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ATMOSPHERIC SCIENCE

Biophysical impacts of Earth greening largely
controlled by aerodynamic resistance

Chi Chen'#, Dan Li'*, Yue Li? Shilong Piao?, Xuhui Wang?, Maoyi Huang?, Pierre Gentine*,

Ramakrishna R. Nemani®, Ranga B. Myneni’

Satellite observations show widespread increasing trends of leaf area index (LAI), known as the Earth greening.
However, the biophysical impacts of this greening on land surface temperature (LST) remain unclear. Here, we
quantify the biophysical impacts of Earth greening on LST from 2000 to 2014 and disentangle the contributions
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of different factors using a physically based attribution model. We find that 93% of the global vegetated area
shows negative sensitivity of LST to LAl increase at the annual scale, especially for semiarid woody vegetation.
Further considering the LAl trends (P <0.1), 30% of the global vegetated area is cooled by these trends and 5% is
warmed. Aerodynamic resistance is the dominant factor in controlling Earth greening’s biophysical impacts: The
increase in LAl produces a decrease in aerodynamic resistance, thereby favoring increased turbulent heat transfer

between the land and the atmosphere, especially latent heat flux.

INTRODUCTION

Vegetation is a key regulator of land-atmosphere exchanges of heat,
mass, and momentum (I, 2). Satellite records of leaf area index
(LAI), a measure of the aboveground vegetation abundance, indi-
cate widespread increasing trends since the 1980s (3), due to warm-
ing (4, 5), CO; fertilization (6), and land management (7, 8). The
Earth greening directly affects the surface energy budget through
influencing various biophysical factors: (i) albedo (o), which con-
trols the fraction of solar radiation absorbed by the surface; (ii)
aerodynamic resistance (r,), which characterizes the efficiency of
turbulent transfer of heat and water vapor; (iii) surface resistance
(rs), which is the additional resistance to water vapor transport
through the soil and the pores on leaves; and (iv) emissivity (g),
which is the effectiveness of a surface in emitting and absorbing
longwave radiation. Changes in these biophysical factors can strongly
affect the radiometric land surface temperature (LST).

Despite their importance, the magnitude of these biophysical
changes associated with Earth greening and their impacts on LST
remain poorly understood (2, 9-12). First, it is unclear which bio-
physical factor dominates the effects of Earth greening on LST. A
global modeling study suggested that changes in aerodynamic resist-
ance caused by the increasing LAI play a negligible role (9). On the
other hand, several other studies demonstrate that aerodynamic
resistance is the most critical biophysical factor that controls the
LST response to vegetation changes (13-15). Quantifying the bio-
physical impacts of Earth greening on LST and addressing the dom-
inant biophysical factor frame the scope of our study.

Second, the biophysical impacts of Earth greening on LST can-
not be simply quantified by the observed changes in LST from sat-
ellites. The observed changes in LST are compound effects of Earth
greening and large-scale climate change (fig. S1)—here, the Earth
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greening means an increasing trend in LAI, and the large-scale
climate change refers to changing atmospheric conditions such as
rising air temperature. Consequently, the sensitivity of LST to LAI
inferred from statistical methods, e.g., multiple linear regression
(10), may suffer causality issues [see, e.g., a recent debate on whether
greening is the cause or effect of warming in the boreal zone (10-12)].
In this study, we do not aim to quantify the interplay between Earth
greening and rising air temperature. Instead, we aim to quantify the
impacts of Earth greening on LST independent of those from large-
scale climate change.

To do so, we use a physically based attribution method, the two-
resistance mechanism (TRM) method (14, 16, 17). It quantifies the
sensitivities of LST to Earth greening through biophysical pathways
[0, 74 T, €, and ground heat flux (G)] and thus the contributions of
these biophysical changes to changes in LST. Unlike previous studies
that compare the effects of changes in sensible and latent heat fluxes
(9, 10, 18, 19), we take one step further by considering changes in
aerodynamic resistance (mostly related to surface roughness) and
surface resistance (mostly related to soil moisture and vegetation
characteristics), which circumvents the strong correlation between
sensible and latent heat fluxes through aerodynamic resistance
(14, 16, 17).

