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ABSTRACT

With the proliferation of high bandwidth cameras and AR/VR de-
vices, and their increasing use in situation awareness applications,
edge computing is gaining prominence to meet the throughput
requirements of such applications. This work focuses on camera
applications that perform real-time Machine Learning inferences
on camera frames. We find that Machine Learning based camera
applications suffer from hardware resource fragmentation due to
models under-utilizing or over-utilizing the accelerator. Meanwhile,
it is challenging to support fine-grained resource sharing for ac-
celerators such as TPUs because they can only process requests
sequentially in a run to completion fashion.We presentMicroEdge,
a multi-tenant low-cost edge cluster for camera processing appli-
cations running at the edge. MicroEdge provides multi-tenancy
support for Coral TPUs by extending K3s, an edge-specific distri-
bution of Kubernetes. Through an admission control algorithm, it
allows for fractional assignment of TPU resources commensurate
with the application pipeline requirements to ensure that the TPUs
are fully utilized. Using real-time camera processing applications
and a real-world trace, we show thatMicroEdge can support up
to 2.8× camera streams for a given hardware configuration com-
pared to vanilla K3s, while maintaining scalability and performance
requirements.
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1 INTRODUCTION

Emerging geo-distributed camera applications such as pedestrian
and vehicle density monitoring [3], multi-camera vehicle track-
ing [17, 38], and vehicle anomaly detection [41] convert camera
streams to actionable knowledge. These applications have strin-
gent performance requirements such as low latency and high net-
work bandwidth. Cloud computing has been the workhorse for
throughput-oriented applications for the past two decades. How-
ever, sending all of the camera streams to the Cloud for processing
is suboptimal for several reasons including end-to-end latency,
backhaul network stress, lack of actionable content, and privacy
and regulatory concerns for the video data. Edge computing [35]
extends the Cloud’s centralized utility computing model to geo-
graphically distributed computational resources which are closer
to the source of the data. Meanwhile, the emergence of low-cost
computation hardware such as Raspberry Pi [9], NVIDIA Jetson
Nano [25], Intel NCS2 [15], and Google Coral TPU [12] allow just-
in-time processing of camera streams close to their sources. With
such advances in hardware, edge computing is rising as the ideal
platform for camera applications. Naturally, it is important to use
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Figure 1: Model Processing Times on TPU. An illustration of
the diversity for processing times on the TPU for four detection
and four classification models [37]. The orange line depicts the
workload (i.e., frame rate) needed for 100% utilization of the TPU
for a given model.

these resources efficiently when deploying camera applications at
scale.
Motivation and Prior Art. In this work, we develop and
optimize a low-cost edge cluster for real-time camera processing
called MicroEdge. MicroEdge is composed of Raspberry Pi’s (ab-
brev., RPis) and Coral TPUs (abbrev., TPUs). When deploying cam-
era processing applications at scale, one would have to assign phys-
ical hardware resources to each of the camera streams. The seem-
ingly straightforward option is to dedicate hardware resources for
every camera stream instance. For example, an exemplar real-time
multi-camera vehicle tracking system called Coral-Pie [38] dedi-
cates two RPis and one TPU for every camera stream. In their design,
the first RPi and the TPU are responsible for detecting vehicles in
the field of view of the camera, while the second RPi re-identifies
the detected vehicles based on information from up-stream cam-
eras and notifies downstream cameras for trajectory construction..
They show that with such a careful pipelining of the RPis and TPUs
they can meet the application’s service level objective(SLO) of 15FPS
for SSD MobilenetV2[34] dataset. However, dedicating hardware
resource for a camera stream would lead to under-utilization. For
example, for the same setup used in Coral-Pie [38], our study shows
that processing a single 15FPS camera stream leads to a mere 30%
TPU utilization, thus wasting precious TPU resources. Furthermore,
when we introduced the difference detector of NoScope [19] into
Coral-Pie’s object detection pipeline the TPU utilization drops to
20%. The main takeaway is that the edge cluster would be able to
serve several more camera streams if a TPU can be shared across
multiple camera streams.

To illustrate the generality of the fragmentation problem, we
profile the inference times for 8 pre-trained models [37] and show
the results in Fig. 1. The orange line in Fig. 1 shows that to fully
utilize a TPU (i.e., 100%), five of the eight models would have to be
fed a workload of over > 50FPS. Such a high frame rate is neither
warranted nor practical. The average FPS required for surveillance

applications using camera networks is around 15 FPS, which is rela-
tively low[16]. The conventional wisdom is that a 15 FPS frame rate
delivers the required false positive and false negative metrics for
such applications while keeping the cost for the camera networks
and resource requirements (network bandwidth, computation, and
storage) low. On the other hand, the inference time for a few expen-
sive models (e.g., ResNet-50 and EfficientDet-Lite0 in Fig. 1) may
exceed the inter-arrival time between camera frames even at 15 FPS.
To process such models, multiple TPUs would need to be assigned
to handle a single camera stream. For example, per-frame inference
processing for the EfficientNet-Lite0 model on a TPU takes 69ms.
On the other hand, to sustain a frame rate of 15FPS, each frame pro-
cessing should take less than 66ms. Therefore, to sustain the desired
frame rate, the camera streamwould have to be partitioned between
2 TPUs, with each TPU handling every other frame. With such a
workload partitioning, the utilization on each TPU would be only
52%, thus wasting a cumulative 96% of the available TPU processing
power. In other words, even for heavy-weight models requiring
higher TPU usage, there would be TPU resource fragmentation
when an integral number of TPUs are dedicated to each camera
stream. Thus, there is an opportunity to increase resource utiliza-
tion by eliminating internal fragmentation through fine-grained
scheduling and sharing of a TPU across distinct camera streams.
The problem of resource fragmentation is general and applies to
other accelerator platforms with no native virtualization support.

To address the issue of resource internal fragmentation, the key
challenge is to facilitate granular sharing of TPUs across multiple
camera streams while adhering to the performance SLOs for each
stream. GPUs enjoy virtualization and sharing support from ven-
dors, such as NVIDIA Docker [27], NVIDIA MPS [24] and NVIDIA
Triton [28]; however, other DNN accelerators such as TPUs do
not yet have native support for serving multiple applications con-
currently. State-of-the-art orchestration systems such as K3s [2],
which is a lightweight version of Kubernetes [22] optimized for
IoT & Edge computing, do not facilitate fractional sharing of TPUs.
There is prior art for scheduling inference requests from multi-
ple applications on GPUs in the Cloud while meeting applicaiton
SLOs [7, 14, 33, 40]. Such prior work chooses a serverless design
approach wherein all requests are forwarded to a per-model shared
queue, and scheduling decisions (e.g., deadline driven) are made
at runtime based on the priority of the inference invocation. How-
ever, such a solution would not be viable in a low-cost edge cluster
comprising of RPis and TPUs, wherein the additional data move-
ment due to shared queues and runtime scheduling decisions are
detrimental to meeting application SLOs.
Our Approach. To facilitate fine-grained accelerator sharing, we
choose Coral TPU, one of the most representative DNN accelerators
designed for edge computing, as an exemplar. MicroEdge elevates
TPU as a first class citizen by extending K3s to orchestrate the
resource allocation for the multi-tenant applications (i.e., pods)
executing on an edge cluster. In contrast to serverless designs
([14, 28, 39]) which allocate resources at runtime for each func-
tion call, MicroEdge allocates TPU resources to collocated camera
applications at deployment time to avoid runtime overheads. Specifi-
cally,MicroEdge ❶ exposes every physical TPU as a service, which
serializes concurrent TPU requests from multiple application pods.
❷ proposes a new metric for resource specification called “TPU
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Figure 2: Camera Applications – A generic pipeline model.

