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Abstract
Resistive-switching memristors are promising device structures for future memory and neuromorphic computing applications. Defects are shown to 
be critical for the conducting "lament formation, and resulting device performance metrics of memristors. In this prospective article, we investigate 
the role of defects in the resistive-switching dynamics of "lamentary-type memristors, and explore defect-engineering as an effective method to 
rationally design controllable conduction pathways. Speci"cally, we propose a data-centric approach that combines the defect-knowledge obtained 
from "rst principles calculations with the materials engineering and characterization efforts.

Introduction
Next-generation computing devices will require significant 
improvements in processing speed and energy efficiency. 
Until recently, the constant push towards higher performance 
computers has been fueled by a series of progressive efforts in 
Si-based CMOS technology. These efforts, driven by Moore’s 
law,[1] focus primarily on miniaturization of device compo-
nents, along with the introduction of novel materials (i.e., 
high-k dielectrics), and device architecture innovations. How-
ever, increasing power dissipation levels hinder this progress 
towards higher processing speeds. Additionally, the latency and 
the energy cost of data transfer between the processing and 
memory units of conventional von-Neumann based computa-
tion architectures imposes fundamental limits in the compu-
tation efficiency.[2] Neuromorphic computing addresses these 
shortcomings by mimicking the brain to perform highly paral-
lel, compact and energy-efficient computations.[3,4] Resistive-
switching memristor devices stand as a promising enabler 
technology for neuromorphic computing paradigm, as they can 
emulate synaptic functionalities through their resistive-switch-
ing dynamics, and function as non-volatile memory units.

Memristor  devices[5–7] are typically two-terminal systems, 
consisting of two metal electrodes (MEs) and an intermediate 
switching layer. These devices demonstrate voltage-history 
dependent resistance levels as a result of various stoichiomet-
ric, structural and compositional changes in response to an 
electric field.[8,9] Due to their promising device metrics and 
early demonstrations of synaptic functionalities, a signifi-
cant research effort is directed to a special class of memris-
tor devices called the filamentary-type memristors, for which, 
stoichiometric, structural or compositional changes intensify in 
the spatially confined nanoscale filament geometry. Since these 
filaments effectively serve as conduction pathways, memristor 
resistance levels strongly change as a function of the physical 
properties of the conductive filaments (CF).[10–12]

Efficient deployment of filamentary-type memristor tech-
nology in neuromorphic computing requires high ON/OFF 
resistance ratios, multi-level resistance states, symmetric and 
linear potentiation/depression, along with satisfactory reten-
tion and endurance characteristics. Despite encouraging results 
(i.e., > 10

12 cycles of endurance, > 10
6 ON/OFF ratio, < 10 nm 

scalability,[13–15]) current state of the filamentary-type mem-
ristors fall short of the required device performance metrics 
for large scale adoption of the technology. Common issues 
include intra- and inter-device variability, limited number of 
controllable resistance states, and poor retention and endur-
ance levels.[16,17] These shortcomings are often interlinked 
with the uncontrolled formation and evolution of CFs,[18,19] 
which are governed by the defect structures—i.e., imperfec-
tions in crystal lattice. Evidently, defect-engineering provides 
a promising pathway towards controlling the adverse effects of 
filament formation and evolution. In recent studies, reported 
in-situ characterization results confirm the role of defects in 
filament formation during memristor device operation, and 
rational introduction of defects is shown to enhance a number 
of device performance metrics.[20–22] In Fig. 1, we provide in-
situ characterization examples from the recent literature, that 
demonstrate the formation of CF within filamentary-type mem-
ristor device stack.

In this prospective article, we investigate the role of defects in 
the resistive-switching dynamics of filamentary-type memristors, 
and explore defect-engineering as an effective method to ration-
ally design controllable conduction pathways. In order to achieve 
a comprehensive understanding of various defect structure forma-
tion dynamics and related electronic properties, we showcase first 
principles-based density functional theory (DFT) computations 
along with an overview of the literature. We also identify char-
acterization techniques and defect-engineering approaches that 
can provide additional insights into the role of defects in resistive-
switching dynamics. We propose that theory, characterization and 
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defect-engineering are three integral components of an integrated 
strategy for unlocking an unprecedented level of control on mem-
ristor resistive-switching dynamics - a critical requirement for the 
large-scale adoption of this technology in memory and novel com-
puting applications.

This paper is structured as follows. In Section II, we provide 
an overview of the computational methods we have employed 
for the calculations we present in this study. In Section III, we 
briefly introduce filamentary type memristors and describe their 
working principles.

Following this overview, Section IV focuses on the role of 
major defects on switching dynamics of anion-type and cation-
type memristors, with a particular focus on Vo and metal cation 
defects. The paper concludes with a discussion on opportunities 
and challenges associated with exploring defect-engineering for 
superior device performance.

