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Abstract — Real-time spike sorting and processing are 
crucial for closed-loop brain-machine interfaces and neural 
prosthetics. Recent developments in high-density multi-
electrode arrays with hundreds of electrodes have enabled 
simultaneous recordings of spikes from a large number of 
neurons. However, the high channel count imposes 
stringent demands on real-time spike sorting hardware 
regarding data transmission bandwidth and computation 
complexity. Thus, it is necessary to develop a specialized 
real-time hardware that can sort neural spikes on the fly 
with high throughputs while consuming minimal power. 
Here, we present a real-time, low latency spike sorting 
processor that utilizes high-density CuOx resistive 
crossbars to implement in-memory spike sorting in a 
massively parallel manner. We developed a fabrication 
process which is compatible with CMOS BEOL integration. 
We extensively characterized switching characteristics and 
statistical variations of the CuOx memory devices. In order 
to implement spike sorting with crossbar arrays, we 
developed a template matching-based spike sorting 
algorithm that can be directly mapped onto RRAM 
crossbars. By using synthetic and in vivo recordings of 
extracellular spikes, we experimentally demonstrated 
energy efficient spike sorting with high accuracy. Our 
neuromorphic interface offers substantial improvements in 
area (~1000× less area), power (~200× less power), and 
latency (4.8μs latency for sorting 100 channels) for real-
time spike sorting compared to other hardware 
implementations based on FPGAs and microcontrollers.  

Index Terms—RRAM, Memory, Non-volatile memory, 
Crossbar, Copper Oxide, Real-time, Spike Sorting, High 
Throughput, Template Matching. 

I. Introduction 
xtracellular recordings of neuronal spikes using 

microelectrode arrays have been widely used in studying 

neural circuits involved in sensory [1], motor [2], and 

navigation [3] functions in the brain [4]. The recorded signals 

are a mix of activities from multiple neurons and a crucial 

processing step, called spike sorting, is required to separate the 

firing activities and assign the recorded spikes to individual 

neurons from the recordings. Spike sorting is an indispensable 

tool in neuroscience for studying neural circuits [5], 

connectivity, causality and decoding brain activities [6, 7]. It is 
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also fundamental in decoding intentions from neural activity in 

brain-machine interfaces (BMIs) [8] and neural prosthetics [9]. 

Conventionally, spike sorting is performed offline by 

transmitting raw digitized signals recorded by neural electrodes 

to a nearby computer.  However, the off-line processing 

approach becomes impractical for sorting neural recordings 

generated from advanced high-density microelectrode arrays 

(HDMEAs) that comprise hundreds or thousands of recording 

sites in a single probe, such as recently developed Neuropixels 

probe [10]. Transmitting vast amounts of neural recording data 

from HDMEAs to an off-line spike sorter leads to excessive 

power dissipation which poses a serious risk of damage for the 

surrounding tissues [11]. For example, a 100-channel 

microelectrode array with a 16-bit ADC operating at 30kHz 

sampling frequency generates 3MSamples/s and dissipates 

mW-level power to nearby tissues. More importantly, to enable 

the closed-loop BMIs for prosthetics with multiple degrees of 

freedom, hundreds of neurons distributed in multiple cortical 

areas need to be monitored in real-time with minimal delay 

[12]. An 8-hour recording experiment using a 100-channel 

microelectrode array would accumulate ~200GB of data [13], 

demanding at least a few hours to sort the recorded spikes off-

line [14]. The high latency associated with spike sorting 

becomes a limiting factor for closed-loop applications requiring 

rapid feedback. These drawbacks highlight the need for 

developing compact, low-power and high throughput hardware 

that can be integrated with high density implantable 

microelectrode arrays to perform on-chip spike sorting in real-

time. 

Although there have been sustained efforts to develop real-

time spike sorting in FPGAs, most implementations are 

inefficient in terms of area and power consumption. Want et al., 

demonstrated a single channel real-time spike sorting while 

using >90% FPGA resources [15]. Laszlo et al. implemented 

the “Osort” algorithm in FPGA for sorting 128 recording 

channels, using hundreds of block RAM and DSP units. 

However, this approach does not scale well with channel count 

[16]. On the other hand, resistive switching random access 

memory (RRAM) has been considered as a promising next-

generation memory technology due to its low switching energy, 
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non-volatility, high switching speed and small footprint [17]. 

