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Abstract— An important problem in microrobotics is how
to control a large group of microrobots with a global con-
trol signal. This paper focuses on controlling a large-scale
swarm of MicroStressBots with on-board physical finite-state
machines. We introduce the concept of group-based control,
which makes it possible to scale up the swarm size while
reducing the complexity both of robot fabrication as well as
swarm control. We prove that the group-based control system
is locally accessible in terms of the robot positions. We further
hypothesize based on extensive simulations that the system
is globally controllable. A nonlinear optimization strategy is
proposed to control the swarm by minimizing control effort.
We also propose a probabilistically complete collision avoidance
method that is suitable for online use. The paper concludes with
an evaluation of the proposed methods in simulations.

I. INTRODUCTION

Micro-robot systems have promising applications in
medicine [1]–[5] and micro-assembly [6]–[8]. There are sev-
eral realizations of the micro-robot systems. Robots can be
actuated using electrostatic fields, magnetic fields, physiolog-
ical energy, or optical energy [9], [10]. This paper focuses on
the stress-engineered MEMS micro-robots (MicroStressBot),
originally developed in [11], which are powered by a uniform
(electrostatic) field generated by a substrate underneath the
robots. It is important to notice that all these micro-robot
systems are controlled by applying a global signal to all
the robots within the operating environment. This is because
the size restricts robots from enough on-board control logic
and power storage. Thus, achieving a task such as micro-
assembly or drug delivery with micro-scale robots requires
the coordination of a large group of micro-robots simultane-
ously.

At present, parallel control of multiple micro-robots relies
on robots being designed to be physically different in order to
elicit different behavior in response to a single central control
signal. Such different behavior can in turn be exploited to
control the robot swarm as a whole. Ensemble Control (EC)
was proposed in [12]. It assumes that robots have different
linear velocity and turning rate parameters and asymptoti-
cally stable behavior is obtained by using k-step pseudo-
inverse control. Turning-rate Selective Control (TSC) [13]
achieves individual control by explicitly designing robots to
have different turning rates. These approaches are difficult
to scale to larger swarms. In [14], a rotating magnetic field
is used to generate a vortex-like paramagnetic nanoparticle
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swarm (VPN), which will change according to the input
rotating frequency.

In [15], Global Control Selective Response (GCSR) ap-
proach was proposed that relies on the separation between
levels of the control signal to elicit differences in motion. Us-
ing MicroStressBots, it introduced a 2-state Physical finite-
state machine (FSM) which allows robots to be controlled
by using 2 voltage levels. It has been shown that n robots
can be controlled using O(

√
n) voltage levels. Subsequently,

[16] showed that only O(1), a constant number of voltage
levels suffice to control a swarm of n robots if they are
equipped with on-board multi-stage Physical FSM (PFSM).
Implicitly, the assumption in [16] was that the robots can
be individually addressed and activated one by one. In this
paper, we take this idea further and introduce group-based
control. We show that the approach both dramatically reduces
the size of the PFSMs needed for the implementation as well
as greatly reduces the time needed to move the swarm from
the initial to the final configuration.

Another aspect that our paper considers is collision
avoidance. In [12], collision avoidance has been studied in
the probabilistic sense, but no explicit collision avoidance
algorithm has been proposed. Sample-based methods like
RRT [17] and its variants are commonly used in the robotics
community for motion planning subject to constraints such as
collision avoidance. In [18], a multi-agent RRT∗ is evaluated
and shown to have good scalability in a large sparse environ-
ment. In [19], a reinforcement learning method is proposed
to navigate the robot to a goal through an efficient path.
Recent work [20] has shown how these methods can be made
more efficient. These approaches all assume that each robot is
individually controlled and are not directly applicable when a
robot swarm is controlled with a single global control input.
In our case, random walks are employed to allow the robots
to avoid the collision, similarly to [21], [22], but the approach
is adapted to the case of a single global control signal.

