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Invariant Filtering for Legged Humanoid
Locomotion on a Dynamic

Rigid Surface
Yuan Gao , Student Member, IEEE, Chengzhi Yuan , Member, IEEE, and Yan Gu , Member, IEEE

Abstract—State estimation for legged locomotion over
a dynamic rigid surface (DRS), which is a rigid surface
moving in the world frame (e.g., ships, aircraft, and trains),
remained an underexplored problem. This article intro-
duces an invariant extended Kalman filter that estimates the
robot’s pose and velocity during DRS locomotion by using
common sensors of legged robots [e.g., inertial measure-
ment units (IMUs), joint encoders, and RDB-D camera]. A
key feature of the filter lies in that it explicitly addresses
the nonstationary surface–foot contact point and the hybrid
robot behaviors. Another key feature is that in the absence
of IMU biases, the filter satisfies the attractive group affine
and invariant observation conditions, and is thus provably
convergent for the deterministic continuous phases. The
observability analysis is performed to reveal the effects of
DRS movement on the state observability, and the conver-
gence property of the hybrid deterministic filter system is
examined for the observable state variables. Experiments
of a Digit humanoid robot walking on a pitching tread-
mill validate the effectiveness of the proposed filter under
large estimation errors and moderate DRS movement. The
video of the experiments can be found at: https://youtu.be/
ScQIBFUSKzo.

Index Terms—Dynamic environments, legged locomo-
tion, state estimation.

I. INTRODUCTION

S
TATE estimation is essential to providing the estimates of a

robot’s movement state (e.g., pose and velocity) needed for

planning and control. While state estimation for locomotion on
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static [1] or relatively unstable surfaces [2] has been extensively

studied, state estimation for dynamic rigid surfaces (DRSs), such

as ships and aircraft [3], has not been fully investigated. This

article aims to solve the estimation problem for DRS locomotion.

Yet, solving this problem is challenging due to the nonstationary

surface–foot contact point [3], [4] and the hybrid robot dynamics

involving both continuous behaviors and discrete foot-landing

events [5]–[7].

Extended Kalman filtering (EKF) [8], [9] has been used to

achieve real-time state estimation of legged locomotion on static

surfaces by fusing the data returned by common on-board sen-

sors, such as encoders (which measure the joint angles), as well

as inertial measurement units (IMUs) attached to the robot’s base

(which measure the base’s linear acceleration and angular ve-

locity in the base frame). Recently, EKF-based estimators have

been created to estimate a robot’s base pose and velocity [1],

[10]. These methods can be applied to general legged locomotion

because their formulation is independent of robot dynamics and

gait types. Specifically, the process model includes the IMU

motion and bias dynamics, and the measurement model is based

on the the leg odometry formed via the forward kinematics

between the base and the ground contact point. Yet, they may

not be effective for DRS locomotion because they assume the

foot–ground contact point is static in the world frame. Also,

similar to standard EKF, they may not handle large estimation

errors well, because the underlying system linearization depends

on the true state, but is evaluated at the state estimate [11].

To ensure provable, rapid convergence under large estimation

error, the previous EKF-based design [1] has been transformed

into an invariant extended Kalman filter (InEKF) for legged loco-

motion on static surfaces [12], [13]. By the theory of InEKF [14],

when the InEKF system meets the group affine and invariant

observation conditions, the system linearization is independent

of the true state, and thus is valid even under relatively large

errors. Still, the effectiveness of these methods in handling DRS

locomotion is unclear, especially under a relatively significant

surface motion (e.g., ship motion under sea waves [15]), because

of the underlying assumption of stationary surface–foot contact.

To address hybrid robot behaviors, state estimators for hybrid

models of legged locomotion [16], [17] have been derived.

However, the convergence property of invariant filters for hybrid

locomotion models has not been examined.

This article introduces an InEKF method to produce real-time

accurate state estimation for bipedal humanoid walking on a
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DRS even under relatively large estimation errors. The main

contributions of this article are as follows:

1) Deriving an InEKF that considers the DRS motion and

hybrid robot behaviors and meets the group affine and

invariant observation properties without IMU biases.

2) Building a right-invariant measurement model based on

the rotational constraint at the surface–foot contact area,

enhancing the convergence rate, and rendering the base

yaw angle observable under general DRS movement.

3) Performing observability analysis that reveals how the

DRS pose affects state observability, and proving the

stability for the hybrid deterministic error dynamics.

4) Demonstrating the computational efficiency, accuracy,

and robustness of the proposed filter through experiments

of humanoid walking on a rocking treadmill.

Some results in this article have been reported [18]. The new

substantial contributions of this article are the last three items in

the aforementioned list.

The rest of this article is organized as follows. Section II

provides a brief background on matrix Lie groups. Section III

presents the problem formulation. Section IV introduces the

proposed InEKF for the hybrid model of DRS locomotion.

Section V provides observability and convergence analysis.

Section VI reports experiment results. Section VII discusses the

capabilities and limitations of the filter. Finally, Section VIII

concludes this article.