Units”, which quantifies the fractional percentage of TPU resource
that an application pod needs, and ❸ extends the admission control
algorithm in K3s to orchestrate TPU resources upon the creation
and destruction of application pods.
Contributions. We make the following contributions described
in the rest of the paper:
• We present MicroEdge, a low-cost edge cluster composed of

RPis and TPUs that serves the computational needs of geo-local
camera applications. § 3 presents the performantmulti-tenancy
architecture of MicroEdge that facilitates sharing CPU, TPU,
and memory resources among various camera applications.
• We propose a new resource specification metric dubbed TPU

units, which helps to identify TPU resource fragmentation
caused by dedicating TPUs to individual applications. Using
TPU units as a scheduling parameter, we extend the control
plane of K3s to allocate the required TPU resources to applica-
tion pods as necessary. § 4 extends admission control algorithm
which features two techniques, namely, model co-compiling

and workload partitioning, to further reduce the TPU resource
fragmentation.
• To support the fine-grained TPU sharing policies of the control
plane, we extend K3s’ data plane via three components: the
TPU Service, the load balancing service, and the TPU Client.
These components are elaborated in § 5.
• We evaluate MicroEdge with real-world camera applications
which perform multi-camera vehicle tracking [38] and real-
time person segmentation [30], and synthetic workloads gen-
erated from Microsoft function traces [36]. The performance
results in § 6 show that compared to a non-virtualized bare-
metal deployment,MicroEdge can more than double the TPU
resource utilization and reduce the cost of the Edge cluster
by 33%, while meeting camera applications’ FPS and latency
requirements.

2 BACKGROUND AND ASSUMPTIONS

Camera Applications. Fig. 2 depicts a generic pipeline model
for a camera application. The application generates a stream of
camera images at a rate commensurate with the application’s SLOs.
The first stage of the pipeline pre-processes the frames; an example
of such pre-processing would be to resize the image frames to fit
the machine learning (ML) model used by the subsequent ML infer-
encing stage. The next stage performs the actual inference, such
as detection, classification, and segmentation on the pre-processed
camera frame. The final stage performs post-processing depending
on the application logic; e.g., the re-identification step in a space-
time vehicle tracking application mentioned in § 1.

Meeting the processing throughput requirement in FPS is an
important SLO for supporting camera applications; otherwise, the
queue build-up of the yet-to-be processed frames will ultimately
violate the per-frame processing latency bound for the application.

While cameras produce frames 24 x 7, camera applications may
not need to process every frame. For example, to track suspicious
vehicles on a geo-deployed camera network, a downstream camera
needs to request resources and start processing the camera frames
only upon notification of a suspicious vehicle by an upstream cam-
era. The camera will stop processing frames as soon the suspicious
vehicle leaves its field of view. In this way, a camera can utilize a
TPU and process frames only for a short period of time. Therefore, a
resource allocator for camera applications at the edge should be ca-
pable of allocating and reclaiming resources on a need basis rather
than dedicating them for the entire lifetime of each camera stream.
While camera streams may dynamically ‘come and go’ acquiring
and releasing resources, specs such as image resolution and FPS
are constant throughout the lifetime of a camera stream. There-
fore, from the edge cluster’s point of view we assume workloads
where the number of application instances (i.e., camera streams)
may change over time, but the input rate is either provided by the
developer or gleaned by profiling before the start of the application.
ML Inference Systems. Prior work for orchestrating GPU
resources for ML in the cloud [7, 14, 33] choose a serverless archi-
tecture, where scheduling decisions are made per inference request
at runtime.MicroEdge on the other hand does admission control

at deployment time for two reasons: First, since the input rate is
known before an application is launched,MicroEdge can reject the
deployment request of an application if there are insufficient TPU
resources to meet the application SLO; a side benefit of such admis-
sion control compared to a serverless design is avoiding wastage
of the CPU resources to which an accelerator is attached. Second,
MicroEdge avoids the extra data movement per frame and schedul-
ing operations in a serverless design which leads to non-negligible
latency overhead for low-cost computational devices (§ 6.4.2).
Container Orchestration System. Kubernetes [22] is a pop-
ular container orchestration system for automating the deployment,
scaling, and the management of containerized applications. K3s, a
purpose-built distribution of Kubernetes for the IoT environment,
has fewer extensions and more light-weighted components that are
ideal for a resource-constrained edge cluster. K3s is also optimized
for the ARM architecture, which forms the core of the RPi processor.
K3s deploys an application in a pod, which is the smallest unit of de-
ployment. Similar to Kubernetes, K3s supports labeling that allows
application pods to request nodes with specific features (e.g., a node
that has a TPU attached). K3s also supports anti-affinity [20] which
would prevent multiple application pods from requesting the same
physical node. Put succinctly, K3s is an appropriate starting point
for MicroEdge compared to the full-feature Kubernetes. However,
the fact remains that neither the function-rich Kubernetes nor K3s
provide facilities for granular TPU sharing across camera streams
or workload partitioning for a given camera stream.
AI Accelerators in Edge Computing. With growing inter-
est in IoT and Edge computing, various low-cost accelerators for
the Edge have emerged such as Google’s Coral TPU [12], Intel’s
NCS2 [15], and NVIDIA’s Jetson Nano [25]. In MicroEdge, we
equip RPis with Coral TPUs. However, the designs proposed in
this work can also be applied to other accelerators. Coral TPU
comes with a co-compiling feature [10], which allows transitioning
between multiple ML models pre-loaded into the TPU memory.
Typically, switching between models on a TPU requires swapping
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the new model into the TPU memory resulting in higher latency;
on the other hand, co-compiling allows for loading multiple models
at the same time into the TPU memory. If the cumulative memory
requirement of the co-compiled models exceeds the available TPU
memory, models with low priority are partially loaded into the TPU
memory, and the remaining portion is loaded at runtime from the
host memory. Nevertheless, co-compiling is still faster compared
to swapping models in and out of the TPU memory. In § 4, we
elaborate on utilizing this co-compiling feature to improve the gain
in utilization from TPU sharing.

3 MICROEDGE ARCHITECTURE

The hardware base for MicroEdge is a fairly generic compute
cluster comprising RPi 4 CPUs interconnected by two high-speed
16-port Ethernet switches. Each RPi is equipped with a 1 Gigabit
NIC to connect to the switch. A portion of RPis are augmented
with Coral TPU accelerators through their respective USB ports.
The current configuration of MicroEdge supports 25 RPis, out of
which 6 of them are endowed with attached TPUs. These hardware
resources are grouped into two categories: vanilla RPis denoted
vRPis, and RPis endowed with TPUs denoted tRPis. The current con-
figuration could be grouped into 19 vRPis and 6 tRPis. The novel
contributions of our work are the control plane and data plane
techniques that enable sharing the limited TPU resources of Mi-
croEdge across independent application pipelines and partitioning
the requests from a given pipeline onto multiple TPUs to meet
the application SLOs. While these techniques are general and can
be married into any orchestrator framework, we have chosen to
incorporate them into K3s for reasons mentioned in § 2. To set the
context for describing the control plane and data plane techniques
in § 4 and § 5, respectively, we first present the overall system
architecture of MicroEdge shown in Fig. 3.