II. BACKGROUND

A. MicroStressBot

Electrostatic stress-engineered MEMS microrobot (Mi-
croStressBot) is a 120 µm × 60 µm × 10 µm mobile micro-
robot platform introduced in [11]. A MicroStressBot has two
actuated internal degrees of freedom (DOF): an untethered
scratch-drive actuator (USDA) that provides forward motion,
and a steering-arm actuator that determines whether the robot
moves in a straight line or rotates. A single MicroStressBot
can have its arm either raised or lowered, depending on the
voltage applied across a substrate formed by an electrode



array. When high enough voltage is applied to the substrate,
the arm is pulled into contact with the substrate and the
robot rotates around the contact point. In contrast, when the
voltage is reduced below a threshold, the arm is raised and
the robot moves forward.

MicroStressBot control has been successfully imple-
mented in [15]. It has been shown that if the pull-down and
release voltages of robots are different, they can be inde-
pendently controlled. However, it is difficult to consistently
manufacture the robots so they respond in the desired way.
As a result, the approach scales poorly.

B. On-board Physical FSM Robots

One solution to dramatically improve the scalability of the
micro-robot swarm control is to make the robots respond to
a temporal sequence of (a small number of) voltage levels
rather than to the voltage directly. Finite State Machines
(FSMs) can accept a set of input sequences [23] (sequences
of control signal levels). Previously, [16] proposed on-board
MEMS Physical FSM (PFSM) that upon the acceptance
of a unique control signal sequence causes the behavioral
change of a microrobot; they can be constructed from several
basic modules that are combined together and thus fabricated
efficiently. In this work, we build on this idea to propose
group-based control. In particular, we use the fact that several
PFSM modules, each corresponding to one group, can be
combined together so each robot can belong to several
groups.

C. Dynamics

In order to describe the group-based control, we start with
a dynamic model of a MicroStressBot. The robot can freely
move on a horizontal plane, so its configuration space is
SE(2). We will describe the state of the robot i with a vector
[xi, yi, θi]

T , where xi and yi are the Cartesian coordinates of
the pivot point of the robot, and θi is the robot orientation.
The equations of motion are given by:

d

dt

xi

yi
θi

 = ai ·

cos θisin θi
0

 · u+ (1− ai) ·

00
1

 · ω, (1)

where ai ∈ {0, 1} is the switching input that determines
whether the robot is moving forward or turning in place,
while u ∈ R+ and ω ∈ R+ are the rates of forward
motion and rotation, respectively, where ω = u/ri with ri
being the turning radius of each robot. If the control inputs
are piecewise constant over each epoch ∆T , we obtain the
following discrete-time model:xi(k + 1)

yi(k + 1)
θi(k + 1)

 =

xi(k)
yi(k)
θi(k)

+

 ai(k) cos θi(k)
ai(k) sin θi(k)
(1− ai(k))1/ri

u(k) ·∆T.

(2)
Note that u is the unilateral control input. In other

words, Microstressbot can not go backward or turn counter-
clockwise.

III. GROUP-BASED CONTROL

A. Group Allocation

A common way to control multiple robots independently
with a single global input is to design robots to be physically
distinct so that robots can behave differently according to the
same input. However, it is difficult and time-consuming to
do so when the number of robots is large. In this section, we
describe an alternative method, group-based control, where
robots are assigned to different (overlapping) groups. The
idea is that all the robots within a group can be activated
together through an on-board PFSM and move in the same
way. By assigning each robot to several different groups
but with none of the robots belonging to the same subset
of groups, we can differentiate between the robots. Table I
shows how six robots can be assigned to different groups.
In order to make the selection of groups unique to each
robot, if we have n robots we need m = log2(n+2) groups
(n+ 2 rather than n because each robot needs to belong to
at least one group, and no robot can belong to all groups).
For example, for six robots we need 3 groups. We start by
assigning each robot a unique bit pattern, as shown in Table I
for 3 groups. Next, each bit position is assigned to one group
(labelled with Gi, i = 1, 2, 3). Each robot then belongs to the
groups where the corresponding bit equals 1. For example,
robot R1 belongs to group G1. Instead, robot R3 belongs to
groups G2 and G3, etc. It is clear that this method guarantees
that each robot has a distinct group allocation.

Robot
Group R1 R2 R3 R4 R5 R6

G1 0 0 0 1 1 1
G2 0 1 1 0 0 1
G3 1 0 1 0 1 0

TABLE I: Allocating 6 robots to 3 groups.

