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Abstract — Real-time spike sorting and processing are
crucial for closed-loop brain-machine interfaces and neural
prosthetics. Recent developments in high-density multi-
electrode arrays with hundreds of electrodes have enabled
simultaneous recordings of spikes from a large number of
neurons. However, the high channel count imposes
stringent demands on real-time spike sorting hardware
regarding data transmission bandwidth and computation
complexity. Thus, it is necessary to develop a specialized
real-time hardware that can sort neural spikes on the fly
with high throughputs while consuming minimal power.
Here, we present a real-time, low latency spike sorting
processor that utilizes high-density CuOx resistive
crossbars to implement in-memory spike sorting in a
massively parallel manner. We developed a fabrication
process which is compatible with CMOS BEOL integration.
We extensively characterized switching characteristics and
statistical variations of the CuOx memory devices. In order
to implement spike sorting with crossbar arrays, we
developed a template matching-based spike sorting
algorithm that can be directly mapped onto RRAM
crossbars. By using synthetic and in vivo recordings of
extracellular spikes, we experimentally demonstrated
energy efficient spike sorting with high accuracy. Our
neuromorphic interface offers substantial improvements in
area (~1000x less area), power (~200x less power), and
latency (4.8us latency for sorting 100 channels) for real-
time spike sorting compared to other hardware
implementations based on FPGAs and microcontrollers.

Index Terms—RRAM, Memory, Non-volatile memory,
Crossbar, Copper Oxide, Real-time, Spike Sorting, High
Throughput, Template Matching.

|. Introduction

Extracellular recordings of neuronal spikes using
microelectrode arrays have been widely used in studying
neural circuits involved in sensory [1], motor [2], and
navigation [3] functions in the brain [4]. The recorded signals
are a mix of activities from multiple neurons and a crucial
processing step, called spike sorting, is required to separate the
firing activities and assign the recorded spikes to individual
neurons from the recordings. Spike sorting is an indispensable
tool in neuroscience for studying neural circuits [5],
connectivity, causality and decoding brain activities [6, 7]. It is
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also fundamental in decoding intentions from neural activity in
brain-machine interfaces (BMIs) [8] and neural prosthetics [9].
Conventionally, spike sorting is performed offline by
transmitting raw digitized signals recorded by neural electrodes
to a nearby computer. However, the off-line processing
approach becomes impractical for sorting neural recordings
generated from advanced high-density microelectrode arrays
(HDMEAs) that comprise hundreds or thousands of recording
sites in a single probe, such as recently developed Neuropixels
probe [10]. Transmitting vast amounts of neural recording data
from HDMEAs to an off-line spike sorter leads to excessive
power dissipation which poses a serious risk of damage for the
surrounding tissues [11]. For example, a 100-channel
microelectrode array with a 16-bit ADC operating at 30kHz
sampling frequency generates 3MSamples/s and dissipates
mW-level power to nearby tissues. More importantly, to enable
the closed-loop BMIs for prosthetics with multiple degrees of
freedom, hundreds of neurons distributed in multiple cortical
areas need to be monitored in real-time with minimal delay
[12]. An 8-hour recording experiment using a 100-channel
microelectrode array would accumulate ~200GB of data [13],
demanding at least a few hours to sort the recorded spikes off-
line [14]. The high latency associated with spike sorting
becomes a limiting factor for closed-loop applications requiring
rapid feedback. These drawbacks highlight the need for
developing compact, low-power and high throughput hardware
that can be integrated with high density implantable
microelectrode arrays to perform on-chip spike sorting in real-
time.

Although there have been sustained efforts to develop real-
time spike sorting in FPGAs, most implementations are
inefficient in terms of area and power consumption. Want et al.,
demonstrated a single channel real-time spike sorting while
using >90% FPGA resources [15]. Laszlo et al. implemented
the “Osort” algorithm in FPGA for sorting 128 recording
channels, using hundreds of block RAM and DSP units.
However, this approach does not scale well with channel count
[16]. On the other hand, resistive switching random access
memory (RRAM) has been considered as a promising next-
generation memory technology due to its low switching energy,
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non-volatility, high switching speed and small footprint [17].
In-memory computing based on RRAM arrays has been widely
used in accelerating data intensive applications such as neural
network inferences, computer vision, and compressed sensing
[18]. A crossbar array consisting of thousands of RRAM
devices offers large non-volatile memory storage and facilitates
massive parallelization of matrix-vector multiplications. These
advantages make RRAM crossbars uniquely poised to
implement a large number of dot-products in real-time with
high energy-efficiencies. However, to the best of our
knowledge, no studies have yet shown RRAM-based brain
interfaces for real-time spike sorting.

