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Abstract— While a radar tracks the kinematic state (position, velocity,
and acceleration) of the target, an optimal signal processing requires
knowledge of the target’s range rate and radial acceleration that are
derived from the tracking function in real time. High precision tracks are
achieved through precise range and angle measurements whose precision
are determined by the signal-to-noise ratio (SNR) of the received signal.
The SNR is maximized by minimizing the matched filter loss due to
uncertainties in the radial velocity and acceleration of the target. In this
paper, the Expectation-Maximization (EM) algorithm is proposed as an
iterative signal processing scheme for maximizing the SNR by executing
enhanced range walk compensation (i.e., correction for errors in the
radial velocity and acceleration) in the real-time control loop software
architecture. Maintaining a stringent timeline and adhering to latency
requirements are essential for real-time sensor signal processing. This
research aims to examine existing methods and explore new approaches
and technologies to mitigate the harmful effects of range walk in tracking
radar systems with an EM-Based iterative algorithm and implement the
new control loop steering methods in a real-time computing environment.

Index Terms— Signal Processing, Tracking, Expectation-
Maximization, Moving Targets, Sensor Processing, Computational
and Program Steering, Real-Time Software Architecture

I. INTRODUCTION

Optimal radar signal processing requires knowledge of the
target’s range, range rate, and radial acceleration that are
derived in real time from the tracking function. The tracking
function estimates the kinematic state (i.e., position, veloc-
ity, and acceleration) of the target through range and angle
measurements, whose precision are determined by the signal-
to-noise ratio (SNR) of the received signal. Measurement
precision is inversely related to SNR in a tracking radar and
directly impacts tracking performance. The SNR is maximized
by minimizing the matched filter loss due to uncertainties
in the radial velocity and acceleration of the target. When a
target moves and the estimates of the target kinematic state
are imperfect, the target echo will exhibit range walk (RW)
over the radar’s coherent processing interval (CPI). If the
range walk and nonlinear slow-time phase changes are not
compensated prior to coherent processing over slow-time, a
loss in SNR occurs. Compensating for RW requires accurate
estimates of the target’s range rate and any radial acceleration
that is present. Also, when a target maneuvers by suddenly
accelerating or decelerating, the estimates of radial velocity
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and acceleration will lag the true values and significant losses
in SNR are likely to occur. Thus, accurate estimates of the
kinematic state critical when abrupt changes in the target’s
velocity and acceleration occur over short time intervals.

A real-time sensor architecture and robust algorithms are
needed to obtaining the knowledge required to accurately
estimate the target’s radial motion and compensate for RW. At
the same time, maintaining a stringent timeline and adhering to
latency requirements are essential for real-time sensor signal
processing. This research aims to examine existing methods
and explore new approaches and technologies to mitigate the
harmful effects of RW in tracking radar systems with an
Expectation-Maximization (EM) based iterative signal process
scheme and implement that scheme with new control loop
steering methods in a real-time computing environment.

The research builds upon the existing EM algorithm that
provides iterative processing to obtain maximum likelihood
(ML) estimates of unknown variables in the presence of
nuisance parameter. One of the real-world challenges to the
successful implementation of the EM algorithm in real-time is
convergence to an accurate ML estimate in a timely manner.
This research aims to develop an iterative EM algorithm for
RW correction that reliably converges and is implemented in
a real-time software architecture. The EM-Based algorithm
utilizes the output of the tracking function to a seed the
iteration and ensure real-time convergence. Computational
steering is required to activate the E-Step and M-Step of
the iterative algorithm and program steering to monitor and
manage the computer resources [11] to achieve latency and
timeline requirements. The following steps list the expectation
and maximization steps of EM-Based algorithms sequence
developed under this work to compensate for RW. The iteration
begins with the maximization step.

o Maximum likelihood (M-step) — The maximization step con-
sists of using the newest state estimate to update the radial
velocity and acceleration estimates for RW compensation in
the ML estimation of the measurements of range, azimuth, and
elevation. On the first iteration, the newest state estimate is
provided by the prediction of the state estimates provided by
the tracking function. On subsequent iterations, the newest state

estimate is provided by the Kalman filter or IMM estimator (i.e.,
E-Step) processing the measurement of the previous iteration
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M-Step. After the final iteration, the ML estimates of the
measurements are provided to the tracking function.