The group allocation can be realized by the on-board
PFSM. At each time step k, only one group of robots is
activated to go forward, the remaining robots rotate. We call
a sequence of group selections an activation sequence. If m
is the number of groups, we would need k = O(log2 m) =
O(log2(log2(n+2))) bits to select a group through a PFSM
[16]. Thus, the PFSMs for group-based control can be
significantly simpler than in the case when each robot needs
to be selected individually.

B. Position accessibility

We return to the switched system in Eq. (1). Let q(t) =
[x1, y1, x2, y2, . . . , θ1, θ2 . . .] be the state of the swarm,
where q(t) ∈ R3n. We can see that q(t)[1 : 2n] are the
position states, with q(t)[2j−1 : 2j] representing the position
of robot j. Also, q(t)[2n + 1 : 3n] are the orientation
states, where x(t)[2n + j] is the orientation of the robot
j. We assume that the robots are identical so that the robot
turning radius rj = r is the same for all robots. Next, let
αi = [αi,1, . . . , αi,n]

T , i = 1, . . . ,m be the activation vector
corresponding to group i being activated. In other words,
αi,j = 1 if robot j belongs to group i, and 0 otherwise. The



overall swarm dynamics can then be written as:

q̇(t) = fν(t)(q(t)) · u(t) (3)

where ν(t) ∈ {1, . . . ,m}, and for each i, fi is obtained by
choosing aj = αi,j in Eq. (1). This equation describes a
switched driftless control-affine system [24], [25].

The embedded system [26] corresponding to (3) is defined
as:

q̇(t) =
m∑
i=1

vi(t)fi(q(t)) · ui(t) (4)

where
∑m

i=1 vi = 1 and vi ∈ [0, 1]. By introducing µi =
vi · ui, we have:

q̇(t) =
m∑
i=1

fi(q(t)) · µi. (5)

Note that µi ≥ 0.
The new system (5) is again in the driftless control

affine form and µi are unilateral control inputs. It can be
shown [26] that the set of trajectories of the switched system
is dense in the set of trajectories of the embedded system.
This implies that any embedded system trajectory can be ap-
proximated by a switched system trajectory arbitrarily close
so the accessibility and controllability of the switched system
can be determined by analyzing the embedded system.

All vector fields in (5) obey specific patterns, which will
make it possible to prove the accessibility of the system.
For m groups with n = 2m − 2 robots, f ∈ R3n. Each fi
has the form [γi, βi], where γi ∈ R2n and βi ∈ Rn. Each
βi has an alternating pattern of 1’s and 0’s (with the first
and last pattern truncated), with each pattern having length
2m−i. Further, γi has an alternating pattern of [0, 0] and
[cos θj , sin θj ] (with the first and last patterns truncated), with
each pattern having length 2m−i+1. Formally:

γ1 = [02m−2, cos θ2m−1 , sin θ2m−1 , cos θ2m−1+1,

sin θ2m−1+1, . . . , cos θ2m−2, sin θ2m−2]
T

γ2 = [02m−1−2, cos θ2m−2 , sin θ2m−2 , . . . ,02m−1 ,

cos θ3·2m−2 , sin θ3·2m−2 , . . . , cos θ2m−2, sin θ2m−2]
T

γ3 = [02m−2−2, cos θ2m−3 , sin θ2m−3 , . . . ,02m−2 ,

cos θ3·2m−3 , sin θ3·2m−3 , . . . ,02m−2 , cos θ5·2m−3 ,

sin θ5·2m−3 , . . . , cos θ2m−2, sin θ2m−2]
T

. . .

γm = [cos θ1, sin θ1,02, cos θ3, sin θ3, . . .]
T

β1 = [12m−1−1,02m−1−1]
T · 1/r

β2 = [12m−2−1,02m−2 ,12m−2 ,02m−2−1]
T · 1/r

β3 = [12m−3−1,02m−3 ,12m−3 ,02m−3 ,

12m−3 ,02m−3 ,12m−3 ,02m−3−1]
T

. . .

