [ PIZ > LldL <1/2+ [, P[Z > LldL. O

We will use the above bound to show that if Y is not certifiably subgaussian, then, the outliers
must make an outsized contribution to one of a few natural sections of the tail of Y.

Lemma 5.4 (Outliers Must Dominate Some Portion of Tail). Fix 1 > a > 0and d,n,t € N. Let T > 0
and X be (C, 0, t)-well behaved set.

Let Y be an arbitrary collection of n points in R? such that |Y N X| > a'n for ' > a/2 and
LNyl = (1271 Suppose there is a pseudo-distribution C of degree > 4t over d-dimensional
vector-valued indeterminate v such that ]EZ [Ey~y (v, y)*] > T for T = 1(16Ct/a®)!. Then, thereisa L > 0

such that P,y [E¢[(v, yY4] > L] > T/AL. In contrast, for every L > 0, Py x[Ez[(x, vy*] > L] < tT?/L.

Proof. Let’s prove the first claim. Note that I' > 1 and suppose for the sake of contradiction that for
every L > 0, P,y[Ez[(v, y)*] > L] < T/4AL. Observe that by Cauchy-Schwarz inequality for pseudo-

~ — _ 2
distributions and the fact that C has degree > 4f, we must have that ]EZ[(ZJ, yyH] > (]EZKU' y)”]) .
Thus, whenever ]Ez[(v, »H > L, ]Ez[(v, yyH] > L2
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Applying Lemma 5.3 to the random variable ]Ez[(v, y)?'] as y is chosen uniformly at random
from Y (notice the randomness here is simply y being chosen uniformly from Y, we have:

E By =172+ [ | PIE@ )] > Lt

<1/2+ /1: JP[]EZ[@,y)“] > [?]dL

< 1/2+/ LdL <1/2+T/2<T,
12 4L?
since I' > 1. This is a contradiction and proves the first claim.

Next, let £, = 2 "' | x;x]. From the argument in Lemma 4.8, we have that &, < %I .

By C-certifiable 4¢-subgaussianity of X and the fact that C is a pseudo-distribution of degree
> 4t, we must have that ]EZ[ExNX[(x,U)4t]] < (2Ct)% (Eyx(x, U)Z)Zt = 2CH*(5)* = (I)%. By
Markov’s inequality, PxNX[IEZ[(x, Y] > L] < 7°T2/L.

m]

We can now describe the subgaussian restriction algorithm.

Algorithm 5.5 (Subgaussian Restriction Algorithm).
Given: A setof points Y = {y1,y2,...,Yn} C Q%and a,7 > 0.

Output: A subset Y’ C Y that is certifiably subgaussian:

3 {yg,w,w” <158 (B o] } .

T
Operation: Initialize Y’ = Y. While true, do:

1. Isotropize: By a linear transformation of all y € Y’, ensure that E,.ys yy' =
(1+2°9].

2. Subgaussianity Check: Find a degree 4t pseudo-distribution { over d-
dimensional vector-valued indeterminate v satisfying ||v||§ = 1 and maximizing
Ey-y: []Eg[(v, y)?]]. If the objective value is < T, halt and return Y”.

3. Find Outlier-Heavy Level Set: If not, by binary search, find L such that
Py v/ [Ez[(v, y)*] > L] > I'/AL. Such an L is guaranteed to exist by Lemma 5.4. Let
R be the set of all such pointsin Y.

4. Prune: SetY’ =Y\ R. Go tostep 1.

Proof of Theorem 5.2. Starting with Y’ =Y, Algorithm 5.5 repeatedly (approximately) isotropizes Y’
and whenever Y’ does not satisfy the desired subgaussianity condition, it finds an “outlier-heavy”
subset of Y’ to prune away.
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Let’s analyze this algorithm. We will prove the following two facts about the run of the algorithm
to analyze it.

1. In each iteration either we halt and return or remove at least one point from Y’. This
immediately implies that the algorithm terminates in  iterations and thus, in time (Bn)°®*)
(where B is the bit complexity of entries of Y).

2. Let R C Y’ be the subset of points removed in any iteration. Then, at most a'’|R| of the points
belong to X N'Y. Notice that this immediately implies that the total number of “inliers” (i.e.
points in X NY) removed are at most a''n.

We will prove both the claims by induction over the iterations of the algorithm. Consider
any iteration starting with Y’. Let |[X N Y’| = a’. Then, by inductive assumption, we know that
a’ > (o« — a'%) > a/2. By an argument similar to the one in the proof of Lemma 4.8, we can
infer that (after the isotropic linear transformation), the transformed X < %I . If Y’ does not pass
the subgaussianity check, then, by duality of pseudo-distributions and SoS proofs, we can find
a pseudo-distribution  on v such that Ey -y ]Ez[(l), y’)?] > T. Thus, by Lemma 5.4, the binary

search to find L for an outlier-dense level set must succeed. So we must remove at least one point
2

from Y’ (proving (1)). We know then that the fraction of R contained in X N'Y”’ is at most ﬁ

8L
where we used that |Y’| > 5 - n. Rearranging this yields that we need 162525? < a'¥ implying that

we can take T = O(a?*11) to finish (2). This completes the proof.

O

6 Splitting via Paley-Zygmund Anti-Concentration

In this section, we describe and analyze a subroutine that takes input a corrupted sample Y and
prunes away a constant fraction of Y. Crucially, our splitting algorithm requires only a mild
anti-concentration property that can be inferred from only moment upper bounds. This is in contrast
to strong (and certifiable) anticoncentration needed in our coarse spectral recovery algorithm.

Our algorithm below first performs a simple check on a candidate obtained from coarse spectral
recovery step. If a candidate passes the check, we obtain a certificate that a coarse spectral estimate
in fact must in fact be a multiplicative spectral estimate. If not, our algorithm efficiently splits Y
into two approximately balanced parts such that the most of X NY is included on one side. Thus,
we either “finish” by finding a good candidate covariance or can recurse and make progress be
decreasing the fraction of the sample that is corrupted.

Our algorithm itself is simple:

Algorithm 6.1 (Spectral Splitting). 1. Input: Y C R¥, a vector v € R¥.

2. Operation: Return Y; — the set of all points y; such that (y;, v)? > 0.5.

We first prove that the splitting algorithm always makes progress.
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Lemma 6.2 (Splitting Algorithm: Progress). Let Y be a set of points in R? such that 1) 2 3, yiy| = (1 +
t

27 D)Iand2) L 37 (yi, 0)* <A 0|3 for A = 1 (12,9) andallv € R LetY> = {y € Y | {y,v)? > 1/2}.

Then, |Y>| > O(a'9)|Y].

Next, we prove that if Y intersects with the original uncorrupted sample X appreciably, then the
splitting algorithms prunes away only a small fraction of points from Y N X.

Lemma 6.3 (Splitting Algorithm: Correctness). Suppose that X is a set of n points satisfying 2t-certifiable
C-subgaussianity: L Y7 (x;,v)? < (Ct)* (4 ?zl(xl-,wz)tfort = O(1/a). For some a, T > 0, suppose
Y is a set of n points in R? satisfying |Y N X| > a’'n > an /2. Let Y. be a PSD matrix such that £, < . and
suppose there is a unit vector v such that 0TI < 1 for 1 < O(a®). Then, there is a poly(n) time algorithm
to split Y into Yy U Yz such that | X N Y| > (o’ = O(a'?)|Y].

We will use the following basic consequence of the Paley-Zygmund anti-concentration inequality:

Lemma 6.4 (Mild Anti-Concentration via Paley-Zygmund). Let Y be a set of n points in R such that
Lyiyiy] = (1 £27)1. Suppose further that + 37, (y;,0)* < A l0ll3 for every v € RY. Then, for any
v € R, the fraction of y;s such that |(y;, v)| > L is at least 7.

