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Abstract— This paper introduces a new invariant extended
Kalman filter design that produces real-time state estimates
and rapid error convergence for the estimation of the human
body movement even in the presence of sensor misalignment
and initial state estimation errors. The filter fuses the data
returned by an inertial measurement unit (IMU) attached to
the body (e.g., pelvis or chest) and a virtual measurement of zero
stance-foot velocity (i.e., leg odometry). The key novelty of the
proposed filter lies in that its process model meets the group
affine property while the filter explicitly addresses the IMU
placement error by formulating its stochastic process model
as Brownian motions and incorporating the error in the leg
odometry. Although the measurement model is imperfect (i.e.,
it does not possess an invariant observation form) and thus its
linearization relies on the state estimate, experimental results
demonstrate fast convergence of the proposed filter (within 0.2
seconds) during squatting motions even under significant IMU
placement inaccuracy and initial estimation errors.

I. INTRODUCTION

Over the past decades, wearable robots have become

increasingly applied in daily living assistance, neurorehabil-

itation, and power augmentation [1]. For a wearable robot to

function autonomously with different users in various tasks,

it needs to collect sensor data to understand human states

and intents in real time. For lower-extremity wearable robots,

human data have been primarily gathered using wearable sen-

sors, including optical encoders, inertial measurement units

(IMU), surface electromyography (EMG) sensors, to name

a few. However, a significant amount of useful information

cannot be directly measured by sensors since it is impractical

to implant sensors inside the human body. In this case, it is

critical to define and estimate human states in various human-

robot interactive tasks.

For human locomotion, both continuous and discrete states

have been introduced to quantify and differentiate various

motion patterns and intents. Gait phases have been widely

used to describe the human states during walking: a typical

step involves stance and swing phases, each with multiple

sub-phases defined [2]. Besides gait phases, wearable robots

also need to estimate the human motion intents, such as

sitting, walking, standing, and stair-climbing [3]. Gait phases
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and motion intents are often finite, and they can be estimated

from lower-extremity joint angles and ground reaction forces

using finite-state machines [4], fuzzy logic [5], and learning-

based classifiers [6]. In contrast, continuous human states

are often estimated by sensor fusion and regression models

for improved accuracy. One variable of particular interest in

continuous state estimation is a person’s stance-foot position

in the world, which can be used to represent a locomotor’s

global position in an environment [7]. With an IMU attached

to each toe, the dead reckoning method [12] obtains the toe

velocity by integrating the accelerometer reading, and re-

moves the accumulated velocity errors due to the integration

by resetting the velocity to zero when the toe is static on

the ground. The dead reckoning method has been applied

to achieve real-time human localization [8], and extended

to further improve its accuracy through smoothing [9] or

filtering [9].

Besides the stance-foot location, the pose (position and

orientation) and velocity of the body (e.g., pelvis or chest) are

also of particular interest in gait analysis and wearable robot

controller design, because they can be used to study postural

balance and gait stability [10]. Body pose and velocity have

been estimated through the nonlinear forward kinematics

between the stance foot, which is obtained through accurate

initialization and contact detection, and the body frame [11].

This method assumes the leg kinematics is precisely known,

and thus has been extended based on Kalman filtering (KF)

to explicitly address uncertainties such as sensor noises [12].

Recently, extended Kalman filtering (EKF) has been ap-

plied to further address the inaccuracy of the nonlinear

kinematics chain, in addition to sensor imperfections, for

real-time movement estimation under small initial estimation

errors [13], [14]. Yet, conventional EKF suffers the major

weakness that its design relies on the linearization of process

and measurement models at the state estimates instead of

the true states. Due to this weakness, the EKF cannot

provably guarantee error convergence in the presence of large

estimation errors.

Recently, invariant extended Kalman filtering (InEKF) has

been introduced to ensure real-time, provable error con-

vergence even in the presence of large initial estimation

errors [15]. The InEKF exploits nonlinear state estimation

errors that are invariant on the matrix Lie group, and ensures

that the dynamics of the logarithmic error is exactly linear

and independent of the state estimate if the process model

meets the group affine condition and if the measurement

model is in the invariant observation form. The filtering

method has been applied to solve the real-time state esti-

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 3012

Authorized licensed use limited to: Purdue University. Downloaded on February 07,2023 at 14:02:53 UTC from IEEE Xplore.  Restrictions apply. 



mation problem for aircraft [15], legged robots [16], [17],

[18], [19], and underwater vehicles [20].

