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Invariant Filtering for Legged Humanoid
Locomotion on a Dynamic
Rigid Surface
Yuan Gao “, Student Member, IEEE, Chengzhi Yuan“, Member, IEEE, and Yan Gu

Abstract—State estimation for legged locomotion over
a dynamic rigid surface (DRS), which is a rigid surface
moving in the world frame (e.g., ships, aircraft, and trains),
remained an underexplored problem. This article intro-
duces an invariant extended Kalman filter that estimates the
robot’s pose and velocity during DRS locomotion by using
common sensors of legged robots [e.g., inertial measure-
ment units (IMUs), joint encoders, and RDB-D camera]. A
key feature of the filter lies in that it explicitly addresses
the nonstationary surface—foot contact point and the hybrid
robot behaviors. Another key feature is that in the absence
of IMU biases, the filter satisfies the attractive group affine
and invariant observation conditions, and is thus provably
convergent for the deterministic continuous phases. The
observability analysis is performed to reveal the effects of
DRS movement on the state observability, and the conver-
gence property of the hybrid deterministic filter system is
examined for the observable state variables. Experiments
of a Digit humanoid robot walking on a pitching tread-
mill validate the effectiveness of the proposed filter under
large estimation errors and moderate DRS movement. The
video of the experiments can be found at: https://youtu.be/
ScQIBFUSKzo.

Index Terms—Dynamic environments, legged locomo-
tion, state estimation.

[. INTRODUCTION

robot’s movement state (e.g., pose and velocity) needed for
planning and control. While state estimation for locomotion on

S TATE estimation is essential to providing the estimates of a
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static [1] or relatively unstable surfaces [2] has been extensively
studied, state estimation for dynamic rigid surfaces (DRSs), such
as ships and aircraft [3], has not been fully investigated. This
article aims to solve the estimation problem for DRS locomotion.
Yet, solving this problem is challenging due to the nonstationary
surface—foot contact point [3], [4] and the hybrid robot dynamics
involving both continuous behaviors and discrete foot-landing
events [5]-[7].

Extended Kalman filtering (EKF) [8], [9] has been used to
achieve real-time state estimation of legged locomotion on static
surfaces by fusing the data returned by common on-board sen-
sors, such as encoders (which measure the joint angles), as well
as inertial measurement units (IMUs) attached to the robot’s base
(which measure the base’s linear acceleration and angular ve-
locity in the base frame). Recently, EKF-based estimators have
been created to estimate a robot’s base pose and velocity [1],
[10]. These methods can be applied to general legged locomotion
because their formulation is independent of robot dynamics and
gait types. Specifically, the process model includes the IMU
motion and bias dynamics, and the measurement model is based
on the the leg odometry formed via the forward kinematics
between the base and the ground contact point. Yet, they may
not be effective for DRS locomotion because they assume the
foot—ground contact point is static in the world frame. Also,
similar to standard EKF, they may not handle large estimation
errors well, because the underlying system linearization depends
on the true state, but is evaluated at the state estimate [11].

To ensure provable, rapid convergence under large estimation
error, the previous EKF-based design [1] has been transformed
into an invariant extended Kalman filter InEKF) for legged loco-
motion on static surfaces [12], [13]. By the theory of INEKF [14],
when the InEKF system meets the group affine and invariant
observation conditions, the system linearization is independent
of the true state, and thus is valid even under relatively large
errors. Still, the effectiveness of these methods in handling DRS
locomotion is unclear, especially under a relatively significant
surface motion (e.g., ship motion under sea waves [15]), because
of the underlying assumption of stationary surface—foot contact.

To address hybrid robot behaviors, state estimators for hybrid
models of legged locomotion [16], [17] have been derived.
However, the convergence property of invariant filters for hybrid
locomotion models has not been examined.

This article introduces an INEKF method to produce real-time
accurate state estimation for bipedal humanoid walking on a
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DRS even under relatively large estimation errors. The main
contributions of this article are as follows:

1) Deriving an InEKF that considers the DRS motion and
hybrid robot behaviors and meets the group affine and
invariant observation properties without IMU biases.

2) Building a right-invariant measurement model based on
the rotational constraint at the surface—foot contact area,
enhancing the convergence rate, and rendering the base
yaw angle observable under general DRS movement.

3) Performing observability analysis that reveals how the
DRS pose affects state observability, and proving the
stability for the hybrid deterministic error dynamics.

4) Demonstrating the computational efficiency, accuracy,
and robustness of the proposed filter through experiments
of humanoid walking on a rocking treadmill.

Some results in this article have been reported [18]. The new
substantial contributions of this article are the last three items in
the aforementioned list.

The rest of this article is organized as follows. Section II
provides a brief background on matrix Lie groups. Section III
presents the problem formulation. Section IV introduces the
proposed InEKF for the hybrid model of DRS locomotion.
Section V provides observability and convergence analysis.
Section VI reports experiment results. Section VII discusses the
capabilities and limitations of the filter. Finally, Section VIII
concludes this article.