In-memory computing based on RRAM arrays has been widely 

used in accelerating data intensive applications such as neural 

network inferences, computer vision, and compressed sensing 

[18]. A crossbar array consisting of thousands of RRAM 

devices offers large non-volatile memory storage and facilitates 

massive parallelization of matrix-vector multiplications. These 

advantages make RRAM crossbars uniquely poised to 

implement a large number of dot-products in real-time with 

high energy-efficiencies. However, to the best of our 

knowledge, no studies have yet shown RRAM-based brain 

interfaces for real-time spike sorting. 

In this paper, we designed a compact, energy-efficient, and 

high throughput neuromorphic brain interface based on CuOx 

crossbar arrays that can perform spike sorting for extracellular 

neural recordings. On the hardware front, we developed a low-

temperature fabrication process that is compatible with BEOL 

CMOS integration to fabricate high-density CuOx crossbars. 

We developed a template matching-based spike sorting 

algorithm that is a hardware-friendly and scalable for mapping 

onto crossbars. In our neuromorphic brain interface, low 

amplitude neural signals (few µVs) from an implanted neural 

probe were amplified and digitized using an Intan amplifier. 

The neural templates were encoded into device conductances 

and stored in columns of CuOx crossbars (Fig. 1). Template 

matching was achieved by feeding neural signals to the 

wordlines (WLs) and using the crossbar architecture to compute 

their dot products with corresponding neural templates in each 

column. The sorting results were obtained parallelly by 

processing the weighted sum currents in the bitlines (BLs). We 

experimentally demonstrated the ability of our CuOx crossbar 

arrays to sort simulated synthetic spikes as well as extracellular 

recordings from in vivo animal experiments with high accuracy 

i.e. close to ideal software implementation. Based on 

experimental results, we also performed a system-level 

simulation and estimated that our approach can sort 100-

channel recordings within 4.8µs with ~1000× reduction in chip 

area, ~200× reduction in power, and ~50× less energy per 

channel compared to the state-of-the-art FPGA and 

microcontroller implementations. 

 

 
Fig.1 Proposed neuromorphic brain interface based on CuOx 
crossbar array for spike sorting. Neural signals recorded by the 
multichannel neural probe are amplified and digitized using an 
Intan amplifier and ADC respectively. CuOx crossbar array 
performs spike sorting in real-time. That can be used as real-
time feedback for a closed-loop neural interface. 
 

 The rest of this paper is organized as follows. Section II 

presents device characterization results for CuOx devices, 

including DC switching, transient pulse responses, cycle-to-

cycle, and device-to-device variations and retention.  Section 

III describes the template matching algorithm and two datasets 

used in the hardware demonstration. Section IV explains how 

the algorithm is mapped to the hardware and the spike sorting 

in the crossbar. Section V discusses the system-level 

benchmarking results of our approach in comparison to other 

hardware implementations. Section VI summarizes this paper. 

 

II. CUOX RESISTIVE CROSSBARS  
We developed a wafer-scale process for fabricating 1616 

crossbar arrays of Au/CuOx/Au resistive switching devices 

(Fig.2a). The SEM image of the crossbar array and the cross-

section schematic are shown in Fig.2b and d. The fabrication 

flow is illustrated in Fig.2c. First, Au with Cr adhesion layer 

(100 nm) is sputtered and patterned via photolithography and 

lift-off for bottom electrodes (or WLs) with 1µm linewidth and 

a 2um pitch. Then, 70 nm of CuOx switching layer is deposited 

and patterned with reactive sputtering of Cu and Ar/O2 (95 %/5 

%) gas. After that, top electrodes are deposited and patterned 

following the same fabrication steps as the bottom electrodes. 

Lastly, 300 nm of SiO2 layer is deposited and patterned to 

passivate the device active region to ensure long-term stability. 

Since all the processes for the CuOx crossbars are low-

temperature process, it can be built directly on the BEOL of 

CMOS circuits. 

 

 
Fig.2 (a) Image of a wafer including fabricated 16×16 CuOx 
crossbar arrays and single devices for testing. (b) SEM images 
of 16×16 crossbar with 4μm2 cross point. Scale bar: 10µm. (c) 
Fabrication process for CuOx -based single devices and 16×16 
crossbar. (d) Device cross-section (callout window) highlighting 
the 70nm CuOx resistive switching layer sandwiched between 
100nm Au electrodes. A 300nm SiO2 passivation layer is 
deposited on top of the stack.  