βm = [0, . . . , 1, 0, 1, 0, . . . , 1]T · 1/r

Consider the example with 3 groups and 6 robots (see
Table I). Control vector fields fi ∈ R18 with position states

[p1, . . . , p6]
T ∈ R12 and orientation states [θ1, . . . , θ6]

T ∈
R6 are shown in the Tables II and III. Vector fields β1, β2, β3

have the pattern lengths 4, 2, 1 respectively, with the first and
last 0 and 1 being truncated. Similarly, vector fields γ1, γ2, γ3
have the pattern lengths 8, 4, 2 respectively, with the first
and last pair [0, 0] and [cos, sin] being truncated. Note that
γi mirrors the group allocation pattern in Table II while βi

corresponds to the negation of the allocation pattern. The
truncations result from the columns corresponding to all 0s
(first) and all 1s (last) missing in Table I.

Position states γ
p1 p2 p3 p4 p5 p6

γ1 0 0 0 cs4 cs5 cs6
γ2 0 cs2 cs3 0 0 cs6
γ3 cs1 0 cs3 0 cs5 0

TABLE II: The pattern of the position vector fields f1, f2
and f3; pi = csi means that ith robot position state is
[cos θi, sin θi]

T , while pi = 0 corresponds to [0, 0]T .

Orientation states β
θ1 θ2 θ3 θ4 θ5 θ6

β1 1 1 1 0 0 0
β2 1 0 0 1 1 0
β3 0 1 0 1 0 1

TABLE III: The pattern of the orientation states in vector
fields f1, f2, and f3; θi = 1 means the orientation state of
robot i is 1/r.

We next recall some definitions. Assume a general driftless
control-affine system:

ẋ(t) =

m∑
i=1

fi(x(t))ui(t). (6)

Definition 1: The reachable set Rp(T ) of system (6) at
time T ≥ 0, subject to the initial condition x(0) = p is the
set Rp(T ) = {x(T, u) : x(0) = p and u : [0, T ] 7→ U ⊆ R}.

Definition 2: The system (6) is accessible from x(0) = p,
if the reachable sets Rp(t) has non-empty interior for all
t > 0.

If F is a set of control vector fields, the Lie algebra,
spanned by all iterated Lie brackets of the vector fields fi,
is denoted as L(F).

Lemma 3.1 (Accessibility [27], [28]): The affine system
(6) initialized at starting state x(0) = 0 is accessible if and
only if dimL (f1, . . . , fm) (0) = n

This is usually called Lie algebra Rank Condition. Note
that control vector field fi does not need to be symmetric
for accessibility [29]. In other words, −fi does not need to
be in the set F . The fact that for our system the control is
unilateral will therefore not affect accessibility.

Theorem 3.2: The system (5) is accessible for all position
states p in R2n, in the sense of position states. Mathemati-
cally, dimL (f1, . . . , fm) (x)[1 : 2n] = 2n.

We next outline the sketch of the proof of Theorem 3.2.
The idea is that we can find a pattern of nested brackets
which makes Lie algebra full rank. Let S(1,3,2̂m−2)(F) be a
subspace of L(F), spanned by all brackets containing exactly
1 factor of a vector field fi, at most 3 factors of another



vector field fj , and at most 2 factors of any other vector
field fl besides fi, fj . In other words, S(1,3,2̂m−2)(F) is a
set of homogeneous components, i.e. ki = 1, kj ≤ 3 and
kl ≤ 2, ∀l ̸= i, j

The key reason behind this introduced subspace
S(1,3,2̂m−2)(F) is that the vector field fi (with constant βi) in
Lie bracket can eliminate some robot’s position states in the
resulting vector. Then, applying another layer of orientation
vector field fi will switch the entries corresponding to the
robot’s x, y position and change their signs in the resulting
vector field. Thus, by nesting different combinations of fi
in the Lie brackets, we can finally get the vector field of a
single robot’s position states. Therefore, we can prove that
S(1,3,2̂m−2)(F) is full rank in terms of position states. Since
S(1,3,2̂m−2)(F) is a subspace of Lie algebra L(F), L(F)
also spans the whole space in terms of robot positions, i.e.
rank(L(F)[1 : 2N ]) = 2n. In other words, the system (5)
is locally accessible at all states.

Revisit the example of 6 robots with 3 groups. Examples
of Lie brackets between the vector fields are shown in Table
IV. We use (adv, w) = [v, w] and denote [v, (adiv, w)]
as (adi+1v, w). We use si and ci for sin θi and cos θi,
respectively.