Methods
All DFT computations were performed using the Vienna Ab ini-
tio Simulation Package (VASP),[25] applying the generalized 
gradient approximation (GGA) parametrized by Perdew, Burke 
and Ernzerhof (PBE)[26] and using the projector-augmented 
wave (PAW) pseudopotentials.[27] The plane wave energy cut-
off was set at 500 eV and all atomic structures were fully relaxed 
until forces on all atoms were less than 0.05 eV/Å. Brillouin 
zone integration was performed using a 3 ×3× 3 Monkhorst-Pack 
k-point mesh for all oxides, including initial geometry optimi-
zation and defect calculations. Point defects are simulated by 
removing an (O) atom from the supercell to create a vacancy, 
VO , and adding an (Ag) atom in the supercell to create intersti-
tials, Ag

i
 . Defect formation energies are calculated for VO and 

Ag
i
 as a function of chemical potential µ , charge q, and Fermi 

level EF  , using the following equations, written for HfO2 as an 
example:

On the right hand side, the first two terms are respectively the 
total DFT energies of the defect containing and bulk supercells, 
µ is the chemical potential of the species involved in creating 
the defect, and EVBM is the valence band maximum (VBM) 
of the oxide read from a separate calculation. Constraints are 
placed on the chemical potentials of all species, so as to ensure 
thermodynamic equilibrium conditions for the oxide and avoid 
the likelihood of decomposition to elemental standard states 
and/or other phases like Ag

2
O . These conditions can be written 

for m−HfO2 as:

H e r e ,  !H (m−HfO2) = E(m−HfO2) − E(Hf) − 2 ∗ E(O). 
E(system) refers to the total DFT energy of the correspond-
ing system. The chemical potentials of Hf, O, and Ag are 
referenced to their respective elemental standard states; e.g., 
µHf = !µHf + E(Hf) , where E(Hf) is the DFT energy per 
atom of the elemental standard of Hf. Based on the above con-
straints, we select two types of chemical potential conditions: 
Hf-rich, when !µHf = 0 eV  , and O-rich, when !µO = 0 eV . 
Thus, defect formation energies are calculated at two extreme 

(1)
E
F (VO) = E(HfO2with VO) − E(HfO2) + µO + q ∗ (EF + EVBM)

(2)
E
F (Ag

i
) = E(HfO2withAgi) − E(HfO2) − µAg + q ∗ (EF + EVBM)

(3)!µHf + 2 ∗ !µO = !H (m−HfO2)

(4)2 ∗ !µAg + 2 ∗ !µO < !H (Ag
2
O)

(5)!µHf + 2 ∗ !µO < !H (other HfO2 phases)

Figure 1.  Ag CF formation (a) and dissolution (b) in Ag/SiO2/Pt memristor device. (Taken with permission  from[23]) c) Formation of Ta-rich 
CF in Ta/HfO2/Pt memristor device. (Available via Creative Commons Attribution 4.0  from[24]) Vo concentration maps at 0V bias (d), and 
Low-Resistance-State (LRS) (e), extracted from electron holography and TEM measurements in HfOx based memristors (Taken with per-
mission  from[20]).
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chemical growth conditions corresponding to excess metal and 
excess O respectively.

Filamentary switching mechanisms
Filamentary switching mechanisms are primary processes in 
memristors that govern device performance metrics. Switch-
ing behaviour in filamentary-type memristors span over two 
extreme non-volatile resistance levels as a result of the CF 
formation and rupture. These levels are called high resistance 
(HRS) and low resistance states (LRS), and represent 0 (off) 
and 1 (on) values of a potential binary logic operation. Fila-
mentary-type memristors usually function in a bipolar fashion, 
switching on and off at opposite voltage polarities. Minimum 
applied voltage values that would drive this binary operation 
are referred as VSET and VRESET . If device resistance can be 
modified in a gradual manner, memristors can also function 
beyond the binary logic operation. This multi-level operation 
can be achieved through gradual modifications in the CF fea-
tures (i.e., structure, geometry or length) via applied voltage 
pulses with controlled amplitude, duration and polarity.[28, 

29] Evolution of the CF, which is critical for optimum device 
operation, is driven through ion dynamics that respond to the 
electric-field (coupled with Joule heating in some cases). These 
dynamics have two special cases that can be classified accord-
ing to the charged nature of the filament forming ions.

Anion migration
Anion migration, also known as valence charge mechanism 
(VCM), is driven by the transport of mobile anions/vacancies 
in response to the electric field between top and bottom elec-
trodes of the memristor [(Fig. 2(a)]. Anion migration is usually 
the dominating switching mechanism in filamentary transition-
metal oxide (TMO) memristors, where oxygen anions drift 
in the opposite direction of the applied voltage, leaving Vo s 

behind. Reported first-principles calculations, extensive char-
acterization results, along with their voltage polarity responses, 
indicate that resistance-switching is driven by positively 
charged Vo s ( V+2

o
 ), analogous to negatively charged oxygen 

anions ( O−2 ) in filamentary TMO memristors.[30–32]

Cation migration
Cation migration, also known as electrochemical metalliza-
tion mechanism (ECM), is based on the movement of electro-
chemically active metal cations through a solid electrolyte in 
response to the electric field. The oxidized mobile metal cations 
liberated from the electrochemically active ME (top electrode 
in Fig. 2(b), such as Ag and Cu, form CFs as a result of elec-
trochemical redox reactions. These metallic filaments form a 
conductive bridge between the active and inert electrodes of 
the filamentary-type memristor. The mobility of the cations in 
the switching medium, governed by migration energy barrier 
( Ea ), and the rate of redox reactions are critical parameters that 
govern the device performance metrics.[33,34]

Anion and cation migration processes are governed by 
defect dynamics in switching layer of the filamentary-type 
memristor devices. The following section discusses the role 
of defects, and demonstrates how to model, characterize and 
engineer their impact on device performance metrics.