Proof. Observe that the contribution of y;s such that |[(y;, v)| < % to % Yilyi, v)? < i. Thus, by
Cauchy-Schwarz inequality, we have:

3 1ol < 5 D)) = 1/2) < %Z@i,vw > i > 1/2)

n
i=1
2 1
< VAol 4|~

n

1([Kyi, o) > l/2))-

i=1
Rearranging yields that:
1\ 1
= 2 w0 > 1/2) > o
i=1
o

Proof of Lemma 6.2. Let us analyze Y>. By Holder’s inequality, = 3" (y;, v)* < (L 27 (ys, U)Zt)Z/t <

1

2
ﬁ (12?) ||U||§. Thus, by Lemma 6.4, we must have that at least a O(a*)t

satisfy (y;,v)? > % This fraction, for t = O(1/a) and 7 = O(a?*1!) is at least O(a'?). Thus,
[Y2] = O(a'9)]Y| as desired. O

2/t

/t? fraction of y;s

Proof of Lemma 6.3. Observe thatv"L,v < 0¥ < 1. Thus, using C-subgaussianity of 4th moments
of X we have that

]EX[(xi,v)4] < (2C)1 (v L.0)* < 4C*2.
Xi~
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So, if a x fraction of x; had (x;,v)? > % we would have that

1\2
(E) Kk < 4C%n?

which upon rearranging yields that the fraction of x;s such that (x;, v)? > 1/2 is at most 16C?n>%.

Thus, Y; contains at least &’ — O(n?) = a’ — O(a!?) fraction of the points in Y as desired. O

7 List-Decodable Covariance Estimation with Spectral Accuracy

In this section, we put the three components from the previous sections together to obtain an
algorithm for list-decodable covariance estimation with multiplicative spectral recovery guarantee.

Algorithm 7.1 (List-Decodable Covariance Estimation with Spectral Recovery Guarantee).
Given: Y = {y1,y2,...,¥n} CQ?suchthat1 37" v,y = (127 and a > 0.
Output: A list £ of positive semidefinite matrices in Q¥*¢.

Operation: Maintain a list £’ of candidates with “witness subsets” of Y. Initialize £’ with
(Y, 1,0). During the course of the algorithm, some candidates in £’ will become “final”.

1. Sett; = O(1/a), t, = 20,and 7 = O(a?'*!1). Forg = 0,1, ..., do:

2. Process g-th Generation Candidates: While there is (Y7, (), g) in £’ that is not
marked final, remove (Y, ﬁ(i), g) from L’ and run the following steps:

(a) Subgaussian Restriction: Run the Subgaussian Restriction Algorithm (Algo-
rithm 5.5) to find Y’ C Y satisfying

t
% {]Ey,vy/<y,7)>2t < % (@) (]Ey~y/(y,v)2)t} fort = t; and © = T above.

a?

(b) Isotropization: By a linear transform, ensure that Y’ satisfies E, .y y'y’" = I.

(c) Coarse Spectral Recovery: Apply Coarse Spectral Recovery Algorithm (Al-
gorithm 4.3) to input Y’ with t = f;, fraction of inliers set to a/2 and failure
probability v = «'°/100. If the algorithm outputs infeasible, go back to the
beginning of the loop. Otherwise:

(d) Check Certificate of Spectral Approximation: For each of the candidates ;s
produced, check if the minimum eigenvalue of 5., is at least 1 for = 2a0. If yes,
add ()ii, Y’, g +1) to L after undoing the isotropic transformation from Step (b)
above and label the candidate “final”.

(e) Apply Spectral Splitting: For each candidate ¥; that is not labeled final, find an
eigenvector v of &; with eigenvalue < 1 and apply Spectral Splitting Algorithm
(Algorithm 6.1) with respect to 3 to Y’ to obtain Y”. If |Y”| < an/2, reject the
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candidate and continue to loop. Otherwise, add ()ii, Y”, g +1) to the list L after
undoing the isotropic linear transformation on both Y/ and %, from Step 2 above.

3. When the for loop exits, add all the candidate covariances 3. from £’ to L.

We first explain the idea of the algorithm and the analysis. We start with the input corrupted
sample Y along with the 0-th generation candidate I and apply the subgaussian restriction procedure.
Intuitively, the goal of the algorithm is to make progress on getting a good candidate covariance in
the list as the generations g progress. Theorem 5.2 ensures that in this process, we only increase the
density of inliers (i.e. points intersecting with the original good set of points X) and that the number
of inliers is at least (& — @!%)n.. We then make the resulting Y approximately isotropic and apply the
coarse spectral recovery algorithm to obtain a list of O(1/ a?) size that is guaranteed to contain an 5
suchthatX, < % < poly(1/a)+a®l (where we have set 1 = a®). If all eigenvalues of every candidate
ii are at least 2a®, then, the coarse guarantee implies a multiplicative spectral approximation (see
Lemma 7.7) as we’d like and so we are done (our algorithm labels such candidates “final”).

Otherwise, there must be a 3; that has an eigenvalue smaller than 2a®. In this case, because Y
satisfies certifiable subgaussianity (as a result of our subgaussian restriction subroutine), spectral
splitting can prune out > O(a!?) fraction of points from Y while removing at most O(a!?)n points
from X N'Y. We call the pruned set Y’ a “witness subset” for ;. If £; happened to be a “candidate
good estimate” for the unknown covariance, then, the witness subset is sufficient to work with from
this point on in the algorithm. Of course we do not know whether £; is the “right” candidate and
in general, the witness subset is different for different candidates )3 i. Thus, our algorithm maintains
the the current witness subset for each potential candidate ¥; in our list. In the subsequent runs of
the algorithm, we repeat the algorithm on witness subset for each candidate that is not marked
final. At any point of time, each member (£(), Y?) in the list £’ is obtained by a sequence of
subgaussian-restrictions, coarse-spectral-recovery and spectral splitting applied to the initial input
set Y. And each time a candidate is processed, we must decrease the size of its witness set by at at
least 1 — O(a'?) factor while increasing the list size by O(1/a??). Since we know that for the “correct
candidate”, we never throw away more than an/2 inliers, if the size of a witness set drops below
an /2, we can comfortably reject the corresponding candidate. Thus the number of generations in
the algorithm cannot be more than O(1/a'?) giving us the bound on the list-size.

We now formally argue the guarantees of the algorithm. The following theorem summarizes
the guarantees of Algorithm 7.1.

Theorem 7.2. Let 1 > a > 0. Suppose X = {x1,x2,...,%,} C Qisa good set (Definition 4.1) of n
points satisfying By.x xxT = L, such that |Y N X| > an. Let Y C Q" be a set of n points such that
Ly yiy = 1. Then, Algorithm 7.1 on input Y, 1) runs in time (Bn/a)0W/a™) 2) outputs a list L of size
aOW/a®) with the guarantee that with probability at least 0.99 only over the randomness of the algorithm, 3)
L contains a % satisfying X, < S <0(1/at™)x,.

We prove the theorem in the following sequence of lemmas.
The first set of claims below analyze the size of the list £ output by the algorithm.