« Expectation (E-step) — The expectation step consists of using
the most recent range measurement, 7, from the most recent
M-Step to feed the Kalman filter or Interacting Multiple Model
(IMM) estimator, which update the estimates of the target’s
kinematic state to include the unobserved variables, range rate f',
and radial acceleration 7. After the final iteration of the M-Step,
the resulting ML estimates of the measurements of target range
and angles are provided to the tracking function that provides
the final E-Step in which the target state estimates are updated
with the Kalman filter or IMM estimator. The resulting state
estimates are predicted to the next signal processing time and
used to seed the first iteration of the M-Step.

The paper proposes augmenting the traditional sensor Signal
Processor (SP) and Tracker pipeline architecture to support
an iterative EM-bases signal processing scheme to enhance
measurement fidelity and tracking performance for moving/-
maneuvering targets without impacting the usage of critical
radar transmit and receive resources.

Experimental results and analysis demonstrate that the EM-
based scheme efficiently compensates for the RW of maneu-
vering targets showing an improvement in SNR of more than
4 db in many cases. The SNR improvement increases the
quality, reliability, and confidence of the estimates of the state
for moving/maneuvering targets. These improvements reduce
the track timeline to identify and characterize maneuvers,
reducing the need for additional valuable sensor resources.
The model prototype of the architecture and design adapts
the signal processing and tracking traditional pipeline to a
control loop steering execution that implements the iterative
EM-Based signal processing scheme.

This paper introduces enhancements to the Signal Processor,
Tracker, and Processing Manager software architecture that
strengthens the radar system’s ability to track maneuvering
targets within a shorter timeline and with less demand on valu-
able radar/sensor resources. The paper is organized as follows.
Section II provides the motivation to reduce or eliminate the
SNR loss and enhance the ability to track maneuvering targets.
Section III describes the implementation of the EM-Based
signal processing scheme in terms of the iterative E-step and
M-step. Section IV demonstrates the reduction of the SNR loss
via RW compensation, improvement in tracking precision, and
deduction in the demand for valuable sensor resources. Section
V addresses the proposed research to validate the execution
of the signal processing and tracking in the real-time control
loop (with steering) required to support the iterative EM-based
algorithm in a functional real-time radar software architecture.

II. RESEARCH MOTIVATION

The target’s motion model estimate does not match the
object’s true trajectory resulting from the loss in SNR. This
limits the accuracy of the Signal Processors detection logic,
which results in a poor parameter estimate for range, elevation,
and azimuth for the moving target. The deficient parameter
estimate, resulting from SNR loss, is provided to the Tracker
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to predict a low confidence track state that will be utilized
for future track location beam pointing. Figure 1 is the
Signal Processor key algorithms and the traditional pipeline
architecture of the Signal Processor, Tracker, and Processing
Manager (Radar Resource Manager)[5].
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Fig. 1: Signal Processor’s estimate precision for a moving target
is degraded by loss in SNR. Impacts the Tracker and Processing
Manager for track beam pointing.

Figure 2 demonstrate the SNR loss for 1) stationary, 2)
moving 300 m/s velocity target, and 3) maneuvering 300
m/s and 9.8 m/s (lg) targets. Figure 2 plots (a), (b), and
(c) highlight the RW for the three target configurations. The
Figure 2 bottom plots (d), (e), and (f) are the range-Doppler
map for each target configuration. Over a single CPI (0.1
seconds), the acceleration only changes the velocity by 0.98
m/sec. You go from 300 m/sec to 300.98 m/sec. As a result,
you can’t see the slight change in additional range offset;
however, there is a quadratic phase term that degrades the
Discrete Fourier Transfomr (DFT) and spreads the response
across Doppler. The DFT doesn’t like quadratic phase terms
that change over slow time (pulse index). The DFT expects
only a linear phase term (representing the Doppler shift due
to a constant velocity target). When the DFT encounters a
quadratic phase (changing with pulse index), it spreads the
energy across Doppler.

