

1 Article

2

Mapping genetic variation of *Arabidopsis* in response to Plant 3 Growth Promoting Bacterium *Azoarcus olearius* DQS-4T

4 **Fernanda Plucani do Amaral^{1,6}, Juexin Wang⁷, Jacob Williams³, Thalita R. Tuleski⁴, Trupti Joshi^{2,5}, Marco A. R. Fer-
5 reira³ and Gary Stacey^{1*}**6 ¹ Division of Plant Sciences and Technology, C. S. Bond Life Science Center, University of Mis-
7 souri-Columbia, Missouri, USA.8 ² Department of Electrical Engineering and Computer Science, C. S. Bond Life Science Center, University of
9 Missouri-Columbia, Missouri, USA.10 ³ Department of Statistics, Virginia Tech.11 ⁴ Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba-PR 19046, Bra-
12 zil.13 ⁵ Department of Health Management and Informatics, MU Institute for Data Science and Informatics, C. S.
14 Bond Life Science Center, University of Missouri-Columbia, Missouri, USA.15 ⁶ Ginkgo Bioworks, Ag Biologicals, 890 Embarcadero Dr., West Sacramento, California – 95605, USA.16 ⁷ Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue
17 University Indianapolis, Indianapolis, IN 46202, USA.18 * Correspondence: **author**: Gary Stacey – staceyg@missouri.edu19 **Keywords:** Plant growth promoting bacteria¹ (PGPB), *Arabidopsis thaliana*; Natural genetic varia-
20 tion; Genome wide association study (GWAs), Agronomic traits
2122 **Abstract:** Plant growth promoting bacteria (PGPB) can enhance plant health by facilitating nutri-
23 ent uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or boosting plant
24 productivity. The genetic determinants that drive the plant – bacteria association remain under-
25 studied. To identify genetic loci highly correlated with traits responsive to PGPB, we performed a
26 genome wide association study (GWAS) using an *Arabidopsis thaliana* population treated with
27 *Azoarcus olearius* DQS-4T. Phenotypically, the 305 *Arabidopsis* accessions tested responded differ-
28 ently to bacterial treatment by improving, inhibiting, or not affecting root system or shoot traits.
29 GWA mapping analysis identified several predicted loci associated with primary root length or
30 root fresh weight. Two statistical analyses were performed to narrow down potential gene candi-
31 dates followed by haplotype block analysis, resulting in identification of 11 loci associated with
32 the responsiveness of *Arabidopsis* root fresh weight to bacterial inoculation. Our results showed
33 considerable variation in the ability of plants to respond to inoculation by *A. olearius* DQS-4T while
34 revealing considerable complexity regarding statistically associated loci with the growth traits
35 measured. This investigation is a promising starting point for sustainable breeding strategies for
36 future cropping practices that may employ beneficial microbes and/or modifications of the root
37 microbiome.38

Introduction

39 Plant growth promoting bacteria (PGPB) benefit plant growth notably by enhancing
40 nutrient uptake, nitrogen fixation, protection from pathogens, stress tolerance and/or
41 boosting plant productivity. Changes in root system architecture and shoot biomass are
42 common plant responses to PGPB as evidenced on a variety of crops, including maize,
43 rice, wheat, and various bioenergy grasses [1-4]. Despite an extensive literature docu-
44 menting the beneficial effect of PGPB's on plant growth, we still know relatively little
45 about the molecular details of their mode of action. Genetic variation in the plant host
46 has been reported to modulate the composition of the root associated microbial popula-

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

tion and has been suggested to have important adaptative consequences for plant health [5, 6]. The process of domestication has profound consequences on crops, where the domesticate has moderately reduced genetic diversity relative to the wild ancestor across the genome, and severely reduced diversity for genes targeted by domestication [7], which can also impact plant-microbe interaction [8]. Hence, the identification and characterization of genes associated with the capacity of plants to maximize profitable responses to their associated beneficial bacteria could form the basis for breeding approaches to enhance yield, as well as increasing the sustainability of cropping systems. Taking advantage of genetic variation within a natural population, genome wide association analysis (GWAS) offers the opportunity to analyze associations between single nucleotide polymorphisms (SNPs) and phenotypic variance, a powerful tool for identification of genetic loci associated with agronomic traits. For example, GWA mapping analyses have revealed novel and unknown genes impacting a variety of agronomic traits (e.g. flowering time, defense, drought, root cell development, plant architecture, disease resistance) in numerous plant species, including *Arabidopsis* [8-10], rice [11, 12], maize [13, 14], and soybean [15-17].

Previous studies identified a number of bacterial genes involved in PGPB-plant association, including genes involved in nitrogen fixation [18], siderophore production and iron uptake, phosphate solubilization, production of volatile organic compounds, as well as phytohormones [19-21]. There is also a growing realization that plant symbionts can suppress the plant immune system in order to promote their colonization and infection of their plant host [22].

Azoarcus olearius DQS-4T is a nitrogen-fixing, PGPB with the ability of colonize plant roots and enhance plant growth in monocots, such as rice and *Setaria viridis* [23, 24]. In a recent study, we utilized transposon mutagenesis to identify essential bacterial genes that modulated colonization of *Setaria viridis* roots by *A. olearius* DQS-4T and another PGPB, *Herbaspirillum seropedicae* SmR1 [25]. Surprisingly, this study identified very few genes that were critical for both bacteria to colonize *S. viridis* roots. Instead, the data suggest that each bacterium requires a unique set of genes required for root colonization. This genetic diversity in the bacterial partner suggests that a similar level of complexity may exist with regard to how various plant hosts respond to specific PGPB strains. Although only two strains were used in our earlier study, the results appear to be quite distinct from other well-studied, plant-microbial associations. For example, in the rhizobial-legume symbiosis, a core set of both microbial and plant genes appear to be critical for establishment of the symbiosis [26-28]. For example, at this point there appears to be no evidence for the involvement of a common symbiosis pathway (CSP), as defined for the rhizobial and mycorrhizal-plant symbioses, in the intimate association of diverse plant hosts with PGPB [27]. It should be noted that a significant contributor to the identification of the CSP in legumes was the adoption by the research community of model plant species (i.e., *Medicago truncatula* and *Lotus japonicus*) that greatly aided the identification of plant genes essential for establishment of the symbiosis. In a recent review, we argued that the research community interesting in PGPB-plant associations would also greatly benefit by adopting model organisms to speed the molecular investigation of these interactions [29].

In the current study, we investigated the phenotypic responses of a natural population of 305 accessions [30] of the model plant *Arabidopsis thaliana* to inoculation by *A. olearius* DQS-4T, a PGPB, and performed GWA mapping of four growth traits to identify genetic regions that contribute to bacterial plant growth promotion. The basis of GWAS is the ability to statistically associate specific genetic loci to measured phenotypic diversity within the population and depends on the [31] large linkage disequilibrium (LD) in plants [11, 32]. To explore further the output of our analysis we used two independent, statistical methods to analyze our dataset on the four root growth traits measured. Overlapping SNPs were identified associated with changes in root fresh weight and confirmed by haplotype block analysis. Here, we present the predicted candidate genetic

101 loci from the statistical analysis and discuss their possible relevance to the ability of *A.*
102 *olearius* DQS-4^T to promote plant growth.

103
104 GWA mapping resulted in the identification of genetic loci associated with
105 PGPB-induced changes in primary root length or root fresh weight.

106 **Material and methods**

107 *Bacteria cultivation*

108 *Azoarcus olearius* DQS-4^T [33] was grown overnight at 30 °C on liquid
109 NFBHP-malate modified medium (DL malic acid 20 g L⁻¹) supplemented with potassium
110 phosphate (K₂HPO₄ 17.8 g L⁻¹, KH₂PO₄ 159.5 g L⁻¹) and ammonium chloride (NH₄Cl 20
111 mM) [34, 35]. Antibiotics were added to the culture at the following concentrations 100
112 µg mL⁻¹ streptomycin and 10 µg mL⁻¹ nalidixic acid. Subsequently, the DQS-4^T culture
113 (OD₆₀₀ = 0.9) was centrifuged at 3000g for 1 min, the pellet was washed three times by
114 resuspension in 0.9 % (w/v) NaCl. After that, the optical density was adjusted by dilution
115 to 0.005 cells mL⁻¹ (2.3 × 10⁵ CFU mL⁻¹) in 50 mL of NaCl solution.