Il. PRELIMINARIES

The matrix Lie group, denoted as G, is a subset of n x n
invertible square matrices. The associated Lie algebra g with a
dimension of dimg is a set of n x n square matrices. The linear
operator (-)" maps any vector & € RY™8 onto g. The exponential
map exp : R4™9 — G is defined as exp(&) = expm(£”), where
expm is the usual exponential of n x n matrices. The inverse
operator of (-)" is denoted as (-)" : g — R%M8, The adjoint
matrix Adx at X for any vector £ € R4™9 is defined as
Adx¢ = (X¢"X1)V. More detailed introductions to matrix
Lie groups can be found in [19]. A nomenclature table is given
in supplementary material.

[ll. PROBLEM FORMULATION

In the proposed filter design, the state is chosen as variables
that are often needed in locomotion planning and control, in-
cluding the linear velocity v € R? and orientation R € SO(3)
of the robot’s base (e.g., chest) expressed in the world frame
(see Fig. 1). The state also includes the base position p € R3
and contact-point position p¢ € R? (see Fig. 1), so as to exploit
the forward kinematics between the base and contact/foot frames
in the filter design [1], [12].

The DRS of interest possesses two common characteristics
of real-world DRSs, such as aircraft and vessels. First, when
traveling on such surfaces, a robot can only see landmarks
attached to the surface instead of the world frame, e.g., due
to the concealed environment on the surface. Second, the DRS
orientation RPRS € SO(3) and linear and angular velocities

{Camera} | (Base}
DRSRcam
DRSpcam hR(q)
DRSpy¢
/e\hf@ C \,
s
{DRS} {Contact 4

RDRS (DRS g9DRS

Fig. 1. [lllustration of coordinate frames and key variables. The
treadmill is a DRS that rotates in the world frame.

vPRS ((,DRS  R3 respectively, (see Fig. 1) are relatively accu-

rately known. This is a reasonable assumption because these
real-world DRSs are typically equipped with high-accuracy
motion monitoring systems [20]. Also, the proposed filter design
explicitly treats the inaccurate knowledge of surface pose and
motion, as explained in Section I'V.

The sensors considered in this study are common on-board
sensors, which are an IMU attached to the robot’s base, joint
encoders, ared green blue-depth (RGB-D) camera, and a contact
indicator. The RGB-D camera tracks the landmarks attached to
the DRS, which is used to obtain the camera pose in the DRS
frame. The contact indicator detects foot landing events.

The encoders measure the joint angles q € R™ with m num-
ber of joints. Corrupted by the white zero-mean Gaussian noise
w4, the raw encoder data q are expressed as q = q + w¥.

The IMU includes a gyroscope and an accelerator that mea-
sure the angular velocity w € R? and the linear acceleration
a € R? of the IMU, respectively, in the base frame. Corrupted
by the white Gaussian zero-mean noise w?, w* € R3, as well
as biases b%, b* € R3, the IMU readings a and & are expressed
asa=a+ b+ w®and w = w+ b¥ + w¥, respectively.

A. Continuous-Phase IMU Motion and Bias Dynamics

To form the process model, we choose to adopt the IMU
motion dynamics due to its accuracy and simplicity [1]. At time
t, the IMU motion dynamics is given by

Rt = Ry(0r — by —w)«
vi = R¢(a; — bf —w{) +g,andp; = vy (D

where () is a skew-symmetric matrix and g is the gravitational
acceleration vector. The IMU bias dynamics is modeled as the
Brownian motion [12]

b = w® and b¥ = wb* )

where w?® and w* are the white zero-mean Gaussian noises.

B. Continuous-Phase Contact-Point Motion Dynamics

During DRS locomotion, the foot moves in the world frame
due to the surface movement. Thus, the deterministic motion
model of the contact point is not p; = 0 as in previous work [1],
[12] on static surfaces. Instead, we explicitly consider the contact

Authorized licensed use limited to: Purdue University. Downloaded on February 05,2023 at 02:17:02 UTC from IEEE Xplore. Restrictions apply.



1902

IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 27, NO. 4, AUGUST 2022

point velocity v{ in the model
p; = Vi 3

In this study, to inform the model in (3), we choose to directly
measure the contact point velocity based on the known surface
pose and motion and the measured contact position in the DRS
frame through the following kinematics:

DRS DRS DRSDRS
vi=vyo twp x (Ry P “
where PRSp¢ is the contact point position relative to the DRS

frame, expressed in the DRS frame (see Fig. 1). Note that
the computation of the velocity PRSp¢ depends on the robot’s
camera data and the joint angle data returned by encoders.
Also, recall that the surface orientation RPRS and the motions
wPRS and vPRS are assumed to be known as explained earlier.
An example of computing vy is given in Section VI.

The velocity computation inaccuracy is considered as
vi =vi+Rywy 5)

where v§ € R? is the measured contact point velocity and the
inaccuracy wy is modeled as the white Gaussian zero-mean
noise expressed in the base frame.