In this paper, we designed a compact, energy-efficient, and
high throughput neuromorphic brain interface based on CuOx
crossbar arrays that can perform spike sorting for extracellular
neural recordings. On the hardware front, we developed a low-
temperature fabrication process that is compatible with BEOL
CMOS integration to fabricate high-density CuOx crossbars.
We developed a template matching-based spike sorting
algorithm that is a hardware-friendly and scalable for mapping
onto crossbars. In our neuromorphic brain interface, low
amplitude neural signals (few pVs) from an implanted neural
probe were amplified and digitized using an Intan amplifier.
The neural templates were encoded into device conductances
and stored in columns of CuOy crossbars (Fig. 1). Template
matching was achieved by feeding neural signals to the
wordlines (WLs) and using the crossbar architecture to compute
their dot products with corresponding neural templates in each
column. The sorting results were obtained parallelly by
processing the weighted sum currents in the bitlines (BLs). We
experimentally demonstrated the ability of our CuOy crossbar
arrays to sort simulated synthetic spikes as well as extracellular
recordings from in vivo animal experiments with high accuracy
ie. close to ideal software implementation. Based on
experimental results, we also performed a system-level
simulation and estimated that our approach can sort 100-
channel recordings within 4.8us with ~1000x reduction in chip
area, ~200x reduction in power, and ~50% less energy per
channel compared to the state-of-the-art FPGA and
microcontroller implementations.
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Fig.1 Proposed neuromorphic brain interface based on CuOx
crossbar array for spike sorting. Neural signals recorded by the
multichannel neural probe are amplified and digitized using an
Intan amplifier and ADC respectively. CuOx crossbar array
performs spike sorting in real-time. That can be used as real-
time feedback for a closed-loop neural interface.

The rest of this paper is organized as follows. Section II
presents device characterization results for CuOy devices,
including DC switching, transient pulse responses, cycle-to-
cycle, and device-to-device variations and retention. Section
IIT describes the template matching algorithm and two datasets
used in the hardware demonstration. Section IV explains how
the algorithm is mapped to the hardware and the spike sorting
in the crossbar. Section V discusses the system-level
benchmarking results of our approach in comparison to other
hardware implementations. Section VI summarizes this paper.

Il. CuOx RESISTIVE CROSSBARS

We developed a wafer-scale process for fabricating 16x16
crossbar arrays of Au/CuO,/Au resistive switching devices
(Fig.2a). The SEM image of the crossbar array and the cross-
section schematic are shown in Fig.2b and d. The fabrication
flow is illustrated in Fig.2¢. First, Au with Cr adhesion layer
(100 nm) is sputtered and patterned via photolithography and
lift-off for bottom electrodes (or WLs) with 1pum linewidth and
a 2um pitch. Then, 70 nm of CuOy switching layer is deposited
and patterned with reactive sputtering of Cu and Ar/O» (95 %/5
%) gas. After that, top electrodes are deposited and patterned
following the same fabrication steps as the bottom electrodes.
Lastly, 300 nm of SiO; layer is deposited and patterned to
passivate the device active region to ensure long-term stability.
Since all the processes for the CuOx crossbars are low-
temperature process, it can be built directly on the BEOL of
CMOS circuits.

a) 16 r Array

C) Bottom Electrode CuOx Switching Layer / k.4

;g d) SiO. ( 300nm)

Top Electrode

Si0, Passivation Layer

Cu OX(TDnm)
Au

Fig.2 (a) Image of a wafer including fabricated 16x16 CuOx
crossbar arrays and single devices for testing. (b) SEM images
of 16x16 crossbar with 4um? cross point. Scale bar: 10um. (c)
Fabrication process for CuOx -based single devices and 16x16
crossbar. (d) Device cross-section (callout window) highlighting
the 70nm CuOx resistive switching layer sandwiched between
100nm Au electrodes. A 300nm SiO2 passivation layer is
deposited on top of the stack.