Lemma 7.3 (Size of witness sets in g-th generation). Let (£;,Y", g) be a g-th generation candidate that
is not marked final. Then, |Y| < (1 - O(a'))7n.
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Proof. We prove this by induction on the generation iterator g. For the base case, observe that at the
beginning, g = 0 and [YO| = |Y| = n. Next, for the inductive case, observe that a g-th generation
candidate for g > 1 is obtained by taking a 1) g — 1-th generation candidate (i, YD), 2) applying
subgaussian restriction to Y, applying coarse-spectral recovery to obtain a list of g-th generation
candidates by applying Algorithm 4.3 to input Y?). By Theorem 5.2, YV satisfies

t t
oo s on)

~y () a2 y~Y0)

If a g-th generation candidate covariance )3 j is not marked final, then, there must be an unit length
eigenvector v of i]- with an eigenvalue of at most 7 = a® E, yoly, v)2. Thus, the assumptions of
Lemma 6.2 are met and the splitting algo must prune away at least O(a'?)|Y?)| points from Y
before producing a g-th generation candidate (ij, Y, 7). This completes the proof. m]

Lemma 7.4 (Bounding the Number of Generations). The maximum value of g during the run of the
algorithm is O(log 1/a)/a!.

Proof. From Lemma 7.3, the size of the witness set drops as (1 — O(a'?))? in the g-th generation. If
g > O(log1/a)/a', then, the above size is < an /2 in which case, Step 2(e) of the algorithm exits
the loop disallowing further generations. This completes the proof. m|

As an immediate corollary, we obtain a bound on the size of the list obtained by the algorithm
above:

Lemma 7.5 (List Size Bound). The size of the list L of covariances output by the algorithm is at most
0(1/al9)
! .

Proof. Every candidate in the list £ corresponds to a candidate from £’ that the algorithm marks
“final”. Each candidate in £’ marked final is at most of O(log 1/a)/a!? generation from Lemma 7.4.
Each g-th generation candidate in £’ produces at most O(1/a?°) g + 1-th generation candidates
from the guarantees of Theorem 4.2. This immediately yields the upper bound on the list size as
desired. O

Next, we bound the running time of the algorithm.
Lemma 7.6 (Running Time). The running time of Algorithm 7.1 is (Bn/a)01/ a'?),
Proof. Given our parameters, the running time of each iteration is dominated by the running time of
coarse spectral recovery. The number of iterations is upper bounded by a=0(/ a'l) by an argument
similar to the one bounding the size of the list output by the algorithm. This gives the final running
time bound as desired. m]

Finally, we prove the correctness — that one of the candidates in the list gives a multiplicative
approximation to the unknown covariance. Our proof will rely on the following simple observation
that we will use to infer that if all eigenvalues of every candidate ¥ are not too small relative to its
witness set then the set of candidates must contain a multiplicative spectral approximation to the
unknown covariance X..
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Lemma 7.7 (Certificates of Spectral Recovery). Suppose ) satisfies L, < <0 (ﬁ) L. +nl. Further,

suppose that for all unit vectors v, 0¥ > 2n. Then,

~ 1
z*gzgo(m)z*.

Proof. Let v be a unit vector such that A = 0TI > 21. Then, we have:

v Xo - ( A

150
TR S m)“(l/“ )

This completes the proof. m]

Lemma 7.8 (Correctness). Let 1 > a > 0. Suppose X = {x1,x2,...,Xx,} C Q%isa good set of n points
satisfying Ex.x xxT = L. such that |Y N X| > an. Let Y C Q? be aset of n points such that 1 37, viy! =1L
Then, Algorithm 7.1 on input Y outputs a list of a~OW/a™) covariance matrices such that there is a candidate
5. in the list satisfying:

Y.<%<0 (L) .. (7.1)

150

Proof. Let us call a g + 1-th generation candidate (ij,Y(f), g) good if it satisfies 1) L, < ¥; <
O(1/a"™)%, + O(@™®) E, yo yy™,2) YD N X| > (a = g - O(a'))n, 3) Y] < (1 - O(a'))n. Here
(ﬁi, y®, g) is the g-th generation candidate processing of which generated ﬁj as a candidate in the
g-th iteration of the while loop in Algorithm 7.1.

We will prove the following by induction on g: suppose there is a g-th generation candidate
that is good and not marked final. Then, there is a g + 1th generation candidate that is good.

We first observe that this claim is enough to complete the proof. To see why, observe that
the number of generations g is no more than O(log1/a)/a'’. So |[Y® N X| > (a/2)n for all ¢
encountered in the run of the algorithm. Now consider a good candidate (£;, Y, 1) in generation
g =1 and let’s track the sequence of good candidates guaranteed by the inductive claim above
for each of the generations g > 1 starting with (£:,Y®,1). Let g. be the largest g such that the
good candidate in generation g is not marked final. Since g. < O(1/a) and v = a%/100 and the
assumptions on such Y@ for Algorithm 4.3 succeeding are met, each run of of Algorithm 4.3 along
such a path succeed with probability at least 1 — v. By a union bound, and that g. < O(1/a'?), all
the runs succeed with probability at least 0.99. Let’s condition on this event. Then, in iteration
7., starting with such a good candidate, the coarse spectral recovery algorithm must produce a
generation g. + 1 candidate that is marked final. In which case, we must have that all eigenvalues
of flj are at least 1 = O(a®) relative to E, i yyT. Since |Y") N X| > a/2, by Lemma 7.7, we can
conclude that ij < 0(1/a™)x,. This completes the proof modulo the inductive claim.

Let us now prove the inductive claim to finish the proof.

For the base case, observe that the first iteration runs with the only 0-th generation candidate
in the list £/, namely, (%I ,Y,0)and |[Y N X| > an. Let us now analyze the steps of the algorithm
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when Y = Y is processed in g = 1st iteration. In the first (subgaussian restriction) step, we apply
Algorithm 5.2 which, from Lemma 5.2, allows us to obtain a Y’ C Y such that Y’ satisfies certifiable
subgaussianity and Y’ satisfies |[Y’ N X| > (a — @'%)n. Thus, our coarse spectral recovery algorithm
(Algorithm 4.3) gets input a (1 — a’) corrupted sample for a’ > a — a'? fraction of Y and as a result
of Theorem 4.2, with probability at least 1 — v, returns a list of candidates one of which, say fl]-,
satisfies the first conclusion of the lemma. If this candidate is not marked final, then, by Lemma 6.3,
we know that (ﬁj, Y) is added to £’ with Y satisfying (2) and (3) as desired. The analysis of the
inductive case is entirely analogous. m]

8 List-Decodable Mean and Covariance Estimation

In this section, we prove that given a good spectral estimate of the covariance (i.e., guaranteed
by Theorem 7.2) and an (1 — a)-corruption of a good set of points X, we can obtain a list of
O(1/aP°y(1/9)_candidates that contains an estimate of the mean that is accurate within poly(1/a)-
Mahalanobis distance and covariance that is accurate in (stronger) relative Frobenius distance. The
stronger guarantee immediately implies our main theorem on list-decoding mean and covariance
for Gaussian distributions with a total variation error guarantee.

We first start by describing the strong relative Frobenius error guarantee for covariance estimation.

8.1 Covariance Recovery in Relative Frobenius Error

Our algorithm builds on ideas in the prior work [BK21] on list-decodable subspace recovery (which
can be thought of as the special case where the unknown covariance is allowed to have eigenvalues
that are either 0 or 1).

Our notion of good set for Frobenius error guarantee (under additional spectral closeness
hypothesis) is significantly weaker:

Definition 8.1 (Good set for relative Frobenius Recovery for known spectral approximation). We
say that a subset X C R%is a C-good with mean E,.x x = i, and 2nd moment E, x xxT = X,
if 1) popr] < 0.1Exx(x — p)(x — p.) T and 2) X has O(1)-certifiably C-hypercontractive degree 2
polynomials.