II. PRELIMINARIES

The matrix Lie group, denoted as G, is a subset of n× n

invertible square matrices. The associated Lie algebra g with a

dimension of dimg is a set of n× n square matrices. The linear

operator (·)∧ maps any vectorξ ∈ R
dimg ontog. The exponential

map exp : R
dimg → G is defined as exp(ξ) � expm(ξ∧), where

expm is the usual exponential of n× n matrices. The inverse

operator of (·)∧ is denoted as (·)∨ : g → R
dimg. The adjoint

matrix AdX at X for any vector ξ ∈ R
dimg is defined as

AdXξ = (Xξ∧X−1)∨. More detailed introductions to matrix

Lie groups can be found in [19]. A nomenclature table is given

in supplementary material.

III. PROBLEM FORMULATION

In the proposed filter design, the state is chosen as variables

that are often needed in locomotion planning and control, in-

cluding the linear velocity v ∈ R
3 and orientation R ∈ SO(3)

of the robot’s base (e.g., chest) expressed in the world frame

(see Fig. 1). The state also includes the base position p ∈ R
3

and contact-point position pc ∈ R
3 (see Fig. 1), so as to exploit

the forward kinematics between the base and contact/foot frames

in the filter design [1], [12].

The DRS of interest possesses two common characteristics

of real-world DRSs, such as aircraft and vessels. First, when

traveling on such surfaces, a robot can only see landmarks

attached to the surface instead of the world frame, e.g., due

to the concealed environment on the surface. Second, the DRS

orientation RDRS ∈ SO(3) and linear and angular velocities

Fig. 1. Illustration of coordinate frames and key variables. The
treadmill is a DRS that rotates in the world frame.

vDRS,ωDRS ∈ R
3, respectively, (see Fig. 1) are relatively accu-

rately known. This is a reasonable assumption because these

real-world DRSs are typically equipped with high-accuracy

motion monitoring systems [20]. Also, the proposed filter design

explicitly treats the inaccurate knowledge of surface pose and

motion, as explained in Section IV.

The sensors considered in this study are common on-board

sensors, which are an IMU attached to the robot’s base, joint

encoders, a red green blue-depth (RGB-D) camera, and a contact

indicator. The RGB-D camera tracks the landmarks attached to

the DRS, which is used to obtain the camera pose in the DRS

frame. The contact indicator detects foot landing events.

The encoders measure the joint angles q ∈ R
m with m num-

ber of joints. Corrupted by the white zero-mean Gaussian noise

wq , the raw encoder data q̃ are expressed as q̃ = q+wq.

The IMU includes a gyroscope and an accelerator that mea-

sure the angular velocity ω ∈ R
3 and the linear acceleration

a ∈ R
3 of the IMU, respectively, in the base frame. Corrupted

by the white Gaussian zero-mean noise wa,wω ∈ R
3, as well

as biases ba,bω ∈ R
3, the IMU readings ã and ω̃ are expressed

as ã = a+ ba +wa and ω̃ = ω + bω +wω , respectively.

A. Continuous-Phase IMU Motion and Bias Dynamics

To form the process model, we choose to adopt the IMU

motion dynamics due to its accuracy and simplicity [1]. At time

t, the IMU motion dynamics is given by

Ṙt = Rt(ω̃t − bω
t −wω

t )×

v̇t = Rt(ãt − ba
t −wa

t ) + g, and ṗt = vt (1)

where (·)× is a skew-symmetric matrix and g is the gravitational

acceleration vector. The IMU bias dynamics is modeled as the

Brownian motion [12]

ḃa
t = wba

t and ḃω
t = wbω

t (2)

where wba
t and wbω

t are the white zero-mean Gaussian noises.

B. Continuous-Phase Contact-Point Motion Dynamics

During DRS locomotion, the foot moves in the world frame

due to the surface movement. Thus, the deterministic motion

model of the contact point is not ṗc
t = 0 as in previous work [1],

[12] on static surfaces. Instead, we explicitly consider the contact
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point velocity vc
t in the model

ṗc
t = vc

t . (3)

In this study, to inform the model in (3), we choose to directly

measure the contact point velocity based on the known surface

pose and motion and the measured contact position in the DRS

frame through the following kinematics:

vc
t = vDRS

t + ωDRS
t × (RDRS

t
DRSpc

t). (4)

where DRSpc
t is the contact point position relative to the DRS

frame, expressed in the DRS frame (see Fig. 1). Note that

the computation of the velocity DRSpc
t depends on the robot’s

camera data and the joint angle data returned by encoders.

Also, recall that the surface orientation RDRS
t and the motions

ωDRS and vDRS
t are assumed to be known as explained earlier.

An example of computing vc
t is given in Section VI.

The velocity computation inaccuracy is considered as

ṽc
t = vc

t +Rtw
c
t (5)

where ṽc
t ∈ R

3 is the measured contact point velocity and the

inaccuracy wc
t is modeled as the white Gaussian zero-mean

noise expressed in the base frame.

C. Discrete Jump Dynamics at a Foot Landing

At a foot landing, the swing and support legs switch roles,

causing a discrete jump in the contact point position pc
t . To

appropriately propagate the estimate and covariance at foot

landings, we choose to explicitly consider the jump.