 
After fabricating Au/CuOx/Au resistive switching devices, 

we extensively characterized them (Fig.3 and Fig.4). The 

Au/CuOx/Au devices displayed consistent bipolar switching in 
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response to 30 DC voltage sweeps (Fig. 3a). They could be set 

to a low resistance state of ~100Ω at VSET = ~1.5V whereas 

applying VRESET = ~-0.7V increased device resistances to as 

high as ~1GΩ with low cycle-to-cycle variations (Fig.3b). The 

high ON/OFF ratio (~ 107) of the device resistances (Fig. 3c) 

provides a sufficiently large window for implementing the 

neuromorphic brain interface. Furthermore, the relatively low 

SET and RESET voltages (Fig. 3b) is desirable for future 

integration with peripheral CMOS circuitry.  

 

 
Fig.3 (a) DC switching characteristics of single devices for 30 
cycles. (b) Cumulative distribution function (CDF) of SET (1V to 
2.5V) and RESET (-1V to -0.2V) voltages. (c) CDF of high 
resistance state (100MΩ to 100GΩ) and low resistance state 
(100Ω - 1kΩ) resistances. 
 

Low device-to-device variations are important to ensure 

accurate mapping templates to the crossbar. To quantify this, 

we randomly selected 120 Au/CuOx/Au devices from different 

regions of the wafer. Cumulative distribution (CDF) of 

switching voltage and resistance is shown in Fig.4a and b 

respectively. The measured SET and RESET latencies are 

presented in [19]. The RESET transition (~80s) was 

significantly faster than the SET process, highlighting the scope 

for further device optimization. Non-volatility of low resistance 

state (LRS) and high resistance state (HRS) was characterized 

by reading the device (Vread = 0.1V) at regular time intervals 

immediately after a successful SET or RESET process. The 

Au/CuOx/Au devices could retain their LRS and HRS for more 

than >10000 seconds, indicating these devices can faithfully 

store the neuron templates needed for real-time spike sorting 

and periodic refresh operations could be utilized if experiments 

taking longer than this time period (Fig. 4c).  
 

 
Fig.4 CDF of the (a) switching voltages and (b) HRS/LRS 
resistances measured across 120 devices randomly selected on 

the wafer. c) Retention characteristics. Device resistance was 
monitored intermittently using 0.1V read pulses.  

III. TEMPLATE MATCHING ALGORITHM 

A. Algorithm Overview 
Spike sorting is a challenging clustering problem and many 

algorithms have been developed over the past years such as 
principal component analysis [20], template matching [21], 
Bayesian statistical frameworks [22], and hidden Markov 
models [23]. Among these, template matching is the most 
efficient approach to sort neural spikes [24]. It assumes a pre-
existing database of neuron templates; the goal is to assign the 
best-fit templates to the detected spike waveform, hence 
clustering the spikes to specific neuron units. Motivated by this, 
we developed a template matching algorithm that can be 
directly mapped to the crossbars to achieve real-time spike 
sorting. 

 

 
Fig.5 (a) Normalized templates of N1 and N2. (b) Neural 
recordings of three channels. (c) Computing the overall 
activation of neuron n neural recordings i.e., voltage traces with 
normalized templates N1 and N2. Summing the convolution 
traces (Cn,m(t)) corresponding to each neuron. d) Thresholding 
and assigning spikes to neurons N1 or N2 based on whether 
C1(t) > C2(t) (assign to N1) or C1(t) < C2(t) (assign to N2). 