After fabricating Au/CuOy/Au resistive switching devices,
we extensively characterized them (Fig.3 and Fig.4). The
Au/CuOy/Au devices displayed consistent bipolar switching in
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response to 30 DC voltage sweeps (Fig. 3a). They could be set
to a low resistance state of ~100Q at Vsgr = ~1.5V whereas
applying Vgeser = ~-0.7V increased device resistances to as
high as ~1GQ with low cycle-to-cycle variations (Fig.3b). The
high ON/OFF ratio (~ 107) of the device resistances (Fig. 3¢)
provides a sufficiently large window for implementing the
neuromorphic brain interface. Furthermore, the relatively low
SET and RESET voltages (Fig. 3b) is desirable for future
integration with peripheral CMOS circuitry.
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Fig.3 (a) DC switching characteristics of single devices for 30
cycles. (b) Cumulative distribution function (CDF) of SET (1V to
2.5V) and RESET (-1V to -0.2V) voltages. (c) CDF of high
resistance state (100MQ to 100GQ) and low resistance state
(100Q - 1kQ) resistances.

Low device-to-device variations are important to ensure
accurate mapping templates to the crossbar. To quantify this,
we randomly selected 120 Au/CuOy/Au devices from different
regions of the wafer. Cumulative distribution (CDF) of
switching voltage and resistance is shown in Fig.4a and b
respectively. The measured SET and RESET latencies are
presented in [19]. The RESET transition (~80us) was
significantly faster than the SET process, highlighting the scope
for further device optimization. Non-volatility of low resistance
state (LRS) and high resistance state (HRS) was characterized
by reading the device (Viecad = 0.1V) at regular time intervals
immediately after a successful SET or RESET process. The
Au/CuO,/Au devices could retain their LRS and HRS for more
than >10000 seconds, indicating these devices can faithfully
store the neuron templates needed for real-time spike sorting
and periodic refresh operations could be utilized if experiments
taking longer than this time period (Fig. 4c¢).
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Fig.4 CDF of the (a) switching voltages and (b) HRS/LRS
resistances measured across 120 devices randomly selected on

the wafer. c) Retention characteristics. Device resistance was
monitored intermittently using 0.1V read pulses.

[ll. TEMPLATE MATCHING ALGORITHM

A. Algorithm Overview

Spike sorting is a challenging clustering problem and many
algorithms have been developed over the past years such as
principal component analysis [20], template matching [21],
Bayesian statistical frameworks [22], and hidden Markov
models [23]. Among these, template matching is the most
efficient approach to sort neural spikes [24]. It assumes a pre-
existing database of neuron templates; the goal is to assign the
best-fit templates to the detected spike waveform, hence
clustering the spikes to specific neuron units. Motivated by this,
we developed a template matching algorithm that can be
directly mapped to the crossbars to achieve real-time spike
sorting.
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Fig.5 (a) Normalized templates of N1 and N2. (b) Neural
recordings of three channels. (c) Computing the overall
activation of neuron n neural recordings i.e., voltage traces with
normalized templates N1 and N2. Summing the convolution
traces (Cnm(t)) corresponding to each neuron. d) Thresholding
and assigning spikes to neurons N1 or N2 based on whether
Ci(t) > Ca(t) (assign to N1) or C+(t) < Cz(t) (assign to N2).