The jump map of the contact point position pc
t is

pc
t+ = pc

t +Rthc(qt) (6)

where the subscript t+ denotes the timing just after the foot

landing at t and the function hc is the forward kinematics from

the previous support-foot position to the new one, expressed in

the base frame. Except for pc
t , all other state variables remain

continuous at foot switching.

With the first-order Taylor expansion, the nonlinear term in

the jump dynamics (6) can be approximated as Rthc(qt) ≈
Rthc(q̃t)−Rt

∂hc

∂q
(q̃t)w

q
t .

D. Position-Based Forward Kinematics Measurement

To connect the contact and the base frames, we adopt the leg

odometry measurement in [1], [12] [see Fig. 2(b)]

RT
t (p

c
t − pt) = hp(qt) (7)

where the forward kinematics function hp is the support foot

position relative to the base expressed in the base frame. Given

the inaccuracy of the encoder reading q̃t = q+wq and with the

first-order Taylor expansion, the model in (7) can be rewritten

as hp(qt) ≈ hp(q̃t)−
∂hp

∂q
(q̃t)w

q
t .

E. Contact Orientation-Based Measurement

When the support foot and the surface have a full area con-

tact, their normal vectors are parallel, whether the surface is

stationary or moving [see Fig. 2(a)]. In this study, we utilize this

Fig. 2. Illustrations of the observations. (a) Normal vector alignment
of the contact and DRS frames. (b) Contact point position in the base
frame.

rotational kinematic relationship to form a measurement model.

Suppose that the z-axis of the contact and surface frames are

aligned and normal to the DRS. Then, the following hold:

RDRS
t

[
0 0 1

]T
= Rc

t

[
0 0 1

]T
= RthR(qt)

[
0 0 1

]T

(8)

where Rc
t ∈ SO(3) is the contact frame orientation and the

forward kinematics matrix function hR is the support foot

orientation with respect to the base frame (see Fig. 1).

To address the inaccuracy of the known surface orientation

R̃DRS
t , we assume that the true orientation is corrupted by

the white Gaussian zero-mean uncertainty wDRS
t as RDRS

t =
exp(−wDRS

t )R̃DRS
t ≈ (I3 − (wDRS

t )×)R̃
DRS
t , where In is ann×

n identity matrix.

To handle the inaccuracy of the encoder reading q̃t,

the support foot orientation RthR(qt) is approximated

as RthR(qt) ≈ RthR(q̃t)−RtJhR
(q̃t,w

q
t ), where the ma-

trix JhR
(q̃t,w

q
t ) is obtained based on the Jacobian

of each column of hR � [hR,1,hR,2,hR,3] as JhR
�

[
∂hR,1

∂qt
(q̃tn)w

q
t ,

∂hR,2

∂qt
(q̃t)w

q
t ,

∂hR,3

∂qt
(q̃t)w

q
t ].

Combining these equations yields

RT
t R̃

DRS
t

[
0 0 1

]T
+RT

t (−wDRS
t )×R̃

DRS
t

[
0 0 1

]T

≈ hR(q̃t)
[

0 0 1
]T

−
∂hR,3

∂q̃t
(q̃t)w

q
t . (9)

IV. FILTER DESIGN

This section introduces the proposed InEKF design based on

the models formulated in Section III.

The proposed filter derivation begins with proper state repre-

sentation. We adopt the representation in [12] since our filters

estimate the same state. First, the state variables Rt, vt, pt, and

pc
t are expressed on the matrix Lie group G as

Xt �

[
Rt [vt,pt,p

c
t ]

03×3 I3

]

∈ G (10)

where0m×n is anm× n zero matrix. The Lie groupG is SE3(3),
an extension of the special Euclidean group SE(3).

To explicitly handle IMU biases, they are also chosen as state

variables. These biases are typically expressed on the vector

space instead of G [14], that is, θt � [(bω
t )

T , (ba
t )

T ]T .

Let (̄·) denote the estimate of the variable (·). Based on the

InEKF framework [11], we use the right-invariant error ηt to
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represent the estimation error of Xt on G as

ηt � X̄tX
−1
t ∈ G. (11)

The log of the invariant error, denoted as ξt, is a vector on

R
dimg defined via ηt � exp(ξt) = expm(ξ∧t ). The expressions

of ηt, ξt, and ξ∧t are in Section 2 of supplementary document.

The IMU bias error ζt is defined as ζt � θ̄t − θ.

A. Continuous-Phase Process Model and Propagation
Step

This section introduces the process model and propagation

step of the proposed filter for the continuous phases.

1) Process Model: Based on the IMU motion and bias dy-

namics and the contact point motion in (1)–(3), the process

model is expressed as

Ẋt =

[
Rt(ω̃t − bω

t )× [Rt(ãt − ba
t ) + g,vt, ṽ

c
t ]

03×3 03×3

]

−Xt(w
X
t )∧ � fut

(Xt,θt)−Xt(w
X
t )∧ (12)

with the noise vector wX
t � [ (wω

t )
T , (wa

t )
T ,01×3, (w

c
t )

T ]T .
Here, we define the input ut to consist of the IMU and en-

coder readings and the measured contact point velocity, i.e.,

ut = [ ω̃T
t , ã

T
t , (ṽ

c
t )

T , q̃t ]
T . Note that the encoder reading q̃t

is not an input to the continuous-phase process model in (12),

but is used later in the jump process model.