116 *Plant growth conditions and bacterial treatment*

117 A collection of 305 natural accessions of *Arabidopsis thaliana* [30] (Supplementary
118 Material S1) was used to investigate the response to inoculation by *Azoarcus olearius*
119 DQS-4^T. *Arabidopsis* seeds were sterilized by vortexing once with 70% ethanol for 1 min,
120 twice with 70% ethanol plus 0.01% Triton X-100 for 2 min followed by once with 100%
121 ethanol for 2 min. After the ethanol removal, seeds were allowed to dry in a sterile hood
122 and then 1 mL sterile water was added prior to vernalization at 4 °C for 3 days. Sterilized
123 seeds were sown on square Petri dishes containing agar-solidified ½ Murashige and
124 Skoog (MS) medium supplemented with 0.5 % sucrose and incubated in a vertical position
125 in a plant growth chamber at 21 °C with 16 h light / 8 h dark cycle. After 5 days of
126 germination, seedlings of similar size were transferred to circular Petri dishes containing
127 ½ MS agar medium. Plants were inoculated by applying 150 µL of DQS-4^T culture
128 containing 2 × 10⁵ cell mL⁻¹ onto the agar medium, approximately 5 cm below the root tip,
129 which allowed the roots to grow into the inoculant. The same procedure was done for
130 control treatments using 150 µL of saline solution (0.9 % NaCl) without bacteria. The
131 plates were briefly dried in a sterile hood, sealed with Parafilm and placed vertically in a
132 growth chamber until phenotypic analysis.

133 *Phenotypic response of Arabidopsis accessions to Azoarcus olearius DQS-4^T*

134 For each accession, 5 seedlings were grown on a ½ MS agar plate. The reference ac-
135 cessions Col-0 and WS were used in each experiment since they represent
136 non-responding and responding ecotypes, respectively. A total of 3 replicate plates (15
137 seedlings) of control and DQS-4T treated seedlings were analyzed for each of the 305
138 accessions tested. Growth parameters were analyzed 7 days upon treatment by counting
139 lateral root number and measuring primary root length (cm), then average primary root
140 length and lateral root number per seedling were determined. Root and shoot fresh
141 weight were analyzed 8 days after treatment. Data were acquired simultaneously for
142 inoculated and control samples from the three replicates. To determine statistical signif-
143 icance between control and inoculated plants, the one-way analysis (ANOVA) was used
144 with Tukey (p-value < 0.05). Accessions with significant differences between control and
145 inoculated were categorized as: A) Positive – genotypes that showed trait enhancement
146 due inoculation; B) Negative - genotypes where inoculation inhibited growth and, C)
147 Non-responsive – genotypes that showed no growth response to bacterial inoculation.

148 *Data analysis*

In this study, a natural population of 305 accessions of *Arabidopsis thaliana* [30] was used to investigate the genetic basis of the growth response to bacterial inoculation. Mapping analysis was performed on the following root parameters, primary root length (Δ PRL), lateral root number (Δ LRN), root fresh weight (Δ RFW), and shoot fresh weight (Δ SFW). For all traits, means per seedling ($n = 5$) per biological replicate ($n = 3$) were used to calculate the mean per treatment per accession. The mean value of the control treatment was subtracted from the value of the inoculated plants to generate the data sets used for GWAS analysis. Genome wide association analysis employed a Mixed Linear Model (MLM) using Tassel 5.0 software (<http://www.maizegenetics.net/tassel>) [36] incorporated with population structure by principal component analysis (PCA) and kinship matrix acquired from 1001 Genomes (<https://1001genomes.org/>) with minor allele frequency (MAF) = as 0.05, and the data was inferred as a normal distribution by Kolmogorov-Smirnov test. All accessions were genotyped against the Col-0 reference genome with ~214 k single nucleotide polymorphism (SNPs) markers [37]. Significant SNPs were identified with a strict threshold of significance by Bonferroni correction with p -value = 2.34×10^{-7} . Annotations of candidate genes were retrieved from TAIR10 (<http://www.arabidopsis.org>). In order to narrow the list of candidate SNPs to a more focused set of SNPs, the data were also analyzed using the two-steps method implemented in the R package GWAS.BAYES [38]. The two steps are called screening and model selection. The screening step of the GWAS.BAYES method performs a usual GWAS analysis with a linear mixed effects models with a SNP fixed effect and kinship random effects. The screening step provides the usual list of significant SNPs. The model selection step of the GWAS.BAYES method performs a genetic algorithm search through model space, where candidate models are linear mixed effects models with kinship random effects and may contain multiple SNPs. The genetic algorithm in the model selection step forces the SNPs to compete to appear in the highest ranked models. As shown in [39], combining a screening step and a model selection step provides a much shorter list of significant SNPs and leads to a much higher true discovery rate.

Manhattan plots and Linkage Disequilibrium (LD) plots were generated using the R statistical software [40].

Validation using quantitative reverse transcription PCR (qRT-PCR)

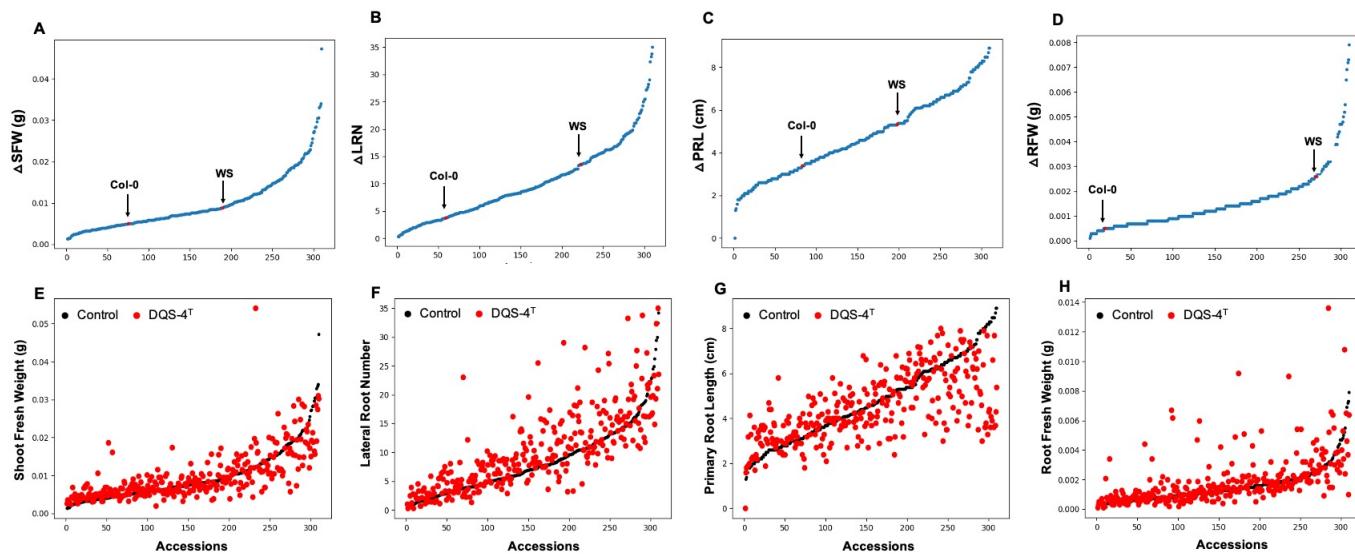
Gene expression was evaluated by qRT-PCR. RNA was isolated from roots 7 days after mock or bacterial treatment using Direct-zol RNA kit treated with DNase (Zymo Research) following the manufacturer's instructions. cDNA synthesis was performed with M-MLV reverse transcriptase (Promega). qRT-PCR was carried out as follow: 10 ng cDNA, 3 pM of each primer and PowerUpTM SYBRTM Green master mix (Applied Biosystems) were mixed and amplified in Applied Biosystems ABI PRISMTM 7500 detection system (Applied Biosystems). Three biological replicates and 3 technical replicates for each transcript were analyzed using LinReg PCR 11.1 [41]. Quantitative amplifications were performed for different genes and ubiquitin 10 (At4G05320) was used as an internal reference. Primers used are listed in Supplementary Material S2.

Results

Arabidopsis thaliana response to *Azoarcus olearius* DQS-4^T inoculation.