Changes in biophysical factors are caused not only by the Earth
greening but also by changing atmospheric conditions. For exam-
ple, changes in surface resistance could be a result of changes in
LAL air temperature, and specific humidity (20). Hence, to quantify
the biophysical impacts of Earth greening on LST, we need to further
considaer the sensitivities of biophysical factors to changes in LAI
(e.g., ﬁ). The final expression of the greening-induced LST change
is diagnosed as follows
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where ALAI,, is the satellite-derived long-term trend in LAI (ﬁg SZA)

multiplied by the length of study period (15 years)a TaL‘SIT T, T, aT;
of LST to LAI through biophysical pathways; =%, ar. ara 3 a0
Ta s 0

e ees . : B
are sens1t1v1t1es of LST to biophysical factors; and 575, =28, =, =2,

and %5 aL 7 are sensitivities of biophysical factors to LAI (Materials
and Methods).

RESULTS

Sensitivity of LST to LAl through biophysical factors

The sensitivity of LST to LAI dlagnosed from Community Land Model
Version 5 ( ) indicates a cooling effect
due to the Earth greenlng globally (Fig. lA) 93% of the global

aLAI
(mean + 1 SD where %D 1nd1cates spatial varlablhty) We find that the

aL N (-0.44Km’m™)
than those i 1n h1§h -latitude (-0.34 K m* m™?) and troprcal reglons
(=0.29 K m?* m™?) (Table 1). We further investigate aL o
fying the global vegetation into forests, other woody vegetation
(OWYV; such as shrubs and savannas) grasslands, and croplands
(fig. S2B). 2L
(-0.43 K mIz -2), followed by grasslands (-0.36 K m2 m2), but
weak in forests (~0.23 K m?* m™2) (Table 1). Our analysis shows that
OWYV mostly grows in relatively dry regions where a change in LAI
can substantially alter the efficiency of convective heat transfer be-
tween the land and atmosphere through changing the aerodynamic
resistance (fig. S3B). A stronger sensmVlty indry reglons is eVldenced

creases (Table 1). The lo aLT::I

the saturation effect—the same change in LAI would lead to a
smaller change in biophysical factors (a, r,, and ;) as well as LST
where LAI is hlgh (ﬁg S4, G to I) (15, 21 22) As a result, the mag—

BLAI
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much larger than regions with LAI >4 m®> m™* (~0.09 K m* m™?)
(Table 1).

Multiple lines of evidence show that ou BL N
CLMS5 outputs using the TRM method is robust. First, 9L AI ” (Fig. 1A)
is almost identical to its counterpart (i.e., ALTA°I = m Materi-
als and Methods) approximated using CLM5 sensitivity experiments
by perturbing LAI climatology (Fig. 1D). This directly demonstrates
that the TRM method can successfully capture the nonlinear re-
sponse of LST to LAI simulated by CLM5. Second, given that there
have been studies reporting CLM’s biases in modeling sensible and
latent heat fluxes (23, 24), we use the Modern-Era Retrospective
analysis for Research and Applications Version 2 (MERRA-2) re-
analysis data and seven fully coupled CMIP5 (the fifth phase of the
Coupled Model Intercomparison Project) model outputs to com-
pute the sensitivities of LST to biophysical factors (e.g., aT) and we
find that the results agree well with those diagnosed from CLM5
outputs (Fig. 1,Band C, and fig. S5). Third, we also use these LST
sensitivities to blophzlbsmal factors computed from MERRA-2 and

e S AT (fig. S6). The coefficient of variation (CV)
indicating good agreement among models.
We also break 2 L[;I down into three individual biophysical pathways.
Values of CV for each pathway are 44% (albedo), 10% (aerodynam-
ic resistance), and 22% (surface resistance). The relatively high CV
in the albedo pathway turns out to be un1mp0rtant because the ab-

a AT
than those from aerodynamic and surface resistances (fig. S6). We

stress that different inputs for TRM agree in terms of their signs for
all biophysical pathways, including the albedo pathway (fig. S6).

Earth greening cools LST

The change of LST due, to Earth greening (i.e., ATEOMAY) s the
product of sensitivity 5—- and the long-term change in LAI (ie,
ALAIg,y) (Eq. 1). Our results show that ATblO LAl i —0.056 + 0.046 K

over regions with statistically significant LAI trends, and the area of
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Fig. 1. Biophysical effects of the Earth greening on LST. (A to C) Sensitivity of T; to LAI
CLM5 outputs, and (C) CMIP5 multi-model ensemble mean (MMEM) and CLM5 outputs. (D) Sensitivity of T, to LAl
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LAI-induced cooling (30%) is six times of that of LAI-induced
warming (5%) (Fig. 1F). The magnitude of A]blo LAL estimated here
is comparable to that reported by a previous study using coupled
land-atmosphere simulations (9). On the basis of this agreement,
but acknowledging that the previous study used a different model,
we conjecture that the Earth greening affects LST mostly through
biophysical effects with small contributions from atmospheric feed-
backs. We translate AT"*! from 2000 to 2014 to changes in energy
(2.97 x 10! J), which is more than five times the world’s total primary
energy supply in 2015 (5.71 x 10°°J) (25). From this perspective, the
Earth greening-induced cooling effect is also much stronger than the
warming caused by land cover change from 2000 to 2015 (1.21 x 10*)
(19), given that one-third of the global vegetated area shows statis-
tically significant trends in LAI (7). o
Because the change in LST is the product of the sensmVlty, SLaT
and the change in LAI, ALAI (Eq. 1), high sensitivity of LST to
LAI does not necessarlly imply a large change in LST, and vice versa.
For example,m is large in semiarid regions and/or highlands, such