Figure.5 outlines the algorithm (Step1-Step4) by showing a
simplified example for classifying two neurons (n=2) from
three-channel recordings (m=3). The same methodology can be
used to classify a larger number of neurons recorded across
hundreds of channels. Each neuron had a template matrix T, =
[Tai, Top, .-, Tom], where column T represented the template
for neuron i corresponding to channel j (Fig.5a). The T;; is a
vector with S samples with S = f; X k, where f is the sampling
frequency and k is the user-define window that determines the
duration of templates. In this example, f; = 30kHz and k = 3ms.
Th is built by horizontally concatenating these templates across
m electrodes (m=3). The template matrix T, was normalized by
its Frobenius Norm (T;,/||Ty|lr) to maintain the amplitude of
the spikes in the same range (Fig.5a). Similarly, we defined the
neural signal V(t) = [Vi(t), Va(t)..., Vm(t)], where Vi(t) is the
recorded signal from channel j. Fig.Sb shows an example of
recording in three channels at 30kHz. To perform the template
matching, we first computed the waveform similarity Cym(t),
which is the convolution between signals from channel m and
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the template of neuron n on channel m measured at time t. The
convolution can be expressed as Cym(t)=Vm(t)*Tnm, Which is
simply a sliding dot product between the signal and template.
Then, the resulting waveform similarities from all m channels
were summed up for each neuron (Fig.5c¢) to give Cu(t) =
21 Cpm (1), the overall activation of neuron n at time t. In the
final step (Fig.5d), we applied a threshold, which is ~3 standard
deviation of the Cy(t) to identify the spike times. After that, we
assigned the spikes to the neuron having the largest C,(t). Note
that these templates are typically obtained offline through a
semi-automatic algorithm with human curation to ensure
accuracy. The details of mapping templates to the hardware are
discussed in Section I'V.

B. Datasets

We implemented the aforementioned template matching
algorithm on two neural recordings: (1) a synthetic
“NeuroNexus-32” data [25] and (2) “real” spikes from in vivo
animal experiments recorded with the NeuroFITM probe [6] for
validating our spiking sorting hardware with different neural
electrode technologies. In the “NeuroNexus-32” dataset, the
extracellular spiking activities with ground truth were generated
using MEArec [25]. MEArec generated data in two phases. In
the template generation phase, biophysically realistic neuron
models were positioned at different locations of the
NeuroNexus-32 probe model to produce extracellular potentials
to form a template library. In the recording generation phase, it
convolved the templates selected from the library with
randomly generated spike trains. Additive Gaussian noise was
added to the convolution results to obtain the final recording
data. Typically, a channel can record activities of 2-3 neurons
nearby. Our synthetic dataset contains extracellular recordings
of twelve neurons from 32 channels sampled at 30kHz [19].
The “real” dataset contains 1 hour recordings sampled at 32kHz
from an in-vivo animal experiment recorded with the 32-
channel NeuroFITM probe (Fig.6a) [6], where spike sorting
results from offline Kilosort algorithm [14] was considered as
the ground truth. Figure 6b and ¢ show representative neuron
templates and the recordings in Ch4. Top of Fig.6¢c shows the
predicted spike train as square symbols and the clustered neuron
spike waveforms are presented in Fig.6d. As can be seen, for
each neuron, the shape of the clustered spike waveforms closely
matched their respective templates. A similar waveform
example of NeuroNeuxus-32 and the complete template
libraries of both probes can be found in our previous work [19].
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Fig.6 (a) Image of a 32-channel NeuroFITM probe with four
representative channels highlighted as red. (b) Representative
templates for the two neurons in Ch4. (c) Example 500ms-
recordings from Ch4 with predicted spike train marked in colored
squares. (d) Clustered spikes for N1 and N2 for Ch4.

C. Sorting Performance

The sorting outcome of our algorithm is determined against
the ground truth spikes by comparing the spike time. To
quantify the sorting performance, we employed the commonly-
used F1 score (in %) given by 2TP/ (2TP+FP+FN), where TP,
FP, and FN denote the true positive, false positive, and false-
negative outcomes. A TP is defined as a spike that has been
classified correctly by the algorithm. An FP is defined as a spike
that is classified as spiking activity but does not exist in ground
truth data. An FN is defined as a spike that exists in the ground
truth data but is not detected by our algorithm. The spike
predictions from our algorithm agree with the ground truth well.
Eleven out of twelve neurons in the NeuroNexus-32 dataset
have F1 score > 90% (Fig.7a), whereas all the two neurons in
the NeuroFITM “real” dataset have F1 score > 85% (Fig.7b).
The F1 score of the “real” dataset is slightly less than the
synthetic dataset due to higher noise and probe drifting [26]
during the recording, making the classification more difficult.
To map the templates to the hardware, we investigated how
quantization impacts the F1 score. The template was quantized
to 2N discrete levels between the min and max amplitude range
of the normalized template library. After quantization, we
followed the same sorting pipeline to obtain the F1 score.
Figure.7c shows that the performance could be retained if the
templates are quantized to at least 4-bit resolution for
NeuroNeuxus-32 dataset, which is also applied for NeuroFITM
dataset.
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Fig.7 F1 scores (%) for (a) NeuroNexus-32 and (b) NeuroFITM
dataset. (c) F1 score (%) as a function of template precision for
12 neurons
templates are used in hardware experiments.
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[V. HARDWARE IMPLEMENTATION OF SPIKE SORTING