Previous, published research, including from our own laboratory [23] documented that *A. olearius* DQS-4^T can produce strong, positive effects on root growth in both rice and *Setaria viridis* [24]. As a prelude to our larger GWAS study, we initially tested only a few *Arabidopsis* ecotypes regarding their response to DQS-4^T inoculation. These initial experiments revealed that *A. thaliana* ecotype Columbia (Col-0) had no measurable response to bacterial inoculation, while ecotype Wassilewskija (Ws) showed a robust and significant increase in all the traits measured (lateral root number, root and shoot fresh weight) (Supplementary Material S3). Although limited, these initial experiments were

200
201


important in showing phenotypic diversity in the plant response to inoculation, as well as providing both a negative (Col-0) and positive (Ws) control for future experiments.

202

Natural variation in the response of *Arabidopsis* accessions to *A. olearius* inoculation

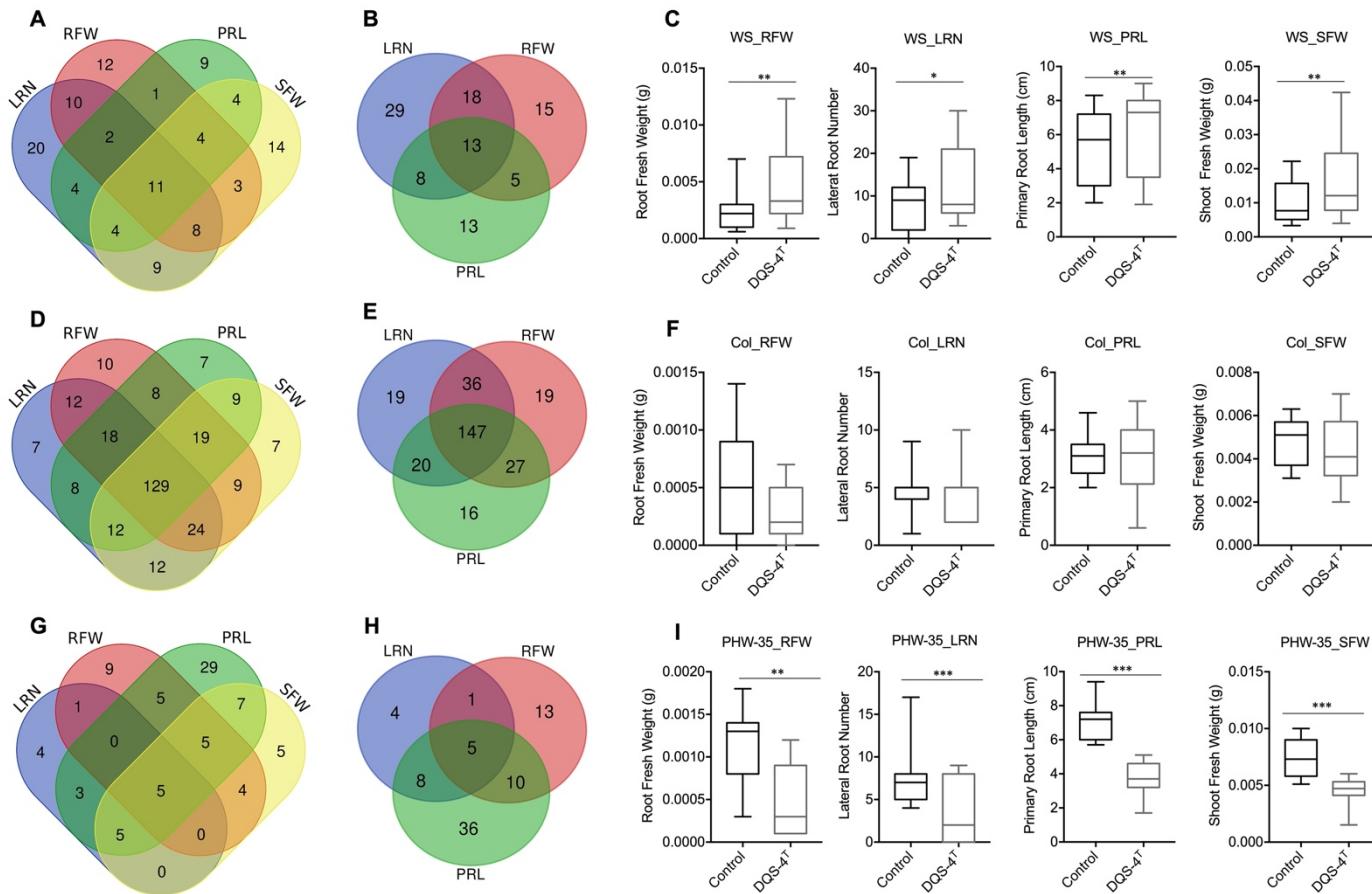
203
204
205
206
207
208
209
210
211
212
213
214

In order to investigate the natural variation in the responsiveness of *Arabidopsis* to *A. olearius* DQS-4^T, a total of 305 *Arabidopsis* accessions were analyzed for changes in root and shoot traits upon bacterial treatment. Analysis of correlation to measure the direction and strength between control and DQS-4^T treated samples showed a low correlation coefficient between control and treated samples for shoot fresh weight, primary root length and root fresh weight ($R^2 = 0.452$, $R^2 = 0.349$ and $R^2 = 0.106$, respectively). However, for lateral root number the correlation was only slightly stronger ($R^2 = 0.501$) between control and treated samples (Fig. 1A-H), suggesting that the magnitude of these DQS-4^T induced growth responses were weakly related to the intrinsic growth capacity for these parameters under the tested conditions. Hence, faster growing accessions or accessions that form more lateral roots in the experimental setup are not necessarily stronger responders to bacterial treatment.

215
216
217
218
219
220
221
222
223
224
225

Figure 1. Natural variation of 305 *A. thaliana* accessions in response to the plant growth-promoting *Azoarcus olearius* DQS-4^T. A. Accessions sorted for increase in shoot fresh weight (ΔSFW) in response to DQS-4T (Col-0 and Ws are indicated with black or red arrow dot). B. Accessions sorted for increase in lateral root number (ΔLRN) in response to DQS-4T. C. Accessions sorted for increase in primary root length (ΔPRL) in response to DQS-4T. D. Accessions sorted for increase in root fresh weight (ΔRFW) in response to DQS-4T. E. Average shoot fresh weight (ΔSFW) of control (black dots) and DQS-4T (red dots) plants. F. Number of lateral roots (ΔLRN) formed in control (black dots) and DQS-4T-treated (red dots) plants. G. Primary root length (ΔPRL) of control (black dots) and DQS-4T (red dots) plants. H. Average root fresh weight (ΔRFW) of control (black dots) and DQS-4T (red dots) plants. Each dot represents the average of 3 biological replicates.