Role of defects in switching dynamics
Controlling and engineering defects significantly modify the 
electronic properties of semiconductor and insulator materials 
by disrupting the periodicity of the crystal lattice, and have 
been used extensively on a range of semiconductor applica-
tions.[35, 36] In the case of filamentary-type memristors, defect 
properties like concentration, defect trap-levels, or Ea , modu-
late the device conduction processes. An efficient control of 
defects enable the engineering of critical device metrics like 
number of conductance levels, electroforming voltage and 
retention and endurance.[3] Engineered defect types that control 
the ionic transport in filamentary-type memristors can be clas-
sified under three categories (i) intrinsic point defects: e.g., Vo s 
and metal interstitials, (ii) extrinsic point defects: e.g., metal 
cations and dopants, and (iii) extended defects: e.g., dislocation 
networks and grain boundaries (GB).

Intrinsic point defects
Intrinsic point defects constitute singular lattice disruptions 
that are caused by the misplacement of native atoms in the 
host lattice. Depending on the site occupation of the defect, 
they can take the form of a (i)vacancy, (ii) interstitial, or (iii) 
substitutional (antisite).

Among these defect types, Vo is a predominant example that 
drive the resistive-switching process of anion-type memristors. 
This section provides a detailed look into Vo defects, and con-
cludes with a discussion on other intrinsic defect types.

Figure 2.  Anion and cation transport during resistive-switching 
process.
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Oxygen vacancies (Vo)
Conduction mechanism  Vo s can contribute to the electron 
transport dynamics of anion-type memristors through three 
mechanisms: (i) Vo induced defect levels within the band 
gap, (ii) modulation of Schottky barrier between the oxide 
and metal-electrode, and (iii) formation of CFs with high Vo 
concentrations.[37]

In Vo induced defect levels, the underlying conduction pro-
cesses are governed by the position of the defect level in ref-
erence to the band edges. Shallow defect levels can contribute 
to the electron conduction by thermal excitation of electrons 
into the conduction band via Poole–Frenkel (PF) mecha-
nism.[38] When defect levels are located deeper in the band-
gap, they can act as traps for electrons and holes. In this case, 
thermal excitation does not provide enough energy to excite 
electrons into the conduction band, and electrons are trans-
ported via Trap-to-Trap tunneling (TAT) mechanism during 
conduction. Another frequently reported conduction mecha-
nism is Space-Charge-Limited-Conductance (SCLC).[39] 
SCLC considers limitation of electron conductivity by the 
space charge layer formed by injected electrons in the dielec-
tric. SCLC is governed by electron injection dynamics across 
the electrodes as a function of voltage bias, and density and 
energy-levels of traps.

PF, TAT and SCLC mechanisms can be distinguished 
through the relation between the current density and electric 
field. Further insight into trap energy-levels can be obtained 
from the Arrhenius plots of current density. In the literature, it 
has been proposed that resistive-switching can originate due to 
transitions between different conduction mechanisms as a func-
tion of the energy distribution of traps, trap density and number 
of injected charge carriers. However, it is important to note that, 
a significant shortcoming of the widely reported trap-assisted 
electron conduction mechanisms via PF, TAT or TC-SCLC, 
is the assumption that the defect distribution is homogeneous 
under constant voltage bias. This assumption does not reflect 
the rich defect properties of anion-type memristor devices, 
therefore, may render them insufficient to capture the complete 
bipolar resistive-switching cycle.[39, 40]

Vo s can also contribute to the conduction process by modu-
lating the Schottky barrier at the interface of metal-oxide and 
ME. As the Vo concentration is often inhomogeneous across 
the MEs of the memristor device, Vo dynamics at the metal-
oxide interface can significantly modify the Schottky barrier. 
Charged Vo s can alter the width of the Schottky barrier, while 
trap-induced energy levels can modulate the electron transport 
through it.[5] Choi et al and Yong et al recently presented the 
effect of Vo modified Schottky barriers on the resistive switch-
ing dynamics of CuO and HfOx devices.[41,42]

Lastly, Vo s are critical in the formation of CFs. Although 
trap-assisted, and Schottky barrier limited conduction mecha-
nisms are important when discussing the role of Vo s for high 
and intermediate resistance states (prior to the complete CF 
formation), upon its completion, CF dominates the electrical 
properties of the device often via ohmic conduction. When 

Vo concentration in a nanometer-scale CF exceeds 1021cm−3 , 
overlapping of neutral Vo induced defect-levels create an elec-
tronic conduction path that mimics the ohmic conduction in 
LRS.[43] First-principles calculations show that Vo s are often 
the most energetically favorable and mobile defect structures 
in metal oxides.[44] Additionally, they are shown to be stable 
in positively charged states. These features enable Vo s to form 
CFs across the memristor electrodes via formation, charge 
evolution and electric-field induced migration processes. A 
recent study by Lee et al. proposes that, consecutive drift and 
charge-transition processes participate in the CF formation, 
to overcome the repulsive forces between V+2

o
.[32] Molecular 

dynamics simulations also confirm that CFs in anion-type 
memristors form and dissociate, as a result of Vo movements 
within the switching material.[45]

Characterization of V
o
 s  V

o
 characterization can take two 

approaches: (i) theoretical methods based on first principle 
calculations, and (ii) experimental methods using microscopy, 
spectroscopy and electrical measurements.