The K3s scheduler is part of the system software that sits on
top of a remote server. The right half of Fig. 3 shows how clients
interact with the K3s scheduler to deploy application pods. The
left half of Fig. 3 shows the data plane actions once an application
pod has been deployed and is executing the application pipeline
(similar to Fig. 2). One of the novel contributions of MicroEdge is
the extension of K3s’s control plane (the box labeled “Ext Scheduler”
in Fig. 3) that elevates TPU as a first class citizen from the point of
view of scheduling. When deploying application pods on RPis (both
vRPis and tRPis), the default scheduler of K3s consider only CPU
and memory resources commensurate with the client requests. It is
the extended scheduler that considers TPU resources. As part of
system initialization, an entity dubbed TPU Service (to be described
in § 5.1) is created on each tRPi. The extended scheduler interacts
with the TPU Service to make TPU allocations and for loading ML
models into the TPU memory. In § 3.1, we describe the workflow in
processing a client deployment request to allocate TPU resources
in creating the application pod. The second novel contribution of
MicroEdge is the set of components added to the data plane of the
system stack (left half of Fig. 3) that facilitates the control plane
decisions in terms of fractional allocation of TPU resources and
workload partitioning. In § 3.2, we describe the data plane workflow
when the application pod is executing.

3.1 Workflow of the Control Plane

In this subsection, we present the workflow of the control plane
of MicroEdge shown in the right half of Fig. 3. The steps below
correspond to the numbered arrows in Fig. 3.

❶: The first step is identical to how a client will interact with
K3s for requesting an application pod deployment. The application
requirements (such as container image and resource specifications)
are presented in a Yaml file. The resource requirements include
CPU, memory, and TPU needed for the application pod. K3s per-
forms the default actions to handle the CPU and memory resource
requirements and chooses a list of candidate nodes from the pool
of RPis to host the application pod. It then passes the request to the
extended scheduler component (§ 4.1) for TPU allocation contained
in the client’s resource specification.

❷: The extended scheduler allocates the TPU resources from the
pool of tRPis based on the client request (i.e., requested models and
the amount of TPU resources in the Yaml file). It then loads the
requested models on the chosen TPUs. If other models (requested
by previous application pods) have already been loaded on a chosen
TPU, the extended scheduler invokes the Co-compiler to create a co-
compiled model. We elaborate on the admission control algorithm
in § 4.

❸: The extended scheduler returns the TPU scheduling decisions
to K3s, which then spawns the application pods on the allocated
hardware resources of MicroEdge.

❹: When initializing the application pod, the extended scheduler
configures the load balancing service (box labeled “LB Service” in
Fig. 3) that is attached to the respective TPU Client. LB Service
(to be described in § 5.3) is a component in MicroEdge’s data
plane which is baked into the application pod so that the inference
requests from that application pod are routed to the appropriate
TPU Service instances (as shown in Fig. 3).

❺: The reclamation component periodically polls the status of
application pods. When a pod is terminated, the reclamation com-
ponent reclaims the associated TPU(s) while the native K3s takes
care of reclaiming the CPU and memory resources.

The above control plane workflow is a one-time admission con-
trol action. Once an application pod has been deployed on the
hardware resources, the data plane(left half of Fig. 3) carries out the
necessary application action without involving the control plane.

3.2 Workflow of the Data Plane

The left half of Fig. 3 illustrates the data plane actions when the
application pod is executing. Three entities come together to deliver
on the admission control decisions taken by the extended scheduler:
TPU Client, LB Service, and, TPU Service. TPU Client is a Python li-
brary that developers include in creating their applications. It offers
the Invoke primitive used by the applications to execute inference
requests on the TPUs allocated to this application pod. This library
relieves the developer from the details specific to a particular invo-
cation such as resizing the raw image to match the required input
size of the ML models or establishing connections with the correct
TPU Service instance and sending the resized image frames to that
instance. As mentioned before, TPU Service is instantiated at sys-
tem initialization time on every tRPi. It implements two primitives:
Invoke and Load. The former is used by the TPU Client to launch
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Figure 3: System Architecture for the MicroEdge cluster – MicroEdge is built on Raspberry Pi 4’s and Coral TPUs. MicroEdge uses
K3s to orchestrate resources for containers (pods). It further extends the K3s’ control plane and data plane to manage TPU resources for
every pod in addition to CPU and memory resources. The extensions are colored in red in the figure.

an inference request on the associated TPU, while the latter is used
by the extended scheduler to load ML models into the associated
TPU memory. As mentioned before, LB Service is a component that
is configured into the application pod by the extended scheduler
as part of admission control. As shown in Fig. 3, this component is
responsible for fanning out the Invoke requests to the appropriate
TPU Service instances as per the weights assigned by the extended
scheduler. We will elaborate on the design decisions of these three
components in § 5.

4 MICROEDGE CONTROL PLANE

As we mentioned earlier,MicroEdge elevates the TPU from a mere
peripheral device to a first-class citizen from a resource scheduling
perspective. State-of-the-art orchestrators such as K3s fall short
of this aspirational goal of MicroEdge, which is the opportunity
that we have capitalized on to add to the state-of-the-art through
the extended scheduler of MicroEdge. To live within the already
existing ecosystem for resource orchestration, we have chosen to
extend the capabilities of K3s. Thus, we leave the scheduling of
CPU and memory to the default capabilities already present in
K3s, and invent new techniques for scheduling TPU resources and
incorporating them into the K3s ecosystem. In this section, we
elaborate on the design decisions of MicroEdge’s control plane.
These decisions are baked into the extended scheduler. Specifically,
§ 4.1 describes extensions to the resource specifications submitted to
K3s that allow clients to request TPU resources in addition to CPU
and memory. § 4.2 presents the algorithm for granular allocation
of TPU resources to satisfy client requests. Finally, § 4.3 presents
enhancements to the base allocation algorithm for partitioning the
workload and fanning out inference requests from a given client to
multiple TPU Service instances to meet application SLOs.

