Check for
Updates

Session 8: Query Processing and Data Management for ML

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

EVA: A Symbolic Approach to Accelerating Exploratory Video
Analytics with Materialized Views

Zhuangdi Xu"
Georgia Institute of Technology
xzdandy@gatech.edu

Joy Arulraj
Georgia Institute of Technology
arulraj@gatech.edu

ABSTRACT

Advances in deep learning have led to a resurgence of interest
in video analytics. In an exploratory video analytics pipeline, a
data scientist often starts by searching for a global trend and then
iteratively refines the query until they identify the desired local
trend. These queries tend to have overlapping computation and
often differ in their predicates. However, these predicates are com-
putationally expensive to evaluate since they contain user-defined
functions (UDFs) that wrap around deep learning models.

In this paper, we present EVA, a video database management sys-
tem (VDBMS) that automatically materializes and reuses the results
of expensive UDFs to facilitate faster exploratory data analysis. It
differs from the state-of-the-art (SOTA) reuse algorithms in tradi-
tional DBMSs in three ways. First, it focuses on reusing the results of
UDFs as opposed to those of sub-plans. Second, it takes a symbolic
approach to analyze predicates and identify the degree of overlap
between queries. Third, it factors reuse into UDF evaluation cost
and uses the updated cost function in critical query optimization
decisions like predicate reordering and model selection. Our empir-
ical analysis of EVA demonstrates that it accelerates exploratory
video analytics workloads by 4x with a negligible storage over-
head (1.001x). We demonstrate that the reuse algorithm in EVA
complements the specialized filters adopted in SOTA VDBMSs.

CCS CONCEPTS

« Computing methodologies — Image processing; Symbolic
and algebraic manipulation; « Information systems — Query
optimization.

KEYWORDS

Video Analytics, Symbolic Computation, Database Management
System

ACM Reference Format:
Zhuangdi Xu, Gaurav Tarlok Kakkar, Joy Arulraj, and Umakishore Ra-
machandran. 2022. EVA: A Symbolic Approach to Accelerating Exploratory

“Both authors contributed equally to the paper.

(0. ®

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9249-5/22/06.
https://doi.org/10.1145/3514221.3526142

This work is licensed under a Creative Commons
Attribution International 4.0 License.

602

Gaurav Tarlok Kakkar*
Georgia Institute of Technology
gkakkar7@gatech.edu

Umakishore Ramachandran
Georgia Institute of Technology
rama@cc.gatech.edu

Video Analytics with Materialized Views. In Proceedings of the 2022 In-
ternational Conference on Management of Data (SIGMOD °22), June 12-17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3514221.3526142

1 INTRODUCTION

Researchers have presented novel techniques for efficiently ana-
lyzing visual data at scale in video database management systems
(VDBMSs), including sampling, filtering, and specialized neural net-
works [35, 36, 44]. However, in exploratory video analytics, queries
often exhibit a significant overlap of computation due to redundant
execution of user-defined functions (abbrev., UDFs) associated with
computer vision tasks (e.g., object detection). Prior efforts in video
analytics have not extensively studied the problem of materializing
and reusing the results of expensive UDFs. While there have been
efforts in traditional database management systems (DBMSs) to
handle expensive UDFs [13, 17, 19, 27, 45, 50], they do not leverage
all of the opportunities present in video analytics.

MortivaTioN. Consider a law enforcement officer analyzing a
video data set for tracking a suspicious vehicle with the help of a
witness. They typically first search for a global trend and then iter-
atively refine the query until they find the desired local trend [17].
During this query refinement process, queries tend to have overlap-
ping computation. Initially, the witness may only recall the vehicle
model (e.g., SUV) and the approximate time-frame in which they
saw the vehicle (e.g., night time). So, the officer starts with Q1 in
Listing 1 that searches for all SUVs present during that time-frame
to identify the suspicious vehicle. While going over the frames with
SUVs returned by Q1, the witness might recall the color of the vehi-
cle (e.g., red). Then, the officer narrows down the search space and
looks for the license plate of all red-colored SUVs (Q2). Lastly, in
Qs, the officer searches the entire dataset for the suspicious vehicle
using the license plate information.

Multiple applications may query over the same video and their
queries may also contain overlapping computation. For instance, a
traffic planner may be interested in analyzing the traffic congestion
over the entire day using Qy. This task only requires a less-accurate
(and faster) object detection model. Across these queries, several
UDFs are redundantly evaluated (i.e., VEHICLEMODEL, OBJECTDE-
TECTOR, VEHICLECOLOR, AREA, and LICENSE) on many frames. We
seek to accelerate these queries by materializing and reusing the re-
sults of expensive UDFs, since these functions dominate the overall
query processing time.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1145/3514221.3526142
https://doi.org/10.1145/3514221.3526142
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3514221.3526142&domain=pdf&date_stamp=2022-06-11

Session 8: Query Processing and Data Management for ML

--- Ql: Suspicious Vehicle Tracking

SELECT timestamp, bbox, VEHICLE_COLOR(bbox,
FROM VIDEO CROSS APPLY

OBJECT_DETECTOR (frame) ACCURACY 'HIGH'
WHERE timestamp > 6pm AND label = '
AND AREA(bbox) > 0.3 AND
VEHICLE_MODEL (bbox, frame) = 'SUV';
--- Q2: Suspicious Vehicle Tracking
SELECT timestamp, bbox, LICENSE(bbox,
FROM VIDEO CROSS APPLY

OBJECT_DETECTOR (frame) ACCURACY 'HIGH'
WHERE timestamp > 7pm AND timestamp < 8pm
AND label = 'car' AND AREA(bbox) > 0.3
AND VEHICLE_COLOR (bbox,
AND VEHICLE_MODEL (bbox, frame) = 'SUV';
-- Q3: Suspicious Vehicle Tracking

SELECT timestamp FROM VIDEO CROSS APPLY
OBJECT_DETECTOR (frame) ACCURACY 'HIGH'
WHERE timestamp> 4pm AND label= ' ' AND
AREA (bbox)>0.15 AND LICENSE(bbox, frame)=
--- Q4: Traffic Monitoring

SELECT timestamp, COUNT(*) FROM VIDEO CROSS APPLY
OBJECT_DETECTOR(frame) ACCURACY 'LOW' WHERE

label = 'car' AND AREA(bbox) > 0.15

GROUP BY timestamp;

frame)

car'

frame)

frame) = 'red'

car
"XYZ60 ' ;

Listing 1: Motivating Example — Illustration of overlapping
computation in exploratory video analytics queries from two applications
for: (1) suspicious vehicle tracking, and (2) traffic monitoring.

ManvuaL APPROACH. The VDBMS could offload the burden of
materializing the results to the application developers. With this
approach, the developer manually decides to materialize the UDF re-
sults and then rewrites subsequent queries to reuse the materialized
results. However, this approach suffers from two limitations. First,
in exploratory video analytics, the data analyst often composes the
subsequent query after examining the results of the current query.
So they are not aware of reuse opportunities in advance. They will
also need to manually refactor the query to leverage materialized
views and determine whether the results of an UDF is worth mate-
rializing. This approach is error-prone and not suitable for complex
queries. Second, the developer may not be aware of all the other
applications running on the VDBMS. So, it is not possible to exploit
opportunities for reusing results (i.e., reuse opportunities) across
applications. For example, the low-accuracy OBJECTDETECTOR in
Q4 of Listing 1 may reuse the results of high-accuracy OBJjECT-
DETECTOR from Q; to Qs3, even though they are from different
applications.

CHALLENGES. We seek to automatically identify and leverage
reuse opportunities in a VDBMS. However, there are three chal-
lenges with accomplishing this task.

I - IDENTIFYING REUSE OPPORTUNITIES. Consider queries Q1
and Q3 in Listing 1. We notice that certain UDFs are present in both
queries (i.e., VEHICLEMODEL, VEHICLECOLOR, OBJECTDETECTOR,
and AREA), indicating an opportunity for reusing results. But, it
is challenging to determine the degree of overlap between the
predicates in Q; and Q3 for each UDF due to the complexity of

603

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

the expressions. Furthermore, the VDBMS must search for reuse
opportunities across all previously executed queries (i.e., not just
compare two queries). For example, Q3 in Listing 1 may reuse the
results of LICENSE from Q; and OBJECTDETECTOR from both Q
and Q».

Reuse algorithms in traditional DBMSs [17, 19, 27, 33, 50, 55, 56, 64]
rely on exact matching of sub-plans between two queries. This rigid
approach does not handle the queries shown in Listing 1, as they
vary in their complex predicates. Researchers have recently pre-
sented novel systems, such as RECYCLER [45] and HASHSTASH [13],
that extend query matching to compare different predicates. How-
ever, RECYCLER only supports a single range predicate, and HasH-
StasH only supports a few hard-coded rules for predicate analyses.
We need a technique for capturing the semantics of these predicates
and accurately determining the degree of overlap between them.

II - AuTOMATICALLY REWRITING THE QUERIES. Second, a
query may contain multiple UDFs, and each of them may differ in
degree of reuse. For example, OBJECTDETECTOR in Q3 may reuse
the detection results for frames after 6 pm from Q;. In contrast,
LICENSE in Q3 needs to be evaluated over a subset of vehicle bound-
ing boxes from those frames, where AREA (bbox) is between 0.15
and 0.3 (i.e., relative to the frame size). In traditional DBMSs, rewrit-
ing queries to facilitate reuse involves substituting the sub-tree
identified via query graph matching with a different sub-tree that
reads from the materialized view. In contrast, reusing UDF results in
queries shown in Listing 1 involves rewriting every UDF instance.
The substitution technique used in traditional DBMSs works for
sub-tree with root operator nodes (e.g., projection and join opera-
tors). But it does not support selection operator with multiple UDF
instances (e.g., Q2).

III - ReEuse ImpacTs Cost oF UDF EvaLuaTiON. Third, When
the VDBMS replaces the UDF invocation with a view, it impacts
several query optimization decisions (e.g., predicate reordering
and model selection). For example, the optimal evaluation order
of VEHICLEMODEL and VEHICLECOLOR UDFs in Q3 is to evaluate
VEHICLEMODEL before VEHICLECOLOR. This is because the VDBMS
can fully reuse their results from Q;. If the VDBMS were to evaluate
VEHICLECOLOR before VEHICLEMODEL, then it must unnecessarily
evaluate the color of vehicles that are not SUVs (as there results are
not computed in Q1). Similarly, when the VDBMS selects a concrete
model for the logical OBJECTDETECTOR in Qy4, even though a low-
accuracy model would suffice for the traffic analysis application, it
chooses to use the results of a high-accuracy model from the earlier
queries in the suspicious vehicle tracking application.

OUR APPROACH. In this paper, we present EVA, a VDBMS that
automatically identifies opportunities for reusing UDF results to
accelerate exploratory video analytics. EVA uses a novel technique
for analysing UDF-based predicates using symbolic computing to
determine the degree of reuse across queries for a given UDF. It
employs a conditional apply operator to automatically transform
UDF invocations to reuse materialized results from previous queries.
Its ranking functions that guide predicate reordering and model
selection decisions take the availability of reuse opportunities into
consideration to determine the cost of UDF evaluation.