While the InEKF method [16] has achieved impressive

estimation performance for robot locomotion, it has not been

applied to solve some of the key challenges in the state

estimation of continuous human movement state, such as

the inaccurate kinematic parameters and imperfect sensor

placement. One common solution to imperfect sensor place-

ment is manual sensor calibration [11], which is often time-

consuming and thus may not be suitable for real-world appli-

cations (e.g., daily movement monitoring) that could demand

frequent re-calibration. Motivated by the practical demand of

addressing inaccurate sensor placement, this paper introduces

an InEKF that produces real-time state estimates and rapid

error convergence of the body’s pose and movement even

in the presence of significant sensor placement offsets and

large initial state estimation errors. The key novelty of the

proposed filter lies in that its process model meets the group

affine property while the filter explicitly addresses the IMU

placement error by formulating its stochastic process model

as Brownian motions and incorporating the error in the leg

odometry.

The rest of the paper is structured as follows. Section

II introduces the problem formulation. Section III presents

the proposed InEKF design with explicit treatment of sensor

placement errors. Section IV reports the experimental setup

and validation results. Section V provides the concluding

remarks and future research directions.

II. PROBLEM FORMULATION

In this section, we will introduce an InEKF to estimate

the states of the body (e.g., pelvis or chest) and the IMU

placement offset, by using an IMU placed on the body to

form the process model and by exploiting the stance leg’s

forward kinematic velocity to build a measurement model.

The human forward kinematic model provides the con-

tact point position in the measurement frame (as shown

in Fig. 1). Thus there are some orientation and positional

offsets between the measurement frame, which is considered

in the human forward kinematic model, and where IMU is

placed. The “perfect” placement of the IMU would allow

the exact alignment between the IMU and the measure-

ment frames. Yet, such a placement is difficult to achieve

in real-world applications without resorting to careful and

often time-consuming manual calibration. Here, to address

the “imperfect” alignment between frames, we include the

(orientation and positional) placement offset as part of the

state estimation to make the connection between the process

model (IMU) and the measurement more accurate. This will

lead to more accurate estimation of the body pose, and

eliminate the need for accurate calibration between the IMU

and the measurement frames.

A. Process and Measurement Models

Since the filtering objective is to estimate the body move-

ment, we choose the state variables of the filter system to

be the position p ∈ R
3, velocity v ∈ R

3, and orientation

Fig. 1. Measured and estimated variables in the proposed human
body movement estimation. {World} represents the world frame and
{Measurement} is the frame at which the measurements are provided. For
the leg forward kinematic measurements, the measurement frame is defined
at the center of pelvis. {IMU} is the frame attached to the IMU. This figure
illustrates the rotational and positional offset between the measurement and
IMU frames, as well as the forward kinematics chain.

R ∈ SO(3) of the IMU, which is placed on the body, ex-

pressed in the world frame. In addition, to explicitly treat the

IMU placement offsets, the state variables also include the

positional offset ∆p ∈R
3 and orientation offset ∆R ∈ SO(3)

of the IMU frame, represented in the measurement frame.

1) Process model: The process model is based on the

IMU motion characteristics. The IMU measures the linear

acceleration a ∈R
3 and angular velocity ωωω ∈R

3 in the IMU

frame. The sensor readings ã and ω̃ωω are corrupted by zero-

mean Gaussian white noise wa and wω :

ã = a+wa, ω̃ωω = ωωω +wω . (1)

Note that for simplicity, the biases in the raw data returned

by the IMU are not considered here. Such biases could

be treated by including them in the state and explicitly

considering their dynamics [16].

Considering these measurements as the input of the IMU

motion dynamics, the process model becomes:

d

dt
R = R(ω̃ωω −wω)×,

d

dt
p = v,

d

dt
v = R(ã−wa)+g, (2)

where (.)× denotes a skew-symmetric matrix and g is the

gravitational acceleration vector.