Theorem 8.2 (List-decoding covariances with relative Frobenius error guarantee). There is an
algorithm that takes input Y C R? of size n, runs in time n®Y) and outputs a list of PSD matrices
$1,5,..., 5 for k = O(1/a*) with the following guarantees. Let X be a C-good set of n points
in R? such that By.x xxT = %, satisfying [ < L. = By.xxxT < O(1/a™)I. Suppose Y be an
(1 — a)-corruption of X, i.e., Y C R? of size n satisfying |Y N X| = an. Then, there is an i such that

—~ 2
‘z;l/z(zi - z*)z:”zHF < O(1/a™),

Algorithm  Our algorithm solves the SoS relaxation of the constraints A] U A, U Az U Ay defined
in Section 4 — we have dropped the anti-concentration constraints As and will modify A; to replace
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the third constraint with (X —I) = VVT and (O(ﬁ)l —Y) = ZZ" for matrix valued indeterminates
V and Z that encode the additional information that I < X < O(1/a'®)I.

The proof of Lemma 4.8 extends to show that setting X’ = X and w; to be the indicator of i such
that y; = x; along with appropriate values to U, V, Z gives a feasible solution to the polynomial
constraints A U Az U Az U Ay.

Our full algorithm is as follows:

1. Find a pseudo-distribution Z of degree O(1) consistent with A = ﬂi U Ay U A3 U Ay and
- 2
minimizing H]Ez[w]H2
2. Rounding: Repeat O(1/a*) times:
(a) choose (i;, i2) with probability proportional to ]EZ [wi,wi,].
(b) Output Ez[w;,w;,Z]/E¢[w;,w;,].

The main claim in our analysis is the following lemma (analogous to Lemma 4.6).

Lemma 8.3 (Deriving Frobenius Error Bounds within Low-Degree SoS).

2
AlsE {w(x')2 ‘ sV (s - z*)z:”zHF <o /04300)} . 8.1)

Proof. From the conclusion of Lemma 4.7 (with h = 1):

4 4
As I% {w(X’)4 <z:1/2(z — Tz, Q> = w(X)* (z -x., 2:1/2Q211/2>

< O()w(X)* (||Q||;£ + HRZZ”ZQZZ”ZR’C)} . (82)

For the second term, we start from A using that I < X. and thus ‘ Y. v 2”2 < 1, we must have:

Alog {w(x')Z(szz”ZRTRz:l/zv)Z = w(X)P(TL e oy

< O(l/aéoo)w(X’)2’

e ”%Hj < O(1/a™)w(X')? ||v||§}. (8.3)

Using Contraction within SoS (Fact 3.15) with f = w(X")%, A = R, t = 2, and A = O(1/a%")

twice:
Rw,Q

A O(h)

{w(X’)4 “RZZ”ZQZZ”ZR’C < O(1/a%) ||Q||‘;} (8.4)

Plugging back the estimate from (4.21) in (4.18) gives:
w,Q , - - 4
As 50 {w(x -, ) < 0a1/at™) IIQII%} . (8.5)

45



1/2

Substituting Q = X, /(X - Z,)Z, 2 and multiplying by the SoS polynomial w(X’)* yields:

L, ’
As o {w(X )

We now apply Lemma 3.13 (Cancellation within SoS) with A = w(X’)* ||Z - Z*llé to obtain that:

8
r 2 (x - z*)zzl/ZHF <w(X)*-0(1/a

4
w2 (s - 2*)2:1/2HF} . (86)

Als {w(X )16 H(z‘”zz IR 1/2H < O(l/a2400)} (8.7)

We finally apply Cancellation with Constant RHS (Lemma 3.12) to conclude that:
Als { X2z -x )2‘1/2H < O(1/a300)} (8.8)
o

% < O(1/a™)I. Next, let G C [n] be
Wiy Wiy

the set of indices i such that x; = y; (unknown to the algorithm). Taking pseudo-expectations with
respect to C of the conclusion of Lemma 8.3, we obtain that:

Z ]Ei [wil Wi,

i1,i2€G

Proof. Observe that by Lemma 3.16, we know that I <

2
sy - z*)z:WHF < 0(1/a%)].

Dividing both sides by ]E[w(X’)z], using that }; ;¢ ]E[wilwiz] = ]E[w(X')z] and the conclusion
of Lemma 4.9 along with Cauchy-Schwarz inequality for pseudo-distributions that yields that
]E[w(X’)Z] [w(X )]? > a*, we obtain:

2
_1/2(“25[%1301'22] oyl

<O(1/a).
]Ez [wi1 wiz]

F

Z ]E [wi, wi, |
'(/U(X )2 i1, 12€G

The left hand side can now be interpreted as expectation over the choice of i1, i, with probability

proportional to Ez[w;,w;, | conditioned on i1, i, € G. By Markov’s inequality, with probability at

least 0.99, a draw from this distribution of (i1, i) must satisfy:

~ 2
E:[wiw;,X]
Ry (S V)
]Ec[wilwiz]

20 < 0(1/a®.

F

Further, since E[w(X’)] > a2, the probablhty that (i1, i) chosen with probability proportional
to E- [wllwlz] satisfy that 71, 12 € G is at least a*. Thus, altogether, the chance that a random draw

[1112]

of (i1, i2) yields an estimate satisfying the relative Frobenius error bound above is at

E: lwigwi, |
least O(a*). Thus, repeating the sampling process O(1/a*) times is sufficient to ensure that the list
contains a candidate close in relative Frobenius distance as desired with probability at least 0.99.

O
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8.2 Mean Estimation Given Spectral Approximation to Covariance

Given a multiplicative spectral approximation to the covariance, one can apply algorithms from prior
works (or a significantly simpler variant of our list-decoding algorithm for covariance estimation
above) to obtain good estimates of the mean. We only note the consequence here.

Technically speaking, Theorem 1.2 in [KS17a] works for the weaker model of list-decodable
estimation where Y must contain as a subset an iid. points from a certifiably subgaussian
distribution D. For our stronger model, we observe that any subst of size an of a good set
(Definition 4.1) satisfies O(C/a)-certifiable subgaussianity. To do this, we only need the following
basic observation (applied to centered version of a good set):

Lemma 8.4. Suppose X C Q7 is a set of n points with mean 0 such that P, x[|{(x,v)| <
a/100 By-x{x,v)?] < a/2. Let Z C X be any subset of X of size an. Then, E,ezzz7 >
(a/200) Ey-x xx 7.

Proof. Fix v € R?. Apply the anti-concentration of the set X to conclude that at most an/2
points in X can satisfy {x,v)?> < a/100 Ey.x{x,v)?. Thus, at least an/2 points in Z satisfy
(x,0)? > a/100 E,.x(x,v)? and as aresult, E, .7 zzT > a/100 E,.x xx". O

The above lemma immediately yields that for any subset Z C X of size at least an, whenever X
is 2t-certifiably C-subgaussian, Z itself is 2f-certifiably O(C/a)-subgaussian:

t t
l? {Z]?Z<Z,Z)>2t < %xLEX(x,v)Zt < %(Ct)t (X]FX(x,v)2) < §(200Ct/a)t (Z]?Z(z,v)z) } .

We can thus apply Theorem 1.2 in [KS17a] (at the cost of loss of an additional factor of O(1/a)
in the error).

Theorem 8.5 (List-decoding mean estimation given spectral approximation to covariance, Theorem
1.2 in [KS17al). There is an algorithm that takes input Y C RY of size n, runs in time n°1°801/) and
outputs a list of d-dimensional vectors [i1,[lo, ..., fix for k = O(1/a) with the following guarantees.
Let X be a C-good set of n points in R such that By.x x = p. and By.x xxT = L. satisfying
I <X, =EByoxxxT < O(1/a'™). SupposeY bean (1—a)-corruptionof X, i.e., Y C R? of size n satisfying
|Y N X| = an. Then, there is an i such that for every u € RY, i — e, u”i < O(log(1/a)/a'®?)uT L.u?.

8.3 Proof of Main Theorem

We now have all the components to prove Theorem 1.6.