 
Figure.5 outlines the algorithm (Step1-Step4) by showing a 

simplified example for classifying two neurons (n=2) from 
three-channel recordings (m=3). The same methodology can be 
used to classify a larger number of neurons recorded across 
hundreds of channels. Each neuron had a template matrix Tn = 
[Tn,1, Tn,2, …, Tn,m], where column Ti,j  represented the template 
for neuron i corresponding to channel j (Fig.5a). The Ti,j  is a 
vector with S samples with S = fs × k, where fs is the sampling 
frequency and k is the user-define window that determines the 
duration of templates. In this example, fs = 30kHz and k = 3ms. 
Tn is built by horizontally concatenating these templates across 
m electrodes (m=3). The template matrix Tn was normalized by 
its Frobenius Norm (𝑇𝑛/‖𝑇𝑛‖𝐹) to maintain the amplitude of 
the spikes in the same range (Fig.5a). Similarly, we defined the 
neural signal V(t) = [V1(t), V2(t)…, Vm(t)], where Vj(t) is the 
recorded signal from channel j. Fig.5b shows an example of 
recording in three channels at 30kHz. To perform the template 
matching, we first computed the waveform similarity Cn,m(t), 
which is the convolution between signals from channel m and 
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the template of neuron n on channel m measured at time t. The 
convolution can be expressed as Cn,m(t)=Vm(t)∗Tn,m, which is 
simply a sliding dot product between the signal and template. 
Then, the resulting waveform similarities from all m channels 
were summed up for each neuron (Fig.5c) to give Cn(t) = 
∑ 𝐶𝑛,𝑚(𝑡)𝑚

1 , the overall activation of neuron n at time t. In the 
final step (Fig.5d), we applied a threshold, which is ~3 standard 
deviation of the Cn(t) to identify the spike times. After that, we 
assigned the spikes to the neuron having the largest Cn(t).  Note 
that these templates are typically obtained offline through a 
semi-automatic algorithm with human curation to ensure 
accuracy. The details of mapping templates to the hardware are 
discussed in Section IV.  

 

B. Datasets 
We implemented the aforementioned template matching 

algorithm on two neural recordings: (1) a synthetic 
“NeuroNexus-32” data [25] and (2) “real” spikes from in vivo 
animal experiments recorded with the NeuroFITM probe [6] for 
validating our spiking sorting hardware with different neural 
electrode technologies. In the “NeuroNexus-32” dataset, the 
extracellular spiking activities with ground truth were generated 
using MEArec [25]. MEArec generated data in two phases. In 
the template generation phase, biophysically realistic neuron 
models were positioned at different locations of the 
NeuroNexus-32 probe model to produce extracellular potentials 
to form a template library. In the recording generation phase, it 
convolved the templates selected from the library with 
randomly generated spike trains. Additive Gaussian noise was 
added to the convolution results to obtain the final recording 
data. Typically, a channel can record activities of 2-3 neurons 
nearby. Our synthetic dataset contains extracellular recordings 
of twelve neurons from 32 channels  sampled at 30kHz [19]. 
The “real” dataset contains 1 hour recordings sampled at 32kHz 
from an in-vivo animal experiment recorded with the 32-
channel NeuroFITM probe (Fig.6a) [6], where spike sorting 
results from offline Kilosort algorithm [14] was considered as 
the ground truth. Figure 6b and c show representative neuron 
templates and the recordings in Ch4. Top of Fig.6c shows the 
predicted spike train as square symbols and the clustered neuron 
spike waveforms are presented in Fig.6d. As can be seen, for 
each neuron, the shape of the clustered spike waveforms closely 
matched their respective templates. A similar waveform 
example of NeuroNeuxus-32 and the complete template 
libraries of both probes can be found in our previous work [19]. 

     

 
Fig.6 (a) Image of a 32-channel NeuroFITM probe with four 
representative channels highlighted as red. (b) Representative 
templates for the two neurons in Ch4. (c) Example 500ms-
recordings from Ch4 with predicted spike train marked in colored 
squares. (d) Clustered spikes for N1 and N2 for Ch4. 

 

C. Sorting Performance 
The sorting outcome of our algorithm is determined against 

the ground truth spikes by comparing the spike time. To 
quantify the sorting performance, we employed the commonly-
used F1 score (in %) given by 2TP/ (2TP+FP+FN), where TP, 
FP, and FN denote the true positive, false positive, and false-
negative outcomes. A TP is defined as a spike that has been 
classified correctly by the algorithm. An FP is defined as a spike 
that is classified as spiking activity but does not exist in ground 
truth data. An FN is defined as a spike that exists in the ground 
truth data but is not detected by our algorithm. The spike 
predictions from our algorithm agree with the ground truth well. 
Eleven out of twelve neurons in the NeuroNexus-32 dataset 
have F1 score > 90% (Fig.7a), whereas all the two neurons in 
the NeuroFITM “real” dataset have F1 score > 85% (Fig.7b). 
The F1 score of the “real” dataset is slightly less than the 
synthetic dataset due to higher noise and probe drifting [26] 
during the recording, making the classification more difficult. 
To map the templates to the hardware, we investigated how 
quantization impacts the F1 score. The template was quantized 
to 2N discrete levels between the min and max amplitude range 
of the normalized template library. After quantization, we 
followed the same sorting pipeline to obtain the F1 score. 
Figure.7c shows that the performance could be retained if the 
templates are quantized to at least 4-bit resolution for 
NeuroNeuxus-32 dataset, which is also applied for NeuroFITM 
dataset.    
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Fig.7 F1 scores (%) for (a) NeuroNexus-32 and (b) NeuroFITM 
dataset. (c) F1 score (%) as a function of template precision for 
12 neurons in NeuroNexus-32 dataset. 4-bit quantized 
templates are used in hardware experiments.  