as in the western United States, western China, Australia, South
Africa, and Argentina (Fig. 1A). However, these regions have small
ALAI, so that ATb"’LAI is suppressed (Fig. 1F and f1g S2A).
A similar situation exists in the Arctic where 575
large (Fig. 1A), yet ATY M is negligible because ALAIy is small
(Fig. 1F and fig. S2A). In contrast, in subtropical to temperate re-
gions of the Northern Hemisphere (eastern China, Ind1a, and Eastern
Europe), ATl i large (Fig. 1F) due to the strong )
and ALAI, (fig. S2A).

BLAI

The dominant role of aerodynamic resistance

We quantify the contributions from different biophysical factors to
IV including a, r,, 75, €, and G (Eq. 1). At the annual scale, r, plays
a dominant role in regulating the biophysical impacts of Earth green-
ing on LST, while the impacts from & and G are two to three orders of
magnitude smaller than the other factors and thus negligible (26, 27).
In CLMS5, the r, pathway dominates 82% of the global vegetated area,
followed by the r; pathway (14.7%) and the o pathway (3.6%) (Fig. 2A).

Table 1. Mean and SD of the biophysical sensitivity of LST to LAl across bioclimatic regimes. Mean + 1 SD, where SD indicates the spatial variability. OWV,

other woody vegetation.

Forests owv Grasslands Croplands All vegetation
Global —0.23+0.12 —-0.45+0.32 —-0.36+0.23 -043+£0.17 —0.36£0.22
By latitude
>50°S/N —-0.28£0.09 -0.37+£0.36 —0.07 £0.52 -0.44+£0.16 -0.34+0.23
25°S/N-50°S/N —-0.26 £0.09 —0.58+0.29 —0.47£0.31 -0.45+0.15 —-0.44+0.23
25°5-25°N —-0.11£0.05 -0.45+0.23 -0.33£0.13 -0.37+0.18 -0.29+0.19
By LAl
LAI<1m?m™2 —-0.38%0.15 -0.49+0.38 -0.37+0.37 -046+0.17 -0.45+0.31
LAl €1-4m? m™ -0.25+0.08 -0.33£0.11 -0.33£0.11 -0.39+0.14 -0.30+0.11
LAI>4m?m™2 —0.09+0.02 -0.13+£0.03 —0.12+0.02 —-0.11+£0.02 —0.09+0.02
By annual total precipitation (ATP)
ATP <900 mm -0.29+0.09 —0.47 £0.36 —0.35+0.30 -043+0.17 —-0.40+0.26
ATP € 900-2000 mm -0.21+0.10 -0.35+£0.13 -0.37£0.15 -043+£0.16 -0.33£0.16
ATP >2000 mm -0.10+0.04 -0.31£0.17 -0.31£0.19 -0.33+0.18 -0.12+0.06
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Fig. 2. Dominant surface biophysical factors in regulatlng aLm  at the annual scale diagnosed from CLM5 outputs. (A) Map of dominant factors for I

aLAI Orange

yellow, and green represent the dominance of a, r,, and r;, respectively. The inset shows the areal fraction of dominant factors by biome type. FO, forests; OWV, other
woody vegetation; GR, grasslands; CR, croplands; All, all vegetation. (B) Attribution of—W|th surface biophysical factors. Results are presented in boxplot, and the additional

diamonds indicate the mean.
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In terms of the areal fraction, 92% of the forests and 89% of OWV
show that the r, pathway plays a more prominent role than o and r,
while the dominant fraction of r, is reduced to 73% in grasslands
and 68% in croplands (Fig. 2A). The increase in LAI results in a re-
duced aerodynamic resistance with a global cooling effect of —0.34 +
0.22 K m?m™ (Fig. 2B), which, on average, contributes to 77% of
the variance of the total biophysical impacts on LST. When the land
is hotter and/or wetter than the atmosphere, a reduced aerodynamic
resistance can enhance the sensible and/or latent heat transfer from
the land surface to the atmosphere and hence cools the surface
(1, 28, 29). It can also lead to a land surface warming with a reversed
heat and water vapor transfer from the atmosphere to the land sur-
face when the land is cooler than the atmosphere, which is reflected
in some northern high-latitude regions (fig. S4B). The dominant
role of r, is robust across results computed from a hybrid of CLM5,
MERRA-2, and CMIP5 (fig. S6 and table S2) and is consistent
with another independent research using a different model [i.e.,
MPI-ESM (Max Planck Institute Earth System Model)] (15).