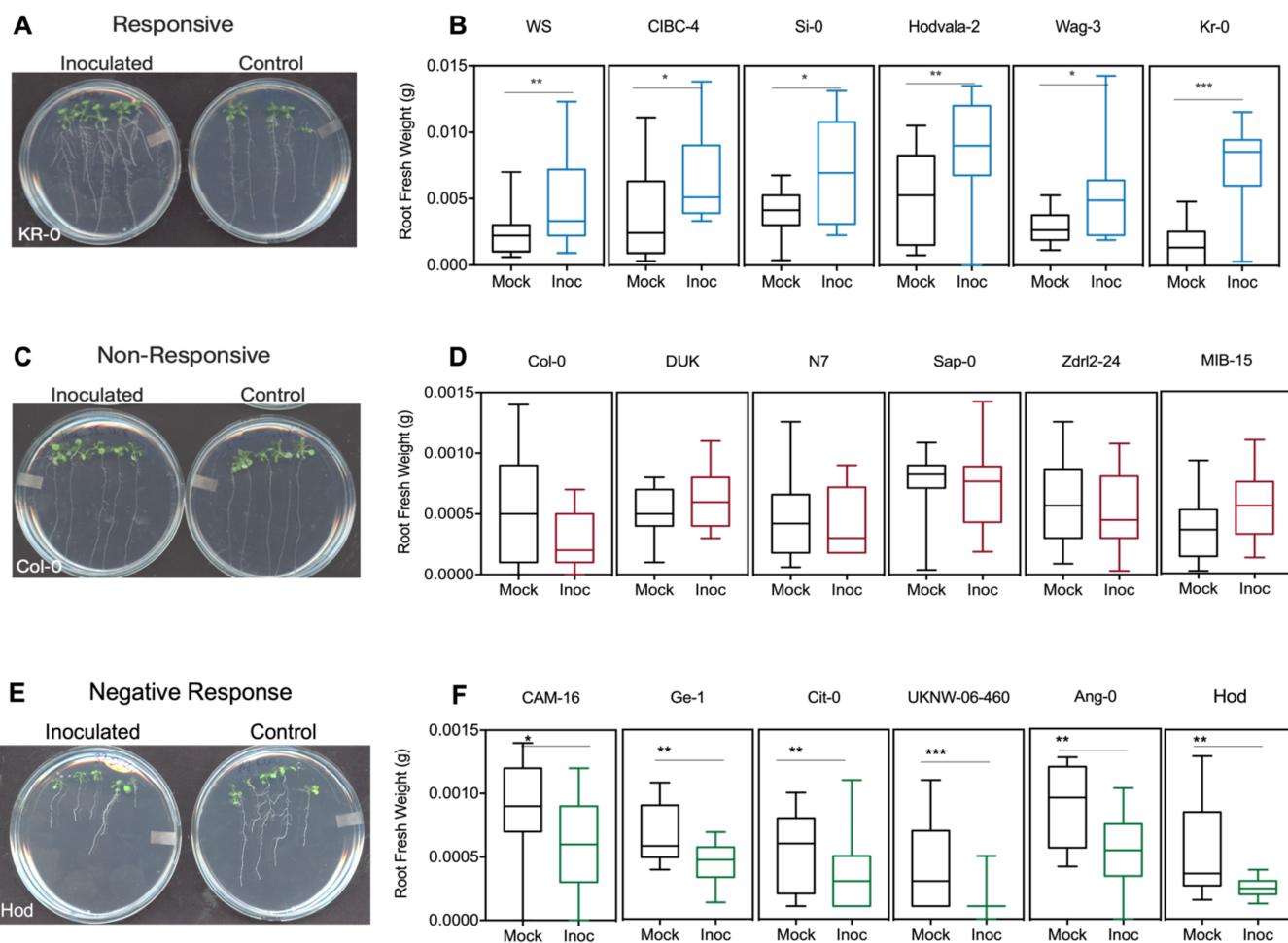
226


Response categories of *Arabidopsis thaliana* growth traits to treatments

227
228
229
230
231
232
233
234
235

The measured, phenotypic variability, relative to lateral root number (LRN), primary root length (PRL), root and shoot fresh weight (RFW, SFW), among the 305 *Arabidopsis* accessions classified into 3 categories: 1. Positive responsive: accessions that demonstrate a significant, positive change upon inoculation compared to mock samples; 2. Non-responsive: accessions where bacterial treatment did not affect growth and, 3. Negative responsive: accessions where treatment inhibited growth (Fig. 2). Within the positive responsive category, eleven genotypes showed growth enhancement in all four parameters analyzed, where most of the changes were statistically significant in lateral root number followed by shoot fresh weight and root fresh weight (Fig. 2 A and C). The

236
237
238


growth of 13 ecotypes clearly benefited from DQS-4^T inoculation (Fig. 2B-C). For instance, the genotype Ws showed an increase in biomass and root growth when inoculated (Fig. 2C).

239
240
241
242
243
244
245
246
247
248
249
250

Figure 2. Growth responses of control and inoculated *Arabidopsis* accessions. Venn diagram showing the total number of common accessions across traits in each response category. A. Responsive accessions to DQS-4T inoculation for root and shoot traits. B. Responsive accessions in root growth parameters. C. Significant response of *Wassilewskija* (Ws) genotype upon inoculation with DQS-4T in all four traits. D. Venn diagram of non-responsive accessions to DQS-4T inoculation for each root and shoot traits. E. Significant Non-responsive accessions in root growth parameters. F. No significant response of *Col-0* upon inoculation with DQS-4T in all four traits. G. Accessions that responded negatively to DQS-4T inoculation in each trait analyzed. H. Negative response accessions in root growth parameters. I. Significant response of PHW-35 control upon inoculation with DQS-4T in all four traits analyzed. Bars are an average of 3 biological replicates (n=15). Statistical analysis was carried out using One-way Anova with Tukey p-value = 0.05.

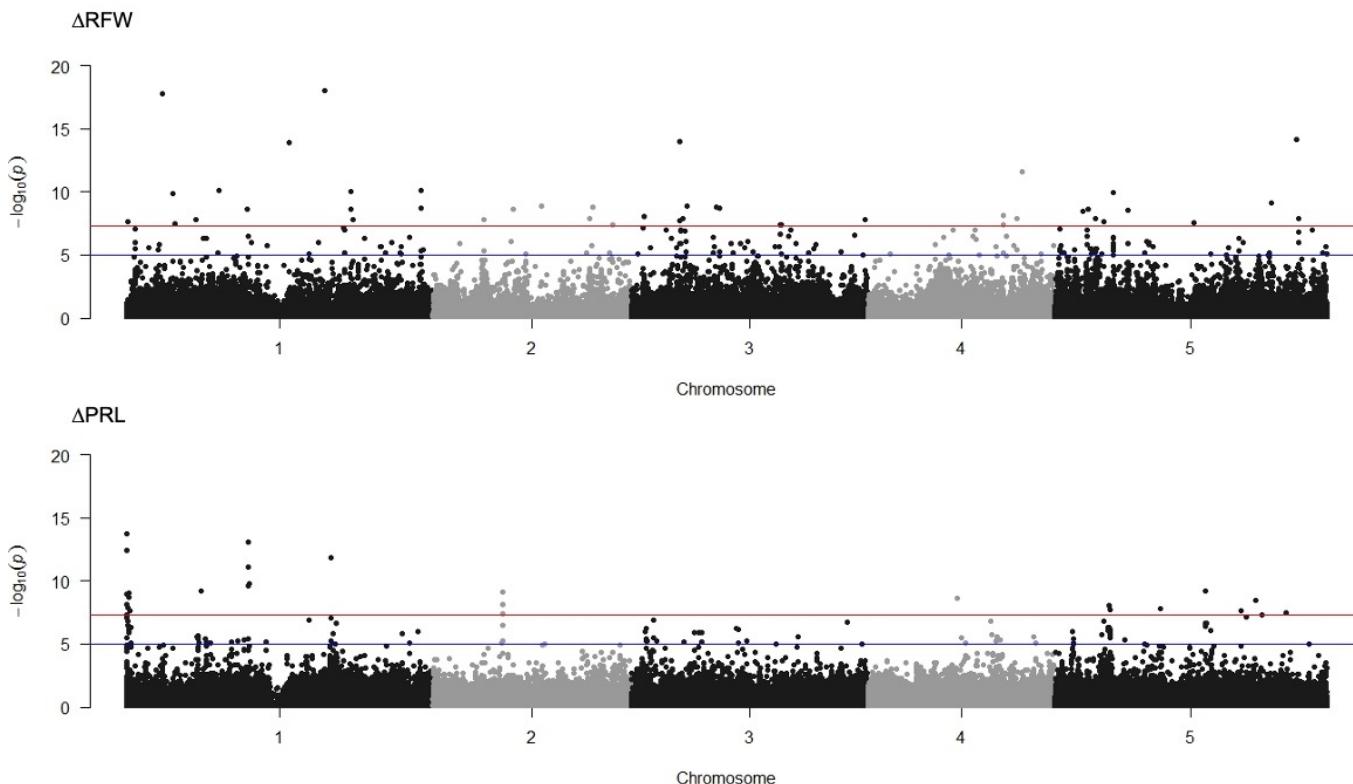
251
252
253
254
255
256
257
258
259

However, the largest number of ecotypes (129) fell within the non-responsive group, which showed no statistically significant positive or negative response to bacterial inoculation for the parameters analyzed (Fig. 2D-F). As mentioned above, *Col-0* is a good example of an ecotype within this non-responsive category (Fig. 2F). Interestingly, 82 genotypes showed a negative growth response to bacterial inoculation (Fig. 2G). An example is ecotype PHW-35 (Fig. 2H-I), which showed a negative response in each of the four parameters measured. However, when present, the positive effects on root architecture can be dramatic (Fig. 3); for example, as shown in Figure 3A for ecotype Kr-0 (Fig. 3A).

Figure 3. Phenotyping of *Arabidopsis* accessions for responsiveness to DQS-4T mediated effect in root fresh weight (RFW). Agar plates with 5 seedlings showing the different response of *Arabidopsis* accessions to *Azoarcus olearius*. A-B. Accessions that increased RFW upon DQS-4T treatment. C-D. Non-responsive accessions to bacteria treatment. E-F. Accessions where RFW was inhibited by DQS-4T treatment. Bars are an average of 3 biological replicates (n=15). Statistical analysis was carried out using one-way Anova with *Tukey p*-value < 0.05. RFW = root fresh weight. Photographs were taken by scanning the plates using a photo scanner with resolution 640 x 480.