2) Linearized Error Model: By using the first-order Taylor

expansionηt ≈ I+ ξ∧t and by applying the chain rule to express

η̇t, we obtain the linearized error equation
[
ξ̇t
ζ̇t

]

= At

[
ξt
ζt

]

+

[
AdX̄t

012×6

06×12 I6

]

wt (13)

where the noise term wt is wt � [(wX
t )T , (wbω

t )T , (wba
t )T ]T ,

the adjoint matrix AdX̄t
is given in Section 3 of supplementary

material, and the matrix At is

At =

⎡

⎢
⎢
⎢
⎢
⎣

03×3 03×3 03×3 03×3 −R̄t 03×3

(g)× 03×3 03×3 03×3 −(v̄t)×R̄t −R̄t

03×3 I3 03×3 03×3 −(p̄t)×R̄t 03×3

(ṽc
t )× 03×3 03×3 03×3 −(p̄c

t)×R̄t 03×3

06×3 06×3 06×3 06×3 06×3 06×3

⎤

⎥
⎥
⎥
⎥
⎦

. (14)

Note that At contains the contact point velocity ṽc
t because

the process model explicitly considers it. Derivation of (13) and

(14) is in Section 3 of supplementary material.

3) Propagation: Let tn (n ∈ {1, 2, . . .}) denote the time

when sensors return data for estimation error correction. Then,

during the propagation step on t ∈ [tn−1, tn), the estimates X̄t

and θ̄t are obtained via ˙̄Xt = fut
(X̄t, θ̄t) and ˙̄θt = 0 based on

the process models in (2) and (12).

By the InEKF methodology, the covariance matrix Pt is

propagated via the Riccati equation associated with the lin-

earized error model in (13) as Ṗt = AtPt +PAT
t + Q̄t, where

Q̄t �

[
AdX̄t

012×6

06×12 I6

]

Cov(wt)

[
AdX̄t

012×6

06×12 I6

]T

.

Remark 1 (Group Affine Property): Without IMU biases, the

continuous process model in (12) is group affine, as defined

in [11]. Thus, without biases and in the deterministic case, the

linear error dynamics in (13) is exact and independent of the true

state, and the covariance propagation is exact. Such features are

different from the standard EKF whose linearization accuracy

relies on estimation error.

B. Continuous-Phase Measurement Models and Update
Step

This section formulates the two measurements in (7) and (9)

into the right-invariant observation form defined in [11] and

introduces the update step of the proposed InEKF at time tn.

These treatments result in an error update equation, which is

independent of the true state.

1) Right-Invariant Orientation-Based Measurement: The

orientation-based measurement in (9) can be rewritten into the

following right-invariant observation form:

⎡

⎢
⎢
⎣

hR(q̃)tn

⎡

⎣

0

0

1

⎤

⎦

03×1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

Y1,tn

= X−1
tn

⎡

⎢
⎢
⎣

R̃DRS
tn

⎡

⎣

0

0

1

⎤

⎦

03×1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

d1,tn

+

[
V1,tn

03×1

]

(15)

with V1,tn = RT
tn
(R̃DRS

tn
[ 001 ]T )×w

DRS
tn

+
∂hR,3

∂q
(q̃tn)w

q
tn

.

2) Right-Invariant Position Measurement: The position mea-

surement in (7) can be expressed as [12]

⎡

⎢
⎢
⎣

hp(q̃tn)
0

1

−1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

Y2,tn

= X−1
tn

⎡

⎢
⎢
⎣

03×1

0

1

−1

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

d2,tn

+

[
∂hp

∂q̃
(q̃tn)w

q
tn

03×1

]

. (16)

3) Update: At time tn, the updated estimates and covariance,

denoted as (X̄
†
tn
, θ̄

†
tn
) and P

†
tn

, respectively, are given by [11]

X̄
†
tn

= exp
(

L
ξ
tn
ztn

)

X̄tn , θ̄
†
tn

= θ̄tn

+ L
ζ
tn
ztn ,P

†
tn

= (I− LtnHtn)Ptn (17)

where Ltn � [ (Lξ
tn
)T , (Lζ

tn
)T ]T is the filter

gain, Htn is the observation matrix, and ztn �

[ (X̄tnY1,tn − d1,tn)
T , (X̄tnY2,tn − d2,tn)

T ]T .

To derive the observation matrix Htn , we first decom-

pose it into Htn = [HT
1,tn

,HT
2,tn

]T , where H1,tn ∈ R
6×12

and H2,tn ∈ R
6×12 are, respectively, associated with the mea-

surement models in (15) and (16). Since the measurement

models are not explicitly dependent on biases, the ma-

trix Hi,tn (i = 1, 2) can be further decomposed as Hi,tn �

[ H̃i,tn ,03×6;03×12,03×6 ], where the element 03×6 correspond

to the bias terms and the element 03×12 could be removed if

a reduced-dimensional filter gain is instead used, as in [12].