A. Hardware Mapping

To process hundreds of spikes per second, it would be
necessary to adopt a multi-core architecture (Fig.8a) where
each core consists of a crossbar that stores the templates for a
specific set of neurons (Fig.8b). Figure 8c illustrates how a set

of templates could be mapped on to a crossbar core.
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Fig.8 (a) Real-time spike sorting processor with multiple
crossbar cores. (b) Representative templates of two neurons
with three channels. (c) Crossbar spike sorting: each crossbar
column stores a neuron template. 8-bit digitized neural signals
are provided as voltage inputs and weighted-sum currents from
convolutions are obtained on the BLs. Neuron-wise aggregation
of channel currents determines the sorting result.

In the illustration, we assume that three channels (m=3)
record spike activities of two neurons (n=2), resulting in a total
of 6 templates. The templates from the same channel are
mapped to the adjacent columns in the crossbar. The devices in
the crossbar can store the templates using multi-level for analog
implementation or binary (HRS or LRS) conductance states for
digital implementation [27]. A column of devices with 16 (4-
bit) multi-level can be used to map a template directly as shown

in this example (i.e. templates of N1-Chl and N2-Ch2 are
mapped to the first two columns of the crossbar respectively).
Similarly, templates from other channels are mapped to the rest
of the columns to achieve the maximum usage of the array
(Fig.8¢). If binary conductance state is used, four columns are
required to map a template from MSB to LSB. Although device
with multi-level states can achieve maximum area efficiency, it
has been shown that these multi-level states may exhibit high
device to device variations, non-linearity and resistance drift
due to unstable filament formation [18]. In contrast, digital
implementation is more robust against of variations [28], which
makes it a better approach to realize high sorting accuracy for
template matching task. In addition to conductance states,
differential pair scheme is commonly used to represent both
negative and positive values of the templates [29].

After all templates are mapped on a core, the voltage spike
inputs on WLs (Vwri) are convolved with the templates stored
as cross point conductances (Gi;). The columns of the crossbar
can perform template matching (BL currents Igr=) GijVwri) in
parallel. Since a set of templates from each channel need to
convolve with neural signals from the corresponding channel,
recordings from Ch1-Ch3 are processed in a time-multiplexed
manner, the matching results (Igrnj) for each channel are
collected from the corresponding BLs in parallel (n: neuron; j:
channel number). The final classification result is obtained by
adding the BL currents for each neuron i.e., I, = X1 Ip;p j
from all m channels and then assigning the spike to the neuron
with the maximum I,.. For the sake of illustration, we show all
templates mapped to a single crossbar. For practical
applications involving large channel counts, a multicore
architecture can be adopted, where each core is dedicated to a
channel and stores all templates belonging to the assigned
channel. As a result, all channels can be processed at the same
time to achieve higher parallelism.

B. Hardware Demonstration

A custom PCB board was used to access the WLs and BLs
of the wire-bonded CuOx crossbar (Fig. 9a and b). Before
mapping the templates, array read was performed to confirm the
initial states of the crossbar. To read a single device, the
selected WL was biased to Viead = 0.25V while all other lines
were grounded. The as-fabricated devices had initial resistances
greater than 500kQ (Fig.9¢). As explained in Subsection A.
Hardware Mapping, digital implementation is adopted in our
demonstration. Neuron templates were quantized, binarized,
and mapped onto crossbar columns using differential pair
scheme. To program the devices to different states, we used
V4/2 write scheme, where the selected WL and BL were biased
to Vaa/2 and —Vg4a/2, and all other unselected lines were
grounded to prevent sneak paths (SET: Vgq = 4V and RESET:
Vaa=3V).
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Fig.9 (a) Custom PCB board to access individual WLs and BLs
of the CuOx crossbar for the write and read operations. BLs can
be accessed through the connectors shown in the lower left
while WLs can be accessed through the connectors in the top
right. (b)16x16 crossbar wire-bonded onto a PGA package. (c)
Initial resistance map of a 16x16 CuOx crossbar. (d) Four
representative binarized (black=0 and white=1) filters (F1-F4)
from NeuroFITM. (e) Programmed crossbar columns
implementing these filters. (f) lsum measured at Vwis=0.25V for
four filters.