Position states of Robot 2-5
Lie brackets p2 p3 p4 p5

[f1, f2] −s2, c2 −s3, c3 s4,−c4 s5,−c5
(ad2f1, f2) −c2,−s2 −c3,−s3 0 0
(ad3f1, f2) s2,−c2 s3,−c3 0 0

[f3, (ad3f1, f2)] 0 c3, s3 0 0
(ad2f3, (ad3f1, f2)) 0 −s3, c3 0 0

TABLE IV: The pattern of Lie brackets between f1, f2 and
f3.

The vector fields in Table IV show a subset of
S(1,3,2̂m−2)(F) , where k1 ≤ 3, k2 = 1, k3 ≤ 2. The bracket
[f1, f2] has a certain pattern of position states for robots 2,
3, 4 and 5, and is zero elsewhere. Then, nesting f1, f3 with
the Lie bracket [f1, f2] gives lines 2 to 5 in the table. The
bottom four vectors in the table provide the rank of 4. Thus,
we can conclude that robots 2 and 3 are accessible in terms
of position states. By calculating the nested Lie brackets for
[f2, f3], and [f3, f1] in a similar way, we can prove that all
six robots are positionally accessible.

C. Global controllability

Proving global controllability for an arbitrary size uni-
lateral system is trickier than proving accessibility [30].
Past work [31] focuses on eliminating the effect of the
”bad” Lie brackets caused by unilateral inputs; they show
that unilateral inputs can be seen as drift terms and if the
corresponding ”bad” brackets can be offset by lower order
”good” brackets the system is small-time locally controllable
(STLC). However, there is still a research gap between the
global controllability of unilateral input systems and STLC
of the corresponding unconstrained input systems.

Given our system is accessible and the corresponding
unconstrained input system is STLC (according to [27],

[32]), we speculate that the system is globally controllable.
For systems with unilateral controls that are forced to move
”forwards”, the challenge for controllability is to show that
the system can eventually move ”backward”. Intuitively, this
can be achieved by making the system follow a trajectory that
brings it back into the vicinity of the initial configuration.
Position accessibility guarantees that in terms of positions,
the swarm can move forward in every direction. We also
know that since no two robots belong to the same subset of
groups, their relative orientation can be changed. Together,
the two observations suggest that the swarm can in fact
approximately follow a closed trajectory and return to a
neighborhood of the initial configuration. Our extensive
numerical experiments indicate that this is in fact the case
and that the position states can be arbitrarily controlled;
however, formal proof is left for future work.

IV. NUMERICAL CONTROL

A. Optimization for minimum control effort

We return to the discrete-time version of (3). We
would like to compute the sequence of k control inputs
u0, u1, . . . , uk−1 ∈ [0, c]k that bring n robots from the
start position p0 to a given goal position pk. Clearly, k
needs to be large enough for this to be possible. Our
experiments indicated that without additional constraints, the
robots undergo large motions. This motivates us to explore
how to move the robots efficiently, with minimum motion
effort. We thus formulate the control problem as:

min
u

k−1∑
i=0

n∑
j=1

ανi,j · ui

s.t. ui ≥ 0, i ∈ 0, . . . , k − 1

ui ≤ c, i ∈ 0, . . . , k − 1

(

k−1∑
i=0

fνi
(qi) · ui)[1 : 2n] = Pk −P0

(7)

where νi ∈ {1, . . . ,m} is the given switching signal, fνi
(·)

is determined by the group activated at time i and the state
transition is given by qi = qi−1 + fνi−1

(qi−1) · ui−1. The
inputs u = [u0, u1, . . . , uk−1] are non-negative and bounded
by the constant c. We solve this nonlinear optimization prob-
lem using the fmincon function in MATLAB optimization
toolbox.

V. COLLISION AVOIDANCE

To address the collision avoidance problem, one could
formulate it as an optimization problem with distance con-
straints. But the resulting problem becomes computationally
intractable as the number of robots increases. We thus
explore a local collision avoidance method where we perform
group-based random walk whenever future collisions are
predicted.