Other ecotypes, such as Ws, CIBC-4, Si-0, Hodvala-2 and wag-3, demonstrated similar increases in root fresh weight upon bacterial treatment (Fig. 3B) and could be easily identified from non-responsive ecotypes, such as Col-0, DUK, N7, Sap-0, Zdrl2-24 and MIB-15 (Fig. 3C and D). However, it is important to note that it was common to find ecotypes that were not consistently responsive for all parameters measured (Fig. 3E and F). For instance, ecotype Aa-0 showed a significant increase in LRN upon inoculation but was non-responsive for the other root and shoot parameters. Another example of trait-related variation is exemplified by ecotype Hod which showed no significant changes to LRN and PRL; however, RFW was significantly reduced by inoculation while increasing shoot biomass. This variability within overall response, responses in individual parameters, and opposing responses (i.e., negative, and positive) suggests significant underlying complexity in the genetics of the plant response, as well as the molecular mechanisms involved. However, unlike Aa-0 and Hod, some ecotypes gave robust responses for all four traits analyzed, including ecotypes Ws, Bla-1, KI-5, Kr-0 or showed a consistent, negative response, such as ecotypes UKNW-06-460, UKSE 06-349, PHW-35 and PHW-37 (Table 1 and Supplementary Material S1 for a complete dataset).

284
285**Table 1.** Genotypes with statistical significance for the four plant growth parameters measured with regard to DQS-4^T treatment.


		LRN	RFW	PRL	SFW
Response	Genotype	<i>p</i> -value			
Positive	WS	2.22E-03	9.60E-03	1.34E-02	4.67E-03
	Bla-1	3.27E-05	3.56E-04	3.40E-04	4.81E-06
	KI-5	8.21E-03	5.13E-02	1.83E-02	3.94E-02
	Ka-0	7.67E-04	2.30E-02	3.51E-04	9.94E-03
	LDV-25	5.90E-13	4.02E-08	8.31E-11	2.17E-08
	HS-0	3.92E-03	1.59E-03	6.93E-03	1.72E-03
	DralV-15	2.65E-03	9.26E-05	1.12E-17	1.52E-05
	In-0	3.00E-03	3.63E-02	2.21E-03	1.34E-02
	Hodvala-2	2.22E-02	5.20E-03	7.74E-03	1.66E-03
	Kr-0	2.36E-04	5.51E-06	6.12E-04	1.10E-04
	JEA	9.02E-04	1.87E-02	3.63E-03	9.04E-05
Negative	PHW-35	2.87E-03	9.19E-05	5.88E-10	1.01E-05
	PHW-37	4.90E-05	1.55E-03	8.45E-09	8.30E-06
	UKSE 06-349	1.65E-04	1.56E-04	1.76E-04	4.12E-04
	UKNW-06-460	7.31E-05	8.33E-03	3.26E-05	9.82E-06
	Lis-1	3.33E-02	3.59E-02	3.12E-05	1.50E-04

286

*Genome Wide Association loci mapping in the Arabidopsis population*287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

The dataset collected for DQS-4^T induced changes in lateral root number (Δ LRN), primary root length (Δ PRL), root fresh weight (Δ RFW) and shoot fresh weight (Δ SFW) were averaged and analyzed against the Col-0 reference genome using a mixed linear model (MLM) algorithm in Tassel 5.0 Software. To determine the distribution and quality of the data within the population a quantile-quantile plot (Q-Q plot) was generated for each growth trait (Supplementary Material S4). The GWA mapping results showed highly significant SNPs for two traits Δ PRL and Δ RFW (Fig. 4). No significant SNPs were significantly associated to Δ LRN and Δ SFW (Supplementary Material S4). With a threshold of $-\log_{10}(P) > 7$ adjusted by Bonferroni correction, a total of 63 loci were detected for root fresh weight and 55 loci correlated to primary root length (Supplemental Material S5). We observed only one SNP associated with both traits Δ RFW and Δ PRL, mapping close to the gene encoding AtFKGP, bifunctional fucokinase/fucose pyrophosphorylase (At1G01220, *p*-value = 2.19×10^{-8} and 3.32×10^{-7} , adjusted by Bonferroni correction respectively). Given this close association, we measured the expression of *AtFKGP* by qRT-PCR using mRNA extracted from roots of 7-day old seedlings of ecotypes representing non-responsive (Col-0, N7), responsive (Ws, Kr-0 and CIBC-4), and negative re-

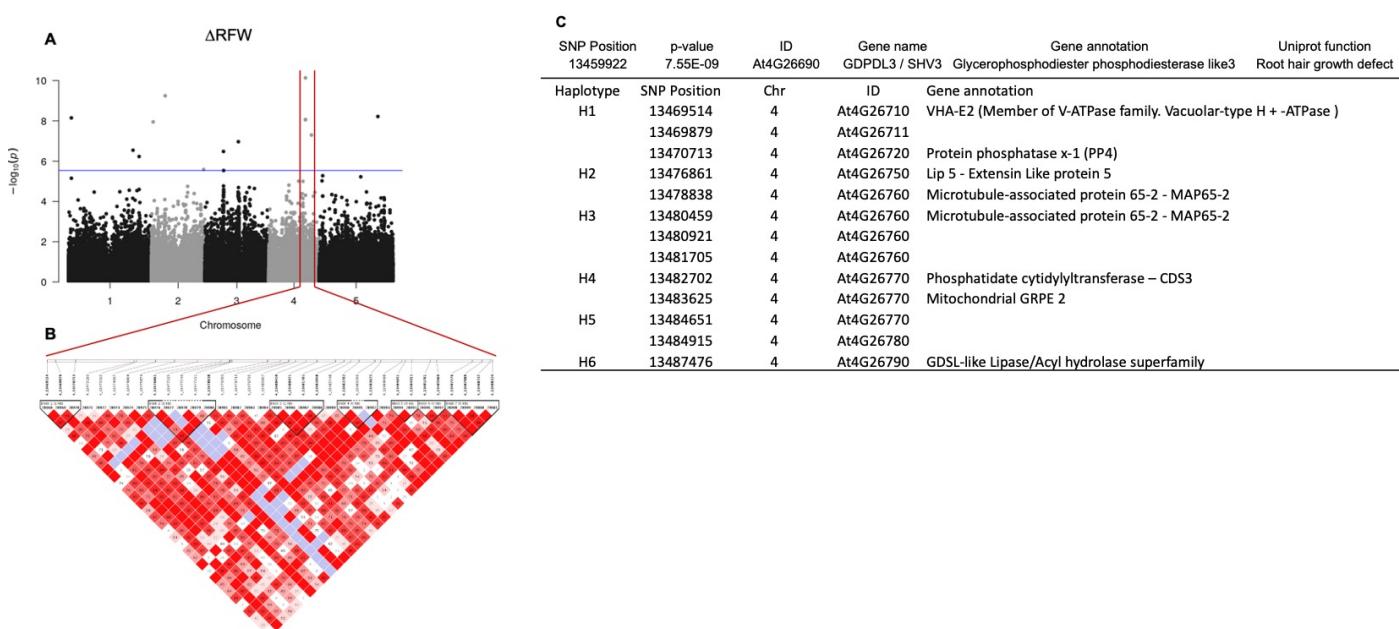
303 sponding lines (PHW-37 and Lis-1) either mock non-inoculated or inoculated with
 304 DQS-4^T. However, this experiment failed to find either down or upregulated gene ex-
 305 pression of *AtFKGP* in response to bacterial inoculation in any of the *Arabidopsis* ac-
 306 sions tested (Supplementary Material S6).

307
 308 **Figure 4.** Manhattan plot of GWA mapping of *A. olearius* DQS-4^T effects on Root Fresh Weight
 309 (ΔRFW) and Primary Root Length (ΔPRL) in $-\log_{10}(P)$. SNP marker trait associations are shown as
 310 black and grey dots for each chromosome. The red and blue lines indicate the arbitrary thresholds
 311 of $-\log_{10}(P) = 5$ and $-\log_{10}(P) = 7$.