Theorem 8.6 (Main Theorem). Fix a > 0. For any B, there is a (Bn)é(l/ ) time algorithm that takes
input a collection of n points Y C Q% with entries of bit-complexity at most poly(Bd) and either “rejects” or
outputs a list of parameters {(fi;, £:)}i<k for k = a~PYA/) with the following guarantee: suppose that for
some absolute constant C > 0, D is a distribution on R? with mean U and covariance X, with rational entries
of bit complexity < B that is 1) s(8)-certifiably (C, 8)-anti-concentrated for 6 = O(a3), s(6) = O(1/62) and
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2) has 2t-certifiable C-hypercontractive degree 2 polynomials for t > O(1/a). Suppose Y is a poly(d)-bit
rational truncation of an e-corrupted sample from D of size n > ny = d00/a%),

Then, with probability at least 0.99 over the draw of X and over the random choices of the algorithm, the
algorithm does not reject and outputs a list of parameters of size k such that there exists an i such that for
every u € RY:

(fii - e, 1) < Olog(1/@)/a")uTZou,
Y. <% <0(01/a™®?)zx,,

and,

Combined with the characterization of total variation distance in terms of the three parameter
distance bounds (Proposition A.1 in [BK20b]), we immediately obtain Theorem 1.6.

w28 - z*)zi/ZHF <O(1/a®™).

Corollary 8.7 (List-decoding Gaussian with total variation error guarantee). There is a nP°Y(1/®) time
algorithm that takes input a (1 — a)-corrupted sample of size n > do " from a d-dimensional Gaussian
distribution with mean . and covariance ¥.. and outputs a list of 200/ "‘o(l))—pammeters such that there is a
(0, L) in the list satisfying:

drv(N(fL, £), N (i, £.) < 1 - exp(=0(1/a™™)).

Proof of Theorem 8.6. Let X be an i.i.d. sample from D and let X is a truncation of D to poly(Bd)
bits. If X, > 27 POYBD[ then, Fact 3.23 shows that X has small mean (i.e. E,_gx = [i such that
fit < 01E, g(x — fi)(x — fi)7), covariance in [0.99,1.01] - X, satisfies the properties of good set
required in Definition 4.1.

Our algorithm works in three steps.

In the first step, we list-decode covariances with spectral guarantee using the Algorithm from
Theorem 7.2. Observe that Theorem 7.2 requires that input sample be from a small-mean good set X.
To meet these guarantees, we work with the “pairwise difference” version of Y.

Assume 7 is even, randomly permute the points in Y (and assume, for the sake of simplicity
that i1, y2, . .., Yn is the permuted version) and let Y’ be the set of 1/2 points m\;ﬁyz i 3\7;4, - ”‘\Ey” )
Then, observe that with probability at least 1 — 1/n over the choice of the random permutation,
there are at least azn/Z pairs (2i — 1,2i) such that y;_1, y2; are both in the intersection Y N X.
Without loss of generality, let’s say that y2;-1 = x2i-1 and y2; = x2;. Thus, Y’ can be thought of
as an (1 — a?/2)-corruption of randomly paired and lz-scaled differences, say, X from X. Thus,
Theorem 7.2 guarantees that with probability at least 0.99, there is an element in the list of size
a~PolY(1/®) output by it that contains a PSD matrix 5 that satisfies Z, < £ < O(1/a')L,.

In the 2nd step, we take a 1908, for each element 3; of the list obtained in the first step
and transform Y’ by applying the linear transformation y; — fll._l/ 2. When applied to X, this
transformation ensures that the covariance of X is sandwiched (in Lowner order) between I and

O(1/a™). Further, since X satisfies the properties of a good set in Definition 4.1 and certifiable
hypercontractivity of degree 2 polynomials is invariant under linear transformation, the linearly
transformed X continues to satisfy the requirements of Definition 8.1. Running the algorithm from
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Theorem 8.2 for each possible candidate 5; from the list obtained in the first step enlarges the list by
a factor of O(1/a*) and when starting with a good candidate 3 from the first step, Theorem 8.2
guarantees with probability at least 0.99, that there is a candidate by j in the enlarged list satisfying

R 2
‘ 28y IHF < O(1/a®™).

do not need Frobenius guarantees for mean estimation) and transform Y’ by applying the linear
transformation y; — ii_l/ 2
above, the assumptions of Fact 8.5 are met and thus, we obtain an list with estimates of means of
size O(1/a) factor larger than the one in Step 1 guaranteed with probability at least 0.99 to contain
a candidate f}; satisfying {fi; — p., u) < O(log(1/a)/a'®?)\uTZ.u for every u € R%.

All 3 steps succeed with probability at least 0.9 by a union bound. Returning every possible
paired combination of the covariances from Step 2 and means from step 1 then satisfies the

requirements of the theorem with a list of size opoly(1/a)

In the final step, we take a 1505, for each element 3; of the list obtained in the first step (we

and observe that by the same argument as in the analysis of the 2nd step

O

9 Applications

In this section, we derive improved algorithms for list-decodable linear regression, subspace
recovery and clustering of non-spherical mixtures as immediate consequences of our algorithm for
list-decodable covariance estimation.

9.1 Linear Regression

For list-decodable linear regression, given a accuracy parameter 7, the best known prior
works [KKK19, RY19] obtain a list containing an n-accurate estimate of the unknown vector
with a running time of 701/ ) and sample complexity 41/ @a)") An error reduction technique
from [BK21] allows improving both the exponents to O(log 1/1)/a*. But all these bounds depend
exponentially on the target accuracy 1. As a result whenever  — 0 as d — oo, the sample
complexity and the running time are both super-polynomial in the underlying dimension d.

Our list-decodable covariance estimation algorithm allows obtaining the first exact algo-
rithm for list-decodable linear regression. As a consequence, we can obtain an error of ) time
n00/a’) poly log(1/n) and sample complexity d00/a%) In particular, the sample complexity does
not depend on the target accuracy and the running time scales polylogarithmically in 1/1. As
a result, our algorithm allows obtaining exponentially small error in the underlying dimension
d in polynomial time. The size of the list recovered, while still an absolute constant depending
only on a, is larger and grows as a~P°Y(/®)_ Our algorithm works without knowing (any upper
bound on) the length of the unknown vector {. and extends easily to the setting of unknown
arbitrary non-spherical covariance (if we simply apply our list-decodable covariance estimation as a
preprocessing step). It also succeeds in the strong contamination model for list-decodable learning
as opposed to the additive model studied in the prior works.
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Corollary 9.1. For every 1] > 0, there is an algorithm that takes input a collection of n equations Y C QX Q,
runs in time nO1/a’ )poly log(1/n) and either outputs “reject” or a list L of size k = a~PW1/@) of
candidate vectors &, By, . . ., by with the following guarantees: suppose X is a set of n > O(d1/a%) / o)
linear equations {(a,{.) = b where {. is an unknown arbitrary vector and a ~ D on ]Rd such that D
has mean 0, a full-rank covariance L., is s(0)-certifiably (C, 6)-anti-concentrated and has 2t-certifiable
C-hypercontractivity of degree 2 polynomials for all t. Suppose Y is an (1 — a)-corruption of X. Then, with
probability at least 0.99 over the draw of X and the random choices of the algorithm, the algorithm does not
reject and outputs a list that contains a candidate ¥y, satisfying:

Proof Sketch. We observe that if (a,b) € Q¢ X Q are the coefficient vectors and “right-hand-sides”
of the equations in X, then, the distribution D’ of (a, b) satisfies the conditions in Definition 4.3.
Further, the covariance of D’ has rank exactly d (in d + 1 dimensional ambient space) with the kernel
in the direction (4., —1). Thus, finding a multiplicative spectral approximation to the covariance of
D’ and using the kernel of the estimate to obtain # immediately gives the required guarantee.
Observe that we only pay (and poly logarithmically so) in the running time for the target
accuracy. There is no cost in sample complexity as a function of the target accuracy. m]

9.2 Subspace Recovery

A similar argument also upgrades the guarantees for list-decodable subspace recovery obtained
in prior works. The best known prior work [BK21] obtained an algorithm that runs in fixed
polynomial time (exponent independent of &) and gets an Frobenius estimation error of O(1/a).
The independent work [RY20b] obtains a worse error guarantee that grows as \/r (where r is the
dimension of the unknown subspace). In particular, for obtaining an arbitrary target error > 0,
the algorithm from [BK21] runs in time n108(1/amO1/a*) that ig superpolynomial for any n — 0.