CoNTRIBUTIONS. We make the following contributions:

Session 8: Query Processing and Data Management for ML

e We present a novel technique for determining how to reuse
UDF results across queries using symbolic computing at query
optimization time. The oPTIMIZER symbolically analyzes the
predicates associated with every UDF invocation to identify
opportunities for reusing results. We formulate transformation
rules in EVA’s Cascades-style OPTIMIZER to rewrite queries to
leverage views.

e We propose a materialization-aware ranking function for re-
ordering UDF-based predicates to accelerate queries, and pro-
vide the theoretical analysis. We reduce the model selection
task to the weighted set cover problem and present a greedy
algorithm that leverages symbolic computing to maximize
reuse.

We introduce a benchmark called vBENcH for evaluating the

efficacy of reuse algorithms in exploratory video analytics. We

develop one baseline, HasaSTAsH [13], by tailoring the SOTA
techniques for reusing results in traditional DBMSs to video
analytics. We implement a second baseline around a tuple-
level (i.e., frame-level) function result caching scheme within

EVA’s EXECUTION ENGINE. We show that EVA outperforms

these baselines on workloads with both low- and high-reuse

potential. We also illustrate that the reuse algorithm used in

EVA is complimentary to the widely-used filtering technique

for accelerating video analytics.

2 BACKGROUND

In traditional DBMSs, the opTIMIZER transforms the given SQL
query into a query plan tree whose internal nodes are relational
algebraic operators (e.g., projection and selection). So, these systems
reduce the problem of caching and reusing intermediate results
to a sub-tree (i.e., part of the plan tree) matching problem [50].
This approach suffers from two limitations in VDBMSs. First, UDFs
are extensively used for exploratory video analytics. So, it is not
sufficient to only identify reuse opportunities where sub-trees of
two query plan trees are identical. As illustrated in Listing 1, even
when the trees are distinct, the VDBMS should reuse results across
overlapping UDF computations. Second, this approach does not
capture reuse opportunities within an operator as it operates at the
level of operators (i.e., tree nodes). When the selection operator
contains multiple expensive UDF-based predicates (e.g., Q2), all of
these intra-operator predicates are candidates for reuse.

To address these limitations, EVA leverages a novel technique for
better identifying reuse opportunities using symbolic computing
(elaborated in §3).

SymBoLIC COMPUTING. Symbolic computing [60] focuses on
algorithmic manipulation of objects. Except for constants and vari-
ables, every arithmetic expression is considered as the symbol of
an operator followed by a sequence of operands. Researchers have
designed computer algebra systems that are capable of symbolic
computation (e.g., Sympy [43], Mathematica [29]).

EVA uses symbolic computing to analyze and simplify complex
predicates. For example, it reduces "timestamp > 6pm OR timestamp
> 9pm" to "timestamp > 6pm". We discuss how EVA uses symbolic
computing to analyze complex predicates in § 4.1.

APPLY OPERATOR. In relational algebra, the APpPLY operator is
used to formulate correlated execution of sub-queries [15, 18]. It

604

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Query Optimizer

s
v

@ Identifying candidate UDFs

PARSER Symbolic
Engine
lﬂuery Tree @ Compute UDF Signatures
QUERY OPTIMIZER

Materialization-aware

4 optimizations

lExecution Plan

UDF
Manager

Execution Engine

b

[Resut

@ Rule based transformation

Figure 1: Overview of EVA- It takes in a client query, parses it and
generates an optimized plan which is executed to generate results. We
modify the OPTIMIZER to incorporate the reuse algorithm that accelerates
query processing by leveraging the results of earlier UDF invocations.

takes a relational input R and a parameterized expression E(r), and
evaluates the expression E(r) for each row r € R and emits the
tuples obtained by joining r and E(r). Formally, it is defined as [18]:

RA®E=|J(r}®E(r)

rer

(1)

where ® is the join type (e.g., inner join, cross join, e.t.c.). The con-
ditional AppLY operator (A[p*])[15] is an extension of the AppPLY
operator. It mimics an if else clause. It has a pass-through predicate
p* that acts as a guard predicate and only evaluates the parame-
terized expression E(r) Eq. (1) if the guard is TRUE. EVA utilizes
the ApPPLY operator and the conditional APPLY operator to rewrite
queries to replace UDF invocations with materialized results.

PREDICATE REORDERING. The predicate ordering problem has
been widely studied in traditional database systems [8, 26, 27].
The DBMS seeks to answer a query with an arbitrary number of
conjunctions of restrictive predicates. These predicates are boolean-
valued expressions that may invoke expensive UDFs. The DBMS
must find a suitable ordering of these predicates that minimizes
query processing cost.

Traditional DBMSs tackle this problem by computing a rank for each
of the predicates using a ranking function. Then, the predicates are
evaluated in ascending order based on the computed ranks. Eq. (2)
presents the ranking function [26], where s is the selectivity and ¢
is the per-tuple evaluation cost of the predicate.
_s—1

@

r

C

Given that the selectivity s ranges between [0, 1], the ranking func-
tion results in a negative value. Therefore, the smaller the rank, the
better it is to evaluate the predicate. Intuitively, it is prioritizing
the evaluation of inexpensive, highly selective predicates. However,
it does not consider scenarios wherein EVA may already contain
partial or fully materialized results for the predicates.

3 SYSTEM OVERVIEW

In this section, we first provide an overview of the semantic reuse al-
gorithm used by EVA in § 3.1. We then discuss how this enables EVA
to overcome the challenges in § 3.2. We conclude with a description
of how EVA allows users to define UDFs in § 3.3.

Session 8: Query Processing and Data Management for ML

3.1 Semantic Reuse Algorithm

EVA leverages the materialized UDF results of previous queries
to accelerate subsequent queries. We design a semantic reuse opti-
mization algorithm that is triggered after the canonical optimiza-
tion algorithms have been applied. The key steps of this algorithm
are shown in Fig. 1. The lifecycle of a query is as follows: The
query is first processed by the parser that generates a parse tree.
The oPTIMIZER takes in the parse tree and applies rule- and cost-
based optimization techniques to generate a physical plan. The
OPTIMIZER is based on the Cascades extensible query optimization
framework [20, 63]. Finally, the EXECUTION ENGINE executes the
given physical plan and returns the results to the client.
The semantic reuse algorithm leverages the SYMBOLICENGINE to
detect the degree of reuse across queries. It uses the information
related to earlier UDF invocations within the UDFMANAGER to fa-
cilitate reuse.
@ Identifying candidate UDFs. For all the UDFs found in the
query plan, the opTIMIZER identifies the UDFs whose results are
worth materializing. It uses the profiled evaluation cost to filters
out inexpensive UDFs like AREA.
@ Compute UDF Signature. A UDF’s signature serves as a unique
fingerprint and helps identify occurrences of the same UDF across
queries. The signature S, of a UDF u is defined as a tuple S, =
[Ny; I,] where:

e N, is the name of the UDF u

e [, is the set of source tables or views or UDFs that EVA must

access for evaluating UDF u.

When the oPTIMIZER applies the canonical transformation rules
for rewriting the query, it keeps track of the signature associated
with every UDF occurrence within the query and appends it to
the UDFMANAGER. EVA reuses results across UDFs with identical
signatures. The UDFMANAGER maintains a mapping from the UDF
signature to the corresponding materialized view.
® Materialization-aware optimizations. Given a candidate UDF
and its historical invocations from the UDFMANAGER, the opTI-
MIZER seeks to answer two questions. First, if multiple UDFs must
be evaluated on the same input table, what is the optimal ordering
in which these UDFs should be evaluated? Second, if a collection of
deep learning models are suitable for a given vision task, what are
the appropriate models (physical UDFs) to minimize the execution
cost? In § 4.2 and § 4.3, we discuss how the oPTIMIZER leverages
the SYMBOLICENGINE to answer these questions.
O Rule based transformation on the candidate UDFs. Lastly,
the opTIMIZER performs a rule-based transformation on the candi-
date UDFs to leverage existing results in materialized views. We
present this transformation step in § 4.4.

3.2 Solution Overview
EVA addresses the challenges outlined in § 1 as follows:

I - IDENTIFYING REUSE OPPORTUNITIES. To identify the over-
lapping computation between UDF invocations X and Y with the
same signature, EVA utilizes symbolic computing to compute three
derived predicates: (1) intersection, (2) difference, and (3) union of
predicates in X and Y. Intersection predicate denotes input tuples
(i.e., frames) where the latter UDF invocation (i.e., Y) may reuse the
results from the former invocation (i.e., X). Difference predicate

605

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

CREATE [OR REPLACE] UDF YOLO

INPUT = (frame NDARRAY UINT8(3, ANYDINM,

OUTPUT = (labels NDARRAY STR(ANYDIM),

NDARRAY FLOAT32 (ANYDIM, 4))

IMPL = 'udfs/yolo.py'

LOGICAL_TYPE = ObjectDetector

PROPERTIES=('ACCURACY'="HIGH")
Listing 2: Defining a UDF- This statement creates a YOLO object
detection UDF and specifies the accuracy property.

ANYDIM))
bboxes

represents input tuples where the reuse is not feasible and Y must
be evaluated. Union predicate denotes input tuples where the ma-
terialized results are available after both X and Y are evaluated. It
uses these derived predicates to detect reuse opportunities.

II- REUSE ImpacTs CosT oF UDF EvaLuaTtion. We formulate
the cost of an UDF invocation to consider the availability of material-
ized results by using the selectivity of the intersection predicate and
difference predicate obtained from the SYMBOLICENGINE. The opTI-
MIZER uses this updated cost function in the predicate reordering
task to compose a materialization-aware ranking function. When
the UDF-based predicate transformation rule unpacks a selection
operator containing multiple UDF-based predicates, the order is
determined by this new ranking function. Similarly, in the model se-
lection task, the oPTIMIZER maps it to a weighted set cover problem.
The weights are defined by using the selectivity of the intersection
predicate.

IIT - REWRITING THE QUERIES. We introduce two transformation
rules in the opTIMIZER for facilitating reuse: (1) an UDF-based pred-
icate transformation rule for unpacking a selection operator that
contains multiple UDF invocations, and (2) a materialization-aware
transformation rule that fully (or partially) replaces the expensive
UDF invocation with the materialized results of previous queries
and injects a store operator for materializing the remaining UDF
results. Both rules are based on the conditional apply operator [15].
They enable effective reuse of UDF results regardless of the location
of UDF in the query (e.g., attribute list in projection operator or
predicate in selection operator).

3.3 Defining UDFs

EVA supports a declarative SQL-like query language called EVA-
QL. It allows users to invoke deep learning models in the form
of UDFs. Listing 2 presents an example where the user defines a
UDF wrapping around the yoLo object detection model. The user
may utilize this UDF in subsequently queries to detect objects, as
illustrated in Listing 1.

In Listing 2, the user specifies the input(s) and output(s) of the
UDF. For instance, YOLO consumes a video frame of arbitrary di-
mensions and produces labels and bounding boxes of detected
objects. IMPL specifies the path to the implementation class for the
UDF. LOGICAL_TYPE specifies the model type of the UDF (e.g., Ob-
jectDetector). The user also specifies the expected accuracy in
PROPERTIES. The oPTIMIZER uses these properties while picking
physical models for a logical vision task (elaborated in § 4.3).