Theoretical methods based on first-principle calculations 
are instrumental in determining the energy levels introduced 
by Vo s. As noted earlier, these energy levels govern the dom-
inant electron-conduction mechanism in TMO filamentary 
memristor devices

Recent work of Alam et al. reports that, for different allo-
tropes of HfO2 , Vo s can form a range of shallow and deep 
defect states between 0.1 eV to 2 eV below CBM, while 
interstitial oxygen atoms create deeper levels at 2.75–3.25 
eV  band.[46]. A follow-up work by Kaiser et al. investigate a 
broader stoichiometry range of HfO2−x , and report HfO2−x 
films ranging from insulating to metallic phase, grown under 
decreasing oxidation conditions.[47] The change in the electri-
cal properties of sub-stoichiometric films are shown to be a 
result of increasing contribution by the continuous midgap 
vacancy defect states in band structure.

Experimental methods focus on observing the manifesta-
tions of defects. A predominant method used experimental Vo 
characterization is X-ray photoelectron spectroscopy (XPS) 
- a standard non-destructive technique that can character-
ize the chemical composition and electronic structure while 
providing insights of defect and disorders. Studies using XPS 
show that, in the presence of detectable-level Vo s, metal-4f 
and valence band spectra can provide useful insights on Vo 
concentration and associated defect energy-levels.[48,49]

Figure 3 presents representative Ta-4f and valence band 
XPS spectra of the stoichiometric Ta2O5 , and sub-stoichio-
metric TaOx films. As the oxygen deficiency of the plasma-
enhanced ALD grown TaOx films increases, Ta− 4f7/2 
line in Ta− 4f  spectrum shifts to higher binding energies, 
and slightly broadens as a result of the increasing Vo con-
centration. When Vo concentration increases over a certain 
threshold, a secondary peak attributed to Ta+4 oxidation 
state appears in the spectrum. [Fig. 3(b)] This is in contast 
to Thermal ALD grown stoichiometric Ta2O5 in [Fig. 3(a)], 
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which does not exhibit these features.[50] In parallel, valence 
band spectra presents an additional peak above VBM, which 
is attributed to the defect levels of Vo s. [Fig. 3(c)] The defect 
levels are located between the VBM and Fermi level, 2 eV 
above VBM.

In addition to XPS, a range of electrical and spectroscopy 
measurements, e.g., Deep Level Transient Spectroscopy, 
Capacitance–Voltage Measurements, Low-Frequency-Noise 
Spectroscopy, Photoluminescence and UV–Spectroscopy, 
are conducted to characterize the defect induced trap lev-
els and the density of traps in metal-oxide materials.[51–54] 
Although important insights like trap levels, trap activation 
energy, capture cross-sections can be extracted from these 
measurements, it is not always straightforward to correlate 
specific defects with measured quantities, which is where first 
principles computations can help.

Lastly, a variety of microscopy techniques are employed to 
demonstrate the formation and evolution of Vo s in anion-type 

memristors, and investigate their role in memristor switching 
dynamics. Despite the inherent challenges associated with the 
Vo observation, there are several efforts that directly or indi-
rectly probe Vo dynamics, e.g., correlation of local stoichi-
ometry changes with Vo concentration.[55] In-situ studies are 
especially indispensable to reveal atomic-scale processes of 
resistive-switching. For example, Gao et al. and Cooper et al. 
demonstrate EELS coupled in-situ TEM studies that show-
case electric-field induced oxygen migration process, and 
the role of oxygen evolution and reincorporation responsible 
for the resistive-switching phenomena in CeO2 , and SrTiO3 
systems, respectively.[56,57] Li et al utilize in-situ electron 
holography to correlate local Vo concentration changes with 
the CF formation.[20] Celano et al use scalpel scanning probe 
microscopy technique to investigate CF evolution throughout 
the memristor with a specific focus on the oxygen exchange 
layer.[58]

Defect-engineering of V
o
 s V

o
  engineering offers a versa-

tile strategy to effectively tune the electronic properties of 
TMOs, which would in turn modulate the resistive-switching 
dynamics of TMO memristors. One of the critical parameters 
for vacancy engineering is Vo formation energy ( !H(VO )) , 
which represents the thermodynamic likelihood of formation 
of Vo s. !H(VO ) has an exponential relation with the vacancy-
defect concentration. Under thermodynamic equilibrium, 
and in the dilute limit, defect concentration can be defined as 
C = Nsites ∗ exp(−!H (VO)/kBT) where Nsites is the number of 
available defect sites, !H(VO ) is the formation energy, kB is the 
Boltzmann constant and T is the temperature.[59]

To demonstrate !H(VO ) dependency on material structure, 
we used DFT to calculate neutral !H(VO ) in a representative 
case study. The study uses the 2 lowest energy phases of 3 
commonly reported resistive switching oxides, namely HfO2 , 
Ta2O5 , and TiO2 . The results are presented in Table 1. All struc-
tures were adopted from the Materials Project.[25] Our results 
indicate that !H(VO ) can be modified as a function of the film 
stoichiometry, and metal-rich conditions lead to much lower 
!H(VO ). This is to be expected, as Hf, Ti and Ta are metals 
with high oxygen affinities, and likely to scavenge oxygen from 
TMO lattice while creating Vo s. Among the three, Ti has the 

Figure 3.  XPS spectra of the Ta 4f core-level lines for the stoichio-
metric Ta2O5 (thermal-ALD) (a), sub-stoichiometric TaOx (b), and 
XPS Valence Band Spectra of Ta2O5 , and sub-stochiometric TaOx 
!lms [Taken with permission  from[50] Copyright 2022 American 
Chemical Society].

