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Abstract—Real-time spike sorting with large data 

throughput is essential for studying neural dynamics and brain-

machine interfaces. Neural recordings from high-density 

multi-electrode arrays that consist of hundreds of electrodes 

impose stringent demands on spike sorting hardware regarding 

data transmission bandwidth and computation complexity. 

That leads to an urgent need for specialized hardware with high 

throughput, low power, and latency. Here, we present a real-

time spike sorting processor that utilizes high-density BEOL-

integrable CuOx resistive crossbars to perform in-memory 

spike segregation. We experimentally demonstrate, for the first 

time, efficient hardware implementation of spike sorting from 

in vivo extracellular recordings with high accuracy. Our 

neuromorphic interface promises substantial performance 

gains (~1000× less area, ~200× less power, 4.8μs latency for 

sorting 100 channels) for in vivo real-time spike sorting.  

I. INTRODUCTION 

Spike sorting, the process of separating the firing activities 
of individual neurons from neural recordings, is crucial for 
studying neural circuits [1]. It has been widely used in various 
practical applications such as brain-machine interfaces (BMIs) 
[2] and neural prosthetics [3]. Conventionally, spike sorting is 
performed offline by transmitting raw digitized signals from 
neural recording to a nearby computer. However, transmitting 
vast amounts of neural recording data from advanced high-
density microelectrode arrays (HDMEAs) leads to excessive 
power dissipation which poses a serious risk of damaging 
surrounding tissues [4]. A 100-channel microelectrode array 
with a 16-bit ADC operating at 30kHz sampling frequency 
generates 3MSamples/s and dissipates mW-level power to 
nearby tissues. More importantly, the high latencies associated 
with offline spike sorting make it impractical for closed-loop 
BMIs that interface with the brain via real-time feedback. An 
8h recording experiment using a 100-channel microelectrode 
array would accumulate ~200GB of data [5], demanding at least 
a few hours to sort the recorded spikes in software [6]. These 
drawbacks highlight the need for low-power and high 
throughput hardware that can be integrated with HDMEAs to 
sort many neural spikes in real-time.  

Although FPGA-based real-time spike sorting has been 
demonstrated, most implementations are inefficient in terms of 
area and power consumption as they require hundreds of block 
RAM and DSP units [7, 8]. In contrast, large-scale resistive 
switching random access memory (RRAM) arrays have 
enabled in-memory processing of machine learning algorithms 
[9], leading to parallelized and energy-efficient neuromorphic 
hardware implementations. However, to the best of our 
knowledge, no studies yet exist on the development of RRAM-
based brain interfaces for real-time spike sorting. 

In this work, we designed a high throughput neuromorphic 
brain interface based on CuOx crossbar arrays that can sort 
neural spikes in real-time. First, we developed a low-
temperature fabrication process for CMOS-integrable high-
density CuOx crossbars. We extensively studied the switching 
characteristics of CuOx resistive memory devices. We then 
developed a spike sorting algorithm that can be directly mapped 
onto CuOx crossbars for sorting multi-channel spikes. Low 
amplitude neural signals (few µVs) from an implanted neural 
probe were amplified and digitized before performing spike 
sorting based on template matching with the conductance-
encoded templates stored in CuOx crossbars (Fig. 1). We 
experimentally demonstrated our CuOx crossbar arrays can sort 
simulated synthetic spikes as well as extracellular recordings 
from in vivo animal experiments with high accuracy close to 
ideal software implementation. Based on experimental results, 
we estimated that our approach can sort 100-channel recordings 
within 4.8µs with ~1000× reduction in chip area, ~200× 
reduction in power, and ~50× less energy per channel compared 
to state-of-the-art FPGA and microcontroller implementations. 