C. Discrete Jump Dynamics at a Foot Landing

At a foot landing, the swing and support legs switch roles,
causing a discrete jump in the contact point position py. To
appropriately propagate the estimate and covariance at foot
landings, we choose to explicitly consider the jump.

The jump map of the contact point position py is

p;+ = p; + R:he(qy) (6)

where the subscript ¢ denotes the timing just after the foot
landing at ¢ and the function h, is the forward kinematics from
the previous support-foot position to the new one, expressed in
the base frame. Except for p§, all other state variables remain
continuous at foot switching.

With the first-order Taylor expansion, the nonlinear term in
the jump dynamics (6) can be approximated as R:h.(q;) =~

R:h.(q:) — Re 5= (Qr)wi.

oh,
oq

D. Position-Based Forward Kinematics Measurement

To connect the contact and the base frames, we adopt the leg
odometry measurement in [1], [12] [see Fig. 2(b)]

R (p{ — p:) = hy(a) 7

where the forward kinematics function hy, is the support foot

position relative to the base expressed in the base frame. Given

the inaccuracy of the encoder reading q; = q + w9 and with the

first-order Taylor expansion, the model in (7) can be rewritten
- oh, /~

as hy(q;) =~ hy(q:) — an(Qt)Wg

E. Contact Orientation-Based Measurement

When the support foot and the surface have a full area con-
tact, their normal vectors are parallel, whether the surface is
stationary or moving [see Fig. 2(a)]. In this study, we utilize this

Z{Warld}J . \ Z{World}‘] 'L(:{Bm}
Forward

aigms V) ) iy
. 4 r ¥ irlllerazlit)ics

vectors ¢ %
{DRS}< ; {Contact} & Contact}

(a) (b)

Fig. 2. lllustrations of the observations. (a) Normal vector alignment
of the contact and DRS frames. (b) Contact point position in the base
frame.

rotational kinematic relationship to form a measurement model.
Suppose that the z-axis of the contact and surface frames are
aligned and normal to the DRS. Then, the following hold:

RPRS [0 0 1]7

—R[0 0 1]"=Rshg(q) [0 0 1]7
(®)
where RY € SO(3) is the contact frame orientation and the
forward kinematics matrix function hp is the support foot
orientation with respect to the base frame (see Fig. 1).
_ To address the inaccuracy of the known surface orientation
RPRS, we assume that the true orientation is corrupted by
the white Gaussian zero-mean uncertainty wPRS as RPRS =
exp(—wPRS)RPRS ~ (I; — (wPRS), )RPRS, where I, isann x
n identity matrix.

To handle the inaccuracy of the encoder reading qy,
the support foot orientation R:hg(q:) is approximated
as Rihgr(q:) ~ Rihg(q:) — RiJp, (Qr, wi), where the ma-
trix Jp,(q:, wi) is obtained based on the Jacobian

of each column of hRé[hRJ,hR,z,hRﬁ] as Jp, =

Ohr, =~ dhg, (~ dhp; /~
[ Th @, wi, T2 (@) w2 (G Jw |
Combining these equations yields

RTRP® [0 0 1]7 +RT(—wPR) RP® [0 0 1]7
~ T ~
~hp(@)[0 0 1]" — 22 (g )wi. ©)

IV. FILTER DESIGN

This section introduces the proposed InEKF design based on
the models formulated in Section III.

The proposed filter derivation begins with proper state repre-
sentation. We adopt the representation in [12] since our filters
estimate the same state. First, the state variables R;, v, p¢, and
py are expressed on the matrix Lie group G as

Xt é |: Rt [Vtapt7pg]:| Gg (10)

033 I
where 0,,,x,, isanm x n zero matrix. The Lie group G is SE3(3),
an extension of the special Euclidean group SE(3).

To explicitly handle IMU biases, they are also chosen as state
variables. These biases are typically expressed on the vector
space instead of G [14], that is, 8; = [(b¥)T, (b#)T]T.

Let (-) denote the estimate of the variable (-). Based on the
InEKF framework [11], we use the right-invariant error 7, to
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represent the estimation error of X; on G as

n, 2 X, X; ' €g. (11)

The log of the invariant error, denoted as &,, is a vector on
RYmS defined via 1, = exp(&;) = expm(&)'). The expressions
of 1, &,, and &, are in Section 2 of supplementary document.
The IMU bias error ¢, is defined as ¢, = 0, — 6.

A. Continuous-Phase Process Model and Propagation
Step

This section introduces the process model and propagation
step of the proposed filter for the continuous phases.

1) Process Model: Based on the IMU motion and bias dy-
namics and the contact point motion in (1)—(3), the process
model is expressed as

Rt(‘:’t - bf)x [Rt(ét - bta) —+ g7vt»‘~’tc]
033

= Xy (W) &£, (Xe, 0) — Xy (wi)"

X =
¢ 033

(12)

with the noise vector wiX £ [(w¥)T, (wi)T, 013, (w§)T T,
Here, we define the input u; to consist of the IMU and en-
coder readings and the measured contact point velocity, i.e.,
w, = [@],al, (¥6)7,q.]7. Note that the encoder reading
is not an input to the continuous-phase process model in (12),
but is used later in the jump process model.