4.1 MicroEdge’s Pod Creation Interface

To create application pods in K3s, a client needs to specify configura-
tion knobs (e.g., container image, CPU, and memory requirements)
via a Yaml file. MicroEdge expands the configuration by two extra
knobs to orchestrate TPU resources for the application pods:

• Model. The client can specify the inference model to be
used in the application. This prior knowledge is critical for
MicroEdge’s extended scheduler to maximize the resource
utilization of the cluster and ensure the performance of appli-
cation pods. For example, when two application pods request
the same model, they can share the same TPU Service in-
stance without paying model switching overhead (i.e., time
to load the model into the TPU memory from the host). Fur-
thermore, the extended scheduler infers the size of a model’s
parameter data. When the total size of multiple models is
less than 6.9 MB1, the extended scheduler can co-compile
those models and load the co-compiled models on one in-
stance of the TPU Service (i.e., Space Sharing of TPU Service).
Though the TPU executes one inference request fully before
entertaining the next one, this co-compilation optimization
reduces the model switching overhead.
• TPU Units. Similar to the terminology “CPU units” [21] in
K3s, we define TPU units. It allows the client to specify the
fractional amount of TPU resource that an application pod
requires. TPU unit is the duty cycle of inference requests that
an application pod is expected to generate. More formally,
if an application requires an inference service that takes 𝑡
time units to complete (including model switching time),
and the inter-arrival period for successive requests from that
application is 𝑇 time units, then the TPU Unit needed for
this application pod is: 𝑡 ÷𝑇 .
For example, the TPU Unit required for a camera stream
operating at 10 FPS (i.e., 100ms interval between frames) with
a per-frame inference service time of 30ms is 0.3(30 ÷ 100).
In other words, the same instance of a TPU Service can
be shared across multiple application pods so long as the
cumulative TPU Units for all of them is ≤ 1. MicroEdge
offers an offline service for a client to profile the inference
service time to determine the TPU unit to specify in their
request Yaml file.

1The TPU has roughly 8 MB of memory that can house the model’s parameter data.
However, a small amount of that memory is reserved for the model’s inference exe-
cutable, so the parameter data can be housed in the remaining space [11].
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4.2 Admission Control Algorithm

ProblemDefinition. Given an application pod creation request,
the extended scheduler needs to assign the TPU resources (through
TPU Service) to the pod following two rules:

• TPU Units Rule: the cumulative TPU units assigned to a sin-
gle TPU should be smaller than 1. This rule guarantees that
no TPU is oversubscribed, and all TPUs can finish the infer-
ence tasks assigned to them on time.
• Model Size Rule: the cumulative size of distinct models’ pa-
rameter data loaded on each TPU should be smaller than the
total available memory in a TPU. This rule avoids the model
swapping overhead through co-compiling when consecutive
Invoke calls routed to a given TPU request different models.

The application pod creation request will be rejected2 when the
extended scheduler cannot assign TPU resources to the pod. The
objective is to maximize the number of application pod creation
requests accepted in MicroEdge.
Bin Packing Problem. We formalize the admission control
problem as a bin packing problem [6] with additional constraints
on the cumulative size of distinct models loaded on each TPU. In
the bin packing problem, items of different sizes must be packed
into a finite number of bins, each of a fixed capacity, in a way that
minimizes the number of bins used. In MicroEdge, we can view
bins as TPUs, each of which has a capacity of 1 TPU unit, items
as requested models, and the size of each item as the TPU units
requested by the application. For admission control in MicroEdge,
the extended scheduler does not have the privilege to reject an
application pod for the purpose of reserving the resources for future
application pods. In other words, the extended scheduler should
try its best to allocate resources for every application pod creation
request. Therefore, minimizing the number of TPUs used is equal
to maximizing the number of pod creation requests accepted. If the
minimum number of TPUs needed is larger than the number of
available TPUs, the pod creation request should be rejected. Fig. 4
gives a mathematical formulation of the admission control problem.
Online Heuristics. MicroEdge does not know what applica-
tion pods may arrive in the future, so we consider an online version
of the bin packing problem, where the items arrive one after an-
other and the (irreversible) decision of where to place an item has
to be made before knowing the next item or even if there will be
another one. Several heuristics-based algorithms are available for
the online bin packing problem [6] — Next-Fit, Next-k-Fit, First-Fit,
Best-Fit, and Worst-Fit. We extend the First-Fit algorithm for TPU
resource scheduling in MicroEdge, which provides an asymptotic
approximation ratio of 1.73.

2By default, K3s will also reject application pod creation requests if MicroEdge does
not have sufficient CPU and memory resources. For the sake of the discussion on
the admission control of TPU resources, we assume CPU and memory resources are
sufficient.
3The best asymptotic approximation ratio for single-class algorithms is 1.7. Better
approximation ratios are possible with refined algorithms [6]. Their explorations are
beyond the scope of the paper.
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Figure 4: Mathematical Formulation of Admission Control

– 𝑀 is the number of TPU services, 𝑦 𝑗 = 1 if the 𝑗-th TPU is used
(i.e., there exists any application pod sending inference requests to
the 𝑗-th TPU). Eq. (2) defines the TPU Units Rule. 𝑁 is the number
of application pods, 𝑡𝑖 is the TPU unit requested by the i-th pod, and
𝑥𝑖 𝑗 = 1 if the 𝑖-th application pod is allocated with the 𝑗-th TPU for
inference. Eq. (3) defines the Model Size Rule, where 𝑠𝑔 is the size
of model 𝑔(𝑔 ∈ [1,𝐺]). 1𝑖𝑔 = 1 if the 𝑖-th application requests 𝑔-th
model, 1c

𝑖𝑔
is the complement of 1𝑖𝑔 = 1 − 1𝑖𝑔 . Eq. (4) makes this a

static problem by allocating only one TPU to each application pod.
Workload Partitioning (§ 4.3) relaxes the problem by allowing 𝑥𝑖 𝑗
to be a fraction between {0, 1}.

Algorithm 1 presents the First-Fit-based TPU resources schedul-
ing inMicroEdge. Line 3 shows the TPU unit check specified in
Eq. (2). Line 4 shows the model’s parameter data size check, which
requires that either the model has been already loaded on the cho-
sen TPU or the model’s parameter data size is smaller than the
available memory of the chosen TPU (Eq. (3)). Line 6 represents the
co-compiling procedure when the requested model is not already
present on the chosen TPU.

The extended scheduler uses the output of the AdmissionControl
(i.e., the allocated TPU set and the TPU units are assigned to each
TPU in the set) to configure the LBS for the application pod.

Since resource placement is a one time action, the main consid-
eration for scalability is the execution time for Algorithm 1. The
complexity of this algorithm is 𝑂 (𝑀) where 𝑀 is the number of
TPUs. Given space and energy considerations, we do not expect
an edge cluster to have more than 100 nodes. Within such realistic
edge cluster assumptions, application pod deployment is scalable
as shown in the evaluation section (§ 6.2).
Resource Reclamation. An application pod will eventually
complete its execution on the TPUs assigned to it. When the Recla-
mation component in Fig. 3 detects that an application pod is no
longer alive, it subtracts the pod’s requested TPU units from the
CurrentLoad of TPUs assigned to the pod. The model reclamation
happens lazily in MicroEdge. The extended scheduler subtracts
the reference count of the requested model on TPUs assigned to the
pod. Later, when the extended scheduler co-compiles the models
on TPUs, it excludes those models with a reference count equal to
zero.
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Algorithm 1: Admission Control Algorithm

Input :ApplicationPod: the application pod making the resource request
Model: the model that the application pod is requesting
TPUUnit: the amount of TPU time cycles the application pod is requesting

Output :AllocatedTPUs: the physical TPU(s) (through TPU Service) allocated to the
application pod
AllocatedTPUUnits: the time cycles on each TPU allocated to the application pod

1 Procedure AdmissionControl (ApplicationPod,Model, TPUUnit)
2 foreach TPU in MicroEdge do

3 if CurrentLoad (TPU) + TPUUnit ≤ 1 then
4 if Model in TPU or ModelSize (Model) ≤ FreeMem (TPU) then
5 if Model not in TPU then