312 Primary Root Length highly correlated SNPs and candidate genes

313 We identified 55 SNPs highly correlated to measured changes in PRL (Supple-
 314 mental Material S5). An example are SNPs mapping close to gene At1G33410, encoding
 315 the suppressor of auxin resistance 1 (*sar1*) gene. SAR1 and SAR3 are proteins similar to
 316 vertebrate nucleoporins that are part of the nuclear pore complex (NPC). Plants deficient
 317 in either protein exhibit pleiotropic growth defects partially affecting the translocation of
 318 proteins involved in hormonal signaling and plant development [42, 43]. A large LD
 319 resulted in inclusion of many polymorphisms in this candidate region; for example, loci
 320 within a gene predicted to encode a tetratricopeptide repeat 9 (TPR9) protein involved in
 321 gibberellic acid regulation [44], fascinated stem 4 (Atfas4) protein and a Ring/Ubox su-
 322 per family (At1g01660) protein. Moreover, a SNP highly correlated to primary root
 323 length corresponded to the gene encoding a late elongate hypocotyl LHY1, a
 324 MYB-related putative transcription factor implicated in circadian regulation of flowering
 325 time [45].

326 Root Fresh weight highly correlated SNPs and candidate genes


327 We identified 65 SNPs highly correlated to changes in RFW (Supplemental Material
 328 S5). In order to narrow the list of candidate SNPs to a more focused set of SNPs, the data
 329 were also analyzed using the two-stages procedure implemented in the R package

330 GWAS.BAYES [38,39]. This analysis reduced the number of SNPs highly associated with
 331 Δ RFW to 11 (Table 2); however, no SNPs were highly associated with Δ PRL in this anal-
 332 ysis. In most GWA studies, the highly trait-correlated SNPs can present alleles in linkage
 333 disequilibrium (LD) at two or more loci in a population. However, because the peak of
 334 selection signals is relatively large in the GWA peak region, it is difficult to conclude
 335 whether the target of selection is the causative SNP or other alleles are significantly as-
 336 sociated with this genome region. To examine the relationship between SNPs and re-
 337 gions, a haplotype block was generated for 10 kb upstream or downstream of the most
 338 significantly associated SNP at position 13459922 on chromosome 4 observed for Δ RFW
 339 (Fig. 5A-B). The selected SNP 13459922 ($p = 7.55 \times 10^{-9}$; At4G26690) mapped close to a
 340 glycerophosphodiester phosphodiesterase like 3 GDPDL3 gene, also known as Shaven 3
 341 (SHV3) that is involved in cell wall organization and root hair growth [46]. This SNP
 342 was identified as significant in both statistical methods used. SNP 13459922 is located at
 343 an intronic 5' untranslated region (5'UTR) with a modifier predicted effect [47]. Next, we
 344 determined which gene in proximity to this highly associated genomic region underlies
 345 the variation. As shown in Fig. 5, six haplotype blocks were significantly associated with
 346 SNP 13459922, At4G26690. Based on haplotype analysis, seven SNP regions were identi-
 347 fied associated, respectively, with genes encoding a member of the vacuolar-type
 348 ATPase family (At4G26710) and a protein phosphatase x-1(PP4) (At4G26720), extensin
 349 like protein (Lip5, At4G26750), microtubule-associated protein 65-2 (MAP65-2,
 350 At4G26760), phosphatidate cytidylyltransferase (CDS3, At4G26770), mitochondrial
 351 GRPE 2 (At4G26780) and Lipase acyl hydrolase superfamily (GDSL-like, At4G26790)
 352 (Fig. 5C). Because the polymorphisms are difficult to identify, we also carried out a ma-
 353 trix analysis, that showed SNPs at position 13477249 (gene Lip5) and 13483356 (CDS3
 354 gene) highly correlated to SNP 13459922, GDPDL3 corroborating the haplotype block
 355 (Supplementary Material S7). Next, we determined the expression level of the genes
 356 correlated to the GWA peak by quantitative RT-PCR (qRT-PCR) using mRNA isolated
 357 from root tissue. We assumed that the expression of a candidate gene might be altered in
 358 accessions of different responsive categories. Hence, we extracted mRNA from the roots
 359 of selected accessions responsive (Ws and Kr-0), non-responsive (Col-0 and N7) and
 360 negative response (PHW-37 and Lis-1) regarding the RFW trait. The data show that none
 361 of the accessions tested showed a significant change in expression level upon inoculation
 362 for the various genes tested (i.e., those encoding GDPDL3, Lip5 and CDS3) (Supple-
 363 mentary Material S8). Of course, the lack of a transcriptional response to bacterial inoc-
 364 ulation does not rule out the possibility that a specific gene could be playing an im-
 365 portant role in the response to *A. olearius* DQS-4^T treatment.

366 **Table 2.** List of candidate genes from GWAs analysis of the *A. olearius* DQS-4^T-mediated plant ef-
 367 ffects on root fresh weight (Δ RFW) of 305 *Arabidopsis thaliana* population.

Chr	Candidate gene	Loci position	p-value	Gene annotation
1	At1G03530	882791	8.32E-08	Nuclear assembly factor 1 (ATNAF1)
1	At1G10660	3534853	1.75E-18	Transmembrane protein
1	At1G14040	4812798	3.23E-08	PHO1 homolog 3
1	At1G22550	7967378	4.68E-07	NPF5.16
1	At1G52710	19638846	9.13E-19	Rubredoxin-like superfamily protein
2	At2G18245	7939481	2.18E-09	alpha/beta-Hydrolases superfamily protein
3	At3G14400	4812265	1.84E-08	Ubiquitin-specific protease 25

4	At4G14820	8507871	1.15E-07	Pentatricopeptide repeat (PPR) superfamily protein
4	At4G26690	13459922	7.55E-09	Glycerophosphodiester phosphodiesterase like 3 (GDPDL3)
5	At5G08640	2804242	3.19E-09	Flavonol synthase 1
5	At5G35630	13833427	2.63E-08	Glutamine synthetase 2
5	At5G60070	24191284	1.57E-07	Ankyrin repeat family protein

Figure 5. A. Manhattan plot ($-\log_{10}(P)$) of a genome-wide association study (GWAS) of 305 *Arabidopsis* accessions treated with *Azoarcus olearius* DQS-4T. The GWAS significance level was set at 2.34×10^{-7} and plotted as a red line. B. Haplotype physical location around the highly correlated SNP At4G26690. C. Haplotype analysis of alleles in linkage disequilibrium (LD) with a highly correlated SNP of root fresh weight (ΔRFW).

Discussion

The benefits of PGPB in promoting plant growth, improving nutrient uptake and plant resilience to biotic and abiotic stress, and boosting crop production are documented by an expansive literature [3, 48–50]. While the molecular mechanisms and specific pathways that underlie the growth promoting responses in plants by PGPB have been investigated to some extent regarding the bacterial functions, left largely unexplored are the plant functions involved. Better defining these functions is important since they may help address the problems of consistency and efficiency that are found commonly when PGPB are used under field conditions to enhance crop yield and sustainability [51–53]. GWAS is a now popular method to harness natural genetic variation in a population to identify genetic loci critical for specific agronomic traits and in support of breeding improvement programs [13, 54–56]. Although used with great success in many studies, classical GWAS relying on SNPs has its limitations due to ‘missing heritability’ [57]. Failure to capture rare variants, allelic heterogeneity, epistasis, and/or epigenetic variation often decreases the detecting capacity of GWAS [58–62] [63]. To test the feasibility of this approach to investigate PGPB-plant interactions, we applied GWAS to map loci within the model plant *Arabidopsis* crucial for the beneficial response to the PGPB *Azoarcus olearius* DQS-4T. Such an approach has been used previously; for example, to ex-

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
amine the response of an *Arabidopsis* natural population to inoculation with the PGPB *Pseudomonas fluorescens*. This study identified 10 potential genes candidates involved in changes root architecture and shoot biomass but found none strongly correlated to growth responses to bacterial inoculation with no common gene that could be correlated to a PGPB mediated effect [64].