Based on the right-InEKF methodology [11], we obtain the

submatrix H̃i,tn via H̃i,tnξtn = −(ξtn)
∧di,tn as H̃1,tn �

[(RDRS
tn

[0, 0, 1]T )×,03×9] and H̃2,tn � [03×6,−I3, I3].
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To compute Ltn , the linearized error update equation is ob-

tained based on the update (17) as

[
ξ
†
tn

ζ
†
tn

]

= (I−LtnHtn)

[
ξtn
ζtn

]

+ Ltn

⎡

⎢
⎢
⎢
⎣

R̄tn
∂hR,3

∂qt
(q̃tn)

03×1

R̄tn
∂hp

∂qt
(q̃tn)

03×1

⎤

⎥
⎥
⎥
⎦
w

q
tn

(18)

with derivation given in Section 4 of supplementary material.

Then, applying the standard Kalman filtering

methodology to this linear error update equation,

we obtain the filter gain Ltn = PtnH
T
tn
S−1
tn
, where

Stn = HtnPtnH
T
tn

+ N̄tn , N̄tn � diag(N̄1,tn , N̄2,tn),

N̄1,tn � R̄tn
∂hR,3

∂qt
(q̃tn)Cov(wq

tn
)(

∂hR,3

∂qt
(q̃tn))

T R̄T
tn

, and

N̄2,tn � R̄tn
∂hp

∂qt
(q̃tn)Cov(wq

tn
)(

∂hp

∂qt
(q̃tn))

T R̄T
tn

.

Remark 2 (Independence of True State): The linearized error

update (18) is independent of the true states Xt and θt in the

deterministic case. This is because both measurement models

satisfy the right-invariant observation form with respect to Xt

and are independent of θt, and because the update equation

of X̄t is in the exponential form as prescribed by the InEKF

methodology [11].

C. Discrete Process Model and Propagation Step

Without loss of generality and for simplicity, suppose that

the foot-landing events and the updates do not coincide. Thus,

the proposed filtering for the state jump focuses on estimate

and covariance propagation without update. Except for the true

contact point position pc
t , the rest of the true state is continuous

across a foot landing, as explained in Section III.

1) Process Model: From the proposed jump dynamics in

Section III, the stochastic jump dynamics of Xt can be approx-

imately expressed as

Xt+ = Xt

[
I3 [03×1,03×1,hc(q̃t)]

03×3 I3

]

−Xt

[
∂hc

∂q
(q̃t)w

q
t

03×1

]∧

� ∆ut
(Xt)−Xt(w

∆
t )∧ (19)

where the function∆ut
(Xt) is the deterministic jump dynamics

and the encoder data q̃t serves as the input. As the biases are

continuous under a jump event, θt+ = θt holds.

Remark 3 (Group Affine Property): The jump map ∆ut
of

the state Xt possesses the discrete-time group affine property

defined in [21], and is independent of IMU biases θt. Thus, the

jump dynamics of the error ξt is independent of the true state

and is exactly linear. Moreover, from the expression of ∆ut
in

(20), we can see that ∆ut
is a group action on SE3(3), under

which the error =ξt naturally does not change.

2) Error Equation: From (20), we obtain the dynamics of

the logarithmic error ξt as ξt+ = ξt −AdX̄w∆
t . Indeed, as

analyzed in Remark 3, the error does not jump under ∆ut
. Also,

ζt+ = ζt− holds since the IMU biases are continuous.

3) Propagation: Based on the deterministic portion of the

jump model in (20), the propagations of the state estimate at a

jump event are X̄t+ = ∆ut
(X̄t) and θ̄t+ = θ̄t.

With the linear error equation of ξ and ζ across a jump, the

propagation of the covariance matrix is expressed as Pt+ =

Pt + Q̄∆
t , where Q̄∆

t =

[
AdX̄Cov(w∆

t )AdT
X̄

03×3

03×3 03×3

]

.

The complete algorithm of the proposed right-InEKF is sum-

marized as Algorithm 1 in supplementary material.

Remark 4 (Imperfect InEKF): In the presence of IMU biases,

the proposed filter is no longer a “perfect” InEKF in the sense

that the group affine and invariant form properties no longer hold

for continuous phases. Although the linear equation in (13) is

no longer independent of the true state, it depends on the true

state only through the bias terms, while the remaining part of

the Jacobian matrix At is still independent of the true state.

Also, the measurement models are still independent of the true

states Xt and θt as highlighted in Remark 2. For these reasons,

the linearization inaccuracy induced by the biases has a limited

impact on the continuous-phase propagation and update. Thus,

the “imperfect InEKF” with biases considered can still ensure

rapid and accurate convergence under large errors, which is

experimentally confirmed on DRS locomotion, as reported in

Section VI.

V. OBSERVABILITY AND CONVERGENCE ANALYSIS

A. Observability Analysis for Continuous Phases

As measurement update is performed during continuous

phases, we only analyze the continuous-phase observability.

Recall that the deterministic continuous-phase dynamics in

(12) is group affine in the absence of IMU biases θt (see Remark

1). Also, recall that the measurement models in (15) and (16)

are in the right-invariant observation form with respect to Xt,

regardless of the presence of biases (see Remark 2). Then, by

[14, Theorem 20], the observability of Xt for the complete

continuous-phase system, which has both Xt and θt as its

states, is the same as that of the simplified continuous-phase

system without IMU biases. Thus, by [11, Theorem 5], the local

observability of Xt for the complete system can be determined

by the couple (A, H) with A and H updated with bias-related

terms removed (see Section 6 of supplementary material).