Figure.9d-f shows four representative templates (F1-F4) of
Neuro-FITM implemented in the crossbar. The templates were
quantized to 4-bit and then binarized to two levels (“0”-black
or “1”-white) off-line (Fig.9d). “0” is mapped to HRS and “1”
is mapped to LRS of the device respectively (Fig.9e). Since the
crossbar was initially off, only “1” needs to be programmed
accordingly. The patterns of the hardware templates match well
with software templates, indicating precise write operation. To
validate the accuracy of crossbar convolutions, we biased all
WLs to high (Vwis=0.25V) and measured the BL currents. As
shown in Fig.9f, the weighted-sum BL currents (Isum) increased
proportionately with the number of LRS devices in the
columns. Templates from NeuroNexus-32 dataset are mapped
in the same way [19].

Using the programmed templates, we performed spike
sorting on NeuroNexus-32 and NeuroFITM recordings. Neural
data encoded as 8-bit voltage pulse trains were fed into the WLs
and Ium were measured on the BLs. Figure.10a and
Figure.11a show the NeuroNexus-32 and NeuroFITM
recordings and the hardware spike sorting results implemented
to sort representative three neurons (NI1-N3) from the
NeuroNexus-32 data and two neurons (NI,N2) from the
NeuroFITM data. The neural voltage traces from the recording
channels (Ch1-3 in NeuroNexus-32 and Ch1-4 in NeuroFITM)
are shown at the bottom. Hardware convolution trace generated
by CuOx crossbar represents final current I, = ¥1*Ig;, ; by
adding weighted sum currents measured in each Ipr,; for “m”

channels and “n” neurons (NeuroNexus-32: m = 3, n =3;
NeuroFITM: m = 4, n = 2). The raster plots on the top of Fig.
10a and Fig.11a show the spike train predicted in hardware
compared with the ground truth spikes for Neuronexus-32 and
NeuroFITM dataset, respectively.
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Fig.10 (a) NeuroNexus-32: Ch1,2,3 are used to classify neurons
N1, N2, N3. A segment of recordings from Ch1 to Ch3 and
predicted hardware (HW) convolution (Conv) traces for three
neurons. (b) Representative spike sorting results for N1-N3
showing convolution implemented in HW agrees with the
software (SW) implementation.

Figurel0b and Fig.11b show the callouts for the spikes
highlighted in rectangular boxes (Fig.10a and Fig.11a). Inside
the boxes, the snippet spike waveform of each neuron is shown
in the left. Channels are coded in different colors that match
with the signal traces above. The template matching results in
software and hardware are shown as convolution traces in the
middle (SW) and right (HW) respectively. Different colors
represent N1-N3 of NeuroNexus-32 and N1-N2 of NeuroFITM.
The software convolution traces are shown as arbitrary units
while hardware traces are shown as measured weighted sum
currents. For each spike, the neuron with the highest peak in the
convolution trace was assigned to the spike. The shapes of
convolution traces produced by the CuOx crossbars matched
closely with software, thereby confirming our hardware can
reliably sort neural spikes. Note that the off-peak regions of the
hardware convolution traces are slightly noisy compared with
software mainly due to variations in the programmed device
conductances across crossbar columns. This issue can be
alleviated by adopting a more robust “program and verify”
scheme in storing the templates in the crossbar [30].
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Fig.11 (a) NeuroFITM: Ch1,2,3,4 are used to classify neurons
N1, N2. Segments of recordings from Ch1 to Ch4 and predicted
HW conv traces. (b) Representative spike sorting results for N1,
N2 implemented in HW agrees with the SW implementation.