Table I.  Neutral Defect Formation Energies of VO.

1All structures are obtained from Materials Project.[25]

Compound1 !H(VO  ) O-rich (eV) !H(VO  ) 
M-rich 
(eV)

m−HfO2 6.43 0.41
o−HfO2 6.42 0.41
m−TiO2 4.17 −1.06
o−TiO2 4.88 −0.37
m−Ta2O5 5.26 0.58
o−Ta2O5 6.01 1.36
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highest oxygen affinity,[44] which explains negative !H(VO )
s for M-rich TiO2 , that might lead to spontaneous formation 
of Vo s without an external driving force. O-rich TiO2 !H(VO )s 
are in accordance with previously calculated !H(VO )s for rutile 
and anatase phase TiO2.[60] Our results on HfO2 agree to a large 
extent with the recent study by Alam et al for oxygen-rich con-
ditions, but we report lower !H(VO )s for metal-rich films.[46] 
Unlike HfO2 , for Ta2O5 and TiO2 , crystal structure becomes 
an important parameter that impacts the !H(VO ), where mono-
clinic crystal structures lead to lower !H(VO).

Our findings confirm that Vo concentration can be engineered 
by controlling the stoichiometry and crystal structure of the 
TMO films. These metrics similarly would also drive a change 
in Ea of Vo , which is the energy required for defects to migrate 
across two available lattice sites.[61] ! H(VO ) and Ea are criti-
cal thermodynamic and kinetic parameters that govern the for-
mation and rupture of the CF, which determines the resistive-
switching dynamics, as well as the retention and endurance 
characteristics.[62] For example, a negative formation energy 
can induce multiple CF formation events and cause large vari-
ability in the resulting LRS levels.[63]

Stoichiometry and crystal structure of TMO films can be 
modified by varying processing conditions of the thin film 
deposition (i.e., temperature, oxygen partial pressure, post-
deposition annealing).[64–66] In addition to these process engi-
neering efforts, recent literature investigates more focused and 
controllable approaches like layer engineering, doping and use 
of extended defects—e.g., GBs.

In the following sections, we will elaborate on these 
focused Vo engineering strategies to control resistive-switching 
dynamics.

Layer engineering Layer engineering is a promising Vo engi-
neering technique, where film stacks with varying ! H(VO ) and 
Ea can be designed to function as Vo source & sink regions, 
and oxygen migration limiting barriers.[10, 13,29] This method 
allows each layer to be separately engineered for a specific 
function, and enables a better control of the filament formation 
process for enhanced device performance. A common goal for 
this kind of studies is to confine the CF in the more-resistive 
(oxygen-rich) layer for a more controllable filament formation 
process.[32] Engineered layer components are also reported to 
modify HRS conduction mechanism, and modify the Joule 
heating process during device operation.[67]

Another layer engineering strategy is to introduce an inter-
mediate metal layer, with high oxygen affinity, between the 
top-ME and switching oxide layer.[68,69] This intermediate 
layer, referred as oxygen exchange layer or oxygen scaven-
ger, is shown to play a critical role in Vo formation dynamics 
during resistive-switching while acting as a barrier between 
environmental oxygen and the switching oxide layer. Recent 
computational and in-situ studies investigate the transforma-
tion of this intermediate layer into a sub-stoichiometric oxide, 
and its role as an Vo reservoir as its thickness, stoichiometry 
and crystal structure change during the switching process.[58,70] 
It has been also reported that, intermediate metal’s oxygen 

scavenging capability, and resulting Vo concentration profile, 
can be used to tailor memristor reliability metrics: i.e., endur-
ance and retention.[71]

An alternative strategy is to transfer the function of inter-
mediate layer to the top-ME, which can be used to scav-
enge oxygen from the metal oxide layer, and create an Vo 
reservoir. Recent work by Yang et al. studies different oxy-
gen scavenging capabilities of TiN electrodes fabricated by 
physical vapor (PVD) and atomic layer deposition (ALD) in 
ITO/HfOx/TiN memristors.[42] PVD device exhibits lower 
VFORM , and higher VSET & VRESET , in addition to a wider 
distribution of the latter. The notable difference in the resis-
tive-switching characteristics is explained by different oxy-
gen scavenging capabilities of PLD and ALD TiN due to 
structural differences, and resulting Vo concentration profile 
in addition to the modified Schottky barrier.

Despite expanding the device design parameters and 
enhancing the control in CF formation process, increasing the 
number of layers in device stack may complicate the fabrica-
tion process and exacerbate the processing related variability 
concerns. As an alternative technique, microstructure engi-
neering is proposed to confine the CF formation in extended 
defects.