With ∆t the duration of one propagation step, the discrete

state transition matrix Φ is given by Φ = expm(At∆t) [11]

(see Section 6 of supplementary material for the expression of

Φ). Then, from O = [ (H)T , (HΦ)T , (HΦ2)T , . . . ]T , we have

O =

⎡

⎢
⎢
⎢
⎢
⎣

(RDRS[0, 0, 1]T )× 03×3 03×3 03×3

03×3 03×3 −I3 I3

(RDRS[0, 0, 1]T )× 03×3 03×3 03×3

− 1
2
(g)×∆t2 −I3∆t −I3 I3

· · · · · · · · · · · ·

⎤

⎥
⎥
⎥
⎥
⎦

. (20)

As the first two columns of (g)× are linearly independent, the

base roll and pitch angles are observable. Because all columns

in the second column block of O are linearly independent, the

base velocityvt is observable. Yet, as the last two column blocks

are linearly dependant, the base position pt and contact point

position pc
t are unobservable.

The third column of (g)× is always zero, because only its

z-component is nonzero. Then, if the surface is nonhorizontal,
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Fig. 3. Experimental setup that includes a Digit bipedal humanoid
robot and a pitching treadmill (i.e., DRS).

(i.e., the third column of (RDRS[0, 0, 1]T )× is not all zero), the

yaw will be observable; otherwise, it is unobservable.

From the expression of O, we also know that the contact

velocity vc
t does not affect observability, either measurement

model ensures observable base roll and pitch, the proposed mea-

surement in (15) renders base yaw observable and the previous

measurement in (16) makes base velocity observable.

B. Convergence Property for the Hybrid Error System

The proposed convergence analysis for the hybrid error sys-

tem is built upon previous analysis of the InEKF as a determin-

istic observer for systems without state-triggered jumps [11].

Different from the previous work, this section analyzes the

effects of the jumps on the error convergence for the overall

hybrid error system.

We first analyze the error evolution across the deterministic

discrete jump of the system. Analyzing the state evolution across

discrete, state-triggered jumps (e.g., foot-landing impacts) are

typically complex [3]. Yet, since the jump map ∆ut
is a group

action, the error ξt does not jump under ∆ut
despite the jump

of the true state Xt. Also, the bias error ζt is continuous across

a jump event. Thus, the hybrid deterministic error dynamics is

essentially continuous for all time, and its error convergence is

equivalent to that of the deterministic continuous phases.

For continuous phases, the proposed filter meets the group

affine condition and invariant observation form without biases,

as discussed in Section IV. Thus, by the theory of InEKF [11],

the proposed filter is locally asymptotically convergent for the

observable variables of the deterministic continuous phases

without biases. Accordingly, the local asymptotic convergence

of the hybrid deterministic filter system is guaranteed in the

absence of biases.

This analysis also supports the local asymptotic convergence

of the existing InEKF [12] designed for static surface locomo-

tion, because the jump model in [12] is a group action and

its continuous-phase design also satisfies the group affine and

invariant observation conditions without biases.

VI. EXPERIMENTS

A. Experimental Setup

The setup for experimental data collection (see Fig. 3) is as

follows.

Fig. 4. Profiles (TM1)–(TM3) of the treadmill pitch angle θDRS(t).

Fig. 5. Time-lapse figures of Digit walking on a rocking treadmill. The
black arrow indicates the treadmill’s direction of rotation.

1) Treadmill (i.e., Tested DRS): A split-belt Motek M-gait

treadmill is used as a DRS. Its dimension is 2.3×1.82×0.5 m.

To emulate a rocking ship in sea waves, it performs a whole-body

pitching motion without belt translation.

2) Robot: The Digit robot is 1.6-m tall, and each leg’s

kinematic chain used by the filter has 12 joints. Different

robot movements are tested as (RM1) stepping and (RM2)

standing. The robot is about 0.8-m away from the treadmill

center.

3) Treadmill motion Profiles: To test filter performance under

different DRS motions, two different profiles of the treadmill’s

pitch angle θDRS (see Fig. 3) are tested: a) (TM1), a nonperiodic

trapezoidal waveftrap(t); and b) (TM2), a sine wave 2.5◦ sin(πt).
Under (TM1) and (TM2), the maximum contact point speeds

‖vc
t‖ are 0.41 and 0.11 m/s, respectively. To test the filter’s

robustness under surface motion inaccuracy, a fictitious profile

is considered as (TM3) θDRS(t) = ftrap(t) + 5.1◦ + 1.7◦ sin(πt)
with the actual profile (TM1) used in experiments. Fig. 4 shows

all profiles.

4) Onboard Sensors Used: Digit’s onboard sensors used

(see Fig. 3) are IMU, joint encoders, a RealSense RGB-D

camera, and the robot’s proprietary contact detector. The camera

returns data at 15 Hz, and the remaining sensors stream data at

the same rate within 60–90 Hz. Cortex motion capture cameras

provide the ground truth. ArUco markers are attached to the

treadmill, emulating the real-world scenario where legged robots

that navigate within a DRS (e.g., a vessel at sea) can only see

landmarks attached to the DRS, but not any landmarks on the

Earth’s ground. The markers are sensed by the camera to obtain

the camera pose in the treadmill frame, which is then used to

compute contact point velocity, as explained in the following

section.