MobuLAR vs MonoLiTHIC UDFs. EVA allows users to create

arbitrary UDFs. For instance, in Listing 1, they may create a special-
ized UDF that only detects red SUVs and use it in Q2. We refer to

Session 8: Query Processing and Data Management for ML

such specialized UDFs as monolithic UDFs. EVA will reuse results
if the same monolithic UDF is invoked again during exploratory
analysis. However, using separate, modular UDFs (e.g., VEHICLE-
CoLor for detecting the color of the vehicle and VEricLEMODEL for
detecting the model of the vehicle) allow users to flexibly combine
them (e.g., the analyst may use these UDFs for detecting red sedans
or blue SUVs later). EVA supports reuse with both modular and
monolithic UDFs.

4 SEMANTIC-REUSE ALGORITHM

In this section, we describe the components of the semantic reuse
algorithm in more detail. We first discuss how EVA leverages sym-
bolic computing in § 4.1. We then present how EVA rewrites queries
in § 4.4. We next describe how EVA leverages materialized views
in § 4.2. We conclude with a description of the logical UDF reuse
optimization in § 4.3.

4.1 Symbolic Predicate Analysis

Symbolic computation focuses on algorithmic manipulation of
mathematical expressions. Except for numbers and variables, math-
ematical expression may be viewed as the symbol of an operator
followed by a sequence of operands [60]. Researchers have de-
signed symbolic computation algorithms to process and simplify
such mathematical expressions [29, 43]. EVA leverages symbolic
algorithms to analyze and simplify complex predicates in queries.

OVERVIEW. The VDBMS must evaluates the given UDF over the
subset of tuples that satisfy a predicate. For example, in Q1 (List-
ing 1), the predicate associated with OBJECTDETECTOR is: timestamp >
6pm. The predicate associated with VEHICLEMODEL is: timestamp >
6pm A label = ‘car’ A AReA(bbox, frame) > 0.3.
EVA’s OPTIMIZER leverages symbolic computing to analyze the
predicates associated with the UDF invocations that share the same
signature. Consider two UDF invocations u; and uz with the same
signature. Let their predicates be p; and pa, respectively. We de-
fine three fundamental derived predicates based on p; and p; to
determine the overlapping computation between u; and uy:

o Intersection: INTER(p1, p2) = p1 A p2

e Difference: DlFF(pl,pz) = (—|p1) A p2

e Union: UNION(p1,p2) =p1 V p2
Logically, the intersection predicate denotes the overlapping com-
putation between u; and uy. The difference predicate denotes the
non-overlapping computation (i.e., up is computed but not u;). The
union predicate denotes the computations where either u; or uz is
evaluated.

LEVERAGING RESULTS oF SymMBoLIC ANALYSIS. The UDFMAN-
AGER keeps maintaining the aggregated predicate p,, for each unique
UDF signature u. Formally, it is the union of all the predicates as-
sociated with UDF u across all the queries. It represents the tuples
where the materialized results are available for UDF with signature
u. When EVA encounters an UDF with signature u for the first time,
since it has never executed u, p, is instantiated as False. When
the oPTIMIZER receives a query containing UDF u with q as the
associated predicate, it updates p, = UNION(py,).

For analyzing the reuse opportunity, it computes INTER(py, q) to
symbolically identify the tuples it has over which it has computed
u before and DIFF(py, q) for those over which it has not computed

606

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Algorithm 1: Symbolic Predicate Analysis

Input :predicate: input predicate
Output :simplifiedPredicate: simplified predicate
1 Procedure ReducePredicate(predicate)

2 @ DNFPredicate «— DNF (predicate)

3 foreach conjunctive in DNFPredicate do

4 | @ ReduceConjunctive (conjunctive)

5 repeat

6 c1, ¢2 « PopTwoConjunctives (DNFPredicate)
7 @ c1, c2 < ReduceUnionConjunctives (c1, c2)
8 PushConjunctives (DNFPredicate, c1, c2)

9 until TimeOut or NoChange
10 | return DNFPredicate

11 Procedure ReduceUnionConjunctives (c1, c2)

12 foreach dimension in c1V c2 do

13 fc1 « FilterDimension (c1, dimension)

14 fc2 «— FilterDimension (c2, dimension)

15 if fc1 D fc2 or fc1 C fc2 then

16 t return ReduceUnionSingleDimension (c1, c2, dimension)
7| return c1, c2

u. We abbreviate these three derived predicates: INTER(py, q) as
P, DIFF(py, q) as p—, and UNION(py, q) as py in the rest of the
paper.

PrEDICATE SYNTAX. EVA supports predicates with the following
syntax:

p == expr cp expr | p logic p | NOT p
pu=>l<|=|#]<|>
logic ::= AND | OR

A predicate may be: (1) a comparison of two expressions (e.g., columns,
UDFs, constant values), (2) a combination of two predicates using a
boolean operator, and (3) negation of another predicate. EVA seeks
to reduce the number of atomic predicates (i.e., a predicate that can-
not be reduced further into simpler predicates) in the three derived
predicates.

CHALLENGE. The number of atomic predicates governs the com-
plexity of the intersection, union, and difference operations. So,
it is important to simplify the outcome of these operations. EVA
leverages a computer algebra system to reduce monadic predi-
cates (e.g, UNION(5 < x Ax < 15,10 < x Ax < 20) > 5 <
xAx < 20). However, it is challenging to reduce polyadic predicates!
(eg, UNION(5 <xA10<y,10 <xA15<y) = 5<xA10<y).

ALGORITHM. EVA uses Algorithm 1 to simplify a polyadic predi-
cate. @ It converts the input predicate to disjunctive normal form
(DNF). @ 1t independently reduces every conjunctive within the
DNF. To reduce a multi-variable conjunctive predicate, EVA uses a
computer algebra system. Next, it focuses on reducing the predicate
across conjunctives. To do so, @ it repeatedly pops two conjunctives
and checks whether it is possible to reduce their union predicate .
It repeats this procedure until there remain no additional reduction
opportunities between any pairs of conjunctives or the symbolic
analysis goes beyond the allocated time budget.

Figure 2 illustrates three cases stemming from reducing the union
of two conjunctive predicates involving two variables (i.e., two-
dimensional predicates).

!Minimizing propositional logic (boolean formula) is a hard problem [7]. Predicate
logic is a superset of propositional logic.

Session 8: Query Processing and Data Management for ML

(ii) (iif)
Figure 2: Reduction of Union of Conjunctives — Illustration of the
two-dimensional cases where ¢; and ¢, involve two variables (x and y). A
rectangle represents a predicate with four atomic terms. For example, ¢; in
(Dissa<xAx<bAc<yAy<d.

e Case i — cy is a subset of ¢; in both x and y dimensions, so
their union is cy.
o Case ii — it is possible to concatenate the predicates along x
dimension, so the unionis (a < x Ax <b)A(c<yAy<d).
o Case iii — it is possible to remove the overlapping region from
the ¢z to make the conjunctives disjoint, so their union is
aV(f<xAx<gAc<yAy<e).
In all three cases, c3 is a subset of (or equal to) ¢ in one dimension,
2 and the oPTIMIZER uses the computer algebra system to reduce
the union of the other dimension. This technique generalizes to
predicates that do not map to a rectangle. ReduceUnionConjunctives
in Algorithm 1 extends the concept into N-dimensional predicates.
Specifically, c¢; needs to be the subset of ¢ in at least N — 1 dimen-
sions, or the other way around, where N is the dimensionality of
¢1 V cz. The oPTIMIZER then reduces the union of the remaining
dimension using the computer algebra system.

4.2 Materialization-Aware Optimization

Replacing expensive UDF invocations with the materialized results
of previous queries reduces the cost of UDF evaluation. So we
need to adjust the UDF cost based on the availability of views in
optimization tasks such as predicate reordering and model selection
(elaborated in § 4.3).

REDEFINING THE cOST OF A UDF INvOCATION. As shown in
Eq. (3), we compute the expected cost of evaluating a predicate
o containing a UDF as a function of the cardinality of the input
relation |R|. Let Cps be the cost of reading the materialized view
associated with UDF in o. Let ¢, be the per-tuple cost for reading
a tuple from the input relation R. Let ¢, be the per-tuple cost of
evaluating the UDF. Let Sp_ be the selectivity of the difference
predicate p_ calculated from symbolic predicate analysis.

3Cpm
IR|

Here, the first part is the expected cost of a join operation between
R and M [38], and the second part is the expected cost of evaluating
the UDF on the fraction of input tuples missing in the view. The join
operator combines the input video and UDF’s materialized view.
For example, the object detector’s materialized results are joined
with the video table to read the overlapping outcomes of the object

T(o,|R|) = (3Cm + [Rlcr) + |R|sp_ce = |RI(+er+sp_ce) (3)

2EVA uses a computer algebra system to check whether (—¢14) A cz4 == False or
(—cz,q) A c1,q == False to determine the subset relationship for a given dimension.
Here, c; 4 is the conjunctive of atomic formulas involving dimension d in predicate c;.

607

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

detection from previous queries. We will discuss how EVA rewrites
the query plan to leverages the view in § 4.4.

When the materialized views and tables are on disk, we estimate
the join cost to 3Cys [38]. During the build phase, EVA reads the
table into memory, creates a hash table, and stores it back on disk
if it cannot keep it in memory. Then during the probe phase, it
reads the hash table from the disk. So, in the worst case, it leads to
3 IO operations. However, in practice, the join term is negligible
compared to the cost of evaluating the UDF on the fraction of input
tuples missing in the view (second term in Eq. (3)) and may be
ignored (§5.3).

WHAT IS THE OPTIMAL ORDERING OF EVALUATING THE UDF-
BASED PREDICATES?. In video analytics, an analyst may often use
a compound predicate with multiple UDFs. For example, in List-
ing 1, Q2 needs to evaluate two UDF invocations in the predicates:
VEHICLECOLOR and VEHICLEMODEL. The order in which these UDFs
are evaluated lowers the overall execution time of the query by
3-6x (§ 5.4).
Using the UDF cost function in Eq. (3), EVA adopts a novel rank-
ing function, shown in Eq. (4), that takes materialized views into
consideration.
s—1
r=———— ©)
Sp_ X Ce +cp

Here, s denotes the selectivity of the UDF-based predicate. EVA
leverages existing histogram-based methods in traditional database
systems to calculate the selectivity of predicates [30, 51]. Intuitively,
Eq. (4) prioritizes highly selective predicates with lower evaluation
costs. The key difference from the traditional ranking function
(Eq. (2)) is that in the new formulation, the evaluation cost is pro-
portional to the fraction of tuples not present in the materialized
view (sp_). The ¢, term comes from the join cost. However, in prac-
tice, it is negligible and can be ignored. For instance, when the
views are stored on hard disk, the profiled values for the FASTER-
RCNNRESNET50 are ¢ = 1.8 ms and ¢ = 99 ms (§ 5). If the views
are stored on another storage medium (e.g., in memory), we need
to update ¢, accordingly. We next formally prove the correctness
of the proposed ranking function.