B. System-level Performance Benchmarking

Based on the hardware spike sorting results obtained over a
100ms time window (Fig.10 and Fig.11), we evaluated F1
scores on the entire 30s-wide recordings in both neural data and
compared them with software predictions. The hardware F1
scores were calculated by performing template matching
between neural signals with hardware templates that contain
measured device resistances. To evaluate sorting performance
across multiple neurons, we averaged F1 score based on neuron
number. Table I shows neurons could be sorted with high mean

accuracy (~92.5% for NeuroNexus-32, ~94.6% for
NeuroFITM).
Table | F1 Score of SW and HW
NeuroNexus-32 NeuroFITM
F1 Score (%) F1 Score (%)
SwW 92.89% 96.04%
HW 92.48% 94.62%

Table I. F1 score for software and hardware implementations.

To project the sorting performance of multi-core architecture
(Fig.8a) with our crossbar-based spike sorting hardware, we
performed a system-level benchmarking to estimate area,
power, and latency and compared it with the state-of-the-art
FPGA  and  microcontroller  implementations.  All
implementations included in Table II use in-vivo experimental
datasets and template matching based approach for a fair
comparison. Our work and microcontroller implementation
[31] demonstrated sorting for 32-channel probe while FPGA
[15] implemented sorting for a single channel. The area per

channel was estimated by the number of columns used in
mapping a neuron template of a channel (i.e. ~8 columns are
used for a channel template and it occupies 40 um x 20 pm =
8x10* mm?). Power per channel was calculated by averaging
power consumption Payg = XY Iym X Vyeqa across a
representative spike waveform snippet during template
matching. Here, N is number of samples in the spike waveform
(N=30), Lum is the weighted sum current for processing a
sample measured crossbar.

Table Il Performance Benchmarking

Reference This Work [15] [31]
Hardware Crosshar FPGA Microcontroller
RecordingDate | *Te v | e [ mne
No. of channel 32 1 32
Area/Channel (mm?) 8e-4 >10 0.78
Power/Channel (mw) 215 460 3.11
Sorting Latency (ps) |4.8 per 100 channel [ 0.72 per channel| 169 per channel
Energy/Channel (nJ) 10.3 331.2 525.6

Table Il. Benchmarking our results against previous works [15,
31] in terms of hardware type, recording data used in the
studies, channel count, area/channel, power/channel, sorting
latency, and energy/channel. The accuracy obtained
onNeuroNexus-32 and NeuroFITM data from software (SW) and
hardware (HW) experiments.

Overall, our crossbar-based spike sorting hardware promises
~1000% smaller (area/channel) [15] and ~200x reduction in
power consumption [31] compared to state-of-the-art spike
sorting hardware implementations that rely on FPGAs (Table
IT). To better understand the sorting latency in the multicore
architecture, we assume one crossbar core can have size up to
256%256 and 10ns read latency. Unlike previous works that rely
on sequential processing, each crossbar core in the multi-core
architecture can process multiple recording channels in a highly
parallelized manner. We estimated twelve CuOx crossbar
(256%256) cores can sort 100 channel recordings within 4.8us
using the same mapping scheme of our hardware
demonstration. As a result, it consumes ~30-50x% less energy
(energy = power x latency) [15, 31]. These performance gains
make real-time spike sorting possible using our crossbars for
high throughput BMI applications.

V. CONCLUSION

We presented a high throughput neuromorphic brain
interface for real-time spike sorting based on resistive crossbar
arrays. We fabricated CuOx crossbars using a simple low-
temperature process enabling easy 3D BEOL integration with
underlying CMOS circuits. In order to realize real time spike
sorting, we developed a hardware compatible template
matching algorithm and developed methods for mapping onto
crossbar arrays. We  demonstrated that hardware
implementation of template matching using CuOy crossbars can
accurately classify spikes from individual neurons recorded in
vivo. Our neuromorphic approach offers substantial
performance gains in area, power, latency, and energy for spike
sorting hardware designed for processing recordings from
neural probes with high channel counts. Our work paves the
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way towards in-memory computing-based real-time spike
sorting and processing hardware for next-generation closed-
loop brain interfaces.
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