2) Linearized Error Model: By using the first-order Taylor
expansion 7, ~ I + £ and by applying the chain rule to express
1);, we obtain the linearized error equation

& & Adx, 012x6
B = A t
{Ct tl¢, + O6x12  Ig W
where the noise term w; is w; = [(w;X)T, (wb)T | (wha)T]T,

the adjoint matrix Ady, is given in Section 3 of supplementary
material, and the matrix A, is

13)

03x3 033 0343 033 —Ry 0343
(8)x 0343 033 03x3 — (V1)< Rt —Ry
0553 I3 0343 03x3 —(Pr)x Rt 0353
(V§)x 0333 0353 033 —(P7)xRi 0343
06x3 O6x3 06x3 O6x3  0O6x3  Opx3

A= (14)

Note that A, contains the contact point velocity v{ because
the process model explicitly considers it. Derivation of (13) and
(14) is in Section 3 of supplementary material.

3) Propagation: Let t, (n € {1,2,...}) denote the time
when sensors return data for estimation error correction. Then,
during the propagation step on t € [t,,_1,%,), the estimates X
and 0 are obtained via X; = f,, (X, ;) and 6; = 0 based on
the process models in (2) and (12).

By the InEKF methodology, the covariance matrix P, is
propagated via the Riccati equation associated with the lin-
earized error model in (13) as P, = AP, + PAT + Q;, where
~ o |Adg, O Adg, 01246 g
Q= |:06><12 Is }COV(W” [06x12 Is }

Remark 1 (Group Affine Property): Without IMU biases, the
continuous process model in (12) is group affine, as defined

in [11]. Thus, without biases and in the deterministic case, the
linear error dynamics in (13) is exact and independent of the true
state, and the covariance propagation is exact. Such features are
different from the standard EKF whose linearization accuracy
relies on estimation error.

B. Continuous-Phase Measurement Models and Update
Step

This section formulates the two measurements in (7) and (9)
into the right-invariant observation form defined in [11] and
introduces the update step of the proposed InEKF at time %,,.
These treatments result in an error update equation, which is
independent of the true state.

1) Right-Invariant Orientation-Based Measurement: The
orientation-based measurement in (9) can be rewritten into the
following right-invariant observation form:

0 0
hr(@)e, [0 | _ -1 f{?fs 0 Vi,
1| = A | Tl os, | @
0351 031
Yitn di, iy,

with Vi, = RY (RPRS[001]7), wpRS 4 2802 (g Jwi .

2) Right-Invariant Position Measurement: The position mea-
surement in (7) can be expressed as [12]

h,(qe,) 03 o
o 2 (G, )W
— 1 ) tn) Wi,
1 - th 1 + a 03)(1 . (16)
—1 —1
Y1 da, ey,

3) Update: Attimet,,, the updated estimates and covariance,
denoted as (Xln , 9_1") and Pin, respectively, are given by [11]

X, =exp (L 2,) X1, 01, =0,

+L§ 2, P] = (I-L,H, )P, (7
where Ly, £ [(LS )7, (L )77 is  the filter
gain, H;  is the observation matrix, and 2z, £

[(Xe, Yz, — i) (Xe, Yo, —doy, )77,

To derive the observation matrix H, , we first decom-
pose it into H, =[H{, ,HJ, |7, where Hj,, € R
and Hy ;, € R®*12 are, respectively, associated with the mea-
surement models in (15) and (16). Since the measurement
models are not explicitly dependent on biases, the ma-
trix H;;, (i = 1,2) can be further decomposed as H; ;, £
[Hi ¢, ,03x6; 03512, 036 ], Where the element 03,6 correspond
to the bias terms and the element 03> could be removed if
a reduced-dimensional filter gain is instead used, as in [12].
Based on the right-InEKF methodology [11], we obtain the

submatrix H;; via I;Iu,ngtn =—(&, ) \diy, as I~{17tn 2
[(RPRS[0,0,1]7), 03x0] and Hy ;, £ [03,6, —1I3, I3].
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To compute L, , the linearized error update equation is ob-
tained based on the update (17) as

Rt s ((ltn)

n 0qt

51} —(1_ |:£tn:| 03,1 q
|:C1" (I-L, H;) ¢, +Li, | = . % (@) A
03x1
(18)
with derivation given in Section 4 of supplementary material.
Then, applying the standard Kalman filtering
methodology to this linear error update equation,

we obtain the filter gain L, =P, H]S;' where
Si, = H, P, Hf + Ny, N;, £ diag(Ni¢,,Nog,),

S = Ohps - Ohps =
Ni, = Re, G (@,,)Cov(wi )(Fe* (@r,))"R,,  and
< = oh, - oh, =

Nai, £ Re, o2 (G, )Cov(wi ) (Fe2 (G, ) RY, .