THEOREM 4.1. Let O be a conjunctive ordering of n boolean valued,
independent 3 predicates, 01, 02, ..., on. The expected evaluation cost
of O is minimal when the predicates are evaluated in ascending order
of rank computed using the ranking function in Eq. (4).

ProoF. We may construct any ordering of the predicates by a series
of swaps between adjacent predicates 0;0; such that i < j [24]. To
prove that an ordering O is optimal, it is sufficient to show that any
such arbitrary swap does not decrease the expected evaluation cost
of O. Consider an arbitrary ordering O:
O 101, .0y Oy Oy 15 s On

We define the expected evaluation cost T(O, |R|):

T(O,|R|) =T(o01,|R|) + T(02,s1|R|) + ... + T(0g, s1---Sk—1|R])

+ T (0gs1>S1---Sk—1Sk|R]) + ... + T (0, $1...Sn—1|R|)
3The theorem holds under the assumption that the predicates are independent. While
this assumption may not always hold in practice, theoretical analysis in predicate

re-ordering literature [8, 26] and video analytics systems [37, 40] also make this
assumption to simplify the analysis.

Session 8: Query Processing and Data Management for ML

We derive T(ox) by substituting |R| with sqsz...sp_1|R|, where s;
denotes the selectivity of predicate o; [24, 27]. This is because the
size of input relation reduces to the application of earlier predicates
in O. Consider another ordering o by interchanging oy and opq:

’

O :01, .. 0841, Ok -

T(O’) will be similar to T(O) expect for T(ox) and T(og4;). For
ease of presentation, let k = 1. A similar argument holds for any
arbitrary value of k.
T(O,IR)) - T(O,IRI)
3Com 3C1m
R s2|R|
3Cipm 3Cam
—R|(Z2M ¢+ — 51| R|(=2M
[RI(R s1p_c1e) = s1|R|(SIR]
= |R|((s2 = 1) X s1p_c1e = (51 = 1) X S2p_c2¢ + (52 = 51) X ¢r)
so—1

- 0n

= |R|(+cr +32p,626)+32|R|(+cr +51p,cle)

+or +52p_C2¢)

s1—1

= |R|(32p, C2e t cr)(slp, c1e +cr)(

sZp_CZe +cr S1p_Cle + ¢

>0

The last expression in the closed parenthesis is positive since we
order the predicates using the ranking function Eq. (4). O

4.3 Logical UDF Reuse

We next present a technique of reusing UDF results in the OPTIMIZER
based on their logical semantics. Consider Q1 searching for a suspi-
cious vehicle in Listing 1. The officer may tolerate different physical
implementations of the logical UDF, ObjectDetector provided they
meet the accuracy requirements (similar to logical and physical
operators in query optimization [20]). The physical UDF may be
(1) YoLo-TINY [2], (2) FASTERRCNNRESNET50, or (3) FASTERRCN-
NRESNET101 [54]. This scenario also arises across applications. For
example, the traffic monitoring application might also be running
an object detection model, which presents the opportunity to reuse
results. These physical UDFs may vary in their accuracy, inference
time, and availability of materialized results. EVA considers the
materialized views of all the models and automatically substitutes
the logical vision task with one or more physical models. We reduce
the problem of selecting the optimal physical UDFs that minimize
the execution cost to the weighted set cover problem.

WEIGHTED SET COVER PROBLEM. The weighted set cover prob-
lem is defined as follows. Given a universe U (JU| = n) and a
collection of sets S = {51,52,...5m}, Si € U Vi. Each set S; has
a weight w; > 0. The set cover is a subset I = {1,2,3,...,r} such
that U;c1S; = U. The weighted set cover problem finds a set cover
with the minimum overall weight }’;c; w;. The weighted set cover
problem is NP-Complete [10].

We use a polynomial-time greedy algorithm to solve this problem.
Suppose Uncovered C U is set of uncovered elements of the uni-
verse U. At each iteration i, the algorithm picks the set S; that
minimizes ng. The idea is to minimize the cost per un-
covered element at each iteration. It achieves a In n—approximation
[10] and is the best possible approximation for any polynomial al-
gorithm [16, 41].

OPTIMAL SET OF PHYSICAL UDFs. We prove that selection of
the optimal set of physical UDFs reduces to a weighted set cover

608

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Algorithm 2: Logical UDF Reuse — The algorithm to rewrite
the logical UDF with the corresponding physical UDFs that mini-

mizes the execution cost.

Input :sig: UDF signature, C: set of UDF constraints, q: assocaited predicate for UDF
Output: D: optimal set of equivalent physical UDFs
1 Procedure OptimalPhysicalUDFs(sig, C, q)

2 X « PhysicalUDFs(sig, C) > Phy UDFs that satisfy constraints

3 Yy« argminycx Cx > Min cost UDF

4 repeat

5 for x € X do

6 L Compute W (x,q) = S(’("‘l;;) I > Cost per uncovered tuple
Py 1Mx

> UDF with min W(x, Q)

N

x* — argmin,.cxW(x,q)

8 if W(x*,q) < cy then

5 D DU{(x".pn.)}
10 q — DIFF(py*,q)

> Select mat view of x*

11 else

12 D—DU{(y,q)} > Select cheapest UDF
13 q—0

14 until g # 0

15 return D

problem in Theorem 4.2. Consider the tuples in materialized view
m; of the physical UDFs x; as a set S; in collection S. The cost of
reading the materialized view C(m;) is mapped to weight w;. Dur-

ing each iteration, the greedy algorithm picks the physical UDF that
C(m;)
|m;NUncovered| "
cardinality of the uncovered elements), we leverage the symbolic
engine. Specifically, we use the selectivity of the intersection predi-

cate. We provide more details below.

minimizes To compute the denominator (i.e., the

ALGORITHM. The OPTIMIZER uses Algorithm 2 to find the optimal
set of physical UDFs. It first retrieves the set of physical UDFs
X, satisfying the required constraints (Line 2). Next, it finds the
cheapest UDF y with cost ¢y in Line 3, which will be used when
no materialized view is picked. Then, it computes the cost per
uncovered tuple (Line 6). The intersection predicate (§ 4.1) selects a
subset of tuples in the materialized view that satisfies the predicate
q. So, the selectivity of the intersection predicate is used to calculate
the cardinality of uncovered tuples sp, |my|. In Line 8, it checks if it
is beneficial to pick a materialized view or instead run the cheapest
UDF. Specifically, if the cost per tuple of the materialized view is
lower than running the cheapest UDF, it selects the materialized
view (Lines 9 to 10). It updates the query predicate by computing
the difference between the UDF’s predicate (p,+) and the query
predicate. Otherwise, it decides to run the cheapest UDF for the
remaining range (Lines 11 to 13). In § 5.4, we show that the logical
UDF reuse optimization delivers a 2.2x workload speedup.

THEORETICAL ANALYSIS. We next provide an analysis of the
problem reduction.

THEOREM 4.2. Given the set of physical UDFs X = {x1, x2..., X}, the
corresponding materialized views M = {my, ..., my} and the associ-
ated predicate q, the problem of selecting the optimal set of physical
UDFs Y C X reduces to a weighted set cover problem.

PROOF SKETCH. Suppose W be the set of all possible tuples, C(m;)
the cost of reading the materialized view m;, and c; the execution
cost of UDF x;. The universe U(|U| = n) is the set of tuples over
which the UDF needs to be evaluated. They satisfy the associated
predicate q.

U=0a,(W)

Session 8: Query Processing and Data Management for ML

Given the cost of the cheapest UDF ¢; (j = argmin c;), pn,, =
INTER(px;, q) (§ 4.1), and P(q), q € [1,2"] is the qth element in the
power set of U (ordered arbitrarily). The collection of set S and the
corresponding weights are defined as follows.

S= {51,..., Stes Sk 1 -+es Sk+2|U|} such that
op.. (U), 1<i<k
Si=4 P . ol ()
P(i—-k), k+1<i<k+2
C(mj), 1<i<k
i=) . U] (6)
cjlP(i-k)|, k+1<i<k+2

Si,i € [1, k] represents the subset of tuples in the materialized view
m; that satisfy the intersection predicates q. S, i € [k + 1,k + 21U
represents all the subsets of the tuples on which the UDF needs to be
executed (all subset of U). We append the power set to handle two
scenarios: (1) the tuples for which we do not have the materialized
results, and (2) the scenario where using the cheapest UDF is better
than reading results from the view. The weight w;, i € [1, k] is the
cost of reading the materialized view. For elements in the power
set, weight w;,i € [k + Lk + Z‘Ul] is the cost of executing the
cheapest UDF on the tuples in the set. As the assigned weights w;s
are proportional to the execution cost, the optimal weighted set
cover for the above problem gives the optimal set of physical UDFs
that minimizes the execution cost.

4.4 Rule-Based Query Rewrite

We design two transformation rules to rewrite UDF invocations in
the query plan:

I - UDF-BASED PREDICATE TRANSFORMATION RULE. The op-
TIMIZER leverages the AppLy (A) operator to transform UDF invo-
cations into relational operators. Fig. 3 illustrates this rule-based
transformation. Suppose the selection operator contains multiple
UDF-based predicates. In that case, the opTIMIZER first reorders the
predicates based on the materialization-aware ranking (elaborated
in § 4.2), then chains their transformation using the APPLY operator
(i.e., the output of the preceding UDF-based predicate is the input
of the succeeding one).

II - MATERIALIZATION-AWARE TRANSFORMATION RULE. A
straightforward transformation to reuse the materialized results
consists of: (1) using the intersection predicate (pn) to filter out the
materialized results, (2) using the difference predicate (p-) to filter
out the input relation and evaluate the UDF on the remaining tuples,
and (3) using the union operator to aggregate the results. However,
this solution has two drawbacks. First, pn and p_ may be complex,
and evaluating them over every tuple will be expensive. Second,
pn and p_ may contain other UDFs, and the oPTIMIZER needs
to consider reusing their materialized results. So, this approach
requires recursion.

To circumvent this problem, EVA’s materialization-aware transfor-
mation rule entails three modifications, as shown in Fig. 4:

@ If the opTiMIZER finds out that there exists a materialized view
(M) for the UDF signature u, it introduces a LEFT OUTER JOIN
operator that operates on the input relation R and M.

@ It replaces the AppLY operator with a conditional AppLY operator.
Notice that for tuples that are missing in view M, the output

609

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

A inner
| Pudf |::> R al;)
UDF(r)

Figure 3: UDF-Based Predicate Transformation Rule

Ainner / \
yd r; 01><1 ol'p
R 0|-p / \ O s upr)
R g I
UDF(r)

UDEF(r)

UDF

Figure 4: Materialization-Aware Transformation Rule

columns are populated with NULLs. So the pass-through pred-
icate p* of the conditional AppLY operator guarantees that the
VDBMS only evaluates the UDF for tuples with missing values.
© It introduces a new STORE operator on top of the UDF, which
ensures that the VDBMS appends the UDF evaluation results
to the materialized view M,,, that may be reused for processing
future queries.
If the intersection predicate (pn) or the different predicate (p-) is
FALSE (after symbolic reduction), we may simplify this transfor-
mation accordingly. For example, if pn is FALSE, this implies that
My, does not contain any results of the required UDF invocation,
so the oPTIMIZER skips the LEFT OUTER JOIN operator (@) in the
transformation. If p_ is FALSE, then all the results are available in
view M. In this case, in Fig. 4, the oPTIMIZER removes the APPLY
operator (@) and its right subtree because the join operator (@)
provides all the required results.