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
A few general conclusions can be made from our study. Consistent with published reports, including some from our own studies [2, 23, 65] plant genotype largely determines whether a given PGPB strain will or will not enhance or inhibit plant growth. This could be a major factor in field-to-field variation in published PGPB studies [51-53]. However, perhaps most impactful, is that the data point to considerable complexity in the mechanisms that underlie a beneficial plant response to PGPB inoculation. For example, within the *Arabidopsis* population, 27% of ecotypes showed no response to inoculation, while others showed either a negative (12% PRL, 4% LRN, 6% RFW and 6%SFW) or positive (8% PRL, 13% LRN, 10% RFW and 11% SFW) response to a specific trait. Considering the four growth parameters tested, 11 ecotypes showed consistently positive response whereas 6 accessions responded negatively. Indeed, some ecotypes showed different responses regarding a specific phenotypic parameter. For instance, ecotype Hod showed increased shoot fresh weight while root biomass was negatively affected. This complexity correlates well with our recent, mutational analysis of two PGPB strains that suggested that the gene functions necessary for plant root colonization are unique to a given strain, with only a few genes appearing essential for both strains tested. This large variation, coupled with normal issues found when applying biological inoculation to cropping systems, could, in large part, explain why it is not uncommon to find very variable, inconsistent results when PGPB are used under field conditions [51-53].

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1

446 part of the endosomal sorting complexes required for transporters (ESCORTs) for sus-
447 tained protein trafficking. Lyst-interacting protein 5 (LIP5), interacts with MAP kinase 3
448 (MPK3) and MPK6 in response to pathogen infection playing a critical role in plant basal
449 resistance [71, 72]. Mutational disruption of LIP5 expression had little effect on pathogen
450 associated molecular pattern (i.e., flagellin) or salicylic acid-induced defense responses
451 but compromised basal resistance in response to the bacterial pathogen *Pseudomonas sy-*
452 *ringae* [71]. We obtained the available T-DNA insertion line of AtLIP5 within the Col-O
453 background and found, not surprisingly, that this mutation had no effect on the re-
454 sponse of seedlings to *A. olearius* DQS-4^T inoculation (data not shown). Hence, confirma-
455 tion of those candidate genes implicated by our GWAS analysis in the PGPB response
456 awaits the ability to use gene-editing to create mutations in those specific ecotype back-
457 grounds that do respond to inoculation.

458 In summary, our study of the natural genetic variation within an *Arabidopsis* pop-
459 ulation showed considerable variation in the ability of plants to respond to inoculation
460 by *A. olearius* DQS-4^T while revealing considerable complexity regarding statistically as-
461 sociated loci with the growth traits measured and, in the patterns (positive, neutral,
462 negative) of those responses. Considering all candidate genes with SNP-trait associa-
463 tions in the GWA analysis, several have known or predicted functions that hold promise
464 for being functional in mediating the PGPB growth effects.

465 **Supplementary Materials:**

466 **Author Contributions:** F.P.A. designed and performed the experiments, analyzed results and
467 wrote the manuscript. J.W conducted the GWAs mapping and reviewed the manuscript. J.W de-
468 veloped the GWAS.Bayes R package, conducted GWA mapping and reviewed the manuscript.
469 T.R.T helped setup samples and phenotypic analysis. T.J GWA mapping discussion and man-
470 uscript review. M.A.R.F developed the GWAS.Bayes R package, conducted GWA mapping and re-
471 viewed the manuscript. G.S designed and discussion of experiment results, wrote and reviewed
472 the manuscript.

473 **Funding:**

474 **Institutional Review Board Statement:**

475 **Informed Consent Statement:**

476 **Data Availability Statement:**

477 **Acknowledgments:** We would like to thank Dr. Sung-Hwan Cho for helping with results analysis
478 and plant phenotyping discussions. The work of Ferreira and Williams was supported in part by
479 National Science Foundation Grants DMS 1853549 and DMS 2054173. This work was supported by
480 award NSF DMS 1853556. This version of the article has been accepted for publication, after peer
481 review but is not the Version of Record and does not reflect post-acceptance improvements, or any
482 corrections. The Version of Record is available online at:
483 <https://doi.org/10.3390/microorganisms11020331>.

484 **Conflicts of Interest:** The authors declare that the research was conducted in the absence of any
485 commercial or financial relationships that could be construed as a potential conflict of interest.
486

487 **References**

1. de Brito Ferreira, E.P., A.M. Knupp, and C.C. Garcia Martin-Didonet, *GROWTH OF RICE CULTIVARS (*Oryza sativa L.*) AS* *AFFECTED BY INOCULATION WITH PLANT GROWTH-PROMOTING BACTERIA*. *Bioscience Journal*, 2014. **30**(3): p. 655-665.
2. do Amaral, F.P., et al., Differential growth responses of *Brachypodium distachyon* genotypes to inoculation with plant growth promoting rhizobacteria. *Plant Mol Biol*, 2016. **90**(6): p. 689-97.
3. Pedrosa, F.O., et al., The ammonium excreting *Azospirillum brasiliense* strain HM053: a new alternative inoculant for maize. 2019: *Plant Soil*. p. 1-12.

495 4. Zeffa, D.M., et al., *Azospirillum brasiliense* promotes increases in growth and nitrogen use efficiency of maize genotypes. *Plos One*, 2019. **14**(4).

496 5. Micallef, S.A., M.P. Shiaris, and A. Colon-Carmona, Influence of *Arabidopsis thaliana* accessions on rhizobacterial communities and natural variation in root exudates. *Journal of Experimental Botany*, 2009. **60**(6): p. 1729-1742.

497 6. Haney, C., et al., Associations with rhizosphere bacteria can confer an adaptive advantage to plants. 2015: *Nature Plants*. p. 1-9.

498 7. Flint-Garcia, S.A., *Genetics and Consequences of Crop Domestication*. *Journal of Agricultural and Food Chemistry*, 2013. **61**(35): p. 8267-8276.

499 8. Perez-Jaramillo, J., Mendes R, and J. Raaijmakers, Impact of plant domestication on rhizosphere microbiome assembly and functions. 2016: *Plant Mol Biol*.

500 9. Francisco, M., et al., Genome Wide Association Mapping in *Arabidopsis thaliana* Identifies Novel Genes Involved in Linking Allyl Glucosinolate to Altered Biomass and Defense. *Front Plant Sci*, 2016. **7**: p. 1010.

501 10. Angelovici, R., et al., Network-Guided GWAS Improves Identification of Genes Affecting Free Amino Acids. *Plant Physiology*, 2017. **173**(1): p. 872-886.

502 11. Yano, K., et al., Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. *Nature Genetics*, 2016. **48**(8): p. 927-+.

503 12. Guo, Z., et al., Genome-Wide Association Studies of Image Traits Reveal Genetic Architecture of Drought Resistance in Rice. *Molecular Plant*, 2018. **11**(6): p. 789-805.

504 13. Gyawali, A., et al., Single-plant GWAS coupled with bulk segregant analysis allows rapid identification and corroboration of plant-height candidate SNPs. *Bmc Plant Biology*, 2019. **19**(1).

505 14. Jiang, S., et al., Genome-Wide Association Study Dissects the Genetic Architecture of Maize Husk Tightness. *Frontiers in Plant Science*, 2020. **11**.

506 15. Fang, C., et al., Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. *Genome Biology*, 2017. **18**.

507 16. Qin, J., et al., Genome Wide Association Study and Genomic Selection of Amino Acid Concentrations in Soybean Seeds. *Frontiers in Plant Science*, 2019. **10**.

508 17. Assefa, T., et al., Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches. *Bmc Plant Biology*, 2020. **20**(1).

509 18. Bashan, Y. and L.E. De-Bashan, How the Plant Growth - Promoting Bacterium *Azospirillum* Promotes PlantGrowth – A CriticalAssessment Vol. 108. 2010, *Advances in Agronomy*.

510 19. Spaepen, S. and J. Vanderleyden, *Auxin and Plant-Microbe Interactions*. *Cold Spring Harbor Perspectives in Biology*, 2011. **3**(4).

511 20. Spaepen, S., J. Vanderleyden, and R. Remans, *Indole-3-acetic acid in microbial and microorganism-plant signaling*. *Fems Microbiology Reviews*, 2007. **31**(4): p. 425-448.

512 21. Wintermans, P.C., P.A. Bakker, and C.M. Pieterse, Natural genetic variation in *Arabidopsis* for responsiveness to plant growth-promoting rhizobacteria. *Plant Mol Biol*, 2016. **90**(6): p. 623-34.

513 22. Cao Y , et al., *The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis*. 2017: *Annual Review of Plant Biology*. p. 535-561

514 23. Pankiewicz, V.C.S., et al., Robust biological nitrogen fixation in a model grass-bacterial association. *Plant Journal*, 2015. **81**(6): p. 907-919.

515 24. Faoro, H., et al., The oil-contaminated soil diazotroph *Azoarcus olearius* DQS-4(T) is genetically and phenotypically similar to the model grass endophyte *Azoarcus* sp. BH72. *Environ Microbiol Rep*, 2017. **9**(3): p. 223-238.