Compared to the r, pathway, the r, pathway plays a secondary
role in cooling LST (~0.06 + 0.09 K m? m™2) (Fig. 2B). In terms of
the areal fraction, the r; pathway is most significant in 29% of crop-
lands and 19% of grasslands, but least in forests and OWV (8%)
(Fig. 2A). This is because although r, is more sensitive to changes in
LAlthanr, (ﬁg S4 H and I), LST is much more sensitive to changes
inr, (ie., o (fig. S4, E and F) as well as in MERRA-2
and CMIP5 (ﬁg SS K and L). We stress that a minor role of r, does
not imply a negligible role of latent heat flux because a change in r,
can also directly cause a change in latent heat flux (Eq. 4) (14-17, 30).
Using CLM5’s control and sensitivity runs, we compute the sensi-
tivities of sensible heat flux and latent heat flux to LAI. We find that
globally, the sensitivity of latent heat flux (6.9 + 4.9 W m™ per unit
LAI) is larger than that of sensible heat flux (3.5 £ 4.0 W m~? per
unit LAJ) (fig. S7). This implies that increases in LAI generally cause
the latent heat flux to increase more strongly than the sensible heat
flux, which actually shows reductions in most places. The total tur-
bulent flux or available energy (i.e., the sum of sensible and latent
heat fluxes) increases with increasing LAL

The a pathway dominates only in a few places in the Arctic and
the Sahel (Fig. 2A). In general, the o gathway leads to a minor
warming effect of 0.04 + 0.07 K m? m™? (Fig. 2B). The finding of
albedo-related warming, especially in northern high altitudes, is
consistent with previous studies (2, 19, 31, 32), but its magnitude is
much smaller than the turbulent cooling effects from r, and r,
(Fig. 2). Except for evergreen forests, the increase in LAI reinforces
the fraction of absorbed photosynthetically active radiation (fPAR)
thus reducing o (33), leading to the warming of LST (fig. S4, A and
G). However, the increase in LAI in evergreen forests has a negli-
gible a-related impact due to the fact that fPAR is almost saturated
in evergreen forests (34, 35) and that the increase in LAI enhances
the reflectance in near-infrared radiation, which elevates o (fig. $4,
A and G) (21, 36, 37).

DISCUSSION

Causality in the attribution analysis

One highlight of our study is that it treats changes in the LAI as the
forcing and changes in the LST as the response, thereby avoiding
the potential causality issues involved in the coevolution between
LST and LAIL To illustrate this, we use a statistical method follow-
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ing (10) to calculate the sensitivity of LST to LAIL The new sensitiv-
ity, aLT Ai, is calculated using multiple linear regression of LST anom-
alies against LAI, precipitation, and incoming shortwave radiation
anomalies from CLMS5 (Fig. 1E). This new sensitivity can almost
reproduce the results of (10). However, this new sensitivity is about
10 times larger than the sen51t1V1ty diagnosed by the phy51cally

LAI

aLAI
aL o _ are computed from CLM5 outputs, they are expected to agree

with that evaluated from CLMS5 sensitivity runs with prescribed LAI
perturbations (X N3 AI, Fig. 1D and table S1). However, only the former
is consistent with this expectation.

The difference between the two methods is likely caused by the
air temperature. In our CLM5 simulations and the TRM method,
air temperature is treated as a forcing for the land surface. On the
other hand, the regression method does not consider the effects of
anomalies of air temperature on anomalies of LST independent
from the anomalies of precipitation and incoming shortwave radia-
tion (10). As a result, the air temperature effects may be spuriously
attributed to the albedo effects in the northern high latitudes given
the strong feedbacks in these regions that link the rising tempera-
ture with albedo changes. To support this, we ana;ytlcally computed
the sensitivity of LST to air temperature (i.e., aT) using the TRM
method, which shows strong positive values over the northern
high-latitude regions (fig. S8A). This implies that the LST and air
temperature in these regions are strongly and positively correlated,
and the rising air temperature inevitably leads to increased LST. The
rising air temperature in these regions is more likely caused by
the increasing atmospheric CO, concentration with a minor con-
tribution from the Earth greening (3, 38). We conducted another
multiple linear regression with air temperature anomalies as an
additional independent variable. The resulting =
tive in most places albeit with a different magmtude compared to
the TRM method (fig. S8B), which suggests that results from the
regression method are highly dependent on the selected “indepen-
dent” forcing variables.