Velocity & Acceleration Motion Effects

Vel = 300 m/s & Accel = 0 m/s/s
(b) Range Walk.

Vel = 300 m/s & Accel = 9.8m/s/s
(c) Range Walk

Vel =0 m/s & Accel = 0 m/s/s

(a) Zero Range Walk

Relative Range

Doppler Shift Normalized by PRF -1*
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Fig. 2: Plots (a), (b), and (c) x-axis range in relationship to each of
the CPI pulses (y-axis). Range-Doppler maps (d), (e), and (f) based on
the traditional signal processing fast-time and slow-time processing.
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A. Challenges

An expectation-maximization (EM) algorithm is an iter-
ative method to find (local) maximum likelihood (ML) or
maximum a posteriori (MAP) estimates of parameters where
the algorithm depends on unknown variables. This method
for real-time sensor processing has been researched for 50
years without a practical implementation that can support the
radar/sensor timelines, and latency requirements [8]. Three
challenges are required to be mitigated to implement this
paper’s EM-Based algorithm.

1) Static to Agile Real-Time Approach: Eliminate tradi-
tional hardcoded and restrictive methods for compensating for
a target’s range walk. Traditional methods are to have a priori
estimates (models) of the target’s velocity and acceleration or
a bank of filters tuned to the range of possible target velocities
and accelerations [3] [9]. These static methods are restrictive
and unable to support all possible scenarios. The solution is
to calculate the ML for the unknown variables (velocity and
acceleration) in real-time. The benefits increase accuracy and
higher confidence of the track estimates and predicted state
prior to the next scheduled track sensor command [13].

2) Rapidly Converge for the Unknown Maximum Likeli-
hood Variables: A negative of the EM iterative algorithm’s
ability to converge to calculate the ML for the unknown
variables or achieve convergence in a reasonable latency
(initial bias setting)[10] [18]. This paper’s research investi-
gation of the EM algorithm for various applications identified
developed techniques for seeding the EM algorithm (e.g., K-
means clustering, Machine Learning.) The contribution of this
research is the solution for the Track Filter initial estimate to
provide that seed for the unknown variables. An evaluation of
a maneuvering scenario in section IV demonstrates the benefit
of calculating reliable ML for the unknown variables in 1 to
2 iterations.

3) Control the EM-Base Software Architecture: Confi-
dence that software architecture can execute the algorithm’s
latency while maintaining radar tracking. Department of En-
ergy has been focus on the steering research area for large-
scale computational intensive simulations but depend on a
human-in-the-loop [4] [6] [16]. Automate steering is required
to perform fine-grain decision-making that changes the tra-
ditional radar/sensor pipeline architecture to a control loop
architecture using computational and program steering. Com-
putational steering is the ability to manually intervene with
an otherwise autonomous computational process. Program
steering includes monitoring and data interpretation practices
to control an application’s execution state, architecture con-
figuration, and the utilization of resources. The solution is
to automate computational and program steering decisions
making, fine-gain control, of the radar/sensor processing with
vectors and actuators [12]. The benefit is that the automated
steering performs fine-grain real-time decisions that change the
traditional pipeline architecture to a control loop architecture.

« Computational Steering = Ability to manually intervene with
an otherwise autonomous computational process.
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« Program Steering = Includes the practices of monitoring and
data interpretation to control an application’s execution state,
architecture configuration, and the utilization of resources.

III. PROCESSING FLOW FOR EM-BASED ALGORITHM

A moving target may exhibit an RW through the range
and Doppler cells over a coherent processing interval (CPI).
The impact is a reduced SNR due to broadening the point
target response in the range-Doppler map. The reduced SNR
and broadened point target response degrade the precision
and accuracy of the range (R) and range rate (v) estimates.
The degraded range and range rate estimates impact the
ability of the Tracker to estimate the current state accurately
and to respond to an accelerating target. Figure 2(a) is a
stationary target, and there are no RW effects, and (b) and
(c) demonstrate the effect of RW for a moving target over the
entire coherent processing interval. This research utilizes the
EM iterative algorithm to compensate for the target’s motion
with the unknown variables, calculated by the track filter,
Kalman, or IMM, interfacing with the Signal Processor.