 
IV. HARDWARE IMPLEMENTATION OF SPIKE SORTING  

A.  Hardware Mapping 
To process hundreds of spikes per second, it would be 

necessary to adopt a multi-core architecture (Fig.8a) where 
each core consists of a crossbar that stores the templates for a 
specific set of neurons (Fig.8b). Figure 8c illustrates how a set 
of templates could be mapped on to a crossbar core.  
 

  
Fig.8 (a) Real-time spike sorting processor with multiple 
crossbar cores. (b) Representative templates of two neurons 
with three channels. (c) Crossbar spike sorting: each crossbar 
column stores a neuron template. 8-bit digitized neural signals 
are provided as voltage inputs and weighted-sum currents from 
convolutions are obtained on the BLs. Neuron-wise aggregation 
of channel currents determines the sorting result.  
 

In the illustration, we assume that three channels (m=3) 
record spike activities of two neurons (n=2), resulting in a total 
of 6 templates. The templates from the same channel are 
mapped to the adjacent columns in the crossbar. The devices in 
the crossbar can store the templates using multi-level for analog 
implementation or binary (HRS or LRS) conductance states for 
digital implementation [27]. A column of devices with 16 (4-
bit) multi-level can be used to map a template directly as shown 

in this example (i.e. templates of N1-Ch1 and N2-Ch2 are 
mapped to the first two columns of the crossbar respectively). 
Similarly, templates from other channels are mapped to the rest 
of the columns to achieve the maximum usage of the array 
(Fig.8c). If binary conductance state is used, four columns are 
required to map a template from MSB to LSB. Although device 
with multi-level states can achieve maximum area efficiency, it 
has been shown that these multi-level states may exhibit high 
device to device variations, non-linearity and resistance drift 
due to unstable filament formation [18]. In contrast, digital 
implementation is more robust against of variations [28], which 
makes it a better approach to realize high sorting accuracy for 
template matching task. In addition to conductance states, 
differential pair scheme is commonly used to represent both 
negative and positive values of the templates [29].  

After all templates are mapped on a core, the voltage spike 
inputs on WLs (VWLi) are convolved with the templates stored 
as cross point conductances (Gij). The columns of the crossbar 
can perform template matching (BL currents IBLj=∑GijVWLi) in 
parallel. Since a set of templates from each channel need to 
convolve with neural signals from the corresponding channel, 
recordings from Ch1-Ch3 are processed in a time-multiplexed 
manner, the matching results (IBLn,j) for each channel are 
collected from the corresponding BLs in parallel (n: neuron; j: 
channel number). The final classification result is obtained by 
adding the BL currents for each neuron i.e.,  I𝑛 = ∑ 𝐼𝐵𝐿𝑛,𝑗

𝑚
1  

from all m channels and then assigning the spike to the neuron 
with the maximum In. For the sake of illustration, we show all 
templates mapped to a single crossbar. For practical 
applications involving large channel counts, a multicore 
architecture can be adopted, where each core is dedicated to a 
channel and stores all templates belonging to the assigned 
channel. As a result, all channels can be processed at the same 
time to achieve higher parallelism. 