Independence of the attributable variables

While the simulated cooling effect from the Earth greening in our
study is consistent with another modeling study (9), our finding of
the dominant role of aerodynamic resistance is in contrast with
their conclusion that it plays a negligible role. The main reasons for
this difference are their use of 2-m air temperature instead of LST
and, equally importantly, the independence assumption made by
any attribution methods using first-order Taylor series expansion.
By neglecting higher-order and cross-order terms, these attribution
methods assume that the attributing factors (such as a, r,, and g in
our study) are independent of each other (16). In (9), the authors
attributed changes in 2-m air temperature to changes in albedo,
aerodynamic resistance, latent heat flux, atmospheric shortwave
transmissivity, near-surface air emissivity, and atmospheric circula-
tion. Hence, they implicitly assumed that latent heat flux is inde-
pendent of aerodynamic resistance. However, the dependence of
latent heat flux on aerodynamic resistance is clear from the well-
accepted parameterization for latent heat flux (Eq. 4) and has been
demonstrated empirically using eddy covariance observations from
AmeriFlux (16). Their assumption of independence between latent
heat flux and aerodynamic resistance may therefore alter the attri-
bution results (17).
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With regard to the stronger sensitivity of LST to changes in r,
than in r;, this is not inconsistent with a previous theoretical study
(30) showing that evaporation efficiency is the most important
parameter in controlling LST dynamics. First, their estimate of
evaporation efficiency is for daytime and relatively moist condi-
tions (30), while our study includes both daytime and nighttime
and dry conditions at the annual scale. Second, their evaporation
efficiency is actually dependent on both aerodynamic resistance
and surface resistance due to the use of a different parameterization
of latent heat flux (30). Our analysis shows that the Earth greening
causes large changes in latent heat flux due to the reduced aero-
dynamic resistance.

Concluding remarks

In this study, we evaluate the biophysical impacts of Earth greening
on LST using an attribution method based on the surface energy
balance equation. We find that the widespread Earth greening leads
to a cooling effect on LST across the globe at the annual scale, which
is predominantly attributed to the decrease in aerodynamic resistance.
While these small perturbations in LAI tend to alter turbulent pro-
cesses more than radiative processes globally, radiative processes
remain critical in a small proportion of regions in the Arctic and
some sparsely vegetated areas. Last, the TRM method provides a new
way to diagnose model outputs and can be further used to evaluate
whether these biospheric impacts of vegetation would be amplified
or hindered in future climates. If the Earth greening continues, the
aerodynamic resistance to turbulent transfer will continue to de-
crease, resulting in stronger instabilities in the atmospheric boundary
layer. In the meantime, surface resistance will also decrease, possibly
leading to more water vapor into the atmosphere thus affecting the
hydrologic cycle. Whether these effects will be detectable by obser-
vations and whether the Earth greening can affect other climatic
processes (e.g., extreme events) remain to be investigated.

MATERIALS AND METHODS
Model experiments
We conduct offline land model simulations using the CLM5, which
is part of the Community Earth System Model Version 2 (CESM2)
(39), to study the biophysical impacts of Earth greening on the sur-
face climate. In other words, our study object is the land surface, not
the coupled land-atmosphere system. Therefore, our CLM5 ex-
periments do not explicitly include the feedbacks of LAI changes on
the large-scale climate. Instead, we assume that the ambient at-
mosphere already considers the impacts of LAI changes and is es-
sentially the forcing of the land surface. The atmospheric forcing
is taken from the third phase of the Global Soil Wetness Project [GSWP3
(http://hydro.iis.u-tokyo.ac.jp/GSWP3/)]. All simulations are conducted
at 0.47° x 0.63° resolution with a constant atmospheric CO, con-
centration of 367 parts per million by volume in 2000 to exclude
effects from vegetation responses to the rising CO, concentration.
CLMS5 explicitly parameterizes the LAI impacts on surface bio-
physical factors. According to the CLM5 technical note, albedo is
influenced by LAI through a two-stream approximation where LAI
affects extinction and scattering coefficients (like the Beer-Lambert
law) (39). For aerodynamic resistance, the displacement height and
roughness lengths are both functions of LAI (22, 39). For the sur-
face resistance, CLM5 uses the Medlyn’s model in which surface
resistance is affected by LAI through photosynthesis and plant hy-
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draulics (39-41). Last, emissivity is related to LAI with a negative
exponential relationship (39).