II. CUOX RESISTIVE CROSSBARS  

We fabricated 16 × 16 Au/CuOx/Au resistive crossbars (Fig. 
2a-c) with 1µm line width (Fig. 2d) at the wafer-level using the 
CMOS-compatible process outlined in Fig. 2e. A 2µm pitch 
between the Au wordlines (WLs) and bitlines (BLs) achieved 
high areal densities. A 70nm-thick CuOx switching layer was 
deposited using reactive sputtering and patterned with 
lithography. For long-term reliability, the arrays were 
passivated with a 300nm-thick SiO2 layer. The Au/CuOx/Au 
devices were reliably switched using VSET = ~1.5V and VRESET 
= ~ -0.7V (Fig.3a) with low cycle-to-cycle variations (Fig.3b). 
The high resistance (HRS) and low resistance (LRS) states of 
the device were ~1GΩ and ~100Ω, resulting in an ON/OFF 
ratio ~ 107 (Fig. 3c). Device-to-device variations in switching 
voltages and LRS/HRS resistances are shown in Fig. 4a,b. The 
measured SET and RESET latencies (Fig. 5a,b) and switching 
endurance meet the requirements for BMI applications as 
neuron templates do not require frequent updates. Both LRS 
and HRS show long retention (Fig. 5c), sufficient for storing 
templates for real-time spike sorting.  

III. MAPPING SPIKE TEMPLATES TO CROSSBAR 

To perform real-time spike sorting, we developed a 
template matching algorithm that sorts incoming spikes by 
comparing their shapes to stored neuron templates (Fig. 6a). 
Each neuron had a template matrix Tn = [Tn,1, Tn,2, …, Tn,m], 
where column Ti,j represented the template for neuron i 
corresponding to channel j.  The matrix was normalized by its 
Frobenius Norm (𝑇𝑛/‖𝑇𝑛‖𝐹). Fig.6b illustrates the method by 
showing a simplified example for the classification of two 
neurons (n=2) from three-channel recordings (m=3). The same 
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methodology can be used to classify a larger number of neurons 
recorded across hundreds of channels. We defined the neural 
signal V(t) = [V1(t), V2(t)…, Vm(t)], where Vj(t) is the recorded 
signal from channel j. For each neuron i and channel j, Vj(t) was 
convolved with the template (Ti,j) to produce convolution traces 

Cn,m(t)=Vm(t)∗Tn,m. The traces corresponding to each neuron 
were summed up (Fig.6c) to give Cn(t) = ∑ 𝐶𝑛,𝑚(𝑡)𝑚

1 . To 

cluster the spikes, we applied a threshold and assigned the 
spikes to the neuron having the largest Cn(t) (Fig.6d). For 
benchmarking using different neural implant technologies, we 
implemented our algorithm on two neural recordings: (1) a 
synthetic “NeuroNexus-32” data [10] containing extracellular 
recordings of twelve neurons from the NeuroNexus-32 probe 
(Fig.7a) with the ground truth, and (2) “real” spikes from in 
vivo animal experiments recorded with the NeuroFITM probe 
[11] (Fig.8a) where predictions from offline Kilosort algorithm 
[6] was considered as the ground truth. Fig.7b,c, and Fig.8b,c 
show representative templates and 30kHz recordings of 
multiple channels from these two probes. The templates for 
NeuroNexus-32 and NeuroFITM were obtained from 
biophysical simulations [10] and Kilosort. Representative 
single-channel recordings with clustered neuron spikes are 
shown for NeuroNexus-32 (Fig.7d,e) and NeuroFITM 
(Fig.8d,e). For each neuron, the shape of the clustered spike 
waveforms closely matched their respective original templates 
(Fig.7b, Fig.8b). The sorting performance of our algorithm was 
quantified using the F1 score (in %) given by 2TP/ 
(2TP+FP+FN), where TP, FP, and FN denote the true positive, 
false positive, and false-negative outcomes. The spike 
predictions from our algorithm were in great agreement with 
the ground truth, enabling us to classify eleven out of twelve 
neurons in the NeuroNexus-32 neural data with an F1 score > 
90%, as well as the neurons in the NeuroFITM recordings 
(Fig.9). This performance could be retained in hardware by 
quantizing the templates to at least 4-bit resolution (Fig.10). To 
process hundreds of spikes per second, it would be necessary to 
adopt a multi-core architecture (Fig.11a) where each core 
consists of a crossbar that stores the templates for a specific set 
of neurons (Fig. 11b). By convolving the voltage spike inputs 
on WLs (VWLi) with the templates stored as crosspoint 
conductances (Gij), each crossbar core can perform template 
matching (BL currents IBLj=∑GijVWLi) in parallel (Fig. 11c). 
The classification result is obtained by adding the BL currents 
for each neuron i.e.,  I𝑛 = ∑ 𝐼𝐵𝐿𝑛,𝑗

𝑚
1  from all m channels and 

then assigning the spike to the neuron with the maximum In.  