Extended defects Extended defects are linear and planar 
level distortions in the crystal lattice. Their inherent disorder 
renders them preferred sites for point-defect formation and 
transport. A common example of this defect type is GBs. 
GBs are known to act as sinks for point defects, and provide 
low-barrier diffusion paths.[72]

First principles studies supported by in-situ scanning 
probe microscopy report GBs to be more conductive than 
the grains, due to the lower oxygen-vacancy diffusion bar-
rier energies compared to the bulk.[73,74] Consequently, GBs 
can act as CF paths via diffusion of charged Vo s, and through 
an extensive microstructure engineering, GBs can serve as 
controlled CF paths.

Another example of extended defect mediated resistive 
switching is demonstrated for SrTiO3 . Szot et al. demon-
strated that dislocations in crystalline SrTiO3 act as pre-
defined CFs, and drive resistive-switching through defect 
mediated oxygen-transport process.[75]

Doping Doping has also been explored as a possible 
strategy for oxygen-vacancy engineering. Introduction of 
elemental dopants in TMO lattice affects both !H(VO ) and 
Ea , and is shown to modulate memristor device performance 
metrics.[76] Compared to the deposition condition or device 
stack engineering driven methods, extrinsic doping driven Vo 
engineering could offer a more systematic approach that can 
be tailored using the first-principles calculations of atomic-
scale processes. Jiang et al. recently reported that Vo forma-
tion energy can change depending on the valence charge state 
of the dopants. P-type dopants are shown to reduce !H(VO ) 
for both neutral and charged vacancies significantly, while 
n-type dopants only had the opposite effect for positively 
charged Vos.[63] Schmitt et al. perform a systematic dopant 
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concentration study where they observe the effect of Gd dop-
ing on Vo concentration and mobility. By varying the doping 
concentration over a wide solubility range, they study the 
correlation between the congurations of Vo defects (in free 
or clustered settings) and resistive-switching dynamics.[77] 
Si doping of Ta2O5 is also employed to control the mobility 
of Vo s by modifying the hopping distance between adjacent 
vacancy sites.[78]

Other intrinsic defect examples
Despite the majority of anion-type memristor studies attribut-
ing the mobile defect functionality to oxygen anions/vacancies, 
recent literature emphasize the contribution of another intrinsic 
point defect type “metal atom interstitials” in resistive switching 
process.[24,79] Wedig et al. used in situ STM analysis coupled with 
X-ray spectroscopy to demonstrate that both Vo s, and metal cati-
ons migrating through interstitial sites are involved in the resis-
tive switching dynamics of TaOx , HfOx and TaOx memristors.[80] 
However, due to the high oxidation tendency of transition metals, 
filament formation via metal cations become the dominant mech-
anism, only if Vo concentration is engineered to be low enough. 
This has been achieved by post-deposition annealing of TiO2 
films at high temperatures under oxygen atmosphere,[65] or via 
introduction of a carbon/graphene layer at Ta/Ta2O5 interface, in 
order to impede the formation of oxygen deficient TaOx layer.[81]

Extrinsic point defects
Extrinsic point defects are formed by the introduction of impu-
rity atoms in the host material lattice. Extrinsic point defects 
can occupy (i) interstitial, or (ii) substitutional lattice sites. 
Electrochemically active metal cations are the dominant extrin-
sic point defects that govern the resistive switching dynamics 
of cation-type memristors.

Metal cation defects
Conduction mechanism Switching dynamics of cation-type 
memristors are governed by the redox reactions at metal-elec-
trolyte interfaces, and ion-transport. The switching process can 
be analyzed in three  steps[82]: (i) Anodic dissolution of active-
ME: Upon application of a sufficiently high positive voltage 
at electrochemically active-ME (i.e., Cu or Ag), metal cations 
are released from the positive electrode (anode) of the memris-
tor. (ii) Ion-transport through solid-electrolyte: Formed metal 
cations diffuse and drift through a defect-mediated transport in 
the insulator layer that serve as a solid-electrolyte. (iii) Reduc-
tion of metal cations and deposition: Metal cations are reduced 
to neutral metal atoms by the electrons provided by the inert, 
negative electrode (cathode), and form the metallic CF through 
nucleation and growth steps. Upon completion of CF, a conduc-
tive bridge is formed across the two electrodes, and memristor 
switches to the LRS. Transition back to HRS occurs via electro-
chemical dissolution of the filament following the application 
of reversed voltage (positive) at the inert-ME.

CF formation and dissolution dynamics are critical to bet-
ter understand and control cation-type memristor switching 
dynamics. Rate-limiting processes can occur at the reduction-
oxidation or ion transport step.

Pioneering works by Yang et al demonstrated the compli-
mentary roles of these two mechanisms using ex-situ and in-
situ TEM studies of cation-type memristors.[23,34] According 
to these studies, nucleation sites and growth direction of fila-
ments are mainly directed by cation mobility, i.e., the rate of 
ion-transport; while cation supply and filament geometry are 
largely controlled by redox rates. Ion-transport becomes the 
rate-limiting process, when Ea of consecutive ion hopping steps 
is high. In that case, cations get reduced by injected electrons 
within the solid electrolyte before reaching the inert-ME, and 
CF becomes an extension of the active-ME. This phenomena is 
also reported for Cu/Al2O3/TiN devices, where low Cu+ cation 
mobility in Al2O3 medium becomes the rate-limiting process 
of Cu filament formation.[83]

Characterization of metal cations Metal cation dynamics 
that lead to resistive-switching processes can be analyzed 
via theoretical and experimental approaches similar to Vo 
characterization.