Our result below obtains an algorithm that runs in time n 01/a'®) polylog(1/n). This, in particular,
allows obtaining error 1] as small as 277 in polynomial time in the dimension d. Our list-size however
is a~PolY(1/®) compared to O(1/a!08(/®)*1og1/n) in [BK21].

Corollary 9.2. For any 1 > 0, there is an algorithm that takes input a collection of n points Y C Q“,

runs in time nO0/a’ )polylog(l/n) and either outputs “reject” or a list L of size k = a~Poy(1/®)
of candidate projection matrices 111,11y, ..., Iy with the following guarantee: suppose X is a set of
n > ng = 0(d°1/e) /) iid. draws from a dzstrzbutzon D on R? such that D has mean 0, covariance IT, —
a projection matrix to a subspace of RY, is s(5)-certifiably (C, §)-anti-concentrated and has 2t-certifiable
C-hypercontractivity of degree 2 polynomials for all t. Suppose Y is an 1 — a)-corruption of X. Then, with
probability at least 0.99 over the draw of X and the random choices of the algorithm, the algorithm does not
reject and outputs a list that contains a candidate U1y, satisfying:

Hﬁk —-II

A <.
F’?
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9.3 Clustering Non-Spherical Mixtures

Let M = }; piD; be a mixture of D1, D, ..., Dy such that for each i, D; is s(6)-certifiably C-anti-
concentrated distributions with 2t-certifiably C-hypercontractive degree 2 polynomials for all t € N
and p; > pmin for each i. Then, so long as ¢ < puin/2, an ¢ corrupted sample from M intersects
with an i.i.d. sample from any D; in at least p,,i, /4 points. Thus, we can immediately apply our
list-decodable mean and covariance estimation algorithm (Theorem 8.6) with a = p,i, /4 runs
in time @Poy(/pmin) and get a list of (1/pmin ypoly(/pmin) candidates such that there is a A-close (in
parameter distance) mean-covariance pair to (u;, X;) for every i for A = poly(1/pmin). Note that this
consequence does not require any separation assumptions.

If the component D;s are guaranteed to have well-separated parameters (as in the main result
in [BK20b]), then we can cluster the input corrupted sample Y with at most O(e/pmin) fraction
of misclassified points in any cluster. This, in particular, also allows obtaining estimates of the
parameters up to O(e/ Pmin) in parameter-distance.

Let us briefly explain this procedure before supplying a more detailed proof sketch. The main
idea is simple: suppose we were given the parameters of each D; exactly. We can then apply a
natural clustering procedure based on the parameters. We will argue that this natural clustering
procedure continues to function even if we have an estimate of the parameters that is accurate
to within poly(1/pwuin) factor in parameter-distance as long as the pairwise separation (again, in
parameter-distance) between the parameters of D;s is at least 1/ p min ®)
exposition in this section simple, we only describe the algorithm for the case when D;s are Gaussian

. For the sake of keeping the

distributions.

Theorem 9.3 (Robust Clustering of TV-Separated Gaussian Mixtures). Fix p;i, > 0,k € N, B € N.
For every large enough d € IN, there is an algorithm that takes input an e-corruption’ Y of an i.i.d. sample
X =C1UCy...Ckofsizen > ng = dPOIY(l/P"’f”)from a d-dimensional mixture }; p;D;i(ui, Z;) of Gaussians
with parameters p;, T; having rational entries of bit complexity at most B and runs in time (Bn)POY(1/pmin),
If € < cpmin for a small enough constant ¢ > 0 and parameter-distance(N (1, Z;), N(uj, ;) = Pm?n(k)/
the algorithm, with probability at least 0.99 over the draw of the orzgmal uncorrupted sample X and
the random choices of the algorzthm outputs a clustermg Y = G UG u...Cy of Y with the property

min ik Maxi<k (1 = [Ci N Cry|/1Crii]) < O(e/Prmin)-

Notice that in comparison, the algorithm from [BK20b] is presented only for the equiweighted
case (i.e., pmin = 1/k), needs n = Lo samples and nko® time, and works only when the fraction
of outliers ¢ < k=), The parameters in the algorithm of [DHKK20] are worse (with, roughly
speaking, every instance of kO%) replaced by a poly(k) size tower of exponential in k for equiweighted
mixture of Gaussians).

Proof Sketch. First, we apply the algorithm from Theorem 8.6 to Y with parameter a = py; — € >
0.99pin. By thinking of the uncorrupted points in the any true cluster C; as the inliers and all the rest
of Y as outliers, we observe that Y is an 1 — (pin — €) corruption of D;(u;, X;) and thus, Theorem 8.6

pOIY(l/Pmm)

provides an algorithm that runs in time (B#n)P°Y(1/Pnin) and generates a list of size p i such

that for every i, there is a ({1;, ) in the list that is A = poly(1/pmin)-close in parameter -distance to
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(ui, X;). Call a k-tuple of parameters from this list good if for every (u;, X;), there is a A-close ({i;, ii)
in the k-tuple. Notice that by the approximate triangle inequality for parameter-distance, every pair
of parameters in such a good k-tuple must be 100k apart in parameter-distance.

The goal of the algorithm now is to use this list to cluster the input points. Here’s how the
algorithm proceeds: the algorithm enumerates over all k-tuples of parameters in the list that satisfy
the property that every pair in the k-tuple is at a distance of at least A9 from each other. We will
give a procedure to cluster assuming the k set of parameters are good. Running a cluster verification
procedure (Lemma 9.5) similar to the one emploiyed in [BK20b] on each cluster so constructed
allows verifying whether each cluster satisfies hypercontractivity and anti-concentration properties
finishing the algorithm. Thus, the key remaining piece is to establish that if we chose a subset of k
parameters from the list that are good, then we can efficiently construct an approximate clustering
of Y.

Let’s now describe the clustering procedure assuming a good set of known k parameters, say
{(fii, £i)}i<k. Our ideas rely on partial cluster recovery procedure employed in [BK20b] that exploits
the three kinds of separations possible between mixtures of reasonable distributions (Definition 1.3).