5 EVALUATION

In our evaluation, we seek to answer the following questions:

e How does the UDF-centric reuse algorithm in EVA compare
against reuse algorithms in traditional DBMSs and canonical
function caching technique (§ 5.2)?

e What is the overhead of reuse operations (§ 5.3)?

e How effective is EVA’s semantic reuse algorithm, including
symbolic predicate reduction, materialization-aware predicate
reordering, and logical UDF reuse (§ 5.4)?

e What is the impact of video length and content on EVA’s reuse
algorithm (§ 5.5)?

e How does EVA’s reuse algorithm complement the specialized
filters used in SOTA VDBMSs (§ 5.6)?

5.1 Experimental Setup

IMPLEMENTATION. We implement EVA in Python. We use Antlr [48]
to parse the input query and generate the parse tree. We manage
the catalog in a traditional DBMS using SQLAlchemy [6]. We im-
plement the storage engine using the Petastorm library [21]. It
stores the videos on disk using the Apache Parquet format. The

Session 8: Query Processing and Data Management for ML

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Table 1: Illustrative queries in VBENCH-HIGH

SELECT <> FROM VIDEO CROSS APPLY FastRCNNObjectDetector(frame)

Q1id < 10000 A label = ’car’ A area > 0.3 A CarType(frame, bbox) = "Nissan’;

Q2 - Zoom out: id < 10000 A label = "car’ A CarType(frame, bbox) = "Nissan’;

Q3 - Zoom in: id < 10000 A area > 0.25 A label = "car’ A CarType(frame,

bbox) = 'Nissan’ A ColorDet(frame, bbox) = ’Gray’;

Q6 - Shifting: id > 7500 A label = "car’ A ColorDet(frame, bbox) = *Gray’;

EXECUTION ENGINE consumes this data after converting it to a Pan-
das Dataframe [42], and relies on the Pytorch framework [49] to
evaluate deep learning-based UDFs in the queries. EVA currently
contains 28 K lines of code. The SYMBOLICENGINE uses the SymPy
library [43] for the symbolic analysis of predicates to guide reuse
decisions. The developer may extend the Cascades-style OPTIMIZER
by adding additional rewrite rules over time. The system is available
at: https://github.com/georgia-tech-db/eva.

WORKLOAD GENERATION. There are no standard benchmarks for
exploratory video analytics. To test EVA, we develop the VBENCH
benchmark that captures a wide range of queries and stress tests
EVA’s capability to reuse results.

Vipeo DATAsSETs. We evaluate EVA on two datasets.

e UA-DETRAC [59]. To study the impact of video length, we con-
struct three video sets based on UA-DETRAC: SHORT-UA-DETRAC
(5 clips with 7.5k frames in total), MEDIUM-UA-DETRAC (10 clips
with 14k frames in total), and LONG-UA-DETRAC (20 clips with
28k frames in total).

® JACKSON (night-street from [35]) with 14k frames. JACKsON
has a lower resolution (600 X 400) compared to UA-DETRAC
(960 x 540). Furthermore, on average, JACKSON has fewer ve-
hicle appearances (0.1 vehicle per frame) than vA-DETRAC (8.3
vehicles per frame). We adjust the number of frames to be
consistent with that of MEDIUM-UA-DETRAC.

QUERY SETS AND WORKLOAD GENERATION. We construct two
query sets with (1) low-, and (2) high-reuse potential denoted by
VBENCH-LOW, and VBENCH-HIGH, respectively. Here are the key
properties of these query sets:

e VBENCH-LOW: The average overlap of frames read from the
video dataset by two subsequent queries is 4.5%. This repre-
sents a scenario where the analyst skims through different
parts of the video.

e VBENCH-HIGH: The average overlap is 50%. This represents a
scenario where the analyst iteratively refines the query over a
particular part of the video.

Every query set contains 8 queries focusing on vehicles in the videos
(similar to the motivating example in §1). Every query contains an
APPLY operator to connect the video with the object detection UDF.
The queries have up-to five predicate clauses, where three of them
are direct-column predicates (i.e., id, label, and scores), and two of
them are UDF-based predicates (i.e., vehicle color, and type).
Table 1 lists the illustrative queries. FASTERRCNNRESNET50 [54],
CaArTYPE, and CoLorRDET are UDFs for object detection, vehicle
type recognition, and color classification, respectively. Since they
are expensive, EVA identifies them as candidate UDFs for reuse. The
queries emulate an exploratory analysis for a suspicious vehicle.
Typically, such analysis is a combination of zooming in/out and

610

Table 2: Hit Percentage

Hit Percentage (%) ‘ HasuStasu FunCacHE EVA
VBENCH-LOW 2.02 24.68 24.68
VBENCH-HIGH 5.62 66.01 66.01

range shifting operations [13, 58]. The user begins by looking for
a car, likely a Nissan (Q1). Based on the result of Q1, they relax
the constraint on the area of the bounding box (Q2: Zooming out).
Next, they add the color constraint to refine the search further (Q3:
Zooming in). In subsequent queries, they shift the frame range of
the query (Q6: Shifting range). We evaluate every workload from a
clean state (i.e., no available materialized results). Unless otherwise
specified, the experiments are based on the MEDIUM-UA-DETRAC
video dataset and VBENCH-HIGH query set.

BAsELINES. We reimplement the key ideas of HasuStAsH and
function caching technique within EVA for a fair comparison. We
refer to these baselines as HasuSTasH and FUNCACHE.

e HasuSTAsH: It utilizes a recycler graph to keep track of the
plans associated with previously executed queries. Every node
in the recycler graph represents an operator in the plan (e.g., hash-
join and hash-aggregate). It materializes the results of the op-
erator. To exploit reuse opportunities, it first does a sub-tree
matching between the query and the recycler graph without
requiring predicates to be identical. It then deduplicates the
union of materialized results of all matched operators and
applies the query’s predicates to answer the query.

e FUNCACHE: A canonical approach for accelerating the eval-
uation of predicates with UDFs is to directly cache the UDF
results at tuple-level (i.e., frame-level) granularity [27, 32]. We
implement such a function caching technique in EVA’s Ex-
ECUTION ENGINE. Specifically, for each UDF, the EXECUTION
ENGINE maintains an in-memory hash table that maps the
input arguments to the outcomes. It uses xxHash [11] to effi-
ciently compute 128-bit hash values of the input arguments of
the UDF.

HARDWARE SETUP. We perform experiments on a server with
these specifications: 28 Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz,
1 NVIDIA Quadro P6000 GPU, and 256 GB RAM.

5.2 End-to-End Comparison

Hit PERCENTAGE. Measures the fraction of UDF invocations
satisfied using previously materialized results.
number of reused UDF invocations

Hit Percentage = - - * 100
total number of UDF invocations

https://github.com/georgia-tech-db/eva

Session 8: Query Processing and Data Management for ML

‘ E=1 No reuse EZ3 Hashstash BN FunCache =21 EVA

EN
L

Workload Speedup
N

o
I

SAmd |

VBENCH-LOW VBENCH-HIGH

Figure 5: Workload speedup — Impact of reuse algorithms on VBENCH-
Low and VBENCH-HIGH workloads over the MEDIUM-UA-DETRAC video set.

Table 3: UDF Statistics — C,, is the cost of each UDF invocation in VBENCH-
HIGH measured in milliseconds per tuple (MEDIUM-UA-DETRAC dataset). For
deep learning models (e.g., FASTERRCNNRESNET50), C,, includes the pre-
and post-processing time, besides the inference time. We configure the GPU
batch size to 20. #DI and #TI represent the number of distinct invocations
and the total number of invocations, respectively.

UDF Cy #DI #T1 GPU/CPU
FASTERRCNNRESNET50 | 99 13,820 72,457 GPU
CARTYPE 6 114,431 414,119 GPU
CoLoRDET 5 111,631 219,264 CPU

Table 2 presents the hit percentage with different reuse algorithms
under different reuse-potential query sets. A higher hit percent-
age implies that the algorithm can exploit more reuse opportuni-
ties based on the results of previous queries within the workload,
thereby leading to a lower query execution time (shown in Fig. 5).
The most notable observation is that EVA has at least an 11.7x
higher hit percentage than HAsHSTASH because the sub-tree match-
ing problem in traditional database systems is not geared towards
reusing results associated with UDF invocations while evaluating
the predicates in the queries. For example, HASHSTASH can only
reuse the FASTERRCNNRESNET50 between queries in Table 1, while
EVA can further reuse the outcomes of CARTYPE and COLORDET.
EVA achieves the same hit percentage as FUNCACHE, which is opti-
mal under both workloads.

WORKLOAD SPEEDUP. Figure 5 presents the workload speed
up across different reuse-potential query sets. With No-REUSE,
VBENCH-LOW and VBENCH-HIGH take 0.96 hours and 3.1 hours, re-
spectively. Consistent with the hit percentage, EVA’s reuse algo-
rithm lowers execution time by 1.2X over HASHSTASH on VBENCH-
row and by 2x on vBENCH-HIGH. Though FUNCACHE has the same
hit percentage as EVA, EVA outperforms FUNCACHE by 1.7X on
VBENCH-HIGH, and FUNCACHE achieves a negative speedup (i.e., 0.95X)
on VBENCH-LOW. This is due to the cumulative overhead of hashing
the input arguments during every UDF invocation (even with the
fast xxHash function). Another limitation of the FUNCACHE is that
it is applied during execution time (i.e., when evaluating an UDF).
So it does not support optimizations like materialization-aware
predicate reordering.

611

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

[NoReuse [UDF [NEl Reuse
—~ 1000 + — —
v || ||
P | -
£ 1004 —| -
=]]
10 . -

Q1 Q Q3 Q4 Q5 Q6 Q7 Q8
(a) Time breakdown of VBENCH-HIGH under EVA

& %
o 20

NE—————

Materialization Optimization Apply Read
(b) Sources of overhead

Figure 6: Time Breakdown and Overhead Analysis - (a) showcases
the time breakdown (log-scale) of eight queries in VBENCH-HIGH under EVA.
(b) shows the box plot of the time spent on materialization, optimization,
apply operator, and reading (i.e., video frames and materialized UDF results)
for each query. Outliers are marked as green diamonds.

For a given workload, the upper bound on the maximum speedup
possible with respect to No-REUSE is as follows:

Zu €all UDF invocations Cu
Zueall distinct UDF invocations Cu *+ reuse cost

Y

Workload Speedup =

< Zu call UDF invocations Cu

ZuEaH distinct UDF invocations Cu

Here, Cy, is the cost of invoking u. We compute this upper bound
by examining the UDF invocations across all the queries in the
workload. Table 3 lists the statistics of UDF invocations under
VBENCH-HIGH and MEDIUM-UA-DETRAC. For VBENCH-HIGH, the work-
load speedup is bounded by 4.11x over the No-REUSE setting. For
VBENCH-LOW, the upper bound is 1.42X. In both cases, EVA delivers
anear-optimal speedup (0.97X of the upper bound on VBENCH-HIGH
and 0.92X on VBENCH-LOW).

