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Differentially Quantized Gradient Methods
Chung-Yi Lin, Victoria Kostina, and Babak Hassibi

Abstract—Consider the following distributed optimization sce-
nario. A worker has access to training data that it uses to
compute the gradients while a server decides when to stop
iterative computation based on its target accuracy or delay
constraints. The server receives all its information about the
problem instance from the worker via a rate-limited noiseless
communication channel.

We introduce the principle we call differential quantization
(DQ) that prescribes compensating the past quantization errors
to direct the descent trajectory of a quantized algorithm to-
wards that of its unquantized counterpart. Assuming that the
objective function is smooth and strongly convex, we prove
that differentially quantized gradient descent (DQ-GD) attains a
linear contraction factor of max{σGD, ρn2

−R}, where σGD is
the contraction factor of unquantized gradient descent (GD),
ρn ≥ 1 is the covering efficiency of the quantizer, and R is the
bitrate per problem dimension n. Thus at any R ≥ log2 ρn/σGD

bits, the contraction factor of DQ-GD is the same as that of
unquantized GD, i.e., there is no loss due to quantization. We
show a converse demonstrating that no algorithm within a certain
class can converge faster than max{σGD, 2

−R}. Since quantizers
exist with ρn → 1 as n→∞ (Rogers, 1963), this means that DQ-
GD is asymptotically optimal. In contrast, naively quantized GD
where the worker directly quantizes the gradient barely attains
σGD + ρn2

−R.
The principle of differential quantization continues to apply to

gradient methods with momentum such as Nesterov’s accelerated
gradient descent, and Polyak’s heavy ball method. For these
algorithms as well, if the rate is above a certain threshold, there
is no loss in contraction factor obtained by the differentially
quantized algorithm compared to its unquantized counterpart,
and furthermore, the differentially quantized heavy ball method
attains the optimal contraction achievable among all (even
unquantized) gradient methods.

Experimental results on least-squares problems validate our
theoretical analysis.

Index Terms—gradient descent, quantized gradient descent,
accelerated gradient descent, heavy ball method, error compensa-
tion, error feedback, sigma-delta modulation, federated learning,
linear convergence.

I. INTRODUCTION

A. Motivation and related work

Distributed optimization plays a central role in large-
scale machine learning where gradient descent (GD) and its
stochastic variant SGD are employed to minimize an objective
function [2]–[9]. Despite the scalability of parallel gradient
training, the frequent exchange of high-dimensional gradients
between distributed agents in the federated learning setting
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has become a communication bottleneck that slows down the
overall learning process [3], [6], [10]–[13] .

A natural approach to alleviating that communication bot-
tleneck is to quantize the gradients with a limited number of
bits per problem dimension. Its power was first demonstrated
by Seide et al. [10], where the gradient computed by stochastic
gradient descent (SGD) [14] is quantized down to just one bit
per dimension and the quantization error is carried forward
across mini-batches, resulting in almost no loss in empirical
convergence performance compared to the unquantized algo-
rithm. Wen at al. [15] propose a ternary quantizer for SGD and
prove that it converges almost surely under the assumption
of bounded gradients. Bernstein et al. [16] propose a sign-
based quantizer for mini-batch SGD, give its convergence
analysis on nonconvex problems, and extend it to accelerated
gradient descent and to a multi-worker setting. Alistarh et al.
[17] propose a quantized SGD algorithm that compresses the
gradient using a stochastic scalar quantizer with an adjustable
number of quantization levels, and provide convergence guar-
antees that depend on this variable compression rate on smooth
convex and non-convex functions. The quantizer in [10], [15]–
[17] is a uniform scalar quantizer, which simply rounds the
binary representation of each coordinate to a fixed number of
bits, while [18] considers a non-uniform scalar quantizer, and
[19], [20] construct vector quantizers from the convex hull of
specifically structured point sets.