 

B.  Hardware Demonstration 
A custom PCB board was used to access the WLs and BLs 

of the wire-bonded CuOx crossbar (Fig. 9a and b). Before 
mapping the templates, array read was performed to confirm the 
initial states of the crossbar. To read a single device, the 
selected WL was biased to Vread = 0.25V while all other lines 
were grounded. The as-fabricated devices had initial resistances 
greater than 500kΩ (Fig.9c). As explained in Subsection A. 
Hardware Mapping, digital implementation is adopted in our 
demonstration. Neuron templates were quantized, binarized, 
and mapped onto crossbar columns using differential pair 
scheme. To program the devices to different states, we used 
Vdd/2 write scheme, where the selected WL and BL were biased 
to Vdd/2 and −Vdd/2, and all other unselected lines were 
grounded to prevent sneak paths (SET: Vdd = 4V and RESET: 
Vdd = 3V).  
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Fig.9 (a) Custom PCB board to access individual WLs and BLs 
of the CuOx crossbar for the write and read operations. BLs can 
be accessed through the connectors shown in the lower left 
while WLs can be accessed through the connectors in the top 
right. (b)16×16 crossbar wire-bonded onto a PGA package. (c) 
Initial resistance map of a 16×16 CuOx crossbar. (d) Four 
representative binarized (black=0 and white=1) filters (F1-F4) 
from NeuroFITM. (e) Programmed crossbar columns 
implementing these filters.  (f) Isum measured at VWLs=0.25V for 
four filters. 

 
Figure.9d-f shows four representative templates (F1-F4) of 

Neuro-FITM implemented in the crossbar. The templates were 
quantized to 4-bit and then binarized to two levels (“0”-black 
or “1”-white) off-line (Fig.9d). “0” is mapped to HRS and “1” 
is mapped to LRS of the device respectively (Fig.9e). Since the 
crossbar was initially off, only “1” needs to be programmed 
accordingly. The patterns of the hardware templates match well 
with software templates, indicating precise write operation. To 
validate the accuracy of crossbar convolutions, we biased all 
WLs to high (VWLs=0.25V) and measured the BL currents. As 
shown in Fig.9f, the weighted-sum BL currents (Isum) increased 
proportionately with the number of LRS devices in the 
columns. Templates from NeuroNexus-32 dataset are mapped 
in the same way [19]. 

Using the programmed templates, we performed spike 
sorting on NeuroNexus-32 and NeuroFITM recordings. Neural 
data encoded as 8-bit voltage pulse trains were fed into the WLs 
and Isum were measured on the BLs. Figure.10a and 
Figure.11a show the NeuroNexus-32 and NeuroFITM 
recordings and the hardware spike sorting results implemented 
to sort representative three neurons (N1-N3) from the 
NeuroNexus-32 data and two neurons (N1,N2) from the 
NeuroFITM data. The neural voltage traces from the recording 
channels (Ch1-3 in NeuroNexus-32 and Ch1-4 in NeuroFITM) 
are shown at the bottom. Hardware convolution trace generated 
by CuOx crossbar represents final current   I𝑛 = ∑ 𝐼𝐵𝐿𝑛,𝑗

𝑚
1   by 

adding weighted sum currents measured in each IBLn,j for “m” 

channels and “n” neurons (NeuroNexus-32: m = 3, n =3; 
NeuroFITM: m = 4, n = 2). The raster plots on the top of Fig. 
10a and Fig.11a show the spike train predicted in hardware 
compared with the ground truth spikes for Neuronexus-32 and 
NeuroFITM dataset, respectively. 

 

  
Fig.10 (a) NeuroNexus-32: Ch1,2,3 are used to classify neurons 
N1, N2, N3. A segment of recordings from Ch1 to Ch3 and 
predicted hardware (HW) convolution (Conv) traces for three 
neurons. (b) Representative spike sorting results for N1-N3 
showing convolution implemented in HW agrees with the 
software (SW) implementation.  
 

Figure10b and Fig.11b show the callouts for the spikes 
highlighted in rectangular boxes (Fig.10a and Fig.11a). Inside 
the boxes, the snippet spike waveform of each neuron is shown 
in the left. Channels are coded in different colors that match 
with the signal traces above. The template matching results in 
software and hardware are shown as convolution traces in the 
middle (SW) and right (HW) respectively. Different colors 
represent N1-N3 of NeuroNexus-32 and N1-N2 of NeuroFITM. 
The software convolution traces are shown as arbitrary units 
while hardware traces are shown as measured weighted sum 
currents. For each spike, the neuron with the highest peak in the 
convolution trace was assigned to the spike. The shapes of 
convolution traces produced by the CuOx crossbars matched 
closely with software, thereby confirming our hardware can 
reliably sort neural spikes. Note that the off-peak regions of the 
hardware convolution traces are slightly noisy compared with 
software mainly due to variations in the programmed device 
conductances across crossbar columns. This issue can be 
alleviated by adopting a more robust “program and verify” 
scheme in storing the templates in the crossbar  [30].  
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Fig.11 (a) NeuroFITM: Ch1,2,3,4 are used to classify neurons 
N1, N2. Segments of recordings from Ch1 to Ch4 and predicted 
HW conv traces. (b) Representative spike sorting results for N1, 
N2 implemented in HW agrees with the SW implementation. 
 