To obtain the sensitivities of LST to biophysical factors and the sen-
sitivities of biophysical factors to LAI (see Eq. 1), we conduct a suite of
simulations for the period of 2000 to 2014 with prescribed LAI obtained
from the Moderate Resolution Imaging Spectroradiometer (MODIS):

1. Spin-up run (1990-1999): We prescribe the MODIS LAI clima-
tology, i.e., the LAI values change from month to month but have
no interannual variabilities or trends. The spin-up run ensures that
the model achieves equilibrium under the current climate.

2. Control run (2000-2014): All configurations are the same as
the spin-up run, but the simulation period is from January 2000
to December 2014.

3. Sensitivity runs (2000-2014): Compared to the control run,
we perturb the MODIS LAI climatology by +2%. There are still no
interannual variabilities or trends for LAI

To compare our results to a previous study using multiple linear
regression method (10), we conduct a historical LAI run using CLM5:

4. Historical LAI run (2000-2013): We prescribe monthly MODIS
LAI to CLM5. MODIS LAI is derived from satellite observations,
which include interannual variabilities.

MODIS LAI

The monthly MODIS LAI (0.5° x 0.5°, 2001-2013) at plant func-
tional type (PFT) level is downloaded from the University Corpora-
tion for Atmospheric Research (UCAR) data archive for CESM2
(https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/Ind/
cIm?2/lai_streams/). For each PFT, we calculate the LAI climatology
and the perturbed LAI climatology at the monthly scale.

We use Collection 6 Terra and Aqua MODIS LAI products
(MOD15A2H and MYDI15A2H, available at https://e4ftl01.cr.usgs.gov)
(33) to obtain the linear trend in annual average LAI (2000-2014).
We check the quality flag for the LAI products to exclude low-quality
observations contaminated by clouds, aerosols, shadows, snow, and/or
ice. We apply the same preprocess procedure as documented in a
previous study (7) and resample the dataset to 0.5° x 0.5° to con-
form to the resolution requirement of CLM5’s inputs. We calculate
the trend in annual average LAI using the Mann-Kendall test (R
package: https://cran.r-project.org/web/packages/zyp/index.html)
at P < 0.1. The quality of MODIS LAI was comprehensively evaluated
against ground-based measurements and through intercomparisons
with other satellite-retrieved LAI products (42, 43).The trend of
MODIS LAT is also consistent with AVHRR (Advanced Very-High-
Resolution Radiometer) LAI and other LAI datasets proved by a
wide range of previous studies (3, 7).

Diagnosis of the biophysical impacts on LST

As a result of postindustrial human activities, the atmospheric CO,
concentration has increased and the land surface has undergone
substantial changes. These factors collectively contribute to large-
scale climate change and the observed widespread vegetation green-
ing (i.e., LAI change) (44). Figure S1 shows that both large-scale
climate change (the gray paths) and LAI change (the blue paths) can
result in changes in surface biophysical factors (such as albedo,
aerodynamic resistance, and surface resistance) (28, 45-49), which
lastly lead to changes in LST (14, 16), denoted as ATY '™ (the gray
and red paths) and AT‘S’iO’LAI (the blue and red paths), respectively.
In addition, large-scale climate change can cause changes in LST
without altering the biophysical factors (the pink path, denoted as
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A”[?tm’dim; fig. S1) (46, 47). For example, when the air temperature
increases, LST would respond even if all the biophysical factors remain
the same (20). Therefore, only part of the LST change is due to vege-
tation biophysical impacts AT The full expression of ATPOLAL
is Eq. 1 in the main text.

Sensitivities of LST to biophysical factors
Sensitivities of LST to biophysical factors are analytically computed
from the outputs of CLM5 prescribed with LAI climatology using
the TRM method. We further examined these sensitivities using re-
analysis data (MERRA-2) and outputs from seven fully coupled
CMIP5 models (ACCESS1-0, ACCESS1-3, CCSM4, HadGEM2-ES,
IPSL-CM5A-LR, IPSL-CM5A-MR, and NorESM1-M). We choose
these seven CMIP5 models because only they provide all required
inputs for the TRM method (16).