A different approach to addressing the communication bot-
tleneck in parallel SGD training is to sparsify the gradient
vectors [12], [21]–[25]. For example, the top-k sparsifier
(or compressor) preserves the k coordinates of the largest
magnitude and sends them with full precision [12], [21], [22],
[26]–[28]. A user-specified parameter (e.g. k for the top-k
compressor) serves as a proxy for the communication rate in
this line of work.

For an empirical risk minimization problem where the
global objective function is the average of local objective
functions, recent works [29]–[31] perform analog gradient
compression and communication by taking the physical su-
perposition nature of the underlying multiple-access channel
into the account.

The assumption of unbiased compression error [32]–[43] is
commonly imposed to enable convergence analyses of com-
pressed SGD. Employing biased compressors in compressed
SGD can lead to divergence: for example, both the 1-bit SGD
without mini-batching [10], [44] and the top-1 compressed
SGD [45] diverge on some problem instances. A set of
sufficient conditions on the compression operators to ensure
convergence of SGD is put forth in [46].

The same paper - [10] - that initiates the study of quantized
SGD is also the first to introduce the idea of adding back
previous quantization errors before quantizing the gradient
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at the next step of iterative optimization, which fixes the
divergence issue mentioned above. The idea, referred to as
error compensation, or error feedback, in the federated learn-
ing literature, has been long known as Σ-∆ modulation [47]
in the information theory literature. Stich et al. [22] apply
the mechanism of error feedback in [10] to a more general
setting of SGD and show that it converges with the same
order as unquantized SGD on strongly convex and smooth
functions, providing the first theoretical performance guarantee
of that error feedback strategy. Karimireddy et al. [44] extend
the analysis of [22] to the non-convex and weakly convex
objective functions, while Zheng et al. [48] and Gorbunov et
al. [40] prove its convergence in the multi-worker setting. Wu
et al. [49] propose an error feedback mechanism different from
[10] and prove its convergence on quadratic functions using
the same quantizer as in [17]. Past quantization errors in the
algorithm of [49] accumulate from one iteration to another and
are weighted by time-decaying factors. The momentum correc-
tion used in [25], as well as the distributed SGD with skipped
communication rounds in [50], are also variants of error
compensation. Qian et al. [51] propose an error-compensated
accelerated SGD, while Richrárik et al. [52] propose an error-
compensated SGD that achieves the same order of convergence
as SGD with unbiased compressors [42]. The analyses in [22],
[40], [44], [52] assume that the compressor is a contraction
operator, while [49] also assumes its unbiasedness. Horv́ath
and Richtárik [53] construct an unbiased compressor from
a contractive compressor and employ the resulting unbiased
compressor within SGD as an alternative to error feedback to
overcome the divergence issue with biased compressors.

Although a number of works provide convergence analyses
of their proposed methods, showing that convergence rates of
quantized gradient methods depend on the bit rate R [17]–[19],
[54], [55], there are few existing convergence lower bounds in
terms of R that apply to any algorithm within a specified class.
For quantized projected SGD, [19], [55] give lower bounds to
a minimax expected estimation error (i.e. difference between
the output function value and the optimal one), which is in
the same order of convergence as that of the unquantized SGD
over convex functions. However, the allowable quantizer input
in [19], [55] is fixed to be the gradient of the current iterate,
precluding the use of error compensation.

The parameter server framework that we consider in this
paper is somewhat different from the distributed estimation
or optimization setting [56], where there has also been great
interest in communication-efficient algorithms to account for
the distributed nature of these problems. In such applications,
all parties in a connected network communicate back and
forth in order to estimate the mean of a distribution [57]
(or a population [58]) or to solve a convex optimization
cooperatively with quantization effects [59], [60]. Information-
theoretic lower bounds have also been established either in the
minimax sense for distributed statistical estimation problem
[61] or in terms of the communication complexity for the
distributed convex learning problem [58], [62], [63].