516 25. Amaral, F.P., et al., Diverse bacterial genes modulate plant root association by beneficial bacteria. 2020: *mBio*.

517 26. Gourion, B., et al., *Rhizobium-legume symbioses: the crucial role of plant immunity*. *Trends in Plant Science*, 2015. **20**(3): p. 186-194.

518 27. Roy, S., et al., Celebrating 20 Years of Genetic Discoveries in Legume Nodulation and Symbiotic Nitrogen Fixation(OPEN). *Plant Cell*, 2020. **32**(1): p. 15-41.

519 28. Nakagawa, T. and H. Imaizumi-Anraku, Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. *Rice*, 2015. **8**.

520 29. Pankiewicz, V., et al., Diazotrophic Bacteria and their Mechanisms to Interact and Benefit Cereals. 2021: *Molecular Plant-Microbe Interactions*.

521 30. Nordborg, M., et al., *The pattern of polymorphism in Arabidopsis thaliana*. *PLoS Biol*, 2005. **3**(7): p. e196.

522 31. Curtin, S.J., et al., Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation. *Plant Physiol*, 2017. **173**(2): p. 921-931.

523 32. Flint-Garcia, S.A., J.M. Thornsberry, and E.S. Buckler, *Structure of linkage disequilibrium in plants*. *Annual Review of Plant Biology*, 2003. **54**: p. 357-374.

524 33. Chen, M.H., et al., *Azoarcus olearius* sp nov., a nitrogen-fixing bacterium isolated from oil-contaminated soil. *International Journal of Systematic and Evolutionary Microbiology*, 2013. **63**: p. 3755-3761.

525 34. Okon, Y. and C.A. Labandera-Gonzalez, *Agronomic applications of azospirillum: An evaluation of 20 years worldwide field inoculation*. *Soil Biology and Biochemistry*, 1994. **26**(12): p. 1591-1601.

526 35. Klassen, G., et al., Effect of nitrogen compounds on nitrogenase activity in *Herbaspirillum seropedicae* SMR1. *Canadian Journal of Microbiology*, 1997. **43**(9): p. 887-891.

555 36. Bradbury, P.J., et al., TASSEL: software for association mapping of complex traits in diverse samples. *Bioinformatics*, 2007. 23(19): p. 2633-5.

556 37. Kim, S., et al., Recombination and linkage disequilibrium in *Arabidopsis thaliana*. *Nat Genet*, 2007. 39(9): p. 1151-5.

557 38. Williams J, Ferreira M.A.R, and Ji. T, GWAS.BAYES: An R package for Bayesian analysis of GWAS data. R package version 1.0.0. 2020, Bioconductor.

558 39. Williams J, Ferreira M.A.R, and Ji T., BICOSS: Bayesian iterative conditional stochastic search for GWAS. *BMC Bioinformatics*, 2022, 23, 475.

560 40. Team, R.C., *R: A language and environment for statistical computing*. 2022: R Foundation for Statistical Computing.

562 41. Ruijter, J.M., et al., Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. *Nucleic Acids Res*, 2009. 37(6): p. e45.

564 42. Parry, G., et al., The *Arabidopsis* SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. 2006: *The Plant cell*. p. 1590-1603.

566 43. Li, C., et al., Nucleoporin 160 Regulates Flowering through Anchoring HOS1 for Destabilizing CO in *Arabidopsis*. 2020: *Plant communications*. p. 100033.

568 44. Silverstone, A.L., et al., *Functional analysis of SPINDLY in gibberellin signaling in Arabidopsis*. *Plant Physiology*, 2007. 143(2): p. 987-1000.

570 45. Dong, M.A., E.M. Farre, and M.F. Thomashow, CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPO-COTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United States of America*, 2011. 108(17): p. 7241-7246.

572 46. Hayashi, S., et al., The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and its Homologs Play Important Roles in Cell Wall Organization. *Plant and Cell Physiology*, 2008. 49(10): p. 1522-1535.

574 47. Cingolani P, et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2; iso-3. 2012: *Fly (Austin)*. p. 80-92.

576 48. Compant, S., et al., Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. *Applied and Environmental Microbiology*, 2005. 71(9): p. 4951-4959.

578 49. Fukami, J., et al., Accessing inoculation methods of maize and wheat with *Azospirillum brasilense*. *Amb Express*, 2016. 6.

580 50. Di Benedetto, N.A., et al., The role of Plant Growth Promoting Bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat. *Aims Microbiology*, 2017. 3(3): p. 413-434.

582 51. Timmus, S., et al., Perspectives and Challenges of Microbial Application for Crop Improvement. *Frontiers in Plant Science*, 2017. 8.

584 52. Backer, R., et al., Plant Growth-Promoting Rhizobacteria: Context, Mechanisms of Action, and Roadmap to Commercialization of Biostimulants for Sustainable Agriculture. *Frontiers in Plant Science*, 2018. 9.

586 53. Gange, A.C. and K.R. Gadhave, Plant growth-promoting rhizobacteria promote plant size inequality. *Scientific Reports*, 2018. 8.

588 54. Battenfield, S.D., et al., Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. *Plos One*, 2018. 13(11).

590 55. Gupta, P.K., P.L. Kulwal, and V. Jaiswal, *Association mapping in plants in the post-GWAS genomics era*. *Advances in Genetics*, Vol 104, 2019. 104: p. 75-154.

592 56. Tsai, H.Y., et al., Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat (vol 10, 3347, 2020). *Scientific Reports*, 2020. 10(1).

594 57. Eichler, E.E., et al., Missing heritability and strategies for finding the underlying causes of complex disease. *Nat Rev Genet*, 2010. 11(6): p. 446-50.

596 58. Johannes, F., et al., Assessing the impact of transgenerational epigenetic variation on complex traits. *PLoS Genet*, 2009. 5(6): p. e1000530.

598 59. Manolio, T.A., et al., *Finding the missing heritability of complex diseases*. *Nature*, 2009. 461(7265): p. 747-53.

600 60. Bergelson, J. and F. Roux, Towards identifying genes underlying ecologically relevant traits in *Arabidopsis thaliana*. *Nat Rev Genet*, 2010. 11(12): p. 867-79.

602 61. Bodenhausen, N., M.W. Horton, and J. Bergelson, Bacterial Communities Associated with the Leaves and the Roots of *Arabidopsis thaliana*. *Plos One*, 2013. 8(2).

604 62. Brachi, B., G.P. Morris, and J.O. Borevitz, Genome-wide association studies in plants: the missing heritability is in the field. *Genome Biol*, 2011. 12(10): p. 232.

606 63. Wang, J., et al., A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies. *BMC Genomics*, 2015. 16: p. 1011.

608 64. Wintermans, P.C.A., P.A.H.M. Bakker, and C.M.J. Pieterse, *Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria*. *Plant Molecular Biology*, 2016. 90(6): p. 623-634.

610 65. Beneduzi, A., A. Ambrosini, and L.M.P. Passaglia, *Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents*. *Genetics and Molecular Biology*, 2012. 35(4): p. 1044-1051.

612 66. Zhang, Z.W., et al., Mixed linear model approach adapted for genome-wide association studies. *Nature Genetics*, 2010. 42(4): p. 355-U118.

613

614 67. Javot, H., et al., A *Medicago truncatula* phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. *Proc*
615 *Natl Acad Sci U S A*, 2007. **104**(5): p. 1720-5.

616 68. Cipriano, M.A.P., et al., Plant-Growth Endophytic Bacteria Improve Nutrient Use Efficiency and Modulate Foliar
617 N-Metabolites in Sugarcane Seedling. *Microorganisms*, 2021. **9**(3).

618 69. Levy, A., Salas Gonzalez, I., Mittelviefhaus, M., *Genomic features of bacterial adaptation to plants*. 2018: *Nat Genet*. p. 138-150.

619 70. Mou, S., et al., Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, OsPIANK1, in
620 basal defense against *Magnaporthe oryzae* attack. *PLoS One*, 2013. **8**(3): p. e59699.

621 71. Wang F, et al., *Arabidopsis LIP5*, a Positive Regulator of Multivesicular Body Biogenesis, Is a Critical Target of Pathogen- Re-
622 sponsive MAPK Cascade in Plant Basal Defense. 2014: *PLoS Pathog*.

623 72. Buono, R.A., et al., Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. *Plant Physi-
624 ology*, 2016. **171**(1): p. 251-264.

625