IV. HARDWARE DEMONSTRATION OF SPIKE SORTING 

A custom PCB board was used to address the WLs and BLs 

of the wire-bonded CuOx crossbar (Fig. 12a,b). The as-

fabricated devices had initial resistances greater than 500kΩ 

(Fig.12c). Neuron templates were quantized and mapped onto 

crossbar columns by programming the devices using a Vdd/2 

write scheme where the selected WL and BL were biased to 

Vdd/2 and -Vdd/2 and all other unselected lines were grounded. 

Fig.12d,e shows four representative templates implemented in 

the crossbar. When all WLs were biased high (VWLs=0.25V), 

the weighted-sum BL currents (Isum) increased proportionately 

with the number of LRS devices in the columns, thereby 

validating the accuracy of crossbar convolutions. 

Using the programmed templates, we evaluated the sorting 

performance on NeuroNexus-32 and NeuroFITM recordings. 

Neural recordings encoded as 8-bit voltage pulse trains were 

fed into the WLs and Isum were obtained on the BLs. Fig.13a,c 

show the NeuroNexus-32 and NeuroFITM recordings and the 

hardware spike sorting results implemented to sort 

representative three neurons from the NeuroNexus-32 data and 

two neurons from the NeuroFITM data. Fig.13b,d present 

convolution traces generated by the CuOx crossbar for spikes 

highlighted with rectangular boxes in  Fig.13a,c. For each 

spike, the neuron with the highest peak in the convolution trace 

was assigned to the spike. The shapes of convolution traces 

produced by the CuOx crossbars matched closely with software.  

Based on the hardware spike sorting results obtained over a 

100ms time window (Fig.13), we calculated F1 scores on the 

entire 30s-wide recordings in both neural data and compared 

them with software predictions. Fig.14 shows neurons could be 

sorted with high mean accuracy (~92.5% for NeuroNexus-32, 

~94.6% for NeuroFITM). Overall, our crossbar-based spike 

sorting hardware can achieve ~1000× smaller (area/channel) 

[12] and consume ~200× less power [7] compared to state-of-

the-art spike sorting hardware (Table I). Unlike previous works 

that rely on sequential processing, our crossbars can process 

multi-channel electrode recordings in a highly parallelized 

manner. We estimate that twelve CuOx crossbar (256×256) 

cores can process recordings from 100-channel within 4.8µs, 

consuming ~30-50× less energy [7,12]. These performance 

gains make real time spike sorting possible using our crossbars 

for high throughput BMI applications. 

V. CONCLUSION 

We demonstrated a high throughput neuromorphic brain 

interface for real-time spike sorting based on CuOx resistive 

crossbars. These crossbars were fabricated using a low-

temperature reactive sputtering process, enabling BEOL-

integration with CMOS-based spike detection circuits. 

Hardware implementation of template matching using CuOx 

crossbars accurately classified spikes from individual neurons 

recorded in vivo, offering substantial performance gains in area, 

power, latency, and energy for neural probes with high channel 

counts. Our work will pave the way towards in-memory 

computing based real-time spike processors for next-generation 

closed-loop brain interfaces. 
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Fig.1 Proposed neuromorphic brain interface based on CuOx crossbar array 

for spike sorting. Neural signals recorded by multichannel neural probe are 
amplified and digitized using an Intan amplifier and ADC respectively. CuOx 

crossbar array performs spike sorting in real-time and relays relevant 

information to the brain via feedback. 

        

     

      
     

     
        

        
     

      
      

                    

 
Fig.2 a) Wafer containing the fabricated 16×16 CuOx crossbar arrays and 

single devices. b) Device cross-section highlighting the 70nm CuOx 

resistive switching layer sandwiched between 100nm Au electrodes. A 
300nm SiO2 passivation layer is deposited on top of the stack. c) Optical 

and d) SEM images of 16×16 crossbar with 4μm2 cross point. d) 

Fabrication process for CuOx -based single devices and 16×16 crossbar. 

               

    

  

  

  

  

              
     

             

  

    

       

  

  

          

    

                   

             

                   

 
Fig.5 Applied voltage pulses and transient current responses for a) 
SET and b) RESET operations. c) Retention characteristics. Device 

resistance was monitored intermittently using 0.1V read pulses. 