6 CoCompile (TPU,Model)

7 return (TPU, TPUUnit)

8 return None

9 Procedure AdmissionControlWithWorkloadPartitioning (ApplicationPod,Model,
TPUUnit)

10 if AdmissionControl (ApplicationPod,Model, TPUUnit) is None then
11 AllocatedTPUs← []
12 AllocatedTPUUnits← []
13 foreach TPU in MicroEdge do

14 if Model in TPU or ModelSize (Model) ≤ FreeMem (TPU) then
15 WP← Min (TPUUnit, 1 - CurrentLoad (TPU))
16 if WP > 0 then
17 Append (AllocatedTPUs, TPU)
18 Append (AllocatedTPUUnits,WP)
19 TPUUnit← TPUUnit-WP

20 if TPUUnit == 0 then
21 break

22 if TPUUnit > 0 then
23 return None

24 else

25 foreach TPU in AllocatedTPUs do
26 if Model not in TPU then

27 CoCompile (TPU,Model)

28 return (AllocatedTPUs, AllocatedTPUUnits)

4.3 Admission Control with Fine-Grained

Workload Partitioning

Motivation. In the traditional online bin packing problem, we
need to decide on which bin (i.e., TPU) to place every application
pod upon arrival, which implies that every application pod will be
placed into exactly one bin (i.e., 𝑥𝑖 𝑗 in Eq. (2) is an integer of 0 or
1). However, this property leads to TPU resource fragmentation in
MicroEdge. For example, consider three application pods request-
ing the same model and 0.6 TPU units. Under AdmissionControl
in Algorithm 1, any of two application pods cannot share a single
TPU because, by definition of TPU units, the total 1.2 TPU units
(by two application pods) exceed the capability of a single TPU. As
a result, the extended scheduler allocates a dedicated TPU for each
of the three application pods.
Fine-Grained Workload Partitioning. We introduce the
workload partitioning mechanism in TPU resource scheduling to
address this limitation. As mentioned in § 3, the LBS associated
with a specific application pod is designed to send the inference
requests from that pod to one of the multiple instances of TPU
Service given a list of weights. For example, with reference to
Fig. 3, assume all three application pods require 0.6 TPU units. The
extended scheduler would allocate TPU Service 1 to application
1; thus, application 1 will send all of its requests to TPU Service
1. There are still 0.4 TPU units available in TPU Service 1. The
extended scheduler could allocate the remaining 0.4 TPU units of

TPU Service 1 to application 2. The balance of 0.2 TPU units needed
for application 2 could be allocated to TPU Service 2. As part of
admission control, the extended scheduler will initialize the LBS
associated with application pod 2 with the appropriate weights such
that at runtime that LBS will send 66% (0.4/0.6) of the inference
requests to TPU Service 1 and the balance to TPU Service 2. Finally,
TPU Service 2 would also be assigned to application 3 to satisfy its
need for 0.6 TPU units. Thus, the TPU resource requests of all three
application pods can be met with two instances of the TPU Service.

The procedure of splitting a requested model’s TPU unit into
multiple smaller portions is dubbed workload partitioning in Mi-
croEdge. As part of admission control, the extended scheduler
determines the partitioning weights and initializes the LBS associ-
ated with the newly created application pod. It is important to note
that a given inference request is fully executed on the same TPU.
Workload partitioning is a way by which successive requests ema-
nating from a given application pod can be fanned out to multiple
TPU Service instances. This workload partitioning is a powerful
technique for ensuring there is no internal fragmentation of TPU re-
sources. Further, this mechanism would also help applications that
require more than 1 TPU unit (e.g., ResNet-50 and EfficientDet-Lite0
in Fig. 1).

Lines 9 to 28 presents the workload partitioning mechanism in
MicroEdge. The algorithm determines a candidate set of TPUs (if
all the requested TPU units cannot be assigned to a single TPU)
to serve the inference requests of a new pod that is being created.
The algorithm first checks if a candidate TPU either already has
the model for the newly created application pod in its memory,
or has space in its memory to accommodate the model(Line 14).
Such a TPU is included in the allocated TPU set if it also has some
spare TPU units to host new requests. Lines 15 to 19 shows the
algorithm fragment that determines the workload partition that can
be assigned to each TPU in the allocated TPU set. If the model is
not already in the memory of an allocated TPU then the algorithm
calls the co-compilation procedure (Line 27). The output of the
AdmissionControlWithWorkloadPartitioning is a list of TPUs
and the TPU units allocated on each TPU for the requested model.
The extended scheduler uses this output to configure the weights
for the respective LBS.

5 MICROEDGE DATA PLANE

MicroEdge’s control plane elevates the TPU as a first-class citizen
from a scheduling perspective, with the goal of ensuring that the
scarce TPU resources will be fully utilized. It accomplishes this goal
via granular allocation of TPU resources without dedicating a TPU
exclusively for an application, and workload partitioning to fan out
an application’s successive requests to different TPUs.

To support these admission control mechanisms of the control
plane, the data plane implements mirroring data plane mechanisms
for seamless execution of the inference requests on the TPUs with
minimal runtime overhead. Specifically, the data plane provides the
ability to space and time share a given TPU across multiple applica-
tions via TPU Service (§ 5.1); relieves the application developer by
providing client library dubbed TPU Client (§ 5.2); and facilitates
workload partitioning for requests from a given application via TPU
load balancing service (§ 5.3).
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5.1 TPU Service

In MicroEdge, we allow sharing of a TPU’s resources across inde-
pendent application pipelines by exposing each TPU as a service.
Each tRPi (i.e., RPI endowed with a TPU) in MicroEdge runs a
TPU Service, which is instantiated when the MicroEdge cluster is
booted up.

The TPU Service listens for two kinds of incoming requests: Load
and Invoke. When a TPU Service receives a Load request (from
extended scheduler), it loads the specified machine learning model
to the associated TPU’s memory. When a TPU Service receives an
Invoke request (from a TPU Client), it runs inference for the image
frame received and sends the results back.

The TPU Service facilitates time sharing and space sharing, both
of which are key to enhancing the TPU utilization:
• Time Sharing. Multiple applications can share a single TPU
by sending their requests to the same TPU Service. While
these requests will be executed serially in the order in which
they are received, the admission control done by the extended
scheduler ensures that the application SLOs will be met.
• Space Sharing. MicroEdge uses TPU’s co-compiling feature
to provide space sharing. The extended scheduler (§ 4) could
co-compile models from different applications and load the
composite models into the TPUmemory so long as the TPU has
sufficient memory to host the composite models. Loaded with
co-compiled models, a single TPU service can serve different
models without paying the overhead of swapping the models
in/out between the host memory and the TPU memory.

5.2 TPU Client

As we mentioned earlier (§ 3.2), TPU Client is a Python library
included with the application for issuing Invoke requests to the
TPU Service (s) serving this application pod. Many ML models
expect an input resolution that is smaller than the original image
frame’s resolution. Baking the TPU Client with the application
ensures that the image resizing is done on the client side before
being sent to the TPU Service (via the cluster interconnect); this is
critical since the data movement overhead is significant on low-cost
devices such as RPis (§ 6.4.2).