STORAGE FOOTPRINT. The storage footprint associated with mate-
rializing the results of UDF invocations for vBENCH-LOW is 12.5 MiB
and 14.3 MiB for VBENCH-HIGH. The size of the MEDIUM-UA-DETRAC
video dataset is 16 GiB. EVA’s reuse algorithm takes up to 0.09 %
extra storage space. This is because the UDFs used in the bench-
mark extract lightweight structured meta-data (e.g., bounding boxes,
color, and vehicle type) from the video. So the storage footprint is
significantly lower than that of the video itself. This might not be
the case for certain UDFs (e.g., video colorization).

5.3 Time Breakdown

To better understand the benefits and overhead of EVA’s reuse
algorithm, we show the time breakdown for individual queries in
Fig. 6. EVA starts from a state with no materialized views, so the
first three queries in VBENCH-HIGH incur high UDF execution costs,
as shown in Fig. 6 (a), while later queries are much faster. After
executing these queries, EVA additionally pays the compute cost of
materializing the UDF invocations. Among them, only Q; incurs a
0.95x slowdown with respect to No-REUSE (a tolerable overhead

Session 8: Query Processing and Data Management for ML

Table 4: Time Breakdown of Qg in VBENCH-HIGH under No-REUSE
and EVA— This table breaks down query processing time into: (1) latency
of UDF evaluation, (2) reading the video from the disk, (3) reading the
materialized results, (4) materializing the new UDF evaluation results, and
(5) other operations (e.g., optimizer, join, crop, e.t.c.)

Latency (s) ‘ UDF Read Video Read View Mat Other

No-REUSE 997 22 0 0 2
EVA 5 19 10 2 5

%]

= —

g 1s simplify | |

uE_, -%=- EVA

L 107 1 7™ 1

§ s N r”v“:' I San

: vy ¥ Y Y YV oo e v

FasterRCNN CarType ColorDet

Figure 7: Effectiveness of EVA’s Symbolic Predicate Reduction —
The x-axis represents the intersection, difference, and union predicates
calculated in the opTIMIZER when executing the VBENCH-HIGH. The y-axis
contains the number of atomic formulae in those predicates.

for accelerating subsequent queries). Fig. 6 (a) also demonstrates
that the EVA’s reuse cost is much lower than the UDF execution
cost.

Table 4 presents a fine-grained time breakdown of an exemplar
query Qg. Compared to the No-REUSE setting, EVA replaces the 997
seconds of UDF evaluation with 10 seconds of reading the materi-
alized results and 5 seconds of UDF evaluation on the remaining
input rows. Meanwhile, time spent on materializing new results,
query optimization, and join operations is much lower compared
to the benefits of EVA’s reuse.

OVERHEAD ANALYSIS. Fig. 6 (b) lists the key sources of overhead:
(1) materializing the outcomes of UDF invocations; (2) OPTIMIZER
analyzing and rewriting the query; (3) adding the APPLY operator
for reusing the results of a materialized view; (4) loading frames and
materialized results from the storage engine; We do not present cer-
tain system components with negligible overhead (e.g., parser). The
most notable observation is that the opTIMIZER has low overhead.
This shows that the semantic reuse algorithm and symbolic analysis
are efficient. Materializing the outcomes of UDF invocations has a
low overhead due to batch-level processing in EVA (batch size =
200 MiB) . In contrast, the time spent on reading tables and views
is significant because the conditional apply operator needs to read
the complete table to find out missing entries.

5.4 Semantic Reuse Algorithms

SymBoLIC PREDICATE REDUCTION. In this experiment, we com-
pare EVA’s predicate reduction algorithm (§ 4.1) with Sympy’s
off-the-shelf simplify function. The simplify function is based
on the pattern matching and Quine-McCluskey algorithm [52].
Fig. 7 shows that EVA’s algorithm outperforms the simplify for
all three UDFs’ predicate analyses. This is because the pattern
matching logic in SymPy’s simplify cannot extensively support

4CPU batch size is different from the GPU batch size in Table 3.

612

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

= 100 g A 1.01
g -a
=
C
3 801 -4A-- Hashstash o
E EVA 0 %7
O 604 ColorDetector
€ CarRecognition
= —¥— FasterRCNN
404 " " i oo
1 2 3 4 1 2 3 4 5 6 7 8
Workload VBENCH-HIGH-4

(a) Execution Time (b) Materialized UDF Results
Figure 8: Impact of Order of Queries - (a) presents the execution time
of four random permutations of VBENCH-HIGH with HAsHSTAsH and EVA’s
reuse algorithms. (b) presents how the materialized UDF results in EVA
converge over queries in the fourth permutation.

o
L

|; Canonical Bl Materialization-aware

IS
L

N
L

Query Speedup

o
I

Q6 Q7 Q11 Q12 Q20 Q21

Q29

Q31

Figure 9: Impact of Materialization-Aware Predicate Reordering —
Query speedup with canonical and materialization-aware ranking functions.

the interactions between inequalities and logic operations. In con-
trast, EVA leverages Sympy’s inequality solver in the predicate
reduction procedure.

In Fig. 7, the gap between the simplify and EVA’s algorithm is
smaller for FASTERRCNNRESNET50 than CARTYPE or COLORDET.
This is because in VBENCH-HIGH, the associated predicates for
FAsTERRCNNRESNET50 only involve the id column. In contrast,
the associated predicates for CARTYPE or COLORDET contain up to
four variables (i.e., id, label, area, and the other UDF). simplify’s
reduction does not work well with polyadic predicates. Further,
when the simplify function fails to reduce a predicate, it cannot
recover in subsequent queries, and the predicate becomes more
complicated over time. This explains why in Fig. 7, simplify leads
to an extraordinarily high number of atomic formulae for VEHI-
cLEMoDEL and VEHICLECOLOR.

MATERIALIZATION-AWARE PREDICATE REORDERING. To show
the effectiveness of materialization-aware predicate reordering, we
construct four workloads (VBENCH-HIGH- 1, 2, 3 and 4) that are
random permutations of queries in VBENCH-HIGH. The rationale is
that the amount of materialized results that individual UDF invo-
cation can reuse differs in every permutation. So, the cost of UDF
should not be static. Fig. 8 (a) shows that EVA’s reuse algorithms
lowers execution time by at least 1.8X over HASHSTASH (stronger
baseline). In workloads 1, 3, and 4, where the predicate reordering
is beneficial, EVA outperforms HasHSTASH by 2X. To discuss why
predicate reordering is not useful in the second workload, we com-
pare the execution time of the queries with two predicate reordering
algorithms: (1) using a canonical ranking function (Eq. (2)), and
(2) using a materialization-aware ranking function (Eq. (4)). The
results are shown in Fig. 9. We only list the queries with multiple

Session 8: Query Processing and Data Management for ML

II:I Min-cost-noreuse =~ [XIJ Min-cost EVAI

1000 4

100 4

Time (s)

Figure 10: Impact of Logical UDF Reuse — Comparison of execution
time (log scale) against baselines that directly substitute the logical UDF
with the least expensive physical UDF that satisfies the accuracy constraints.

predicates across all permutations. Table 1 shows an example query
(Qs) with two UDF predicates, namely CoLoRDET and CARTYPE.
Materialization-aware predicate reordering accelerates queries by
3-6 X on most queries. This is because the canonical ranking func-
tion only considers the execution cost of the UDFs, whereas the
materialization-aware ranking function also factors in the available
materialized results. With queries Q11, Q12, and Qs1, both ranking
functions return the same predicate ordering. We attribute this to
the fact that the UDFs that result in lower ranks using the canonical
ranking function also have a higher fraction of required results
materialized.

ImpacT oF LogicaL UDF REUSE. In this experiment, we evaluate
the benefits of logical UDF reuse optimization. In earlier experi-
ments, for a fair comparison with other baselines, all the queries in
the VBENCH referred to an actual physical model (FASTER-RCNN). In
this experiment, we replace all the occurrences of FASTER-RCNN in
the workload with a logical UDF (i.e., ObjectDetector). We consider
three physical UDFs, namely, (1) YoLo-TINY [2], (2) FASTERRCN-
NRESNET50, and (3) FASTERRCNNRESNET101 [54]. Table 5 lists these
model’s accuracy and inference cost on the COCO [39] dataset. We
pick these models as they are readily available in popular object
detection libraries [34, 61]. The workload emulates multiple inter-
active video analytics applications with different accuracy require-
ments. We compare Algorithm 2) against two baselines: MIN-COST-
NOREUSE (reuse disabled) and MIN-cOsT (reuse enabled). In both
baselines, we substitute the logical UDF with the least expensive
physical UDF that satisfies the accuracy constraint. For example, if
the required accuracy is low, we substitute it with yoLo-TIny. Fig. 10
shows the results. With Qy (low accuracy requirement), EVA is 6.6X
faster than both baselines because EVA reuses results of FASTERRC-
NNRESNET50 from Q1, whereas MIN-COST substitutes with the least
expensive model (YoLo-TINY) and thus has no reuse opportunity.
With queries Q¢ — Qg, EVA achieves a speed up in the range of
1.2-3.2x compared to MIN-cosT. This is because EVA reuses results
from multiple views, whereas MIN-cOST only reuses results from
the minimum cost UDF. For example, YOLO-TINY may reuse results
from FASTERRCNNRESNET50 and FASTERRCNNRESNET101. EVA
considers all such reuse opportunities. With Qy4, EVA is 2X slower
than both baselines. This is because EVA reuses results from a high
accuracy model, which results in more objects being detected. Thus,
subsequent dependent UDF (e.g., VEHICLEMODEL) must be evalu-
ated for more objects, thus increasing the overall query time. We
discuss this limitation in § 6.

613

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Table 5: Statistics of the UDF used in logical reuse experiment. We use
a batch size of 20. C,, is the cost of each UDF in milliseconds per tuple.
Accuracy values are boxAP on COCO.

‘ Cy(ms) Accuracy
YOLO-TINY 9 17.6 (LOW)
FASTERRCNNRESNET50 99 37.9 (MEDIUM)
FASTERRCNNRESNET101 120 42.0 (HIGH)

3 No reuse ZZ2 Hashstash M FunCache X EVA‘

IS
n

w
n

-

Workload Speedup

o

VBENCH-LOW VBENCH-HIGH

Figure 11: Impact of Video Content - It shows the workload speedup
on the jackson video dataset.

5 9
Q p— 4
S|
o X
Q4 // 8
v ’ ©
° ’ =
I g
23y EVA M7
o .
= ¥ - vehicles/frame

24 - -
SHORT MEDIUM LONG
Figure 12: Impact of Video Length — The left y-axis shows the workload

speedup and the right y-axis shows the average number of vehicles per
frame across differently-sized UA-DETRAC videos.