5) Data Collection Cases: Fig. 5 shows screenshots of ex-

periments. The filter is simulated in MATLAB using four exper-

imentally collected datasets under different robot and treadmill

motions as follows.

a) Case A: Combination of (RM1) and (TM1).

b) Case B: Combination of (RM1) and (TM2).

c) Case C: Combination of (RM2) and (TM1).

Authorized licensed use limited to: Purdue University. Downloaded on February 05,2023 at 02:17:02 UTC from IEEE Xplore.  Restrictions apply. 



1906 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 27, NO. 4, AUGUST 2022

Fig. 6. Procedure of obtaining the 3-D contact point position in the
DRS frame using the ArUco markers and the robot’s onboard RGB-D
camera.

Fig. 7. Validation results of the proposed method for obtaining the

contact point velocity ṽ
c
t � [ṽcx, ṽ

c
y , ṽ

c
z ]

T under case C. The velocity
along the y-direction ṽcy is zero because the treadmill does not move
in that direction.

d) Case D: Combination of (RM1) and (TM3), where the

actual profile is (TM1), but the filter uses the inaccurate

data (TM3).

The experiment video is online available at: https://youtu.be/

ScQIBFUSKzo.

B. Filter Setting

1) Filters Compared: The proposed filter (denoted as

“InEKF-DRS”) is compared with an InEKF, designed for loco-

motion on a static rigid surface [12] (denoted as “InEKF-SRS”).

The InEKF-SRS models the deterministic contact point motion

as ṗc = 0, and uses the position measurement in (16) alone.

It renders the base orientation (except for yaw) and velocity

observable. It has realized substantially faster convergence under

large errors during stationary surface locomotion, as compared

with the EKF-based method [1]. Also, the proposed InEKF-DRS

is compared with an EKF-based filter, which we formulate by

augmenting the existing EKF designed for static surfaces [1]

to explicitly handle nonstationary surfaces. Details of the aug-

mentation and comparison results are in Section 8.3 of supple-

mentary material. The rest of this section focuses on comparing

InEKF-DRS and InEKF-SRS.

2) Contact Point Velocity Computation: The contact point

velocity ṽc serves as an input to the continuous-phase process

model of the proposed InEKF-DRS. To obtain the contact point

velocity ṽc (see Fig. 6), we first obtain the camera pose in the

DRS frame by processing the features of the ArUco markers

in the camera images, which we then use to compute the 3-D

contact point position in the DRS frame (DRSpc) through forward

kinematics. Next, we estimate the contact point velocity ṽc

based on (4) using the known treadmill motion data. Details

of this procedure are in Section 7 of supplementary material.

Results in Fig. 7 validate the accuracy of the proposed contact

point velocity sensing.

TABLE I
NOISE SD FOR INEKF-SRS AND INEKF-DRS

3) Covariance Settings: Table I gives the noise standard

deviation (SD) of both filters. The SD for the accelerometer,

gyroscope, and their corresponding biases are obtained from

the manufacturer’s manual with a slight adjustment for better

performance. The SD for the encoder readings is adopted from

the previous filter [12] designed for a similar robot. The SD for

the contact-point velocity and orientation-based measurement

are tuned for a reasonable performance. The initial value of the

covariance P is set as an identity matrix.

4) Initial Estimation Errors: For a fair comparison, the two

filters are simulated under the same large range of initial esti-

mation errors. The initial velocity and orientation errors in each

direction are uniformly distributed within [−1.5, 1.5] m/s and

[−1, 1] rad, respectively.

C. Computation Time Comparison

In MATLAB, both filters take less than 1 ms to compute one

estimation cycle (i.e., one propagation and one update step),

confirming their validity for real-time estimation.

D. Convergence Rate and Yaw Observability
Comparison

Fig. 8(a) shows the estimation results of InEKF-DRS (pro-

posed) and InEKF-SRS under case A where the treadmill stays

at a pitch angle of −8◦ for approximately 2.8 s, and then begins

to pitch until reaching +8◦ in 0.5 s.

Both filters drive the error of base roll, pitch, and velocity

closer to zero, indicating their observability, as predicted in

Section V and previous work [1], [12]. In terms of the conver-

gence rates for these variables, Fig. 8(a) shows that the proposed

InEKF-DRS is faster than InEKF-SRS, driving the error close

to zero within 1 s. This is because InEKF-DRS considers the

surface motion and has an additional measurement (15) that

corrects estimates.

Under InEKF-DRS, the yaw estimate converges close to the

ground truth in approximately 3 s, which supports the observ-

ability analysis in Section V that the yaw angle is observable if

the DRS/treadmill is not horizontal. Yet, the yaw convergence

is slower than pitch and roll, possibly because both observa-

tions in (15) and (16) help correct the roll and pitch estimates,

whereas only the former corrects the yaw estimate. Finally, as
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Fig. 8. Base velocity and orientation estimation results of the filters InEKF-DRS and InEKF-SRS for cases A and D. The red-shaded area indicates
the range of the state estimates for 10 runs. The red solid line is the ground truth. The blue-dashed line is the treadmill angle. (a) Case A.
(b) Case D.