First principles-based DFT computations of defect-forma-
tion and migration barrier energies provide insights on the 
energy cost of introducing the metal cation to the solid elec-
trolyte (as an extrinsic point defect),[84] and defect-mediated 
hopping of metal cations throughout the solid-electrolyte.[33,85] 
Recent work of Sassine et al. investigates !H(Cui ) and Ea of 
Cui , in HfO2 , Ta2O5 , Al2O3 and GdOx , along with Vos.[61] The 
study proposes that relevant device metrics like ON/OFF ratio, 
endurance and retention can be optimized using a materials 
selection process guided by insights on Cui and Vo formation & 
migration, obtained from first-principles calculations.

A joint analysis of first principle calculation results along 
with experimental findings will be instrumental for a detailed 
understanding of the resistive-switching mechanism. Cyclic 
voltammetry (CV) can be a valuable technique in that regard, 
which enables the measurement of oxidation and reduction 
reaction potentials of electrochemical cells.[86] In these meas-
urements, oxidation and reduction processes manifest them-
selves as current density peaks in positive and negative sweep 
directions, respectively. Characterization of electrochemi-
cally driven cation-type memristors using the CV technique, 
under conditions to limit filament formation ( V < Vset),[87] 
provide valuable insights into the dynamics of contributing 
redox reactions and rate-limiting processes. Resulting num-
ber of peaks, integrated area, along with the peak position 
and intensities can be used to identify the charge states of the 
cations, redox reactions, participating metal species, concen-
tration and diffusion coefficient of the mobile ions.

Reported CV studies of Ta2O5/Pt based cation-type mem-
ristors with Ag or Cu active electrodes demonstrate that Cu 
and Ag cations participate in the resistive-switching process 
in different oxidation states. Cu atoms can be oxidized to 
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both Cu2+ and Cu1+ states, while for Ag, only oxidation 
to Ag1+ state is energetically favorable.[88] Lubben et al’s 
extensive CV measurements of cation-type memristors with 
alternating MEs show that only Ag, Cu and Fe metals present 
comparably favorable reduction and oxidation processes in 
ME/SiO2/Pt material system, which renders these metals as 
suitable active-ME candidates.[89]

Additional characterization techniques are employed to 
deepen the understanding of metal cation driven CF forma-
tion. Due to the larger atomic contrast between the insulator 
switching medium and mobile metal cations that form the CFs, 
in-situ electron microscopy studies are numerous. Guo et al’s 
early work demonstrates the bipolar resistive-switching pro-
cess for Pt/H2O/Ag cation-type memristors using the in-situ 
SEM technique.[90] SEM images showcase the Ag dendrites 
formation by Ag+ during the SET process, and following dis-
solution during the RESET. In more recent studies, HRTEM 
and HAADF-STEM techniques coupled with EDS and EELS 
analysis are used to deduce chemical composition changes and 
filament formation during the operation of cation-type memris-
tors.[11,91] Extensive in-situ TEM work reported by Yang et al. 
was instrumental in understanding of respective roles of cation 
mobility and redox reaction rates on filament formation dynam-
ics.[23,34] Scanning probe microscopes are also immensely use-
ful in in-situ device characterization efforts. In-situ C-AFM 
techniques are used to correlate the local conductivity changes 
with morphological features and surface topography.[83,92]

Defect-engineering of metal cations Engineering thermo-
dynamic and kinetic processes that guides metal cation for-
mation and migration is critical for controlled CF evolution. 
Additionally, more focused efforts target confining the CF in 
pre-engineered pathways, e.g. dislocations.

A common engineering technique is to modify formation 
and mobility of Ag ions by changing the switching medium.

To showcase the impact of the switching medium mate-
rial stoichiometry and structure, we used DFT to calculate the 
neutral !H(Ag

i
 ), for three oxide compounds, similar to the !

H(Vo ) calculations presented earlier. Interstitial defect position 
is chosen, since in similar lattice structures, interstitial Ag

i
 is 

known to be more energetically favorable than substitutional 
MAg sites.[93] Our results are presented in Table II.

In general, the stoichiometry effect on defect formation ener-
gies are less pronounced for Ag

i
 unlike the case of Vo . Among 

the three oxide compounds studied, HfO2 demonstrate the high-
est !H(Ag

i
 ) for both crystal structures. The results are in the 

same range with previously reported !H(Ag
i
 ) in HfO2 bulk,[94] 

but significantly higher than the recent work of Banerjee et al 
where formation energy of Ag

i
 pairs in HfO2 is reported.[95] 

Overall, o− TiO2 and m−Ta2O5 crystal structures offer the 
most energetically favorable configurations for Ag

i
 defects. In 

agreement with this observation, recent experimental studies 
demonstrated formation and migration of Ag+ in Ag/Ta2O5/Pt 
memristors.[88]

Alloying As Ag and Cu can effectively diffuse via interstitial 
sites in a-Si,[96] a-Si is typically used as a switching medium/
solid-electrolyte for cation-type memristors.[97,98] However, 
large diffusivity of these electrochemically active metals can 
cause significant resistive switching variation, due to multiple 
filament formations, and poor data retention. Recently, Yeon 
et al. investigated different Ag-alloys for better controlled CF 
formation. By engineering a selection of metals and varying 
compositions, authors found out that Ag-Cu alloys provide 
improved linear and symmetric conductance levels, in addi-
tion to superior retention properties.[99]