First, suppose there is a unit vector v such that 7,0 < Ao(k)vTﬁjv forsomel <i <j<k.
Such a vector, if it exists, can be found by going over all pairs 7, j, taking the top eigenvector of
i]._” Ziii]._” % and applying ﬁ}/ ? to it. In this case, we will use the following variance clustering
procedure. Observe that there is a partition of [k] into S,S such that v™£,0 < g for all i € S
and 9750 > Ao(l)ﬁ for all i € S. Since (i, Li) are A-close to (ﬁi,ii), by Lemma 9.6, we must
thus have that oTZ,0 < p/ forall i € S and 07,0 > p/ACD where g’ = BA?D). Our clustering
algorithm does the following: for each y € Y, we include y in cluster L if there isan i € S such
that .-v %0 < (y — fi;,0)2 < O(log 1/n)A%v £ for 1) = e. If there is no such i, we include y € R.
We now claim that | Ujes C; N L| > | Ujes C;i| — 2¢en, and, | Ujgs C; N R| > | Ujgs Ci| — 2en. To see
why, observe first that v 75,0 < Ao(l)vTijv foralli € S,j ¢ S. The claim then immediately follows
by observing that from Lemma 9.4, at most 1 fraction of x € U;¢s get put in L and similarly, at
most an 1 fraction of x € U;eg get put in R — in particular, we have achieved a partial clustering
of the input samples with an error of at most 2¢n points on either side. We can repeat the
above “variance clustering” procedure until there’s no vector v satisfying v75;v < Ao(k)vTﬁjv
for some 1 < i < j < k. Thus, in the following, we can assume that for every v and every i,
AOWL(5 0 < vTEp < AOWL(y, £y

Next, suppose there is a unit vector v such that ({1, - i, v)? > Ao(k)vT% i iiv)v. Such a vector, if
it exists, can be found by going over all pairs i, j, and checking if v = (% i ii)‘*/ z(ﬁi — [1;) satisfies the
inequality above. Given such a vector v, we can again partition [k] into two groups, S and S such that
foreveryi€S,j ¢S, (0 —fij,v)> > AOWoT1y, $;0)v. We now do a “mean-clustering” procedure
as follows: we put y € L iff thereis an i € S such that O(A%log 1/n)v X0 > (y — fi;, v)? > 550 L'v
for n = . By an analysis similar to the above, we arrive at a partial clustering as before this time
ensuring that every group consists of clusters with mean-close parameters.

Finally, suppose thereis a pair i, j such that “ﬁl -3 ]-HF > APK) Then, in particular, for A = ii—ﬁ ir

itholds that tr(A-(£,—% i) > APW) - Asbefore, we find a partitions of [k] into two groups S and S such
thatforeveryi € S,j ¢ S, tr(A-(£; - i]') > A°D). We now apply a “Frobenius clustering” procedure
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thatputs y € Lif thereisan i € S such that |(y—i;)T A(y—fi;) —tr(ALZ;)| > O(Alog1/1) Hil/zAilﬂﬂ .
Using Lemma 9.4 and a similar analysis in the above two cases, we arrive at a partial clustering aI;
before ensuring that every group consists of relative Frobenius close parameters.

At the end of the three modes of clustering, we end up with partial clustering from the original
data with at most O(ken) points misclassified in total. Further, within each group, we every
pair of clusters that contribute must be within a A°®) distance in each of the three possible ways
of separation and thus, also A°P®)_close in parameter-distance. Since every pair of (u;, X;)s are
> AO(®_far in parameter-distance, the resulting groups must in fact be an approximate clustering
of the data with at most O(ken) misclassified points as desired.

m]

Lemma 9.4 (Approximate Isotropization). For A > 1,1 > 0 and two sets of parameters (u,X), (u’, Z')
of d-dimensional Gaussian distributions, let parameter-distance((u, ), (u’, X)) < A. Let x ~ N(u, ).
Then,

l

P
[ZA

v X0 < (x — i, 0)? < O(A?log1/nv /0] > 1 -1,

and,
P(|(x - 1) TA(x - ) - tr(AX)| > O(Alog 1/n) ‘

Z’l/zAZ’l/zH 1>1-1.

F

Proof. We know by subgaussianity and anti-concentration of Gaussian random variables that
P[n/20 X0 < (x — u,v)*> < O(log 1/n)v Z'v] > 1-1.

Since parameter-distance((u, ), (1, Z’)) < A, we also know that %UTZU <v'Xv < AvTXo.
Thus,
]P[%UTZ’U < {x—p,v)> <O(Alog1/n)v /0] > 1-1.

Further, (4 — 1/, 0)?> < AvT(Z + X')v < (1 + A?)oTZ'v. Thus,

T
2A
Next, by tail bounds for degree 2 polynomials of hypercontractive distributions, we have:

P[—0 Y0 < {(x — /', 0)> < O(A*log 1/n)o " Z/v] > 1—1.

P[|(x — 1) TA(x — p) - tr(AZ)| > O(log 1/n) || Z2AZ?|| ] > 1-7. 9.1)
Now, observe that using parameter-distance((u, X), (1', X)) < A, we have:

tr(A(Z-Y)) = tr(Z V2 A V2 (2 2ext?oD)) < ‘

Z’I/ZAZ'UZH HI—Z’HZZZ’HZ)H < A‘
F F

Z’I/ZAZ’UZH '
F
Further, again using parameter-distance((u, X), (1, £’)) < A, we have:

”Zl/ZA):l/Z”F _ "21/22,+/2(2,1/2AZ,1/2)Z,+/2)Z1/2HF < quzzﬁ/sz

F

2,1/2AZ,1/2“ ‘
F

53



2
X < A and that

R (TETY)

2
, < O(log 1/1)A by subgaussianity of N'(i, ). Thus, for A’ = ¥/1/2Ay,

Finally, since parameter-distance((u, Z), (1/, X’)) < A, we have that ‘

Z’+/2(X _ [.l)T

Z/'I'/Z(x _ “/)TA/Z/'I'/Z(X — i) - Z’”Z(x _ H)TA/Z/‘I'/Z(x B ”)‘
< |Z/‘l'/2([J _ ‘u,)TA,Z,Hz(x _ [J)l + |Z/+/2(x _ [u)TA,Z/HZ([J _ [J,)l + |Z/+/2([u _ Ml)TA’Z/HZ(M _ [J,)l
<O(Alog1/m) 1A [lE -

Thus, combined with (9.1), we have:

P[|(x - /) TA(x - ) - tr(AX))| > O(Alog 1/n) ‘

Z,1/2A>:,1/2HF] >1-1.

We will use the following cluster verification algorithm from [BK20b].

Fact 9.5 (Verifying Clusters, analogous to Lemma 6.5 in [BK20b]). There is an algorithm that takes
input a set of n d-dimensional points Y and a subset C C Y, runs in time nPoYA/Pmin) | and outputs
acccept or reject with the following guarantee: Suppose X is a good sample from a A-separated mixture
of Gaussian distributions Y; p;N(ui, ;) with weights p; > puin for every i. Let Y be a t-corruption
of X. Let C C Y besuchthat |CNCi| < (1- O(t/pmin))|Ci| for every i. Then, the algorithm rejects
with probability at least 1 — 1/poly(n) over the draw of X. If, on the other hand, there exists an i such
that |IC N Ci| > (1 - O(t/pmin)) max{|Ci|, IC|}, then, the algorithm accepts with probability at least
1 —1/poly(n) over the draw of X.

Lemma 9.6 (Approximate Triangle Inequality for Parameter Distance). Suppose
parameter—distance((ﬁ,ﬁ),(yi,Zi)),parameter—distance((ﬁ,ﬁ),(y]-,Zj)) < A for A > 1. Then,
parameter-distance((u:, Z;), (14j, Zj)) < 3A2.

Proof. For any vector v, we know that v "X;v < Ao 30 < A20T 5. Similarly, v "L < A2vTZjv.
This establishes the multiplicative spectral part of the guarantee in parameter-distance.
Next, let’s consider the relative Frobenius guarantee. Towards that first observe that

-1/281/2 2 -1/28-1/2 2 2 1.
DIV / v”z < HZZ. LY, Hz lv]l; < (1 + A)||v]l3. Next, because of the multiplicative spec-
tral guarantee, we can assume that X;, fl, X; all have the same range space. We can thus assume

that they are all full rank WLOG (as otherwise, we can simply work in their common range space
instead).

“1/2¢ «-1/2
=z -]

N

£ PR Sy — ERERE R gy

F F

<[lerrerng s - pemee | e,

A 2 A A p— A —
< 2;1/221/2" Hz-l/szz—l/Z—I“ +“zi 1/222i1/2—1“
2 F F

<S(1+A)A+A<3A%.
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Here, in the first inequality, we used the triangle inequality for Frobenius norm and in the
second inequality, used the contraction principle for Frobenius norms twice: for any matrices A, B,

IAB||; < ||All, |IBll; along with the fact that

2
-1/281/2 2
’Zi >l v“z < (1+A)||v]l3.