As the IMU placement offsets are typically constant, we

model their dynamics as zero plus small zero-mean white

Gaussian noise w∆p and w∆R:

d

dt
∆p = w∆p,

d

dt
∆R = ∆R(w∆R)×. (3)

2) Leg kinematics measurement: When either of the hu-

man feet is in a secured contact with the ground, we can

estimate the position of one of many contact points (for

example, toe) in the measurement frame, using the forward
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kinematics, which requires knowledge of the joint angles and

the links depicted in Fig. 1. The forward kinematic model can

be built using the Denavit-Hartenberg (DH) table approach

[21]. The contact point position in the measurement frame

dM ∈ R
3 is then acquired by the forward kinematic model

as shown in Fig. 1:

dM = FK(ααα). (4)

Later in our filter design (Sec. III) we show how we use

this model to get the contact-point velocity update equation

that explicitly incorporates the IMU placement offsets and

helps ensure some important properties for the filter.

III. INEKF DESIGN WITH IMPERFECT SENSOR

PLACEMENT

In this section we show the design of the proposed

filter, incorporating the measurement frame positional and

rotational offsets into the InEKF defined on a Lie group.

A. State Representation and Propagation

The first step to design an InEKF is to define the states

on a matrix Lie group G [22], [23], with its associated Lie

algebra g. Here the variables we wish to estimate (introduced

in Sec. II-A) are represented on a matrix Lie group:

X =













R v p 03,3 03,1

01,3 1 0 01,3 03,1

01,3 0 1 01,3 03,1

03,1 03,1 03,1 ∆R ∆p

01,3 0 0 01,3 1













∈ G, (5)

where the matrix Lie group G is an extension of the special

Euclidean group SE(3), and 0n,m represents an n×m matrix

with all elements being zero. The proof that G is a matrix

Lie group is omitted due to space limit.

The core idea of the InEKF is the invariant error definition.

The right-invariant error ηηη between the true and estimation

values is defined as [15]:

ηηη = X̄X−1 ∈ G, (6)

where (·) denotes the estimated value of the variable (·).
The tangent space g (defined at the identity element I∈G)

is a vector space that can also be represented by vectors in

the Cartesian space R
dimg. This transformation is a linear

map defined as (.)∧ : Rdimg → g. Therefore, for the vector

ζζζ = vec(ζζζ R,ζζζ v,ζζζ p,ζζζ ∆R,ζζζ ∆p) ∈ R
dimg

, this linear map has

the form [23],[16]:

ζζζ
∧
=













(ζζζ R)× ζζζ v ζζζ p 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,1 03,1 (ζζζ
∆R)× ζζζ

∆p

01,3 0 0 01,3 0













∈ g. (7)

Now we can define the exponential map of our Lie group,

ηηη t = exp(ζζζ ). This exponential map takes ∀ζζζ ∈ R
n to the

corresponding matrix representation in G as:

exp(.) : Rdimg → G, exp(ζζζ ) = expm(ζζζ
∧
), (8)

where expm(.) is the matrix exponential.

The dynamics of the system can be written using (1)-(3):

d

dt
Xt =













Rt(ω̃ωω t)× Rt ãt +g vt 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,1 03,1 03,3 03,1

01,3 0 0 01,3 0













−Xt













(wωt )× wat 03,1 03,3 03,1

01,3 0 0 01,3 03,1

01,3 0 0 01,3 03,1

03,3 03,3 03,3 (w∆Rt
)× w∆pt

01,3 0 0 01,3 0













, fut (Xt)−Xtw
∧
t ,

(9)

where (·)t denotes the value of the variable (·) at time

instant t. Here the noise vector wt is defined as wt ,

vec(wωt ,wat ,03,1,w∆Rt
,w∆pt

).
It can be shown that the deterministic dynamics fut (.)

meets the following group affine condition [15]:

fut (X1X2) = fut (X1)X2 +X1 fut (X2)−X1 fut (I)X2. (10)

Therefore, according to [15], the right-invariant error has

deterministic autonomous dynamics (that are independent of

state) as below:

d

dt
ηηη t = gut (ηηη t), gut (ηηη t) = fut (ηηη t)−ηηη t fut (I), (11)

and if we consider the noise in the system we will have:

d

dt
ηηη t = gut (ηηη t)+AdX̄t

w∧
t .