Remark 2 (Independence of True State): The linearized error
update (18) is independent of the true states X; and 6; in the
deterministic case. This is because both measurement models
satisfy the right-invariant observation form with respect to X;
and are independent of 8;, and because the update equation
of X, is in the exponential form as prescribed by the INEKF
methodology [11].

C. Discrete Process Model and Propagation Step

Without loss of generality and for simplicity, suppose that
the foot-landing events and the updates do not coincide. Thus,
the proposed filtering for the state jump focuses on estimate
and covariance propagation without update. Except for the true
contact point position pg, the rest of the true state is continuous
across a foot landing, as explained in Section III.

1) Process Model: From the proposed jump dynamics in
Section III, the stochastic jump dynamics of X; can be approx-
imately expressed as

~ - A
I; [03><1703><17hc(Qt)]:| X [%hc (Clt)Wg]
0353 I ! 0351

X+ =Xy

2 A, (X)) - X (wi) (19)
where the function A, (X;) is the deterministic jump dynamics
and the encoder data q; serves as the input. As the biases are
continuous under a jump event, 8,+ = 6 holds.

Remark 3 (Group Affine Property): The jump map A, of
the state X; possesses the discrete-time group affine property
defined in [21], and is independent of IMU biases 8. Thus, the
jump dynamics of the error &, is independent of the true state
and is exactly linear. Moreover, from the expression of A, in
(20), we can see that A, is a group action on SE;(3), under
which the error =¢&, naturally does not change.

2) Error Equation: From (20), we obtain the dynamics of
the logarithmic error &, as &,+ = &, — Adgw?. Indeed, as
analyzed in Remark 3, the error does not jump under A, . Also,
¢4+ = ¢, holds since the IMU biases are continuous.

3) Propagation: Based on the deterministic portion of the
jump model in (20), the propagations of the state estimate at a
jump event are X;+ = A, (X;) and 0,+ = 6;.

With the linear error equation of £ and ¢ across a jump, the
propagation of the covariance matrix is expressed as P+ =
P, + QO where Q2 — AdxCov(wit)Adx 033 |
03x3 03,3

The complete algorithm of the proposed right-InEKF is sum-
marized as Algorithm 1 in supplementary material.

Remark 4 (Imperfect InEKF): In the presence of IMU biases,
the proposed filter is no longer a “perfect” INEKF in the sense
that the group affine and invariant form properties no longer hold
for continuous phases. Although the linear equation in (13) is
no longer independent of the true state, it depends on the true
state only through the bias terms, while the remaining part of
the Jacobian matrix A, is still independent of the true state.
Also, the measurement models are still independent of the true
states X; and 0, as highlighted in Remark 2. For these reasons,
the linearization inaccuracy induced by the biases has a limited
impact on the continuous-phase propagation and update. Thus,
the “imperfect INEKF” with biases considered can still ensure
rapid and accurate convergence under large errors, which is
experimentally confirmed on DRS locomotion, as reported in
Section VI.

V. OBSERVABILITY AND CONVERGENCE ANALYSIS
A. Observability Analysis for Continuous Phases

As measurement update is performed during continuous
phases, we only analyze the continuous-phase observability.

Recall that the deterministic continuous-phase dynamics in
(12) is group affine in the absence of IMU biases 8 (see Remark
1). Also, recall that the measurement models in (15) and (16)
are in the right-invariant observation form with respect to X,
regardless of the presence of biases (see Remark 2). Then, by
[14, Theorem 20], the observability of X; for the complete
continuous-phase system, which has both X; and 8; as its
states, is the same as that of the simplified continuous-phase
system without IMU biases. Thus, by [11, Theorem 5], the local
observability of X, for the complete system can be determined
by the couple (A, H) with A and H updated with bias-related
terms removed (see Section 6 of supplementary material).

With At the duration of one propagation step, the discrete
state transition matrix ® is given by ® = expm(A;At) [11]
(see Section 6 of supplementary material for the expression of
®). Then, from O = [(H)”, (H®)”, (H®*)”,...]7, we have

(RDRS [Ov 07 I]T)X 03><3
033 05x3 Iz I3
(RPRS10,0,1]7)x 03x3 0343 O3x3
—3(g)« A LAt -I; Iy

0353 033

O = (20)

As the first two columns of (g) are linearly independent, the
base roll and pitch angles are observable. Because all columns
in the second column block of O are linearly independent, the
base velocity v is observable. Yet, as the last two column blocks
are linearly dependant, the base position p; and contact point
position p§ are unobservable.

The third column of (g)« is always zero, because only its
z-component is nonzero. Then, if the surface is nonhorizontal,
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Fig. 3. Experimental setup that includes a Digit bipedal humanoid
robot and a pitching treadmill (i.e., DRS).

(i.e., the third column of (RPRS[0,0, 1]7) is not all zero), the
yaw will be observable; otherwise, it is unobservable.

From the expression of £, we also know that the contact
velocity v§ does not affect observability, either measurement
model ensures observable base roll and pitch, the proposed mea-
surement in (15) renders base yaw observable and the previous
measurement in (16) makes base velocity observable.