We start with the surface energy balance equation, which is ex-
pressed as

Ry = Sn(1-a)+eLin-ec T = H+LE+G (2)

where R, is the net radiation; Si, and Li, are the incoming shortwave
and longwave radiation, respectively; a and € are the albedo and
emissivity, respectively; H and LE are the sensible and latent heat
fluxes, respectively; and ecT," is the outgoing longwave radiation
where ¢ is the Stefan-Boltzmann constant and T is the LST. Further
connecting H and LE with LST through the aerodynamic resistance
(r,) and surface resistance (r) concepts gives

H =221 1) )
LE = 22 (4T~ )

where p is the air density, cp is the specific heat of air at constant
pressure, Ly is the latent heat of vaporization, T, is the air potential
temperature, and ¢, is the air-specific humidity. The use of aerody-
namic resistance (,) and surface resistance (r;) gives rise to the name
of the attribution method [TRM method (14, 16, 17)]. We note that
the TRM method calculates the bulk r, and 7, using Eqs. 3 and 4.
Substituting Eqgs. 3 and 4 into Eq. 2 yields a nonlinear equation
for T, provided that all other variables are given as inputs. This
equation is further linearized following previous studies (14, 16, 17),
so that an analytical expression for T can be obtained, as follows

ho| Ry = G — L2 (qH(Ta) ~qa)
T, = [ (ry+7) 12 ]+Ta

1+f

(5)

where
R = Sp(1 —a)+eLiy —eo T, (6)
t S/
f= TZ[1+7<ra:rs>] @
_ oe*
S = oT |1, (8)
To = pcp;\o )
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P

Y = 9622L, (10)

1
=— (11)
° 45(5Ta3

and e* is the saturation vapor pressure and P is the atmospheric pressure

at the surface. With the analyticalaexpresséion for Ts, we can take

the partial derivatives 5 e i, and 2% to obtain sensitivities
X . o’ dr,’ dry’ de oG

of LST to biophysical factors, as follows

aTs _ xosin
do.  1+f (12)
dT; _ }\OPLv(q:(Ta)_Qa) 1,
ara (Ta + Ts)z (1 +f)
To Y] Ta 2 * va(q:(Ta)_Qa)] 1
R | e
(13)
% _ }\ova(q;(Ta)_Qa) 1 .
ors (ra + 1’5)2 1+f) (14)
by o "o R* G va(qZ(Ta)_qa)] 1
olvT— = hn— G- 5
T(ra+r) (ratr) | (1+))
o, A
3G -~ 1+f (15)
* p Ly(q2(Ta) =qa)
aTs _ Ao . 4 R"_G_ (ra+1y)
de  1+f (Lin—oTy,) ed+) (16)

We also calculated the sensitivity of LST to air temperature

T,  1+f|0T, (ra+r15)0T,
* pL(ga(Ta) —ga) * pLy(q5(T2) ~qa)
Ra= G- ] o }‘°[R"_G_ (ra+ 1) ] of .

' 1+f oT, (1+> oT,
(17)

R, _ N _ 3 o0, _ 0.622 of _ pop
where 3T, = —48073, M = Tret® T, - =50, T = r—a[l +
3 1 oo ro 38 9 _ 9%’ :
?(mws)]an T oty and or, a?'n' To use the TRM attri-

bution method, the required input variables are from CLM5 con-
trol run, which include incoming shortwave radiation, outgoing
shortwave radiation, incoming longwave radiation, sensible heat
flux, latent heat flux, ground heat flux, emissivity, surface pressure,
and air temperature, specific humidity, and air density at the lowest
atmospheric model level (about 30 m above the land surface) (16).
We exclude all negative aerodynamic resistance and/or surface re-
sistance (physically meaningless) inferred from Eqs. 3 and 4. We
calculate the sensitivities for each year and take the median of these
sensitivities from 2000 to 2014 for the consequent analyses.
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Sensitivities of biophysical factors to LAl

We use outputs from the CLM5 control run and sensitivity runs to
estimate the sensitivities of biophysical factors to LAI (Eq. 18). For
example, the albedo sensitivity to LAI is estimated as

Jdo. Osen — Olctl

JLAI - LAl —LAlyg (18)

where the subscripts “sen” and “ctl” indicate sensitivity and control
simulations, respectively. Note that o can be replaced with r,, 7y, €,
and G. As mentioned in the model experiments, there are two sen-
sitivity runs (i.e., perturb the MODIS LAI climatology by +2%). For
each year, we calculate the average sensitivities of biophysical fac-
tors to LAI estimated from the two combinations of sensitivity runs
and the control run. We take the median sensitivities from 2000 to
2014 for the consequent analyses. Because of a lack of analytical
forms of the sensitivities of biophysical factors to LAI, they can only
be approximated by offline model simulations to exclude the con-
founding effects from the changes in atmospheric conditions.