(12)

Here, for any Xt ∈ G, the adjoint map AdXt : g → g is the

linear mapping from the local tangent space (defined at Xt ) to

the global tangent space (defined at the identity element I) in

the Lie algebra, defined as AdXt (·)
∧ ,Xt(·)

∧X−1
t . Therefore,

the adjoint matrix representation for Xt can be obtained as:

AdXt =













Rt 03,3 03,3 03,3 03,3

(vt)×Rt Rt 03,3 03,3 03,3

(pt)×Rt 03,3 Rt 03,3 03,3

03,3 03,3 03,3 ∆Rt 03,3

03,3 03,3 03,3 (∆pt)×∆Rt ∆Rt













. (13)

Moreover, we can obtain a log-linear error equation using the

first-order approximation of the exponential map and (12).

By the definition of exp, we have ηηη t = exp(ζζζ t) ≈ I+ ζζζ
∧
t .

Also, by the theory of invariant filtering [15], we can obtain

the Jacobian At of the deterministic portion of (12):

gut (exp(ζζζ t)) = (Atζζζ t)
∧+h.o.t.(||ζζζ t ||)≈ (Atζζζ t)

∧
, (14)

where h.o.t. represents the higher-order terms. Then, from

(11), we obtain the log-linear error equation:

d

dt
ζζζ t = Atζζζ t . (15)

Therefore, given the initial right-invariant error ηηη0 =
exp(ζζζ 0), ηηη t can be recovered using (15). This results in

a linear right-invariant error propagation (prediction) in the

filter, which is exact for the deterministic case. With the
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process noise considered, the linear error equation in ζζζ t

becomes d
dt

ζζζ t = Atζζζ t +AdX̄t
w∧

t .

We are now ready to derive the expression of At defined

in (14), by substituting the first-order approximation of the

right-invariant error into the definition of gut in (12):

gut
(exp(ζζζ t))≈ gut

(I+ζζζ
∧
t )

=











(I3 +(ζζζ Rt
)×)(ω̃ωωt)× (I3 +(ζζζ Rt

)×)ãt +g ζζζ vt
03,4

01,3 0 0 01,4

01,3 0 0 01,4

03,3 03,1 03,1 03,4

01,3 0 0 01,4











−











I3 +(ζζζ Rt
)× ζζζ vt

ζζζ pt
03,3 0

01,3 0 0 01,3 0
01,3 0 0 01,3 0
03,3 03,1 03,1 (ζζζ ∆Rt

)× ζζζ ∆pt

01,3 0 0 01,3 0





















(ω̃ωωt)× ãt +g 03,5

01,3 0 01,5

01,3 0 01,5

03,3 03,1 03,5

01,3 0 01,5











=











03,3 (g)×ζζζ Rt
ζζζ vt

03,4

01,3 0 0 01,4

01,3 0 0 01,4

03,3 03,1 03,1 03,4

01,3 0 0 01,4











=











03,1

(g)×
ζζζ vt

03,1

03,1











∧

,

(16)

which yields

At =













03,3 03,3 03,3 03,3 03,3

(g)× 03,3 03,3 03,3 03,3

03,3 I3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3

03,3 03,3 03,3 03,3 03,3













, (17)

where I3 is the 3×3 identity matrix.

Now we can write down the predication step of our InEKF,

which consists of the propagation of the state estimate X̄t

through the process model as well as the propagation of the

covariance matrix Pt through the Riccati equation [24]:

d

dt
X̄t = fut (X̄t),

d

dt
Pt = AtPt +PtA

T
t + Q̄t , (18)

where Q̄t is the process noise covariance defined as Q̄t =
AdX̄t

Cov(wt)AdX̄t
.

B. Measurement Model and Update

As stated in Sec. II-A.2, we are using leg forward kine-

matics to get the relative position of the desired contact point

(toe) in the measurement frame. However, unlike [16], we

cannot directly use (4) as our measurement model since we

did not include the position of the contact point as part of the

state. Instead, inspired by [19], we used the derivative of (4)

as our measurement model. Such a formulation allows the

stochastic dynamics (i.e., the noise term) in (9) to be linear,

so that we can achieve log-linear error dynamics (15) while

including the offset variables.

Considering the contact point position in the world frame

(i.e., dt ), we have:

dM
t = (∆Rt)R

T
t (dt −pt)−∆pt = FK(ααα t)

⇒ dt −pt = Rt(∆Rt)
T (∆pt +FK(ααα t))

⇒
d

dt
(dt −pt) = Rt(∆Rt)

T (w∆pt
+ J(ααα t)(α̇αα t +wα̇t ))

+
(

Rt(ωωω)×RT
t +Rt(∆Rt(w∆Rt

)×)
T
)

(FK(ααα t)+∆pt),
(19)

where J is the forward kinematic Jacobian (J(ααα), ∂FK(ααα)
∂ααα

)

and wα̇t is the joint velocity measurement noise.