5.5 Impact of Video Content and Length

We next examine how the content of the video affects the perfor-
mance gains of EVA. Fig. 11 presents the workload speedup of
EVA and other baselines on the JAcksoN video dataset. With No-
REUSE, VBENCH-LOW and VBENCH-HIGH take 0.53 and 1.7 hours,
respectively. While EVA still outperforms both baselines, the gap is
smaller because this dataset has significantly fewer vehicle objects
(0.1 vehicles per frame), leading to fewer CoLorRDET and CARTYPE
invocations (reused by EVA). Thus, the benefits of EVA are more
prominent on workloads that contain more frequent UDF invoca-
tions in the predicates.

Vipeo LENGTH. To study how the benefits of EVA vary with the
length of the video, we measure the workload speedup of VBENCH-
HIGH query set on SHORT- and LONG-uA-DETRAC. We alter the
query set to scale the id predicate range to the length of these
videos. For instance, id < 10000 on MEDIUM-UA-DETRAC translates
to id < 5000 for SHORT-UA-DETRAC and id < 20000 for LONG-UA-
DETRAC, respectively. Fig. 12 shows that the workload speedup does
not drop with longer videos, demonstrating the scalability of EVA.
This is because the vehicle objects are nearly uniformly distributed
across frames in the UA-DETRAC videos. So, the video length does

Session 8: Query Processing and Data Management for ML

not significantly impact the speedup (Eq. (7)). The slight increase in
workload speedup in Fig. 12 stems from higher number of average
vehicles per frame in LONG-UA-DETRAC.

5.6 Impact of Specialized Filters

We next examine how the reuse algorithm works in conjunction
with specialized filters [35, 40]. These specialized filters return a
boolean decision that decides whether the frame needs to be sub-
sequently processed by an expensive UDF. In this experiment, we
use a lightweight DNN model with two convolutional layers as a
specialized filter. Since these filters are lightweight UDFs, we also
materialize their results whenever possible.

We consider two configurations: (1) EVA: reuse enabled but no spe-
cialized filters, and (2) EVA+Filter: reuse enabled with specialized
filter. The experiment is performed on jacksoN video because the
filtering works best on videos with a low percentage of average
vehicles per frame [35]. Execution time with EVA and EVA+Filter
configurations are 1393 s and 1075 s, respectively (1.3X speedup).
This reduction in execution time is in addition to the 4X speedup
EVA delivers without using filters (Fig. 11). We attribute this addi-
tional gain to reducing the invocation of expensive UDF by filtering
out irrelevant frames using the lightweight UDF. This experiment
illustrates that reuse is orthogonal to the filtering optimization used
in other recently proposed VDBMSs [35, 40].

6 LIMITATIONS

We now discuss the limitations of EVA and present our ideas that
may address the problems in the future work.

SYMBOLIC ANALYSIS OF JOIN PREDICATES. Join predicates in-
crease the complexity of identifying UDF-centric reuse opportuni-
ties. Consider the following query plans:

* Q1 :MypF(a.col,B.col) (A>A.id=B.id B)

® Q2 : IypF(A.col,B.col) (A P44 id=B.id+1 B)

e Qs l-IUDF(A.col,B.coI) (A4 jd=B.id mod 2 B)
where table A and B are heterogeneous except for the id column.
Here, no reuse opportunities exist between Q; and Q2, while Q1
subsumes Q3. While it is possible to do symbolic analysis of join
predicates, EVA currently does not support it.

CHAINED FUNCTION CALLS AND FUZZY MATCHING. In case of
logical UDF reuse, the selection of a physical UDF may affect the
execution cost of a subsequent UDF. For example, as FASTER-RCNN
detects more objects than YOLO-TINY, substituting the object detec-
tor with FASTER-RCNN produces more objects, thereby increasing
the number of evaluations of dependent UDFs (e.g., VEHICLECOLOR,
VeHICLEMODEL). Taking this into consideration in the cost model
will further improve performance. Another observation is that the
bounding boxes detected by different object detection models for
the same object are likely to be spatially close to each other. We
plan to extend EVA to fuzzily reuse the results of VEHICLEMODEL
UDF on similar bounding boxes in the future.

7 RELATED WORK

VisuaL DBMSs. Researchers have presented techniques for effi-
ciently analyzing visual data for several decades. These include a
rank-join operator for multi-feature image similarity matching [5,

614

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

28], support of streaming media [4, 23]. More recently, Blazelt [35]
utilizes specialized neural networks to accelerate aggregation and
limit queries. It supports a declarative query language for analyz-
ing spatio-temporal features of the video. NoScope [36] reduces
execution cost by leveraging cheap filters. [40] uses probabilistic
predicates to accelerate machine learning inference. Tahoma [3]
relies on classifier cascades to speed up visual analytics queries.
Weld [47] introduces a common runtime that optimizes data op-
erations among existing analytics libraries. All these systems are
orthogonal to EVA and can be coupled to accelerate video analytical
queries further.

REUSE ALGORITHMS IN TRADITIONAL DBMSs. Researchers
have extensively studied algorithms for reusing results in traditional
DBMSs [13, 17, 19, 27, 31, 33, 45, 50, 55, 56, 64]. Similar techniques
have been proposed in non-relational data processing systems [1,
14, 22, 53]. The key limitation of most of these algorithms is that
they take a syntax-based approach to select sub-expressions to
materialize and map it to a cost-based optimization problem. Since
EVA takes a semantics-based approach to reusing results, it is more
effective in leveraging opportunities for reusing results(e.g., non-
exact reuse in simple predicates that do not contain UDFs, and
compound predicates with logic and arithmetic expressions).
Traditional DBMSs [46] use a set of complex query rewrite rules
for leveraging materialized views. These rewrite rules are comple-
mentary to the ones tailored for UDFs in EVA.

SymBoLIC COMPUTATION IN DBMSs. Researchers have proposed
several applications of symbolic computation in DBMSs. These
include: (1) systems for verifying or disproving the equivalence of
SQL queries [9, 65], (2) systems to automatically generate input
tables and parameter values for database applications [57]. EVA
leverages symbolic computation to analyze UDF-based predicates.

STORAGE SYSTEMS FOR VIDEO ANALYTICS. VSS [25], VStore [62],
and TASM [12] are novel storage engines tailored for video ana-
lytics. Since EVA supports a pluggable storage engine architecture,
leveraging these specialized storage engines can further reduce
query execution time.

8 CONCLUSION

We presented EVA, a VDBMS for accelerating exploratory video
analytics using materialized views. EVA adopts a novel symbolic
approach to analyze the degree of reuse across queries and applies
a series of rule-based transformations geared towards reusing UDF
results. It leverages a materialization-aware ranking function for
reordering predicates and employs a logical UDF reuse optimization
tailored for video analytics. Our empirical analysis of EVA shows
that it outperforms the SOTA reuse algorithms on exploratory video
analytics workloads by 4x with a negligible storage overhead.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Science Foun-
dation (IIS-1850342, IIS-1908984, CNS-1909346, CNS-2008368), Al-
ibaba Innovative Research (AIR) Program, Cisco, Adobe, Intel, and
a gift from Microsoft Corp. We thank colleagues in Georgia Tech
Database Group and Embedded Pervasive Lab for their constructive
feedback in improving the system.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1850342
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1908984
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1909346
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2008368

Session 8: Query Processing and Data Management for ML

REFERENCES

(1]

A

(3

=

[4

=

[11]

[12

[13]

[14

[15]

=
&

(17

[18

[19]

[20

[21]

[23]

[24

[25

[27]

D. Abadi, Yanif Ahmad, M. Balazinska, U. Cetintemel, Mitch Cherniack, J. Hwang,
W. Lindner, Anurag Maskey, A. Rasin, Esther Ryvkina, Nesime Tatbul, Ying Xing,
and S. Zdonik. 2005. The Design of the Borealis Stream Processing Engine. In
CIDR.

P. Adarsh, Pratibha Rathi, and M. Kumar. 2020. YOLO v3-Tiny: Object Detection
and Recognition using one stage improved model. 2020 6th International Con-
ference on Advanced Computing and Communication Systems (ICACCS) (2020),
687-694.

Michael R. Anderson, Michael J. Cafarella, G. Ros, and T. Wenisch. 2019. Physical
Representation-Based Predicate Optimization for a Visual Analytics Database.
2019 IEEE 35th International Conference on Data Engineering (ICDE) (2019), 1466~
1477.

W. Aref, A. Catlin, A. Elmagarmid, Jianping Fan, J. Guo, M. Hammad, I. Ilyas,
M. Marzouk, S. Prabhakar, A. Rezgui, S. Teoh, E. Terzi, Yi-Cheng Tu, A. Vakali,
and Xingquan Zhu. 2002. A distributed database server for continuous media.
Proceedings 18th International Conference on Data Engineering (2002), 490-491.
W. Aref, A. Catlin, Jianping Fan, A. Elmagarmid, M. Hammad, L. Ilyas, M. Marzouk,
and Xingquan Zhu. 2002. A Video Database Management System for Advancing
Video Database Research. In Multimedia Information Systems.

Michael Bayer. 2012. SQLAlchemy. In The Architecture of Open Source Applications
Volume II: Structure, Scale, and a Few More Fearless Hacks, Amy Brown and Greg
Wilson (Eds.). aosabook.org. http://aosabook.org/en/sqlalchemy.html

David Buchfuhrer and Christopher Umans. 2008. The complexity of boolean
formula minimization. In International Colloquium on Automata, Languages, and
Programming. Springer, 24-35.

S. Chaudhuri and Kyuseok Shim. 1999. Optimization of queries with user-defined
predicates. In TODS.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and Alvin Cheung. 2017.
Cosette: An Automated Prover for SQL.. In CIDR.

V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.
Res. 4, 3 (Aug. 1979), 233-235. https://doi.org/10.1287/moor.4.3.233

Yann Collet. 2021. xxHash - Extremely fast hash algorithm. Retrieved Apr 17,
2021 from https://github.com/Cyan4973/xxHash

Maureen Daum, Brandon Haynes, Dong He, Amrita Mazumdar, M. Balazinska,
and Alvin Cheung. 2020. TASM: A Tile-Based Storage Manager for Video Ana-
lytics. ArXiv abs/2006.02958 (2020).

K. Dursun, Carsten Binnig, U. Cetintemel, and Tim Kraska. 2017. Revisiting Reuse
in Main Memory Database Systems. Proceedings of the 2017 ACM International
Conference on Management of Data (2017).

Iman Elghandour and Ashraf Aboulnaga. 2012. ReStore: Reusing Results of
MapReduce Jobs. Proc. VLDB Endow. 5 (2012), 586—-597.

Mostafa Elhemali, C. Galindo-Legaria, T. Grabs, and Milind Joshi. 2007. Execution
strategies for SQL subqueries. In SIGMOD 07.

Uriel Feige. 1998. A Threshold of Ln <i>n</i> for Approximating Set Cover. J.
ACM 45, 4 (July 1998), 634-652. https://doi.org/10.1145/285055.285059

Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and Tim
Kraska. 2017. Revisiting Reuse for Approximate Query Processing. Proc. VLDB
Endow. 10 (2017), 1142-1153.

C. Galindo-Legaria and Milind Joshi. 2001. Orthogonal optimization of subqueries
and aggregation. In SIGMOD 01.

G. Giannikis, Darko Makreshanski, G. Alonso, and D. Kossmann. 2014. Shared
Workload Optimization. Proc. VLDB Endow. 7 (2014), 429-440.