Figure 3 is the research modification to the traditional
radar pipeline algorithms execution to utilize the EM-Based
algorithms taking advantage of the EM iterative process to
calculate ML for the unknown variables by reprocessing the
I/Q current sensor digital data. This section will describe the
EM-Based algorithm utilizing proven signal processing, track-
ing, and cluster algorithms to enable the software architecture
to enable a steering control loop execution.

Processing Flow Diagram for EM-Based Algorithms
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. Kalman or IMM Filter - Calculates target state for (R), (¥), and (a) based on updated measurement

. RWC - Applying a linear phase taper in the frequency domain to correct for range walk (due to velocity and
acceleration) and a slow time phase correction to address quadratic phases due to acceleration.

. Clustering — DBSCAN is a common clustering technique based on nearest neighbors

. Range Estimate - Range is estimated via weighted average over the selected cluster

. SNR Estimate — SNR is obtained hased on the peak amplitude within the target cluster

. QM - Quality metric assesses whether SNR continues to improve

. Tracker/Kalman/IMM - Track database update and predict state for next CPI scheduling
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Fig. 3: Taking proven algorithms from domain experts to
support iterative EM-Based algorithm processing flow.

A. Tracker’s Filter(s)

For a given linear stochastic state and measurement model
with white Gaussian errors, the Kalman filter provides the
state’s conditional mean estimate or expected value estimate
[1]. Multiple kinematic motion models are included in the
stochastic state model for maneuvering targets (i.e., targets that
change modes through a sudden change in acceleration), and
the switching between those kinematic models is treated as
a finite-state Markov chain. The IMM estimator [1] is well
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accepted as the best approach to the state estimation of a
Markovian switching system when the computational costs are
considered.

For signal processing, the estimates of the range, range
rate, and range acceleration are the key to reducing SNR loss.
Since this paper focuses on reducing signal processing loss,
this section only addresses the estimation of the range, range
rate, and range acceleration. After the initial signal processing
of the I/Q data components, the IMM E-step, Figure 3, is
the key to reducing SNR loss for calculating the unknown
variables for velocity and acceleration to seed the signal
processor to calculate ML. The IMM estimator uses the newest
measurement, and the output of the estimator is treated as a
temporary state estimate for refining the signal processing to
increase the SNR. Once the SNR has been maximized via
this iteration of state estimation and signal processing, the
final measurement is sent to the tracking function for state
estimation, and track management [3] [2].

When the computational costs are considered, the IMM
estimator [1] is well-accepted as the best approach to the
state estimation of a Markovian switching system. The IMM
estimator consists of a Kalman filter for each model, a
probability evaluator, an estimate mixer at the input of the
filters, and an estimate combiner at the output of the filters.
Figure 4 illustrates the functional decomposition of the IMM
estimator with two models, Nearly Constant Velocity (NCV)
and Nearly Constant Acceleration (NCA), and the data flow.
The X,il  and P,il . denote the state estimate and covariance
given that Model i is in effect from time ¢;_; to time ¢ and
measurement Zj. The A}, denotes the likelihood for model i at
time tj, and the uj denotes the vector of model probabilities.
The output of the IMM Estimator is Xy and Py. The next
filtering cycle starts with the interacting or mixing step that
prepares the inputs for the Kalman filters for possible mode
switch. The X,gill 4, and PISZH ., denote the mixed prior
estimates for the Kalman filter based on Model ¢. This mixing
step differentiates the IMM estimator from parallel Kalman
filters, for which one of the filters is picked as the best.
Parallel Kalman filters and picking the best has no concept
of mode switching that the IMM estimator addresses. In the
IMM estimator, the multiple models, NCV and NCA, interact
through the mixing to track a target maneuvering through an
arbitrary trajectory. A derivation and detailed explanation of
the IMM algorithm are given in [1].