Assuming that the contact point is stationary in the world

frame (i.e., ḋt = 0), knowing ṗt = vt , and using the property

of the multiplication of a skew-symmetric matrix and a

vector (i.e. (a)×b = −(b)×a), the measurement model can

be simplified as:

y = h(Xt)+nt (20)

where y =−J(ααα t)α̇αα t , h(Xt) = (∆Rt)R
T
t vt − (∆pt)×∆Rtωωω t −

(FK(ααα t))× ∆Rtωωω t , and the vector nt contains the measure-

ment noise terms.

Note that our measurement model is nonlinear and does

not have the right-invariant observation form, meaning the

innovation does not solely depends on the invariant error

[15], [16]. Therefore, we used the standard EKF procedure

here to formulate the innovation and update equations.

First we need to find the Jacobian of the measurement

model with respect to ζζζ t , denoted as Ht :

Htζζζ t +h.o.t(ζζζ t), h(X̄t)−h(Xt). (21)

To express h(X̄t)−h(Xt) in terms of ζζζ t , we need to use the

following first-order approximation along with (7):

ηηη t = X̄tX
−1
t

=



















R̄tR
T
t v̄t p̄t 03,3 0

−R̄tR
T
t vt −R̄tR

T
t pt

01,3 0 0 01,3 0
01,3 0 0 01,3 0

03,1 03,1 03,1 ∆Rt∆RT
t ∆pt

−∆Rt∆RT
t ∆pt

01,3 0 0 01,3 0



















≈ I+ζζζ
∧
t

⇒ RT
t ≈ R̄T

t (I+(ζζζ Rt
)×), ∆RT

t ≈ ∆R
T
t (I+(ζζζ ∆Rt

)×)

vt ≈ (I− (ζζζ Rt
)×)(v̄t −ζζζ vt

),

∆pt ≈ (I− (ζζζ ∆Rt
)×)(∆pt −ζζζ ∆pt

).

After ignoring the higher-order terms, we take the deriva-

tive of (21) with respect to ζζζ t to find Ht :

Ht = [03,3, ∆RtR̄t
T
, 03,3, h4, (∆Rtωωω t)×],

h4 =−(∆RtR̄
T
t v̄t)×− (∆Rtωωω t)×(∆pt)×+(∆pt)×(∆Rtωωω t)×

+(FK(ααα t))×(∆Rtωωω t)×
(22)

Similar to [25], [19], we can write the update equation for

our InEKF as:

X̄+
t = exp(Kt(yt −h(X̄−

t )))X̄
−
t ,

P+
t = (I−KtHt)P

−
t (I−KtHt)

T +KtNtK
T
t ,

(23)

where the Kalman gain Kt and measurement noise covari-

ance N are defined as:

Kt = PtH
T
t S−1

t ,

St = HtP
−
t HT

t +Nt , Nt = R̄t∆R
T

t Cov(nt)∆RtR̄
T
t .

(24)
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Fig. 2. Experiment setup that emulates the scenario with a large offset
between the IMU and measurement frames. The left marker plate in the
left figure is rigidly attached to the IMU. The right marker plate is aligned
with the measurement frame. The blue, dashed-line arrow indicates the 3-D
contact point position in the measurement frame, which is obtained by the
motion capture system.

IV. EXPERIMENT RESULTS

This section introduces the experimental setup and valida-

tion results for the proposed InEKF.

Ideally, the “perfect” placement of the IMU should be

exactly aligned with the measurement frame, because the

measurement frame is one end of the stance leg’s kinematic

chain. However, in the real-world application, such a perfect

placement is difficult to realize. To demonstrate that the

proposed InEKF can indeed handle large offsets between the

IMU and measurement frames, we perform pilot experiments

with the setup shown in Fig. 2. Note that, with this exper-

imental setup, the measurement frame is now attached to

the chest, instead of the pelvis center shown in Fig. 1. One

healthy, 24-year old male subject with height of 1.8 m and

weight of 75 kg participated in the experiments.