The strategy consists of two phases: a local collision
avoidance (group-based random walk) and numerical control.
A successful path is generated through switching back and
forth between the two phases and reaching the goal by the



numerical control at last. We call the state after a numerical
control phase and a local collision avoidance the intermediate
state. We assume there exists an intermediate state qint
in the collision-free space Cfree so that we can navigate
robots from qint to qgoal without collision by applying the
numerical control.

The overall collision avoidance method is outlined in
Algorithm 1, where g(.) is the robot dynamics and NC(.) is
the minimum effort control described in IV-A. The system
switches to the random-walk phase if robots are close to
other robots or obstacles. When the random-walk finishes
the robots are apart from each other (or possible obstacles)
for at least a distance d. The proof of the completeness of
the resulting algorithm is similar to [22] and is omitted due
to space constraints.

Algorithm 1 Numerical control with Collision Avoidance
(NC-CA)

Input: qstart, qgoal, number of steps k, robot dynamics
f(.), function NC(.) that computes the solution to (7),
activation sequence ν

Output: robot path q
1: Initialisation : q = qstart
2: while q ̸= qgoal do
3: u← NC(q, qgoal, ν);
4: for i = 1 : k do
5: q ← g(q, u, ν);
6: if future collision from q then
7: q ← Random Walk(q);
8: break
9: end if

10: end for
11: end while

VI. SIMULATION RESULTS

Our simulations use MATLAB with mobile robotics sim-
ulation toolbox. All experiments ran on a 2.7 GHz Macbook.

A. Group-based Control

We used a 25×25 square environment. Fixed start and goal
positions for 6 robots are [0, 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5]T and
[7, 4; 7, 17; 7, 13; 7, 12; 7, 7; 7, 15]T . All robots’ initial angles
were 0. Figures 1a and 1b show the results of running the
fmincon minimum control effort method in Section IV-A on
6 robots organized in 3 groups. All robots have the same
turning radius r = 0.05 rad/step. The control strategy can be
calculated in a matter of seconds. The total travel distances
were minimized and equaled about 133.34 and 142.79 for
(random) activation sequences of lengths k = 40 and 60,
respectively. However, as can be seen, in both cases robots
move back and forth, leading to frequent collisions. This
behavior results because the robots are restricted to only
moving forward. To explore the influence of the length of
the control sequence k on the travel distance, we examine
each sequence length 20 times (the sequence is chosen at
random) and take the average; the results are shown in Figure

2a. Travel distance does not increase much if we use more
steps, but computing time decreases significantly. Figures 1b
and 1d show the corresponding control inputs. We can see
that in both cases, inputs are constrained to lie in [0, 3.5] and
are not sparse.

Fig. 1: (a) and (b) Minimum-effort trajectories (Sec. IV-A)
for k = 40 and 60, respectively; (c) and (d) the corresponding
control inputs u

Fig. 2: (a) control steps vs. average travel length; (b), (c) and
(d) robots move along the circular path

B. Collision avoidance

We compare the Local collision avoidance with Compo-
sition Rapidly Exploring Randomized Tree (RRT) [33]. The
sampling-based RRT motion planner searches the robots’
feasible state space by building a tree data structure of
possible robot motions rooted at the start position of the
system. The Composition RRT we implemented attempts
to grow the tree in robots’ position composite space by



iteratively calling a local planner until the goal is reached.
The local planner samples a point in composition space and
randomly selects a group to activate, then steers the tree to
grow by choosing a global translation input u and an angular
input w.

Fig. 3: (a) Collision-free trajectories obtained by
composition-RRT; (b) collision-free trajectories obtained by
Algorithm 1.

We consider 5 robots and deploy them in a 20×20 square
environment. Composition space for RRT consists of five
robots’ position space, denoted as F10, where F = [0, 20].
Figure 3 shows the collision-free path found by Composition
RRT and with our proposed Algorithm 1. Composition RRT
gives a very inefficient path. Moreover, it causes a lot of
redundant paths in order to drive robots to the vicinity
of the goal. Comparing the execution times, Composition
RRT takes about 10 hours on average, while local collision
avoidance can solve it within a minute. We can conclude
that for our problem, local collision avoidance is much more
efficient than a global probabilistic algorithm when handling
multiple robots.