Extended defects Extended defects of preferential impurity 
diffusion paths, can be engineered to create controlled con-
duction pathways, where CFs will be confined. Combining an 
epitaxial growth technique, where defect-engineering can be 
performed in a systematic manner, and cation migration pro-
cess can enable a superior cation-type memristor with desired 
device metrics. Choi et al. demonstrated that epitaxially grown 
SiGe films can be engineered with atomic-scale threading dis-
locations that can serve as controlled Ag+ transport pathways. 
Controlling the density and width of threading dislocations, 
enables memristors with high endurance, long retention, and 
linear conductance levels.[100]

Other extrinsic defect examples
CF forming metal cations are not the only extrinsic defect 
examples that can modify memristor device characteristics. 
Various impurity atoms can be introduced in memristor switch-
ing medium as in the example of dopant atoms that modify 
vacancy formation and migration dynamics in anion-type mem-
ristors.[63] Furthermore, impurity atoms can be engineered to 
modulate structural, compositional and electronic properties 
of the switching medium: e.g., formation of additional defect 
levels, inducing a space-charge layer, driving crystal phase 
transition, or acting as donor or acceptors (i.e., dopants).

Nb is shown to act as a donor for SrTiO3 and BaTiO3 , by 
substituting the Ti sites ( Nb+5 and Ti+4 ) and increasing the 
n-type conductivity.[101–103] Doping of SiO2 with Al and Ga, 

Table II.  Neutral Defect Formation Energies of Agi.

1All structures are obtained from Materials Project.[25]

Compound1 !H(Agi  ) O-rich (eV) !H(Agi  ) 
M-rich 
(eV)

m−HfO2 6.94 6.45
o−HfO2 6.86 6.37
m−TiO2 4.70 4.22
o−TiO2 2.36 1.87
m−Ta2O5 2.67 2.18
o−Ta2O5 4.04 3.56
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modulates the solubility of Cu cations in SiO2 matrix, and 
impacts the resistive-switching dynamics of Cu/SiO2/Pt mem-
ristors. Presence of dopants is further shown to enhance the 
stability of conductance levels at the cost of slowing down the 
switching process.[22] In-situ TEM and Atom Probe Tomogra-
phy studies of Ag/TiO2/Pt memristors, demonstrated doping 
as a critical driver of the resistive-switching process. Ag-dopant 
atoms are proposed to substitute Ti atoms of anatase TiO2 dur-
ing the formation of anatase TiO2 CF, and resistive-switching 
process is shown to be coupled with doping and de-doping of 
CF with Ag+.[104]

Comparison of charged intrinsic 
and extrinsic point defects
We performed first principles-based DFT computations to 
compare the likelihood of formation of charged Vo s and metal 
interstitials in oxides, as well as energy levels such defects may 
create within the band gap.[105,106]

Figure 4(a) shows the DFT optimized structure of m−HfO2 
with a Ag

i
 defect, while Fig. 4(b)–(d) show how the elec-

tronic density of states (DOS) change from bulk m−HfO2 to 
when VO and Ag

i
 are present, which lead to energy states in 

the band gap region. Figure 4(e–g) further show the charge 
and Fermi level-dependent formation energies of VO and Ag

i
 

in m−HfO2 , o−HfO2 , and m−Ta2O5 , respectively. It can be 
deduced that both VO and Ag

i
 create positively charged donor-

type defects in the band gap, and generally have comparable 
energies. VO exhibits deep +2/+1 and +1/0 transition levels 
for m−HfO2 and o−HfO2 , and a +2/0 level for m−Ta2O5 . On 
the other hand, Ag

i
 only creates shallow +1/0 levels close to 

the CBM and is not expected to have deep energy states like 

VO . Further, VO is lower in energy for most of the band gap 
region for both HfO2 structures, while Ag

i
 has a lower energy 

in m−Ta2O5 . All formation energies are positive within the 
band gap implying these defects may not spontaneously form 
under O-rich conditions, but certainly by tuning the chemi-
cal potential and creating complex defects–such as Ag

i
 and 

VO in the same structure– stability and energy levels can be 
suitably modified.

Conclusion
We provided a general overview of defect-engineering in 
resistive-switching dynamics of filamentary-type memristors. 
Defects are key entities that govern the formation and evolu-
tion of CFs. As such, defect-engineering can be a promising 
step towards memristors with controlled conduction pathways 
to remedy variability and endurance challenges. In order to 
take advantage of this technique, it is imperative to create a 
data driven defect-engineering framework that integrates the 
defect knowledge obtained via first-principles calculations 
within the process design parameters of the thin film deposi-
tion, through a feedback loop driven by extensive characteri-
zation results.
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Figure 4.  (a) Agi in m−HfO2 lattice , DOS of (b) Bulk m−HfO2 , (c) Vo in m−HfO2 , and (d) Agi in m−HfO2 , Fermi level (eV)-dependent forma-
tion energies (eV) of Vo and Agi in (e) O-rich m−HfO2 , (f) O-rich o−HfO2 , (g) O-rich m−Ta2O5
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