A. Measurement model simplification

In this pilot study, we adopt a simpler version of the

proposed measurement model in (20). This simplification

allows us to more easily collect data for validating the key

aspects of the proposed filter, including the new state repre-

sentation, group-affine process model, and contact-velocity

based measurement model.

Instead of using the joint-angle based forward kinematics

to form the measurement model, the 3-D velocity of the

ground-contact point relative to the measurement frame, i.e.,

ḋM , is directly used to form the measurement model. To

obtain the 3-D velocity vector for filter validation, we place

a rigid plate (with four markers attached) at the chest of

the subject, and choose its local frame as the measurement

frame (i.e., the right plate in Fig. 2). With such simplification,

the 3-D velocity vector could be obtained through a motion

capture system, which is explained later with greater detail.

With the aforementioned simplification, the measurement

model in (20) can be obtained by replacing FK(ααα t) and

J(ααα t)α̇αα t with dM and ḋM , respectively.

TABLE I

NOISE CHARACTERISTICS

Measurement type
Noise SD Noise SD

(proposed InEKF) (existing InEKF)

Linear acceleration 0.589 m/s2 0.5 m/s2

Angular velocity 0.055 rad/s 0.05 rad/s
Kinematics measurement 0.2 m/s 0.05 m

Placement offset (∆p, ∆R) (0.01 m, 0.01 rad) NA
Contact velocity NA 0.05 m/s

B. Setup for Data Collection

Sensors used. An APDM Opal IMU sensor is used to sense

the subject’s body (chest) movement. The IMU, along with

four markers, is fixed on a rigid plate (i.e., the left plate in

Fig. 2), and the plate is attached to the subject’s chest. The

position of the markers on this rigid plate is captured by

eight Kestrel cameras, and is used to obtain the ground truth

of the IMU pose via the Cortex software (Motion Analysis

Corp.). The other rigid marker plate in Fig. 2 is used to

emulate the measurement frame, and the four markers on

the plate are used to get its ground truth pose. To emulate

the offset between the IMU and the measurement frames, the

measurement marker plate is placed with a rotational offset

of approximately 45 degrees in magnitude and a positional

offset of approximately 0.12 m in magnitude. All data were

collected at 100 Hz.

Movement types. The human subject stood statically for 5

seconds and then began to continuously squat for 55 seconds.

Every squatting cycle took about 1.5 seconds.

Filters compared. To show the performance comparison

between the proposed filter and the state of the art, the

existing InEKF [16] is also evaluated. This existing InEKF

was applied on a Cassie series bipedal robot where the

IMU and measurement frames are perfectly aligned. Yet, for

human movement estimation, these two frames are often not

perfectly aligned. Here we evaluate its performance when

the two frames are not aligned. In the existing filter, the

state variables are the orientation, velocity, and position of

the IMU frame as well as the foot position. It uses the contact

point position with respect to the measurement frame to

form the measurement model, which is in the right-invariant

observation form. Its deterministic system dynamics also

possesses the group affine property. In contrast, while the

deterministic system dynamics of our proposed filter satisfies

the group affine property, our measurement model is not in

an invariant observation form.

Initial estimation errors. To illustrate the convergence rates

of the two filters, we varied the initial estimated values of

velocity v and orientation R across 50 trials. The initial

velocity and orientation estimates were sampled uniformly

from -1 m/s to 1 m/s and from -30 degrees to 30 degrees,

respectively. The initial estimated values of ∆p and ∆R are

set as zeros for all 50 trials. This setting of initial estimates

is used to validate both filters.

Covariance settings. The characteristics (i.e., standard de-

viation (SD)) of process and measurement noises for the

proposed InEKF and the state-of-the-art filter [16] are shown
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Fig. 3. Estimation results of the IMU velocity (v , [vx,vy,vz]
T ) under the

proposed InEKF (left) and the existing design (right). The shaded and clear
backgrounds respectively indicate the periods of standing and squatting. The
solid and dashed lines are the estimates and the ground truth of the state
variables, respectively.

in Table I. The noise characteristics for linear acceleration

and angular velocity are obtained based on the nominal IMU

specifications provided by APDM. The covariances of linear

acceleration and angular velocity for the two filters are indi-

vidually tuned to ensure their respective best performances.