The robustness of the TRM method and the
diagnosed sensitivities
To dlrectly examine the - validity of the TRM method ﬁrst we com-

aLAI ALAI
rectly calculated from CLMS5 control and sensitivity runs. Slmllar to

the biophysical sensitivities to LAI, the ALTAI can be calculated as

AT,
ALAT

Ts,sen — Lgctl

LATeen — LAl

(19)

Second, we compare the LST sensitivities to biophysical factors
(i.e., ZZ, gT, an d ) calculated from CLMS5 to those (i) from MERRA-2
(0.625° x 6 5° 2000 2017) and (ii) from seven CMIP5 historical runs
(resolution varies by model, 2000-2005). This can address whether
the analytically analyzed sensitivities (i.e., ZT, gT,
from offline CLMS5 simulations are consistent with those diagnosed
from reanalysis data and fully coupled CMIP5 simulations. MERRA-2
is the latest version of reanalysis data produced by the NASA’s Global
Modelling and Assimilation Office (50), which considers the inter-
actions between lands, atmosphere, and oceans, as well as assimilates
observational data (50). CMIP5 historical runs are fully coupled
simulations of recent past that impose changing conditions consist-
ent with observations, which includes the effects of anthropogenic
and Volcamc influences and solar act1V1t1es

BLAI
CMIP5, and CLM5. That is, 30 555

9 or, a
MERRA-2 and CMIP5, and BLaAI’ SLAD and —>- SIAT

and 9 ore estimated from

are estlmated from

oT! m
BLAI

CLMS5. In other words, we compared the hybri es-

aLAI
timated purely from CLM5 outputs.
Fourth, we estimate the sensitivity of LST to LAI using the iden-

tlcal multlple linear regression method described in (10) (denoted

BLAI

8Ty = a+b-8LAI + c- dPrecipitation + d - 3SW;,  (20)

where 8T, SLAIL dPrecipitation, and 8SW;, are the annual anomalies
from the CLMS5 historical LAI run. We note that the MODIS LAI pro-
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duct is the input for CLM5’s historical LAI run in satellite phenology

mode. Naturally, gL - is the slope b in Eq. 20. Other coefficients a, ,

and d are not discussed here. Besides, we conducted an additional mul-
tiple linear regression that includes the interannual variability of air tem-

perature to get a new=—> “to compare with the=—*-estimated by Eq. 20.

BLAI aLAl

io

Contribution of each biophysical pathway to az:l

For each grid cell, the contribution by each biophysical pathway is
defined as the following

Contribution; =
12
21
2 2 [f(l)]z 2 7 % 100% ey
Aa) 7+ [fra) ]” + [fir) 7 + [AG) )" + [fe) ]
where Contribution; is the contribution by a particular biophysical

pathway, and f(i) = (a *) (a&’“) i ={0,rsrs8 G}

LAl

The equivalent energy of AT"
We note that the equivalent energy of AT (denoted as Q) is a
rough estimate that assumes a constant emissivity of unity all over
places with significant LAI trends. Thus, Q is calculated as

Q = T,Tdtx Aix [G(Ti+%xATin’LAI’i>4—6(T§)4]} (22)

where A is the area of a pixel that varies by latitude; i denotes each
vegetated pixel with nonzero ATS*; 6 is the Stefan-Boltzmann
constant (5.67x10° W m™ K™*); T} is the climatology LST of the
ith pixel from 2000 to 2014; ¢ is the number of seconds in a year
(3.1536x107 s); N is the total years of the study period, which is 15;
and # is the sequential number of year (from 1 to 15).

MODIS land cover type product

The Collection 5.1 MODIS yearly product provides the land cover
information at 0.05° x 0.05° known as MCD12Cl1 (51). The overall
accuracy is around 75%; for example, misclassifications are reported
between savannas and woody savannas or between cereal croplands
and grasslands (51-53). We aggregate the International Geosphere-
Biosphere Programme classification types provided by MCD12Cl
into four broad biome types: forests, OWV, grasslands, and crop-
lands. Forests consist of evergreen needleleaf forest, evergreen
broadleaf forest, deciduous needleleaf forest, deciduous broadleaf
forest, and mixed forest. OWV refers to closed shrublands, open
shrublands, and woody savannas. Grasslands include savannas and
grasslands. Croplands consist of croplands and croplands/natural
vegetation mosaic. There are 12 such global maps, 1 for each year
from 2001 to 2012. We refine the 12 maps to 1 map by taking the
mode class of each grid cell. Last, we convert the spatial resolution
to 0.5° x 0.5° (fig. S2B).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/47/eabb1981/DC1
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