Finally, observe that for any vector v:

<yi - f/l]/ U>2 < 2<f/ll - ﬁ/ U>2 + 2([’\[ - #j,v>2
< AVT(Zi + X +28)0 < 2A07 (55 + L))o
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A Deferred Proofs

Proof of Corollary 3.18. Observe that the polynomial inequality in indeterminate z, z2+262p3(z)—-6* >
0 holds. To see this, consider the following two cases: 1) z2 > 62 in this case, we are done because
pg is non-negative. 2) z2 < §: in this case, we use the fact that p%(z) > (1 - 6)% which, for 6 < 0.1
implies that 262;7%(2) > 5%

Now, using Fact 3.11, we know that Im {z% + 252;9%(2) - 6% > —-n}.

As a result, we know that z% + Zéng(z) — 6% + 1 = r(z) for some sos polynomial r in z with
coefficients upper-bounded by 2 - (4z)° and degree = 5(6) (because a polynomial is identically 0
on reals if and only if all its coefficients are 0). Further, we observe that r is an even polynomial
because p is even.

% in p and r. Since p, r are even, all monomials in z appearing
with non-zero coefficients in p, r are even powers and are thus monomials in z2. As a result,
(vTZ0) O (22 + 262;9(25(2) — 6% + 1 — r(z)) is a polynomial in indeterminate v for any given x. Further,
(vTX0)*®r is SoS in vTLv and therefore, also SoS in indeterminate v. So, putting this all together

Now, let’s substitute z =

upon rearranging giveSIO(S)+polz/log(l/q) {(UTZU)S—l (x,0)2 + 252(1(%,2(35, 0) > (62 - n)(UTZv)s} for all
1 > 0. Taking n = 0.016? suffices for the conclusion.

The second inequality follows from Im {]E[pg((x, v))] < O(0)} upon substitution. O

B Bit Complexity Analysis

We will use the following basic observations in our bit complexity analysis to analyze the rank
deficient covariance X. of Theorem 8.6.

Recall that in this case, we assume that the target matrix ¥. has rational entries with bit
complexity at most B. The following proposition shows that in this case, the smallest non-zero
eigenvalue of L. cannot be too small.

Proposition B.1 (Smallest non-zero singular value of a rational matrix). Ford € N, let A € Q%™ pe a
non-zero matrix with each entry of bit length at most B. Then, every non-zero eigenvalue of A has absolute
value at least 27357,

Proof. Let L be the least common multiple of the denominators of the rational numbers appearing
in entries of A. Then, since each denominator is upper-bounded by 25, L < 2B4* Thus, A’ = LAisa
matrix with integer entries. Observe further that by the Gershgorin circle theorem, the spectral
norm of A’ (and thus, the eigenvalue of largest magnitude) is at most n2Ba2B < p2Bd?

Letr < dbetherank of A”. Consider the characteristic polynomial char(A’) of A inindeterminate
A. Then, char(A’) is monic and has integer coefficients. Consider the coefficient of A" in char(A’).
Then, this coefficient equals the sum of r-wise products of eigenvalues of A’. Since A’ has rank r, it
has exactly r non-zero eigenvalues and thus, the coefficient of A" is the product of the non-zero
eigenvalues of A’. Since the coefficients of A’ is a non-zero integer, this product is at least 1 in
magnitude. Since all eigenvalues of A’ are of magnitude at most 228 dz, the smallest magnitude of

any eigenvalue must thus be at least 272BEr 5 p=2Bd
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Thus, every non-zero eigenvalue of A has magnitude at least [~1272B8 5 p-3Bd°

O

We will also need the following basic facts about the classical algorithm for lattice basis reduction
due to Lenstra, Lenstra and Lovasz [LLL82].

Preliminaries on Integer Lattices Let A € Q¥ be a matrix of rationals. The lattice defined by
A is the discrete additive subgroup L(a, az,...,a4) = Zf.l:l z;a; as z;s vary over Z and a;s are
the columns of A. We write A1(£) to be the length of the smallest non-zero vector in £. More
generally, let A;(£) be the minimum of the maximum length of any vector from among all linearly
independent sets of i vectors v1,vy,...,v; € L.

The determinant of a lattice £ is defined as det(L) = det(ATA) if A is full-rank. Notice that
det(L) is independent of the basis used for L.

Fact B.2 (Minkowski’s Theorems). A1(L) < det(L). More generally, [[;<; Ai(L) < ave det(L).

Given a matrix A € Q™ the orthogonal lattice £+ (A) defined by A is the set of all integer
vectors v such that Av = 0. We can relate the size of the basis for £+(A) to that of £(A) via
Hadamard’s inequality:

Fact B.3 (Hadamard’s Inequality). det(L*(A)) < det(L(A)).
Finally, we recall the guarantees of the lattice basis reduction algorithm of [LLL82].

Fact B.4 (LLL Algorithm). Let L be a lattice defined by a d X d matrix A. There is a polynomial
time algorithm that takes input the Gram matrix AT A and outputs a basis by, b, ..., by of L such that
1bill, < 2°P)IA;(L).

Analyzing the algorithm in Theorem 8.6 in the word RAM model We begin by setting A to
be 2784 for a sufficiently large constant C. We start by running the algorithm described in
the proof of Theorem 8.6 on input sample after adding a (poly(Bd) bit rational truncation of) an
independent sample from N(0, AI) to each y; € Y. This allows us to effectively assume that the
smallest eigenvalue of the unknown covariance is A and thus our analysis applies.

As a result, we obtain a list of candidates one of which gives a good approximation (in
parameter-distance) to the I, + AI. Observe that if Z, had 27P°Y@ Jarge smallest eigenvalue, then
the resulting list is already a good approximation in parameter-distance to X.. If not, then, since X.
has rational entries of bit complexity < B, the determinant of the sublattice of which X, is a gram
matrix is at most (Bd)?. Thus, by Minkowski’s theorem, there must an integer basis v1, vy, ..., with
entries of bit complexity < O(Bd?) for the orthogonal lattice of Z..

Let d — r be the rank of X.. Since we ran the algorithm above on L. + AI, for small enough
A<k2” PO]Y(BdZ), we must have there is a candidate ¥ in the list with r eigenvalues at most 2A.

We take every such candidate 3 and consider the quadratic form on integer vectors v: Q(v) =
v TS0+ VAo ||§ If X, has an integer vector v in its kernel of length < 20(Bd) then, the same v must
satisfy Q(v) < A4 for the “good” candidate 3. Thus, using the LLL Algorithm (Fact B.4), we can
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find a reduced basis for all such vectors v where Q(v) is within a 29 factor from the minimum
possible value of Q(v) over all non-zero integer vectors v. If for such a v, Q(v) > 291/ we know
that the the corresponding 3 couldn’t possibly be a good candidate. On the other hand, for any
v such that Q(v) < 20214, we must have 07 L0 < 20@A14 and ||v||, < 20@A~1/2 by our choice
of Q(v). Further, the projection of any such v on to ker(X.) is either 0 or has magnitude at least
20(B4) pecause of Proposition B.1. But if it were the latter, Q(v) > 2D A1/4 | Thus, if 3 were a good
candidate, it must be that every v in our reduced basis is in the kernel of X... We can now project the
candidate £ on to the orthogonal complement of the subspace defined by the reduced basis. This
projection can be done exactly over rationals of bit complexity poly(Bd). For any “good” candidate
3', this will ensure that the range space of 5. is exactly equal to that of L, as we desired.
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