B. Signal Processor’s Range Walk Correction

Over a coherent processing interval (CPI), a target’s radial
components of motion, which include both velocity and ac-
celeration, present as range walk (RW) in fast-time and a
linear and quadratic phase response over slow time . The
RW and slow-time quadratic phase (STQP) reduce the resul-
tant signal-to-noise ratio (SNR) when employing traditional
discrete Fourier transform (DFT) based Doppler processing.
The Cramer-Rao lower bound (CRLB) [14] on measurement
precision denotes an inverse relationship between precision
and SNR. In a traditional radar pipeline architecture, the
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Fig. 4: IMM Estimator with Two Models.

Tracker’s performance is directly affected by measurement
precision after the Signal Processor; thus, there is a strong
desire to maximize SNR RW and quadratic phase variation
over a CPI results in a smearing of the target’s point spread
function in both range and Doppler resulting in a loss in SNR.
If the target’s radial components of velocity and acceleration
were known a priori, motion compensation is achievable
via deterministic relationships. However, the target’s radial
components are not known a priori and must be estimated by
external means such as track filtering. In Figure 3 range walk
correction (RWC) EM steps, we seek to employ an iterative
process known as expectation-maximization, implementing the
EM-Based algorithm developed for this research, to estimate
the components of radial motion and use these estimates to
correct for target motion resulting in a better range and angle
estimates with improved SNR. Given a target with initial at
range R, initial radial velocity, vy, and radial acceleration a,
the received signal’s spectrum may be written as Equation 1.

2 2
Xrew (2,1) = Xtg () exp (—jQER()) exp (_]QE (UOnT
(1

+ O.5an2T2)>

Where X, (omega)is the spectrum of the transmitted pulse
at baseband, omega is the frequency variable in radians/sec,
c is the speed of light, n is the pulse index (n = 0,...,N-
1), and T is the pulse repetition interval. The RW over fast-
time is governed by the radial components of velocity and
acceleration. Given estimates of the target’s radial components
of initial velocity and acceleration, 9y and a, obtained from
the tracker, one may us these components to compensation for
range walk. For the nth pulse, RW may be compensated for
by applying a linear phase correction term in the frequency
domain using Equation 2,

Yawe (1) = Xpeo (2, 1) exp (ng (0 (nT ~t)
‘ @
+0.5a(nT — tc)2>>

where the subscript RWC denotes that range walk compen-
sation has been applied. The phase compensation is chosen to
position the target response in fast-time at a range commensu-
rate with the range of the target within the receive window at a
time ¢, corresponding to the middle of the CPI. The quantities
Av and Aa are calculated and represent the error in the
velocity and acceleration estimates of the radial components.
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If both quantities are zero, then RW is fully compensated for
and the target response is positioned in fast-time at a range
corresponding to the middle of the CPI. Suppose one of both
quantities isn’t zero. In that case, some residual RW is present
in the response over slow-time, and based on the quality
metric check, another EM-Based iteration can be scheduled
per Subsection III-D. In slow-time, the receive phase exhibits
both a linear term associated with the Doppler shift and a
quadratic term defined by the acceleration denoted in Equation
3 where f. is the transmit frequency.

z(t,n) = yrwc (t,n) exp (j?ﬂf,;% (vonT + 0.5a(nT)2)) 3)
The DFT serves as a matched filter to the linear Doppler
shift, but smears the quadratic term across Doppler resulting
in reduce SNR. A slow time quadratic phase correction,
in Equation 4, is applied across slow-time to the remove
quadratic component.

) 20
yrwo,Qpc (t,n) =z (t,n)exp (*J27ffcgo-5a(nT - tc)2> “

The following are the six computational processing steps that
the signal processor is required to reduce the SNR loss by
correcting for RW:

1) For pulse n, apply DFT in fast-time to convert from time to
frequency domain.
2) Apply linear phased ramp to in frequency domain to correct
for range-walk
3) Apply inverse DFT to convert back to time domain
4) Apply steps 1-3 to all pulses comprising a CPI
5) Having applied RWC to all of the pulses, apply a slow-time
quadratic phase correction across the N pulses comprising the
CPL
6) Finally, perform Doppler processing across the slow time via
a DFT
The six processing steps, involving multiple iterations, re-
quire a significant number of computations that will lengthen
the overall Signal Processor’s latency and affect the radar’s
required scheduling and tracking timeline. Traditional radar
architectures will not support the iterative EM-Based algo-
rithm. To benefit from the EM-Based algorithm developed for
this research, a control loop real-time steering architecture is
required and discussed in Section V.