5.3 TPU Load Balancing Service

Each application pod has a load balancing component attached
to it as shown in Fig. 3. At the time of initializing the application
pod, the extended scheduler seeds the associated load balancing
service (LBS) with the work partitioning weights (§ 4.3) so that
the Invoke requests emanating from its TPU Client can be routed
to the appropriate TPU Service (s). In MicroEdge, we choose to
implement our own LBS instead of using K3s’s default LBS [23].
K3s’s default LBS does not offer the capability to send requests
to specific TPUs, which is required for the correct functioning of
the work-partitioning scheme enshrined in the extended scheduler.
Our LBS forwards requests from the TPU Client to TPU Services
using Weighted Round Robin (WRR) with Weight Fair Queuing
(WFQ) spread [8] [32].

6 EVALUATION

The experimental study will answer the following research ques-
tions:

(1) How well does MicroEdge meet the Service Level Objectives
(SLOs), namely throughput and latency, for camera process-
ing applications? How well does MicroEdge scale with the
number of camera instances?

(2) Howmuch gain in TPU utilization is achieved byMicroEdge
due to TPU sharing and reduction in the cost of ownership
in return?

(3) How well does MicroEdge work for real-world use cases,
wherein a diverse mix of inference requests with varying
life times are dynamically generated from camera streams?

(4) What are the overheads attributable to MicroEdge in the
control plane and data plane?

An important metric for camera processing applications such as
object tracking across geo-distributed cameras is scalability, i.e., the
ability of the system to cater to an increasing number of camera
streams. Further, such applications show that a minimum frame rate
is needed to meet the fidelity requirements (i.e., low false positives
and false negatives). Therefore, throughput is a critical SLO in
MicroEdge.

Moreover, to achieve a low cost for camera processing in an Edge
computing cluster, service providers should improve the utiliza-
tion of hardware (i.e., servers and accelerators) to reduce the total
cost of ownership. Therefore, we also focus on TPUs’ utilization
in the evaluation of MicroEdge. To sum it up, for the evaluation
study of MicroEdge, the metrics of interest are scalability, through-
put/frame rate, and TPU utilization. The experimental setup for the
performance evaluation is covered in § 6.1; § 6.2 reports on the scal-
ability study using two exemplar applications; using a real-world
function trace the versatility of MicroEdge to deliver on the met-
rics of interest is discussed in § 6.3; finally, the micro-measurements
summarized in § 6.4 confirm that the overheads incurred due to
MicroEdge are minimal.

6.1 Experiment Setup

Software Setup. We build the proposed multi-tenancy architec-
ture by extending K3s’s control plane and data plane. Specifically,
we implement the data plane extensions (i.e., TPU Service, LBS, and
TPU Client) shown in Fig. 3 in Python. We implement the extended
scheduler and Reclamation components shown in Fig. 3 in Go and
package the Co-compiler as a service in Python. In the course of the
evaluation, we use the detection ML model SSD MobileNet V2 and
human body segmentation model BodyPix MobileNet V1 in § 6.2,
and we use the classification model MobileNet V1 and segmentation
model UNet V2 in § 6.3 to simulate a real-world workload.
Hardware Setup. We use 25 Raspberry Pi 4 Model B with the
following specifications: Quad-core Cortex-A72 (ARM v8) 64-bit
SoC @ 1.5GHz, 8GB LPDDR4-3200 SDRAM. Additionally, we use
six Google Edge TPU ML accelerator co-processors. By having
fewer TPUs than the number of RPis, we demonstrate the cost-
effectiveness of MicroEdge. Depending on the specifics of the
experiments, we will use either the entire MicroEdge cluster or a
subset of the hardware in the cluster.
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6.2 Scalability Study

This experiment sets out to answer the first two research questions
posed at the beginning of § 6.
Applications. We use two exemplar situation awareness appli-
cations. The first one dubbed Coral-Pie generates space-time tracks
of vehicles at video ingestion time using a distributed camera net-
work [38]. The bare-metal implementation of this application used
as the baseline for our evaluation study dedicates two RPis and one
TPU for each camera stream to sustain the 15 FPS SLO. The first RPi
runs pre-processing and inferences on the TPU to detect vehicles
from the camera’s field of view, and the second RPi re-identifies
vehicles reported by upstream cameras.

In fact, the two RPis process their workloads independently
in a pipelined fashion. Therefore, in principle we can study the
workload on either RPi separately as long as each RPi completes
its processing within the time available for per-frame processing.
Since the focus of our evaluation is on TPU utilization, the work-
load we use for the evaluation is confined to the vehicle detection
pipeline that runs on the first RPi with the attached TPU. The sec-
ond application is Google Coral BodyPix [4], which does real-time
person segmentation. For this application, the bare-metal baseline
to compare against MicroEdge uses two TPUs attached to each
RPi host. The segmentation model used by this application has a
TPU unit > 1 at 15 FPS, thus requiring two TPUs to maintain the
frame rate SLO. Throughout our evaluation we use a configuration
where TPUs are dedicated to a single application as the baseline.
To the best of our knowledge, this baseline is itself the first of its
kind incorporating TPUs in a multi-tenant edge cluster. The study
quantifies the utilization improvements achievable via the mecha-
nisms such as TPU multiplexing proposed in this paper compared
to this baseline.
Dataset. For the Coral-Pie application, we evaluate MicroEdge
using a video file that contains 1000 image frames recorded from a
security camera capturing the movement of vehicles in a campus
environment. The time it takes a vehicle to enter and leave the
FOV of a camera is around 10 seconds. At 15 FPS, 1000 image
frames amount to 67 seconds of video, which allows observing
several vehicles traversing through the FOV of a camera. Further,
we give the same set of frames “time shifted” (so that we know the
ground truth for vehicle re-identification) to downstream cameras.
So cumulatively, the dataset used in the evaluation is equivalent to
20,000 camera frames. For the BodyPix application, we take 1000
images from a 3D people dataset [31].
Workload. With the cameras fed with the video datasets de-
scribed above, we use the detection model SSD MobileNet V2 for
Coral-Pie, and the segmentation model BodyPix MobileNet V1 for
BodyPix as the ML workloads to send to the TPUs. We set the
frame rate of each camera to the industry-recommended [16] 15
FPS. Since the BodyPix segmentation model requires > 1 TPU unit
at 15 FPS, the baseline needs 2 TPUs for each camera instance, send-
ing alternate frames to each TPU to meet the frame rate SLO. For
the Coral-Pie application which requires a TPU unit < 1 for the ML
model, we use the twoMicroEdge scheduling variants with and
without workload partitioning. For the BodyPix application which
requires a TPU unit > 1, we only use the workload partitioning
scheduling variant. Using the setup described above, we run the

two applications separately to get deterministic workloads. In the
experiments, we increase the number of cameras until it reaches
the maximum capacity for each configuration.