Methods Minimum affort Algorithm 1

Travel length 154.1513 344.7541
Execution Time(s) 9.7456 73.5157

Time-out rate 0 0.01

TABLE V: Comparison of local collision avoidance and the
minimum-effort approach in Sec. IV-A.

To get a better understanding of local collision avoidance
performance, we ran it on 200 random initial and final
configurations, which are sampled in [0, 20]2 square space.
Table V shows the comparison between the default control
method and Algorithm 1 in terms of total traveled distance,
execution time, and algorithm time-out rate. The time-out
event occurs when the execution time is longer than 15 times
the average. All experiments ran successfully and only 1%
of cases takes a long time. On average, travel length is about
2 to 3 times longer than the path with collisions. Thus, we
conclude that the path is efficient and requires a reasonable
control effort. Moreover, by comparing the execution time,
the local path search takes less than a minute to avoid all
collisions, making it a good candidate for online collision
avoidance even in time-sensitive applications.

We further investigate how well the collision avoidance
algorithm works in environments with obstacles. We de-
signed two settings with two circular obstacles with radii

Fig. 4: (a) Obstacle avoidance trajectories in environment a;
(b) Obstacle avoidance trajectories in environment b .

of 2, and 1, respectively. Fig. 4 shows a random run in each
environment setting. By adding obstacles, we observe a more
zig-zag pattern of robot motions than before. There are two
reasons for such behavior. First, obstacles are very close to
the final positions. Specifically, we put obstacle in Fig. 4b
closer to the goal than in Fig. 4a. Even though obstacles in
Fig. 4a have larger radii, Fig. 4a provides a simpler path.
Second, we only have two degrees of freedom to control
five robots (selecting the group and selecting the control u).
Some robots inevitably wander around aimlessly while we
move other robots away from obstacles.

Environment a b

Ave Travel length 491.6381 758.9985
Min Travel length 405.3294 445.4527

Time-out rate 0 0.04

TABLE VI: Comparison of local obstacle avoidance in two
environments

Our findings are summarized in Table VI showing that
the average travel distance is about 1.5 to 3.5 longer than in
the environment without obstacles. Noting that the minimum
length is much shorter than the average, when the map is
known we can run the algorithm several times and choose
the best path; each run of the algorithm typically takes less
than a minute.

C. Numerical evidence for global controllability

We demonstrate global controllability through empirical
experiments with 3 groups and 6 robots. The key idea is
to define a set of control primitives p that can be used to
construct more complex trajectories. We can observe that
robots move along a circular path and eventually return to
the original points as we repeat the control primitive multiple
times. Figure 2c shows the trajectory of 4 robots by repeating
control primitive p = [g1, g2, g3, g1, g2, g3, g1, g2, g3] =
[g1, g2, g3]3 200 times. By solving for control inputs u ∈
R9, we can make only robot 3 to move while all other
robots remain at their original location. Figure 2b gives
the trajectories of 4 robots for the control primitive p =
[g1, g2, g3]4 which repeats 150 times. Notice that robot paths
in Figures 2c and 2b are similar to repeating a triangle
and quadrilateral respectively. This is because the control
primitives correspond to 3 and 4 repetitions of the pattern



[g1, g2, g3]. Figure 2d shows an example of control of 6
robots from their location [0, 0; 0, 1; 0, 2; 0, 3; 0, 4; 0, 5]T to
xf = [1, 0;−1, 0; 0, 1; 0,−1; 2, 0; 0, 3]T . For all these cases,
we observe that each robot will move on a path that looks
circular.

VII. CONCLUSION

In this paper, we introduced the novel idea of group-based
control that dramatically increases the ability to control large
groups of MicroStressBots with on-board PFSMs. We for-
mally proved that the proposed method makes the positions
of the robots in the swarm accessible and provided numerical
evidence for global controllability. We also studied collision
avoidance for the swarm and proposed a probabilistically
complete algorithm for collision avoidance that can be used
online. The proposed methods were extensively evaluated
through simulation studies. Future work will include the for-
mal proof of global controllability and deal with uncertainty
in the operation of the robots. We also plan to evaluate the
approach on a real system of MicroStressBots. Fabrication
of the physical testbed is currently in progress.
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