B. Convergence Property for the Hybrid Error System

The proposed convergence analysis for the hybrid error sys-
tem is built upon previous analysis of the InNEKF as a determin-
istic observer for systems without state-triggered jumps [11].
Different from the previous work, this section analyzes the
effects of the jumps on the error convergence for the overall
hybrid error system.

We first analyze the error evolution across the deterministic
discrete jump of the system. Analyzing the state evolution across
discrete, state-triggered jumps (e.g., foot-landing impacts) are
typically complex [3]. Yet, since the jump map A, is a group
action, the error £, does not jump under A,,, despite the jump
of the true state X;. Also, the bias error ¢, is continuous across
a jump event. Thus, the hybrid deterministic error dynamics is
essentially continuous for all time, and its error convergence is
equivalent to that of the deterministic continuous phases.

For continuous phases, the proposed filter meets the group
affine condition and invariant observation form without biases,
as discussed in Section I'V. Thus, by the theory of InEKF [11],
the proposed filter is locally asymptotically convergent for the
observable variables of the deterministic continuous phases
without biases. Accordingly, the local asymptotic convergence
of the hybrid deterministic filter system is guaranteed in the
absence of biases.

This analysis also supports the local asymptotic convergence
of the existing InEKF [12] designed for static surface locomo-
tion, because the jump model in [12] is a group action and
its continuous-phase design also satisfies the group affine and
invariant observation conditions without biases.

VI. EXPERIMENTS

A. Experimental Setup

The setup for experimental data collection (see Fig. 3) is as
follows.

—TMI (trapezoidal) —TM2 (sinusoidal) — TM3 (inaccurate)

A A AAA AN eSS

5 10 15 20 25 3
time (s)

17

-10

OPRS (deg)

Fig. 4. Profiles (TM1)—(TM3) of the treadmill pitch angle §PRS(¢).

Fig. 5. Time-lapse figures of Digit walking on a rocking treadmill. The
black arrow indicates the treadmill’s direction of rotation.

1) Treadmill (i.e., Tested DRS): A split-belt Motek M-gait
treadmill is used as a DRS. Its dimension is 2.3x1.82x0.5 m.
To emulate arocking ship in sea waves, it performs a whole-body
pitching motion without belt translation.

2) Robot: The Digit robot is 1.6-m tall, and each leg’s
kinematic chain used by the filter has 12 joints. Different
robot movements are tested as (RM1) stepping and (RM2)
standing. The robot is about 0.8-m away from the treadmill
center.

3) Treadmill motion Profiles: To test filter performance under
different DRS motions, two different profiles of the treadmill’s
pitch angle #PRS (see Fig. 3) are tested: a) (TM1), a nonperiodic
trapezoidal wave fiqp (); andb) (TM2), asine wave 2.5° sin(7t).
Under (TM1) and (TM2), the maximum contact point speeds
|lv¢]l are 0.41 and 0.11 m/s, respectively. To test the filter’s
robustness under surface motion inaccuracy, a fictitious profile
is considered as (TM3) 0PRS () = fiuap(t) + 5.1° 4 1.7° sin(nt)
with the actual profile (TM1) used in experiments. Fig. 4 shows
all profiles.

4) Onboard Sensors Used: Digit’s onboard sensors used
(see Fig. 3) are IMU, joint encoders, a RealSense RGB-D
camera, and the robot’s proprietary contact detector. The camera
returns data at 15 Hz, and the remaining sensors stream data at
the same rate within 60—90 Hz. Cortex motion capture cameras
provide the ground truth. ArUco markers are attached to the
treadmill, emulating the real-world scenario where legged robots
that navigate within a DRS (e.g., a vessel at sea) can only see
landmarks attached to the DRS, but not any landmarks on the
Earth’s ground. The markers are sensed by the camera to obtain
the camera pose in the treadmill frame, which is then used to
compute contact point velocity, as explained in the following
section.

5) Data Collection Cases: Fig. 5 shows screenshots of ex-
periments. The filter is simulated in MATLAB using four exper-
imentally collected datasets under different robot and treadmill
motions as follows.

a) Case A: Combination of (RM1) and (TM1).

b) Case B: Combination of (RM1) and (TM2).

¢) Case C: Combination of (RM2) and (TM1).
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Fig. 6. Procedure of obtaining the 3-D contact point position in the
DRS frame using the ArUco markers and the robot’s onboard RGB-D
camera.

[small error during contact point movement|e- — — — =,

205 : 1
g F——(? ; - ? "*‘1'

=05 T : 4 . % !

= 05 e |
g L : I

e — === Y
.2 05 F—é/ i 5~ ] éf
" Eos ‘ :

0 25 5 75 10
time (s)
---- Ground truth Computed v{
Fig. 7. Validation results of the proposed method for obtaining the

contact point velocity ¢ £ [5¢ ﬁg,ﬁg]T under case C. The velocity

0
along the y-direction vy is zero because the treadmill does not move
in that direction.

d) Case D: Combination of (RM1) and (TM3), where the
actual profile is (TM1), but the filter uses the inaccurate
data (TM3).