1 2 3 4 5 6
Number of TPUs

0

1

2

3

4

5

M
ax

 N
um

be
r o

f C
am

er
as

Baseline MicroEdge w/o Workload Partitioning MicroEdge w/ Workload Partitioning

1 2 3 4 5 6
Number of TPUs

5

10

15

20

M
ax

 N
um

be
r o

f C
am

er
as

(a) Scalability

1 2 3 4 5 6
Number of TPUs

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

TP
U 

Ut
iliz

at
io

n

(b) TPU Utilization

1 2 3 4 5 6
Number of TPUs

0

1

2

3

4

5

M
ax

 N
um

be
r o

f C
am

er
as

(c) Scalability

1 2 3 4 5 6
Number of TPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e 

TP
U 

Ut
iliz

at
io

n

(d) TPU Utilization

Figure 5: Scalability of MicroEdge. Fig. 5a and Fig. 5b show
the results for the Coral-Pie application, while Fig. 5c and Fig. 5d
show the results for the BodyPix application. Fig. 5a and Fig. 5c
compare the scalability of MicroEdge against the baseline with 15-
FPS camera instances. Fig. 5b and Fig. 5d show the corresponding
average utilization of all the TPUs in the cluster.

Scalability Results. The detection ML model used by Coral-
Pie needs 0.35 TPU units, while the segmentation ML model used
by BodyPix needs 1.2 TPU units. The bare-metal baselines which
dedicate TPUs for each camera stream cannot exploit fractional TPU
resources. MicroEdge scheduling variants on the other hand can
fully exploit such fractional availability of TPU resources via TPU
sharing. The scalability of MicroEdge compared to the baselines is
evident from Fig. 5a and Fig. 5c. Succinctly put, for the same number
of TPUs, MicroEdge can support more number of camera streams
compared to the baselines for both computationally light (Fig. 5a),
and computationally heavy (Fig. 5c) models. For e.g., with workload
partitioning (Fig. 5a), MicroEdge can support up to 2.8× cameras
compared to the baseline with 6 TPUs for the Coral-Pie application.
Comparing the results with and without workload partitioning for
the Coral-Pie application (Fig. 5a) underscores the importance of
the workload partitioning scheduling variant of MicroEdge for
enhancing the scalability even further.
TPU Utilization Results. Because of MicroEdge’s granular
scheduling of TPU resources that aids TPU sharing across indepen-
dent application pipelines, its scheduling variants achieve higher
TPU utilization compared to the baselines. With reference to Fig. 5b,
the TPU utilization could be as low as 33% for the baseline. On
the other hand, MicroEdge even without workload partitioning
(Fig. 5b) achieves a TPU utilization of up to 70%. The TPU utiliza-
tion reaches almost 100% with workload partitioning as we scale up
the cluster size (Fig. 5b and Fig. 5d). The scalability of MicroEdge
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# TPUs # RPis Total Cost
Baseline 17 17 $2550

MicroEdge w/o W.P. 8 17 $1875
MicroEdge w/ W.P. 6 17 $1725

Table 1: Cost comparison between the baseline and Mi-

croEdge variants to support 17 Coral Pie camera instances.

also has a direct impact on the cost of ownership. As we can see
in Table 1, to support 17 cameras for Coral-Pie,MicroEdge with
workload partitioning reduces the cost of ownership by 33%.4
Throughput Results. We conducted experiments to verify if
virtualization or K3s extensions in the data plane add any significant
overhead to camera processing. Compared to running the baseline
on bare metal, the virtualized MicroEdge cluster does have inher-
ent overhead since the client applications and the other entities
in Fig. 3 are containerized for performance isolation. However, by
proof of construction we show that this overhead is minimal. The
measured throughput results of theMicroEdge scheduling variants
are the same as the baselines. Of course, compared to the baselines
which run on bare metal, MicroEdge with containerization and
the entities in the data plane of K3s do add additional latency for
camera processing. We discuss the sources of this latency in § 6.4.
Suffice it to say here that despite the additional latency incurred
per frame, at the application level, MicroEdge is able to sustain
the needed throughput for typical camera processing applications.

6.3 Real World Workload Study

In a realistic workload, MicroEdge cluster should be able to simul-
taneously serve requests for multiple models. Additionally, appli-
cations may be created and removed in an unpredictable pattern.
This section reports on experiments with a larger cluster and uses
a realistic workload to simulate clients ‘coming and going’.
Workload Setup. The Microsoft Azure Functions (MAF) [36]
trace gives the frequency of invocations of user-created serverless
functions gathered over 2 weeks. In our evaluation, we ascribe
each invocation to a specific camera stream. That is, the number of
invocations of a specific function in the trace becomes the number
of camera streams in our study. To fit the limited capacity of the
MicroEdge cluster we downsize the number of invocations so that
they would not exceed MicroEdge’s system capacity. Despite this
modification, we retain the diversity of the functions (e.g., duration
of each function, function periodicity).

For this experiment, we simulate a scenario where MicroEdge
simultaneously serves three types of camera streams correspond-
ing to three models as described in § 6.1. We also associate three
different attributes, respectively, to the three models (derived from
MAF): one which assumes 24 x 7 processing, one which shows a
sparse invocation, and one with bursty requests.

We run the trace through four different configurations of Mi-
croEdge and test our workload partitioning and co-compiling fea-
tures. Each of the configurations either have both features enabled,
only one of the features enabled, or none of the features enabled.

4 We do not include the cost of the remote server that hosts the control plane. This
cost can easily be amortized over multiple MicroEdge clusters deployed across a
metropolitan area.

The baseline for this study is identical to that of § 6.2 where each
TPU is dedicated to a single camera.
TPU Utilization Results. In this part, we analyze the total
TPU utilization of the different MicroEdge configurations and
compare them with the baseline. Fig. 6a shows the average TPU
utilization of each of the configurations per minute. The most visi-
ble observation is that the baseline utilization is fixed at a low level,
whereas MicroEdge shows a high utilization above 0.7 and reach-
ing 1 at certain times. The TPU utilization of baseline is capped as
expected since each TPU can handle requests from only one camera.
From the results. we can see that using both workload partition-
ing and co-compiling yields the highest level of utilization. The
fluctuation in the utilization of MicroEdge for the different config-
urations is due to the variance of the workload imposed upon the
cluster. Note that the separation between each configuration is not
always uniform, once again attributable to the workload variance.
Throughput Results. Fig. 6b shows the number of cameras
that MicroEdge can serve for the different configurations. Similar
to Fig. 6a, we can see thatMicroEdge with both workload parti-
tioning and co-compiling shows the best throughput performance
since both features exploit the marginal resource of each TPU to
increase utilization. When used alone, co-compiling supports a
higher number of cameras compared to workload partitioning in
general.

Workload partitioning farms out a single camera’s requests to
multiple TPUs, whereas co-compiling allows a single TPU to host
multiple models which in turn cater to the inference requests from
multiple cameras, thus allowing a given TPU to serve more number
of cameras.

To fully understand the benefits of co-compilation and workload
partitioning, we would need to run a much larger configuration
of the workload on a larger cluster. Such a study would show a
stronger separation in the results for the different configurations.

6.4 Micro Measurements

6.4.1 One-time Admission Control Overhead. This benchmark quan-
tifies the increase in admission control latency over and above K3s
due to the additional work done by the control plane of MicroEdge.
The additional work done by the control plane includes camera
stream admission, node selection, (optional) co-compilation, and
TPU load balancing before the container is launched. As can be seen
in Fig. 7a, the additional latency overhead is around 10% for launch-
ing a new camera instance. When the camera runs a new model
that needs to be co-compiled, even though the latency overhead of
admission control has a larger variance, the average value does not
increase because the co-compilation runs on a different process in
parallel with the extended scheduler. It should be noted that this
is a one-time control plane overhead for launching the application
and is not in the critical path of application processing. Given that
these applications are long-running the one-time additional control
plane cost is acceptable.