C. Detection Clustering

For detection processing in Figure 3 the paper is taking
advantage of Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), an algorithm for density-based clus-
tering. The measurements from the coherent processing step in
the signal processor, a range-Doppler matrix based on the sum
channel, are considered the data points inputs to DBSCAN,
and their data points are assigned to clusters. The cluster with
the maximum number of measurements is assigned to the core
cluster and is the input to the Signal Processor’s parameter
estimation function.

D. Quality Metric

The quality metric threshold step in Figure 3 will identify
when the EM-Based algorithm converges. This threshold is set
to ./ db but in the future research, it will be controlled and
real-time calculated by the processing manager in the steering
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architecture that will be described in section 5. If the SNR
change is greater than ./ db from the previous iteration. Then
the EM-Based algorithm executes another iteration to improve
the ML resulting from reprocessing the 1/Q data to minimize
the RW effect.

IV. EVALUATION

Previous EM’s research approaches for the unobserved
variables may not consistently support the sensor’s near-
real-time timelines [7] and its decision-making ability to
attain convergence [17][15]. However, the evaluation will
demonstrate that the proposed EM-Based algorithm supporting
RW correction meets our objectives to enhance measurement
precision, convergence timeliness, and reduce valuable radar
resources. In the scenario selected to demonstrate the value
of the EM-Base algorithm, the target for measurements 1 to
3, the object is at a constant velocity of 300 m/s and then
performs a 3g maneuver between measurements 3 and 4.
Between measurements 6 to 7, the object performs another
1g maneuver. Finally, for measurement 9, the target ends its
maneuvering, and its trajectory is at the 300 m/s constant
velocity. The ground base radar configuration uses a center
frequency of 10 GHz, and a pulse width of 10 us. Each
coherent processing interval contains 1024 pulses. The rate of
tracking for the target is 1 Hz. Figure 5 demonstrates the EM-
Based algorithm’s ability to compensate for RW is performed
promptly and rapidly adapts to the object trajectory changes.
Each measurement in Figure 5 contains the reduction in SNR,
the number of detections in the core cluster, calculated range,
velocity, and acceleration, and the NCV and NCA IMM filter
probability. Highlighted in the red boxes, there are four unique
events and the associated measurements:

1) Measurement 3, the EM-Based algorithm reduces the SNR loss
by 4.8 dB for the 300 m/s velocity target in 2 iterations.

2) Measurement 4, the algorithm detects that a 3g maneuver is
being performed and a /0.7 dB SNR reduction. Immediately,
the first and/or second EM-Based iteration reduces the SNR
loss by 9.3 dB, detects the probability of the maneuver, and at
measurement 5 calculates a nearly accurate acceleration.

3) Measurement 7, the object performs the second maneuver of
Ig and the SNR loss is 7.9 dB, and the EM-Based algorithm
eliminates the SNR loss in 1 iteration.

4) Measurement 9, the object trajectory has no acceleration
(maneuver is completed), and the algorithm is immediately
impacted with an SNR loss 6.3 dB because it uses the unknown
variables velocity (0) and acceleration (a) previous calculated
in measurement 8. The first iteration of the research algorithm
reduces the SNR loss by 5.7 dB and calculates a realistic
acceleration (@) estimate.

V. AGILE CONCURRENT REAL-TIME SW ARCHITECTURE
FOR EM-BASED ALGORITHM

Traditional pipeline architecture reference in section II
needs to transform into an implementation that needs a robust
C++ Linux software architecture that exhibits control loop
features that provide real-time steering sensor functions and
algorithms adhering to the EM-Based sequences of events.
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Fig. 5: EM-Based algorithm mitigates for entire scenario the SNR
loss for 1) 300 m/s constant velocity, 2) 3g maneuver, 3) 1g maneuver,
and 4) 300 m/s constant velocity

A. Software Architecture for EM-Based Algorithm

Previous steering research, mainly for the Department of
Energy (DOE), has identified that vectors and actuators are
vital functions controlled by an analyst-in-the-loop for adapt-
ing the high-performance scientific application. The next phase
of this research is to automate the application steering Figure
6 by building upon the previous research concepts for steering
applications in section II-A3.