 

 
Fig.3 a) DC switching characteristics of single devices for 30 cycles. b) Cumulative 

distribution function (CDF) of SET (1V to 2.5V) and RESET (-1V to -0.2V) voltages. c) 

CDF of HRS (100MΩ to 100GΩ) and LRS (100Ω - 1kΩ) resistances. 

 
Fig.4 CDF of the switching voltages and HRS/LRS 

resistances measured across 120 devices on the wafer. 

 
Fig.6 a) Overview of the proposed template matching based spike sorting 
algorithm. b) Convolving neural recordings i.e., voltage traces with normalized 

templates N1 and N2. c) Summing the convolution traces (Cn,m(t)) corresponding 

to each neuron . d) Thresholding and assigning spikes to neurons N1 or N2 based 
on whether C1(t) > C2(t) (assign to N1) or C1(t) < C2(t) (assign to N2). 

 

 
Fig.7 a) Schematic of 32-channel NeuroNexus-32 probe. b) Representative templates for three neurons. c) Representative 300ms-recordings from 32 channels 
of the NeuroNexus-32 probe, showing Ch1,2,3 used for sorting N1,N2,N3. d) Example recordings from Ch3 with predicted spike train marked in colored squares 

and e) Clustered spikes for N1 to N3 for Ch3. 
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Fig.8 a) Image of a 32-channel NeuroFITM probe. b) Representative templates for the two neurons 

from Ch1 to Ch4. c) Representative 300ms-recordings from four channels. d) Example recordings 
from Ch4 with predicted spike train marked in colored squares and e) Clustered spikes for N1 and N2 

for Ch4. 
 

 

  
 
 
 
  
  
 
 
  
  
 
 

   
 
 

              

    
   

      

   

   

   

   

     
 
 
 

    

   
   

   

 

  

  

   

     

         
     

    

    

    

 

   

   

 
  
 
 
 

   

 
  
 
 
 

 
  
 
 
 

    

   

   

 

    

    

                

  

          

         

 
Fig.9 F1 scores and spike assigment for  

NeuroNexus-32 (a,c), NeuroFITM (b,d) neural 
data. 

 

 
Fig.10 a) Template precision: full (64-bit) vs. 
quantized (8-bit and 4bit). b) F1 score (%) as a 

function of template precision. 4-bit quantized 

templates are used in hardware experiments.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig.11 a) Real-time spike sorting processor with multiple crossbar cores. b) Representative templates 

of two neurons. c) Crossbar spike sorting: each crossbar column stores a neuron template. 8-bit 
digitized neural signals are provided as voltage inputs and weighted-sum currents from convolutions 

are obtained on the BLs. Neuron-wise aggregation of channel currents determines the sorting result. 
 

 

 

 

 

 

 

              
   

   

   

                         
   

        

   
   

   
   

   
   

   
   

   
   

 

 

 

 

       

                

       
         

     
     

      
                    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

                       

  

       

    

  

       
       

                     

                     

 
Fig.12 a) Custom PCB board to access individual 

WLs and BLs of the CuOx crossbar for the write 

and read operations. b)16×16 crossbar wire- 
bonded onto a PGA package. c) Initial resistance 

map of a 16×16 CuOx crossbar. Left column: four 

representative binarized (black=0 and white=1) 
filters (F1-F4) from d) NeuroNexus-32 and e) 

NeuroFITM. middle column: programmed 

crossbar columns implementing these filters.  

right column: Isum at VWLs=0.25V for four filters. 

 
Fig.13 a) NeuroNexus-32: Ch1,2,3 are used to classify neurons N1, N2, N3. A segment of recordings 

from Ch1 to Ch3 and predicted hardware (HW) convolution (conv) traces for three neurons. b) 

Representative spike sorting results for N1-N3 showing convolution implemented in HW agrees with 
the software (SW) implementation. c) NeuroFITM: Ch1,2,3,4 are used to classify neurons N1, N2. 

Segments of recordings from Ch1 to Ch4 and predicted HW conv traces. d) Representative spike sorting 

results for N1, N2 implemented in HW agrees with the SW implementation. 

 
Fig.14 Accuracy obtained on  the 

NeuroNexus-32 and NeuroFITM data 
from software (SW) and hardware 

(HW) experiments. 

 
Table I. Benchmarking our results against previous works [7], 

[12] in terms of hardware type, recording data used in the 

studies, channel count, area/channel, power/channel, sorting 
latency and energy/channel. 
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