6.4.2 Inference Latency Breakdown. This microbenchmark is de-
signed to break down the end-to-end latency for each inference in
MicroEdge. There are four steps in each request. ❶ Pre-Processing:
Examples include resizing the raw image to the resolution that fits
the ML model. ❷ Transmission: TPU Client sends pre-processed
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Figure 6:MicroEdge Performance Under Trace Workload– Fig. 6a shows how the TPU utilization changes for different configurations
of MicroEdge as time passes. Fig. 6b shows the number of camera clients that different configurations of MicroEdge can handle under a
fluctuating workload.
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Figure 7: Latency Measurements. Fig. 7a compares the admis-
sion control overhead of native K3s and MicroEdge. Fig. 7b shows
a breakdown of the latency involved in Invoke call for Coral-Pie
baseline andMicroEdge along four component dimensions: Pre-
processing, Inference, Post-processing, and Transmission.

image to its assigned TPU Service. ❸ Inference: the TPU Service
loads the image on TPU and runs inference. ❹ Post-Processing: the
result is returned to the application for post-processing.

Fig. 7b shows the latency breakdown of the Coral-Pie application
[38] used in § 6.2. The baseline does not need step 4 since the TPU
is dedicated to the camera (and hence collocated with the respective
RPi).

As is evident from Fig. 7b, the dominant cost of the latency is
the extra data transmission incurred to transport the image from
the application container to the TPU Service (around 8 ms). The
total end-to-end latency for an inference request adds up to only
31 ms. A model that can satisfy the FPS target in a baseline K3s
configuration would most likely be able to satisfy the FPS target
inMicroEdge. The goal of MicroEdge is to increase resource uti-
lization while respecting the latency SLAs of the applications. We
honor latency constraints from applications, but do not strive to
minimize the latency for each request. In fact, it would not benefit
the application pipeline to do such latency reduction. A common
camera application SLA of 15 FPS gives a latency budget of 67 ms
between frames. Even if the entire application pipeline finishes the
execution of one frame in 20 ms, the next frame will arrive only
after 47 ms due to the periodicity of frame arrival. This is the reason
the focus of this work is to increase the utilization while meeting

the application SLA. In general, we observe that a majority of mod-
els also have similar input sizes (e.g., 230 x 230, 300 x 300). The
transmission latency overhead is consistent for different models
used in the evaluation because images are resized by the TPU Client
to the model-specific size before transmission to the TPU Service.
It justifies thatMicroEdge is able to meet the latency requirements
of most camera processing applications which require 15 FPS [16].

7 RELATED WORK

GPU Schedulers at Edge. [18] places camera stream process-
ing pipelines on a cluster of NVIDIA Jetson Nano boards. They
place individual pipeline components instead of placing a mono-
lithic pipeline to provide mechanisms to establish communication
between components. This allows different pipelines to share over-
lapping components and heavy workload pipelines to span across
multiple hardware nodes. However, their work does not support
automated scheduling and requires human intervention when plac-
ing components. They also do not deal with possible hardware
fragmentation. On the contrary, MicroEdge provides a control
plane that provides automatic, fine-grained TPU scheduling which
actively minimizes the TPU fragmentation.MicroEdge also pro-
vides performance isolation between different applications, which
is critical in serving an undefined audience.

DeepRT [39] is a GPU scheduler for a multi-tenant edge server
that aims to provide latency guarantee to the inference requests
while maintaining high overall system throughput. DeepRT batches
data from different requests as much as possible to boost the system
throughput. Meanwhile, the Admission Control Module in DeepRT
performs a simulation-based schedulability test to decide whether
a pending request’s latency guarantee can be satisfied. In contrast
to the GPU, the TPU’s RAM is much more limited, making batch
processing of images infeasible in MicroEdge.
GPU Schedulers at Cloud. Clipper [7] takes only the image
as input and automatically chooses the model that best serves
the request. INFaas [33] expands the search space to variants of a
model and supports autoscaling of resources based on the workload.
Clockwork [14] uses a central queue and limits variances in the
inference pipeline to achieve predictable tail latencies.

While these works also abstract hardware and handle inference
at scale, there are several differences withMicroEdge. These works
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handle completely unpredictable workloads and must allocate re-
sources at every inference. On the contrary, MicroEdge targets
camera streams that generate frames at predictable intervals. This
allowsMicroEdge to allocate resources at camera stream granu-
larity. Another difference comes from the fact that resources are
scarce on the Edge compared to the Cloud and must be used wisely.
Because of this, MicroEdge’s key focus is on minimizing resource
fragmentation and serving as many clients as possible with limited
hardware as long as the SLO is satisfied.

Contemporaneous with our work, Cho, et al. [5] have proposed
a framework for deploying ML workers on a heterogeneous GPU
cluster based on SLO requirements which bears similarity to some
of the ideas in MicroEdge. However, they do not discuss their
resource allocation algorithm in detail and do not provide an ex-
tensive evaluation on the scalability of their framework.
Systems in the Industry. NVIDIA MPS[26] uses the Hyper-Q
capability of GPUs to allow CUDA kernels to be processed con-
currently on the same GPU, which can benefit performance when
a single application process underutilizes the GPU. TensorFlow-
Serving [29] and Triton Inference Server [28] are open-source in-
dustrial inference systems for GPUs. These two inference systems
choose a serverless design wherein scheduling decisions are made
per function call during the runtime.

In addition, Amazon SageMaker [1] and Vertex AI [13] from
Google are two closed-source model serving systems in the industry.
Meanwhile, TPUs are much younger, and similar industry support
does not exist.

8 CONCLUSION

MicroEdge is a low-cost edge cluster comprising RPis and TPUs of-
fering computational resources for geo-local camera processing ap-
plications. Camera streams generate image frames at a fixed interval,
and the discrepancy between the interval and inference time leads
to fragmentation if computational resources are dedicated to appli-
cations. Hence,MicroEdge features a performant multi-tenancy
architecture to share and orchestrate resources (i.e., CPU, TPU, and
memory) among geo-local camera applications. MicroEdge pro-
poses novel mechanisms all aimed at ensuring that the precious
TPU resources are fully utilized. The mechanisms embodied in the
extended scheduler that extends the K3s native scheduler include
time-sharing individual TPUs across multiple camera streams, par-
titioning the requests from a given camera stream across multiple
TPUs, and space-sharing a TPU for interleaving inference requests
from camera streams using different models via co-compilation.
MicroEdge implements admission control by extending K3s’s con-
trol plane and data plane, allocating resources upon creating the
application pod, and reclaiming the resources upon application
termination. Extensive evaluation studies are carried out to show-
case the performance advantages of MicroEdge for camera pro-
cessing applications. As a camera processing cluster at the edge,
MicroEdge offers several avenues for future work. Some examples
include data plane optimization for pipelines that involve multi-
ple models, automated model partitioning, and support for failure
recovery.
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