Vector = A set of features, reguired information to support
functional, algorithms, and resource steering

Actuator = Data and processing flow management, tuning and
adaptation

EM-Based Processing

Observations Control
Computational Computational
- Range \ 7+ Rangs ]
- Radial Velocity \ £~ /. Radial Velacity
* Acceleration \@C‘z‘ ~ = § * Acceleration
-+ SNR \ (=78 Program
Program - Cores
- Cores Assignments
Utilization sans - Data Buffers

+ Data Buffers
Queue Size

* Latency per
component

Fig. 6: Closed-Loop Computational and Program Steering

B. Performance Requirements

For the ground-based radar utilized for the evaluation in
section IV the performance required for this sensor configu-
ration is the following budgets for each EM-Based algorithm
iterative sequence:

1) M-Step: SP create initial measurement (range, az, el) - 55 ms

2) E-Step: Filter creates track state estimate - 1 ms

3) M-Step: SP reprocess data increase SNR - 35 ms

4) E-Step: Filter creates accurate track state - 1 ms

5) M-Step: SP reprocess data increase SNR - 35 ms

6) EM algorithm converges

7) SP calls the Tracker update object state - 2 ms

8) Processing manager schedule next CPI - 1 ms

C. Need for Agile Concurrent SW Architecture

Processing Manager based on rules and situational aware-
ness [12] one second frames subdivided into ten 100 ms CPI.
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Each CPI has 1024 pulses, and Pulse Repetition Interval (PRI)
is 100 us. For 1 object, EM-Based algorithm has no problem
completing its E-steps and M-steps in 127 ms, adhering to the
1 Hz track rate. If attempting to track 10 targets, one per CPI,
only 7 out of 10 can be processed in the 1 Hz track rate and
scheduling frame. Figure 7 assign multiple Signal Processors
and Trackers using Program Steering of computing resources
and Computational Steering of E-Step and M-Step processing.
Steering of the application is required to take advantage of the
EM-Based implementation and object tracking benefits.

Exploits parallelism for sensor data processing
with multiple Signal Processors & Trackers

Signal ; Processing
Processing . Eilter . Tracker D Manager DNC’“I'I Use

coryasurers Pl Buiers

| |
Sensor Tracks E

signal Processing &
Filtering object 1

Frame
1sec

Frame N+1

Steering Enabler for Robust Hypersonic Architecture

* Computational Steering
* E-Step and M-Step

Signal Processing & algorithms

Filtering object 2

* Program Steering
= Allocating resources, 1/Q.
buffers, and component
connectivity

Processing
Manager

* Scheduling

Frame N+1 Frame N + 2

Fig. 7: Benefit the EM-Based Algorithm needs an agile concurrent
software architecture

D. Concurrent Computational Processing Framework

EM-Base research-generated algorithm is currently being
prototyped to an architecture documented in this section
that must adhere to define latency and timeline performance
requirements and transition from a pipeline to a real-time
steered control loop architecture. Steering architecture design
needs an event-driven approach. The Actor Model provides a
high-level abstraction for concurrent applications to support
parallel processing for the Worker thread (Parent) and Sub-
thread (child) levels.

Accelerators (GPUs) will be investigated for the signal
processing of the sensor data for coherent and detection
processing. This can significantly benefit the Signal Processor
latency and the reprocessing of the I/Q data required for the
EM-Based algorithm.

VI. CONCLUSION

Introduced an EM-Based approach for addressing RW over
a CPI to improve the measurement quality of a sensor used
to track moving objects. Motion during a processing interval
negatively impacts track performance for many applications,
including air defense, autonomous vehicles, cell phones, im-
age processing, sonar, etc. This work will compensate for a
target’s motion resulting in higher SNR and improved radar
measurement precision in range and angle. The current phase
of this research is the implementation of a control loop steering
architecture that adapts the processing management, signal
processing, and tracking functions with the incorporation of
the iterative EM-Based algorithm research.
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