The experiment video is online available at: https://youtu.be/
ScQIBFUSKzo.

B. Filter Setting

1) Filters Compared: The proposed filter (denoted as
“InEKF-DRS”) is compared with an InEKF, designed for loco-
motion on a static rigid surface [12] (denoted as “InEKF-SRS”).
The InEKF-SRS models the deterministic contact point motion
as p® = 0, and uses the position measurement in (16) alone.
It renders the base orientation (except for yaw) and velocity
observable. It has realized substantially faster convergence under
large errors during stationary surface locomotion, as compared
with the EKF-based method [1]. Also, the proposed INEKF-DRS
is compared with an EKF-based filter, which we formulate by
augmenting the existing EKF designed for static surfaces [1]
to explicitly handle nonstationary surfaces. Details of the aug-
mentation and comparison results are in Section 8.3 of supple-
mentary material. The rest of this section focuses on comparing
InEKF-DRS and InEKF-SRS.

2) Contact Point Velocity Computation: The contact point
velocity v© serves as an input to the continuous-phase process
model of the proposed InNEKF-DRS. To obtain the contact point
velocity v¢ (see Fig. 6), we first obtain the camera pose in the
DRS frame by processing the features of the ArUco markers
in the camera images, which we then use to compute the 3-D
contact point position in the DRS frame (PRSp€) through forward
kinematics. Next, we estimate the contact point velocity v°
based on (4) using the known treadmill motion data. Details
of this procedure are in Section 7 of supplementary material.
Results in Fig. 7 validate the accuracy of the proposed contact
point velocity sensing.

TABLE |
NOISE SD FOR INEKF-SRS AND INEKF-DRS

Measurement type InEKF-SRS | InEKF-DRS
Linear acc. (m/s?) 0.4 0.4
Angular vel. (rad/s) 0.01 0.01
Acc. bias (m/s?) 0.001 0.001
Gyroscope bias (rad/s?) 0.0001 0.0001
Contact vel. (m/s) 0.01 0.01
Encoder (°) 1 1
DRS orientation (°) N/A 1

3) Covariance Settings: Table I gives the noise standard
deviation (SD) of both filters. The SD for the accelerometer,
gyroscope, and their corresponding biases are obtained from
the manufacturer’s manual with a slight adjustment for better
performance. The SD for the encoder readings is adopted from
the previous filter [12] designed for a similar robot. The SD for
the contact-point velocity and orientation-based measurement
are tuned for a reasonable performance. The initial value of the
covariance P is set as an identity matrix.

4) Initial Estimation Errors: For a fair comparison, the two
filters are simulated under the same large range of initial esti-
mation errors. The initial velocity and orientation errors in each
direction are uniformly distributed within [—1.5,1.5] m/s and
[—1, 1] rad, respectively.

C. Computation Time Comparison

In MATLAB, both filters take less than 1 ms to compute one
estimation cycle (i.e., one propagation and one update step),
confirming their validity for real-time estimation.

D. Convergence Rate and Yaw Observability
Comparison

Fig. 8(a) shows the estimation results of INEKF-DRS (pro-
posed) and INEKF-SRS under case A where the treadmill stays
at a pitch angle of —8° for approximately 2.8 s, and then begins
to pitch until reaching +8° in 0.5 s.

Both filters drive the error of base roll, pitch, and velocity
closer to zero, indicating their observability, as predicted in
Section V and previous work [1], [12]. In terms of the conver-
gence rates for these variables, Fig. 8(a) shows that the proposed
InEKF-DRS is faster than INEKF-SRS, driving the error close
to zero within 1 s. This is because INEKF-DRS considers the
surface motion and has an additional measurement (15) that
corrects estimates.

Under InNEKF-DRS, the yaw estimate converges close to the
ground truth in approximately 3 s, which supports the observ-
ability analysis in Section V that the yaw angle is observable if
the DRS/treadmill is not horizontal. Yet, the yaw convergence
is slower than pitch and roll, possibly because both observa-
tions in (15) and (16) help correct the roll and pitch estimates,
whereas only the former corrects the yaw estimate. Finally, as
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transient periods that highlight the filters' convergence rates

steady-state periods that highlight the filters' final errors
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Fig. 8.

(b)

Base velocity and orientation estimation results of the filters INEKF-DRS and InEKF-SRS for cases A and D. The red-shaded area indicates

the range of the state estimates for 10 runs. The red solid line is the ground truth. The blue-dashed line is the treadmill angle. (a) Case A.

(b) Case D.

TABLE Il
RMS ERROR COMPARISON UNDER CASE A

State variables InEKF-SRS | InEKF-DRS
vy (m/s) 0.3320 0.2051
vy (m/s) 0.2488 0.1955
v, (m/s) 0.1438 0.1025
yaw (rad) 0.9294 0.2516
pitch (rad) 0.0897 0.0413
roll (rad) 0.1365 0.0318
—— InEKF-SRS —— InEKF-DRS

Error norm
(98]
o
i
|
ol
w|

time (s)

Fig. 9. Accuracy comparison of INEKF-SRS and InEKF-DRS (pro-
posed) for the estimation of base velocity and roll and pitch angles under
case A.

previously revealed [1], the yaw error divergence under InEKF-
SRS confirms that the base yaw is indeed nonobservable with
InEKF-SRS.