B.  System-level Performance Benchmarking 
Based on the hardware spike sorting results obtained over a 

100ms time window (Fig.10 and Fig.11), we evaluated F1 
scores on the entire 30s-wide recordings in both neural data and 
compared them with software predictions. The hardware F1 
scores were calculated by performing template matching 
between neural signals with hardware templates that contain 
measured device resistances. To evaluate sorting performance 
across multiple neurons, we averaged F1 score based on neuron 
number. Table I shows neurons could be sorted with high mean 
accuracy (~92.5% for NeuroNexus-32, ~94.6% for 
NeuroFITM).  
 

 
Table I. F1 score for software and hardware implementations. 

 
To project the sorting performance of multi-core architecture 

(Fig.8a) with our crossbar-based spike sorting hardware, we 
performed a system-level benchmarking to estimate area, 
power, and latency and compared it with the state-of-the-art 
FPGA and microcontroller implementations. All 
implementations included in Table II use in-vivo experimental 
datasets and template matching based approach for a fair 
comparison. Our work and microcontroller implementation 
[31] demonstrated sorting for 32-channel probe while FPGA 
[15] implemented sorting for a single channel. The area per 

channel was estimated by the number of columns used in 
mapping a neuron template of a channel (i.e. ~8 columns are 
used for a channel template and it occupies 40 µm × 20 µm = 
810-4 mm2). Power per channel was calculated by averaging 
power consumption 𝑃𝑎𝑣𝑔 =  ∑ 𝐼𝑠𝑢𝑚  × 𝑉𝑟𝑒𝑎𝑑

𝑁
1  across a 

representative spike waveform snippet during template 
matching. Here, N is number of samples in the spike waveform 
(N=30), Isum is the weighted sum current for processing a 
sample measured crossbar.  

 

 
Table II. Benchmarking our results against previous works [15, 
31] in terms of hardware type, recording data used in the 
studies, channel count, area/channel, power/channel, sorting 
latency, and energy/channel. The accuracy obtained 
onNeuroNexus-32 and NeuroFITM data from software (SW) and 
hardware (HW) experiments. 

 
Overall, our crossbar-based spike sorting hardware promises  

~1000× smaller (area/channel) [15] and ~200× reduction in 
power consumption [31]  compared to state-of-the-art spike 
sorting hardware implementations that rely on FPGAs (Table 
II). To better understand the sorting latency in the multicore 
architecture, we assume one crossbar core can have size up to 
256×256 and 10ns read latency. Unlike previous works that rely 
on sequential processing, each crossbar core in the multi-core 
architecture can process multiple recording channels in a highly 
parallelized manner. We estimated twelve CuOx crossbar 
(256×256) cores can sort 100 channel recordings within 4.8µs 
using the same mapping scheme of our hardware 
demonstration. As a result, it consumes ~30-50× less energy 
(energy = power × latency) [15, 31]. These performance gains 
make real-time spike sorting possible using our crossbars for 
high throughput BMI applications.  

V.  CONCLUSION 
We presented a high throughput neuromorphic brain 

interface for real-time spike sorting based on resistive crossbar 
arrays. We fabricated CuOx crossbars using a simple low-
temperature process enabling easy 3D BEOL integration with 
underlying CMOS circuits. In order to realize real time spike 
sorting, we developed a hardware compatible template 
matching algorithm and developed methods for mapping onto 
crossbar arrays. We demonstrated that hardware 
implementation of template matching using CuOx crossbars can 
accurately classify spikes from individual neurons recorded in 
vivo. Our neuromorphic approach offers substantial 
performance gains in area, power, latency, and energy for spike 
sorting hardware designed for processing recordings from 
neural probes with high channel counts. Our work paves the 
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way towards in-memory computing-based real-time spike 
sorting and processing hardware for next-generation closed-
loop brain interfaces. 
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