The kinematic measurement noise of the proposed filter is

the vector nt in (20), which contains the noise terms for the

measurement of the position vector dM and its derivative,

the effect of foot slippage, and the IMU measurement. The

kinematic measurement noise of the previous filter only

contains the uncertainties of the measurement of dM and foot

slippage, which are relatively low in our experiments. Since

the IMU placement offsets ∆p and ∆R are approximately

constant, the noises for these two terms are chosen to be

small. Also, the contact velocity noise term only exists for

the previous filter, which accounts for foot slippage.

C. Results

Computational cost. The proposed and existing filters pro-

cessed the experimental data in MATLAB. The computation

time of one filter loop for both filters was approximately 1

ms. Thus, both filters give reasonable computational loads.

Convergence rate. Figures 3 and 4 display the estimation

results of IMU velocity and orientation under the proposed

and existing filters. Although both filters converge fast in the

presence of large initial errors and IMU placement offset, the

convergence rate of the proposed filter is 75% faster than the

existing design. The improved convergence rate can be at-

tributed to the higher accuracy of the proposed measurement

model under large IMU placement offset, which results in

more effective error correction during the update step of the

proposed filter.

Estimation accuracy. The root mean square errors (RMSEs)

of the estimated IMU velocity and orientation (only roll and

pitch) for all 50 trials are presented in Fig. 5. While the

yaw angle of the IMU frame is not observable under both

filters, the estimated roll and pitch angles converge to a small

neighborhood of the ground truth under both filters. Yet,

Figs. 3 and 5 clearly indicate that the accuracy of the velocity

Fig. 4. Estimation results of IMU orientation R under the proposed InEKF
(left) and the existing design (right). The shaded and clear backgrounds
respectively indicate the periods of standing and squatting. The solid and
dashed lines are the estimates and the ground truth of the state variables,
respectively.

Fig. 5. The RMSE of the estimated IMU velocity and orientation (only
roll and pitch) for 50 trials. The shaded and clear backgrounds respectively
indicate the periods of standing and squatting.

estimation of the proposed filter is better than the existing

filter, especially for the estimation of vy and vz.

Observability of IMU placement offsets. Figure 6 presents

the estimation results of IMU placement offsets under the

proposed filter. No comparative results are shown here be-

cause the existing filter [16] does not explicitly treat sensor

placement errors. When the human subject begins to squat (at

t = 5 sec), the gyroscope reading starts to give significantly

larger values of ω̃ωω , and the estimated value of ∆R begins to

converge to its ground truth, indicating ∆R might become

observable during squat. The IMU position offset (∆p ,

[∆px,∆py,∆pz]
T ) did not converge when the subject was

standing still, which might be due to the non-observability of

the offset during standing. Once the subject began to squat,

the estimated value of ∆px started to converge to the ground

truth, but those of ∆py and ∆pz converged towards certain

final values far from their ground truth.

V. CONCLUSIONS

This paper presented a right-invariant extended Kalman

filter for estimating the human body movement during squat-

ting motions. The offsets between the IMU sensor and the

measurement frame (at which the kinematic measurements

3017

Authorized licensed use limited to: Purdue University. Downloaded on February 07,2023 at 14:02:53 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6. Estimation results of the IMU position offset ∆p (left) and
orientation offset ∆R (right) under the proposed filter. The shaded and clear
backgrounds respectively indicate the periods of standing and squatting. The
solid and dashed lines are the estimates and the ground truth of the state
variables, respectively.

are provided) were explicitly considered in the filter design.

The deterministic system dynamics satisfied the group affine

property. Yet, the measurement model did not have the

right-invariant observation form, which made the design an

“imperfect” invariant extended Kalman filter.

The experimental validation of human movement was

performed with one human subject during repeated squat

motion. The proposed filter demonstrate faster convergence

and more accurate IMU velocity estimation than the state-

of-the-art filter [16]. From the results, the rotation about the

gravity vector and the IMU positions were not observable;

the y-axis and z-axis components of the position offsets

were not observable but detectable. The rest of the estimated

states are observable and our proposed filter gives better

performance than the existing InEKF.

In our future work, instead of using a motion capture

system to obtain the accurate joint angles, a suite of IMU

sensors will be used to obtain joint angles of the human

subject to make the results more practical. We will consider

the biases in the raw data returned by IMUs in the process

model. The uncertainties in joint angle measurements and

the forward kinematics model will also be addressed. We

will also test the filter with other types of motions and more

human subjects for a longer duration.
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