E. Accuracy Comparison

Table II gives the comparison of the root mean square (rms)
estimation errors for base orientation (including yaw) and veloc-
ity under case A. Fig. 9 shows the corresponding time evolution
of the errors for base roll, pitch, and velocity under case A. The
table and the figure show that the proposed INEKF-DRS is more
accurate in velocity and orientation estimation compared with
InEKF-SRS.

F. Performance Under Different DRS and Robot
Movements

Fig. 1(a) and (b) in supplementary material show the es-
timation results of the two filters under case B (where the
treadmill motion is different from case A) and case C (where the
robot stands on the treadmill instead of walking as in case A),
respectively. The plots show that the performance comparison
of the two filters under cases B and C are similar to case A [i.e.,
Fig. 8(a)], in terms of convergence rate and accuracy, indicating
that the INEKF-DRS can effectively handle different DRS and
robot movements.

Comparing the yaw estimate under the INEKF-DRS in cases
A-C, we notice that the yaw estimate in case C converges
faster than cases A and B. In case C, the treadmill remains
horizontal for the first 10 s, during which the yaw estimate does
not converge. Yet, once the treadmill begins to rock at ¢ = 10
s, the yaw estimate converges close to the ground truth within
1 s, whereas it takes about 3 s for the yaw estimate to enter a
similar neighborhood under cases A and B. This might be due to
the fact that in case C, by the time the treadmill begins to pitch,
the estimates of the rest observable state are already sufficiently
accurate, making the yaw error correction faster than cases A
and B.

G. Robustness Assessment

Results from cases A [see Fig. 8(a)] and D [see Fig. 8(b)]
confirm the robustness of the proposed INEKF-DRS under in-
accurate surface pose knowledge. Case D emulates the scenario
where the DRSs motion monitoring system fails to provide accu-
rate DRS pose. Fig. 8(a) and (b) show that the filter performance
(e.g., convergence rate, accuracy, and yaw observability) under
case D is similar to that under case A. Specifically, the velocity
estimate under INEKF-DRS converges to the ground truth in all
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directions within 1 s. Also, the orientation convergence rates are
similar, the roll and pitch estimates converge close to the ground
truth within 0.3 s, the yaw angle converges within 3 s. Longer
periods (10-30 s) of estimation results for cases A—D are shown
and discussed in supplementary material.

VIl. DISCUSSION

This article has designed an InEKF that estimates the ori-
entation and velocity of a bipedal robot that walks on a DRS
with a known relatively significant motion, by fusing the known
surface pose and the leg, visual, and inertial odometries. Similar
to the InEKF [12] and EKF [1] designed for stationary surfaces,
the filter uses the IMU motion dynamics as the process model
and the 3-D contact point position and leg kinematics to form
a measurement model. Different from the previous work, the
proposed contact-point process model does not assume that the
contact point is static, but instead explicitly considers its move-
ment in the world. Also, we have introduced a right-invariant
measurement model based on the rotational kinematic relation-
ship between the surface and support foot. Thanks to these
features, the filter ensures accurate estimation under relatively
large surface motion and estimation errors, as given by the rms
errors in Table II and the state trajectories in Figs. 8 and 9.

The proposed filter is suitable for a DRS with a relatively
accurately known surface pose profile, but may not be effective
under overly inaccurate or unknown profiles. One potential
solution is to extend this filter to estimate the surface pose, by
constructing a matrix Lie group that includes the surface pose in
the state and formulating an InEKF with fundamental benefits.

This article also assumes the robot’s feet do not persistently
and significantly slip on the surface. When the surface is slip-
pery [22], the support foot may move relative to the surface,
causing discrepancy between the actual robot movement and
the models. Yet, the proposed method could be extended to ad-
dress slippage during DRS locomotion by incorporating existing
techniques [2], [23], such as using an RGB-D sensor to measure
the base velocity [23].

VIII. CONCLUSION

This article introduced a right-InEKF for bipedal humanoid
walking on a moving surface. The filter design explicitly consid-
ered the known surface movement and hybrid robot behaviors
while enjoying the fundamental benefits of satisfying the attrac-
tive group-affine condition and invariant observation form in the
absence of IMU biases. Observability analysis for the continuous
locomotion phases showed that the robot’s base velocity and roll
and pitch angles are observable, and the base yaw angle becomes
observable when the DRS is not horizontal. Stability analysis
proved the asymptotic error convergence of these observable
states for the hybrid deterministic system. Experimental results
of humanoid walking on a pitching treadmill validated the
enhanced accuracy and convergence rate of the proposed filter
over existing work, in the presence of large estimation errors
and moderate DRS movement.
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