TABLE II
RMS ERROR COMPARISON UNDER CASE A

Fig. 9. Accuracy comparison of InEKF-SRS and InEKF-DRS (pro-
posed) for the estimation of base velocity and roll and pitch angles under
case A.

previously revealed [1], the yaw error divergence under InEKF-

SRS confirms that the base yaw is indeed nonobservable with

InEKF-SRS.

E. Accuracy Comparison

Table II gives the comparison of the root mean square (rms)

estimation errors for base orientation (including yaw) and veloc-

ity under case A. Fig. 9 shows the corresponding time evolution

of the errors for base roll, pitch, and velocity under case A. The

table and the figure show that the proposed InEKF-DRS is more

accurate in velocity and orientation estimation compared with

InEKF-SRS.

F. Performance Under Different DRS and Robot
Movements

Fig. 1(a) and (b) in supplementary material show the es-

timation results of the two filters under case B (where the

treadmill motion is different from case A) and case C (where the

robot stands on the treadmill instead of walking as in case A),

respectively. The plots show that the performance comparison

of the two filters under cases B and C are similar to case A [i.e.,

Fig. 8(a)], in terms of convergence rate and accuracy, indicating

that the InEKF-DRS can effectively handle different DRS and

robot movements.

Comparing the yaw estimate under the InEKF-DRS in cases

A–C, we notice that the yaw estimate in case C converges

faster than cases A and B. In case C, the treadmill remains

horizontal for the first 10 s, during which the yaw estimate does

not converge. Yet, once the treadmill begins to rock at t = 10

s, the yaw estimate converges close to the ground truth within

1 s, whereas it takes about 3 s for the yaw estimate to enter a

similar neighborhood under cases A and B. This might be due to

the fact that in case C, by the time the treadmill begins to pitch,

the estimates of the rest observable state are already sufficiently

accurate, making the yaw error correction faster than cases A

and B.

G. Robustness Assessment

Results from cases A [see Fig. 8(a)] and D [see Fig. 8(b)]

confirm the robustness of the proposed InEKF-DRS under in-

accurate surface pose knowledge. Case D emulates the scenario

where the DRSs motion monitoring system fails to provide accu-

rate DRS pose. Fig. 8(a) and (b) show that the filter performance

(e.g., convergence rate, accuracy, and yaw observability) under

case D is similar to that under case A. Specifically, the velocity

estimate under InEKF-DRS converges to the ground truth in all
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directions within 1 s. Also, the orientation convergence rates are

similar, the roll and pitch estimates converge close to the ground

truth within 0.3 s, the yaw angle converges within 3 s. Longer

periods (10–30 s) of estimation results for cases A–D are shown

and discussed in supplementary material.

VII. DISCUSSION

This article has designed an InEKF that estimates the ori-

entation and velocity of a bipedal robot that walks on a DRS

with a known relatively significant motion, by fusing the known

surface pose and the leg, visual, and inertial odometries. Similar

to the InEKF [12] and EKF [1] designed for stationary surfaces,

the filter uses the IMU motion dynamics as the process model

and the 3-D contact point position and leg kinematics to form

a measurement model. Different from the previous work, the

proposed contact-point process model does not assume that the

contact point is static, but instead explicitly considers its move-

ment in the world. Also, we have introduced a right-invariant

measurement model based on the rotational kinematic relation-

ship between the surface and support foot. Thanks to these

features, the filter ensures accurate estimation under relatively

large surface motion and estimation errors, as given by the rms

errors in Table II and the state trajectories in Figs. 8 and 9.

The proposed filter is suitable for a DRS with a relatively

accurately known surface pose profile, but may not be effective

under overly inaccurate or unknown profiles. One potential

solution is to extend this filter to estimate the surface pose, by

constructing a matrix Lie group that includes the surface pose in

the state and formulating an InEKF with fundamental benefits.

This article also assumes the robot’s feet do not persistently

and significantly slip on the surface. When the surface is slip-

pery [22], the support foot may move relative to the surface,

causing discrepancy between the actual robot movement and

the models. Yet, the proposed method could be extended to ad-

dress slippage during DRS locomotion by incorporating existing

techniques [2], [23], such as using an RGB-D sensor to measure

the base velocity [23].

VIII. CONCLUSION

This article introduced a right-InEKF for bipedal humanoid

walking on a moving surface. The filter design explicitly consid-

ered the known surface movement and hybrid robot behaviors

while enjoying the fundamental benefits of satisfying the attrac-

tive group-affine condition and invariant observation form in the

absence of IMU biases. Observability analysis for the continuous

locomotion phases showed that the robot’s base velocity and roll

and pitch angles are observable, and the base yaw angle becomes

observable when the DRS is not horizontal. Stability analysis

proved the asymptotic error convergence of these observable

states for the hybrid deterministic system. Experimental results

of humanoid walking on a pitching treadmill validated the

enhanced accuracy and convergence rate of the proposed filter

over existing work, in the presence of large estimation errors

and moderate DRS movement.
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