G. Graefe. 1995. The Cascades Framework for Query Optimization. IEEE Data
Eng. Bull. 18 (1995), 19-29.

R. Gruener, O. Cheng, and Y. Litvin. 2018. Introducing Petastorm: Uber ATG’s
Data Access Library for Deep Learning. Retrieved May 7, 2021 from https:
//eng.uber.com/petastorm/

P. Gunda, L. Ravindranath, C. Thekkath, Y. Yu, and Li Zhuang. 2010. Nectar:
Automatic Management of Data and Computation in Datacenters. In OSDL

M. Hammad, W. Aref, and A. Elmagarmid. 2002. Search-based buffer management
policies for streaming in continuous media servers. Proceedings. IEEE International
Conference on Multimedia and Expo 1 (2002), 253-256 vol.1.

Michael Z. Hanani. 1977. An optimal evaluation of Boolean expressions in an
online query system. Commun. ACM 20 (1977), 344-347.

Brandon Haynes. 2021. VSS: A Storage System for Video Analytics.

J. Hellerstein. 1994. Practical predicate placement. In SIGMOD ’94.

J. Hellerstein and M. Stonebraker. 1993. Predicate migration: optimizing queries
with expensive predicates. In SIGMOD ’93.

I Ilyas, W. Aref, and A. Elmagarmid. 2002. Joining Ranked Inputs in Practice. In
VLDB.

Wolfram Research, Inc. [n.d.]. Mathematica, Version 12.3.1.
wolfram.com/mathematica Champaign, IL, 2021.

Y. Ioannidis. 2003. The History of Histograms (abridged). In VLDB.

M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. 2009. An architecture for
recycling intermediates in a column-store. Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data (2009).

https://www.

615

(32

[33

(34

[35

[36

[37

[38

W
20,

[40]

[41

[42

S
it

[45

[46

[47

[49]

(50]

[51

[52

o
=

[54

[55]

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

A. Jhingran. 1988. A Performance Study of Query Optimization Algorithms on a
Database System Supporting Procedures. In VLDB.

Alekh Jindal, Konstantinos Karanasos, S. Rao, and Hiren Patel. 2018. Selecting
Subexpressions to Materialize at Datacenter Scale. Proc. VLDB Endow. 11 (2018),
800-812.

Glenn Jocher, Yonghye Kwon, Guigarfr, Perry0418, Josh Veitch-Michaelis, Ttayu,
Daniel Suess, Fatih Baltaci, Gabriel Bianconi, IlyaOvodov, , Marc, E96031413,
Chang Lee, Dustin Kendall, , Falak, Francisco Reveriano, , FuLin, GoogleWiki,
Jason Nataprawira, Jeremy Hu, LinCoce, LukeAl, NanoCode012, NirZarrabi,
Oulbacha Reda, Piotr Skalski, SergioSanchezMontesUAM, Shiwei Song, Thomas
Havlik, and Timothy M. Shead. 2021. ultralytics/yolov3: v9.5.0 - YOLOVS5 v5.0
release compatibility update for YOLOv3. https://doi.org/10.5281/ZENODO.
4681234

Daniel Kang, Peter Bailis, and M. Zaharia. 2019. Blazelt: Optimizing Declarative
Aggregation and Limit Queries for Neural Network-Based Video Analytics. Proc.
VLDB Endow. 13 (2019), 533-546.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and M. Zaharia. 2017. No-
Scope: Optimizing Neural Network Queries over Video at Scale. arXiv: Databases
(2017).

Daniel Kang, John Guibas, Peter Bailis, Tatsunori Hashimoto, Yi Sun, and Matei
Zaharia. 2021. Accelerating Approximate Aggregation Queries with Expensive
Predicates. Proc. VLDB Endow. 14, 11 (jul 2021), 2341-2354. https://doi.org/10.
14778/3476249.3476285

M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. 1989. Architecture and performance
of relational algebra machine GRACE.

Tsung-Yi Lin, M. Maire, Serge J. Belongie, James Hays, P. Perona, D. Ramanan,
Piotr Dollar, and C. L. Zitnick. 2014. Microsoft COCO: Common Objects in
Context. In ECCV.

Y. Lu, Aakanksha Chowdhery, Srikanth Kandula, and S. Chaudhuri. 2018. Accel-
erating Machine Learning Inference with Probabilistic Predicates. Proceedings of
the 2018 International Conference on Management of Data (2018).

Carsten Lund and Mihalis Yannakakis. 1994. On the Hardness of Approximating
Minimization Problems. J. ACM 41, 5 (Sept. 1994), 960-981. https://doi.org/10.
1145/185675.306789

Wes McKinney. 2010. Data Structures for Statistical Computing in Python.
Aaron Meurer, C. Smith, Mateusz Paprocki, O. Certik, S. B. Kirpichev, M. Rocklin,
A. Kumar, Sergiu Ivanov, J. K. Moore, Sartaj Singh, T. Rathnayake, Sean Vig, B.
Granger, R. Muller, F. Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson,
Fabian Pedregosa, M. Curry, A. Terrel, S. Roucka, A. Saboo, Isuru Fernando,
Sumith Kulal, R. Cimrman, and A. Scopatz. 2017. SymPy: symbolic computing in
Python. Peerj Comput. Sci. 3 (2017), e103.

Oscar Moll, F. Bastani, Sam Madden, M. Stonebraker, V. Gadepally, and Tim
Kraska. 2020. ExSample: Efficient Searches on Video Repositories through Adap-
tive Sampling. ArXiv abs/2005.09141 (2020).

F. Nagel, P. Boncz, and Stratis Viglas. 2013. Recycling in pipelined query evalua-
tion. 2013 IEEE 29th International Conference on Data Engineering (ICDE) (2013),
338-349.

Oracle. 2017. Advanced Query Rewrite for Materialized Views. Retrieved
Dec 11, 2020 from https://docs.oracle.com/database/121/DWHSG/qradv.htm#
DWHSG08026

Shoumik Palkar, J. Thomas, D. Narayanan, Pratiksha Thaker, R. Palamuttam, Pari-
marjan Negi, A. Shanbhag, Malte Schwarzkopf, H. Pirk, Saman P. Amarasinghe,
S. Madden, and M. Zaharia. 2018. Evaluating End-to-End Optimization for Data
Analytics Applications in Weld. Proc. VLDB Endow. 11 (2018), 1002-1015.

T. Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the
power of dynamic analysis. In OOPSLA.

Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Z. Lin, N. Gimelshein, L. Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019.
PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
NeurlPS.

L. Perez and C. Jermaine. 2014. History-aware query optimization with mate-
rialized intermediate views. 2014 IEEE 30th International Conference on Data
Engineering (2014), 520-531.

Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, and Eugene J. Shekita. 1996.
Improved histograms for selectivity estimation of range predicates. In SIGMOD
’96.

Willard V Quine. 1952. The problem of simplifying truth functions. The American
mathematical monthly 59, 8 (1952), 521-531.

Lana Ramjit, Matteo Interlandi, Eugene Wu, and Ravi Netravali. 2019. Acorn: Ag-
gressive Result Caching in Distributed Data Processing Frameworks. Proceedings
of the ACM Symposium on Cloud Computing (2019).

Shaoqing Ren, Kaiming He, Ross B. Girshick, and J. Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence 39 (2015), 1137-1149.
P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. 2000. Efficient and extensible
algorithms for multi query optimization. ArXiv cs.DB/9910021 (2000).

http://aosabook.org/en/sqlalchemy.html
https://doi.org/10.1287/moor.4.3.233
https://github.com/Cyan4973/xxHash
https://doi.org/10.1145/285055.285059
https://eng.uber.com/petastorm/
https://eng.uber.com/petastorm/
https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica
https://doi.org/10.5281/ZENODO.4681234
https://doi.org/10.5281/ZENODO.4681234
https://doi.org/10.14778/3476249.3476285
https://doi.org/10.14778/3476249.3476285
https://doi.org/10.1145/185675.306789
https://doi.org/10.1145/185675.306789
https://docs.oracle.com/database/121/DWHSG/qradv.htm#DWHSG08026
https://docs.oracle.com/database/121/DWHSG/qradv.htm#DWHSG08026

Session 8: Query Processing and Data Management for ML

[56]

[57]

[58]

[59]

K. Tan, S. Goh, and B. Ooi. 2001. Cache-on-demand: recycling with certainty.
Proceedings 17th International Conference on Data Engineering (2001), 633-640.
Margus Veanes, Nikolai Tillmann, and Jonathan De Halleux. 2010. Qex: Sym-
bolic SQL query explorer. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning. Springer, 425-446.

Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data Canopy:
Accelerating Exploratory Statistical Analysis. In Proceedings of the 2017 ACM
International Conference on Management of Data (Chicago, Illinois, USA) (SIGMOD
’17). Association for Computing Machinery, New York, NY, USA, 557-572. https:
//doi.org/10.1145/3035918.3064051

Longyin Wen, Dawei Du, Zhaowei Cai, Z. Lei, Ming-Ching Chang, H. Qi, Jongwoo
Lim, Ming-Hsuan Yang, and Siwei Lyu. 2020. UA-DETRAC: A new benchmark
and protocol for multi-object detection and tracking. Comput. Vis. Image Underst.
193 (2020), 102907.

616

[60]

[61]

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

Wikipedia contributors. 2021. Computer algebra — Wikipedia, The Free Ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=
1000609796. [Online; accessed 23-August-2021].

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
2019. Detectron2. https://github.com/facebookresearch/detectron2.

Tiantu Xu, Luis Materon Botelho, and F. Lin. 2019. VStore: A Data Store for
Analytics on Large Videos. Proceedings of the Fourteenth EuroSys Conference 2019
(2019).

Y. Xu. 1998. Efficiency In The Columbia Database Query Optimizer.

Jingren Zhou, P. Larson, J. Freytag, and Wolfgang Lehner. 2007. Efficient exploita-
tion of similar subexpressions for query processing. In SIGMOD °07.

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Dong Xu. 2019.
Automated verification of query equivalence using satisfiability modulo theories.
Proceedings of the VLDB Endowment 12, 11 (2019), 1276-1288.

https://doi.org/10.1145/3035918.3064051
https://doi.org/10.1145/3035918.3064051
https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=1000609796
https://en.wikipedia.org/w/index.php?title=Computer_algebra&oldid=1000609796
https://github.com/facebookresearch/detectron2

	Abstract
	1 Introduction
	2 Background
	3 System Overview
	3.1 Semantic Reuse Algorithm
	3.2 Solution Overview
	3.3 Defining UDFs

	4 Semantic-Reuse Algorithm
	4.1 Symbolic Predicate Analysis
	4.2 Materialization-Aware Optimization
	4.3 Logical UDF Reuse
	4.4 Rule-Based Query Rewrite

	5 Evaluation
	5.1 Experimental Setup
	5.2 End-to-End Comparison
	5.3 Time Breakdown
	5.4 Semantic Reuse Algorithms
	5.5 Impact of Video Content and Length
	5.6 Impact of Specialized Filters

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