B. Contributions

In this paper, we provide a lower bound on quantized
non-stochastic gradient descent, and we show a single-worker
algorithm that achieves the lower bound with equality, thereby
establishing an information-theoretic fundamental limit of
quantized gradient descent. In other words, we quantify exactly
the minimum amount of information required to achieve a
desired convergence speed (within a class of algorithms), and
we show an algorithm that achieves it. Because the algorithm
achieves the information-theoretic converse with equality, no
other algorithm can surpass its performance. It is remarkable
that only a finite bit rate is required to achieve the optimal
convergence speed achievable with an infinite rate. Our anal-
ysis is sharper than existing analyses because we identify
constants and not just the order of convergence. We focus on
(nonstochastic) GD and not on SGD as most prior work. We
do not assume that the quantizer is unbiased or is a contraction
operator - our information-theoretic lower bound applies to any
quantizer, and any quantizer can be inserted into our algorithm,
although our achievability result suggests that picking a (scalar
or vector) quantizer with good covering efficiency would
perform best. Our mechanism for error compensation (that
we call “differential quantization”) differs from prior works
in the gradient-compute point, which is crucial for achieving
our sharp information-theoretic lower bound. Although our
information-theoretic lower bound applies to the multi-worker
setting as well, our best achievability bound comes short of
it at a finite R. Thus, it remains an open problem whether
the lower bound is achievable in the multi-worker setting.
While our main results are presented in terms of a quantity
that is asymptotic in the number of iterations T , the analyses
that lead to these results are nonasymptotic. Incidentally,
we discover two new results on the classical (unquantized)
gradient methods: a slightly more general converse for the
gradient descent, and a nonasymptotic global convergence
bound on Polyak’s heavy ball method.

We consider the single-worker scenario of the parameter
server framework [11], [15]–[18], [64], [65] consisting of a
worker that computes the gradients and a server that succes-
sively refines the model parameter (i.e. the iterate) and decides
when to stop the distributed iterative algorithm based on its
target accuracy or delay constraints. See Fig. 1.

Worker

access ∇f(zt)

Parameter server

x̂t+1 ← x̂t − ηqt

iterate x̂t

nR-bit qt

Fig. 1: Quantized gradient descent in a single-worker remote
training setting. At each iteration t, the server first sends the
current iterate x̂t to the worker noiselessly, who computes
the gradient at some point zt that is a function of (but not
necessarily equal to) x̂t. Then, the worker forms a descent
direction qt and pushes it back to the server under the nR
bits per iteration constraint.

We study the fundamental tradeoff between the convergence
rate and the communication rate of quantized gradient descent.
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We focus on the class Fn of smooth and strongly convex
objective functions f : Rn 7→ R whose minimizers are bounded
in the Euclidean norm. For a quantized iterative algorithm A,
its worst-case linear contraction factor over Fn at rate R bits
per problem dimension is defined as

σA(n,R) , inf
R′≤R

sup
f∈Fn

lim sup
T→∞

‖x̂T (R′)− x∗f ‖
1
T (1)

where x∗f is the optimizer, and x̂0(R′), x̂1(R′), x̂2(R′), . . . is
the sequence of iterates generated by A in response to f ∈ Fn
when it operates at R′ bits per problem dimension.

We consider three popular algorithms that converge lin-
early:1 the classical gradient descent (GD) with fixed step
size, the accelerated gradient descent (AGD) [66], and the
heavy ball method (HB) [67]. We propose a principle for error
feedback we call differential quantization (DQ) that says that
the quantizer input should be formed in such a way as to guide
the descent trajectory of the quantized algorithm towards the
descent trajectory of its unquantized counterpart. By applying
the DQ principle to the GD, AGD, and HB algorithms, we con-
struct three new quantized iterative optimization algorithms:
DQ-GD, DQ-AGD, and DQ-HB. By analyzing them, we show
achievability bounds of the form2

σA(n,R) ≤ max
{
σA, ρn2−RφA(n,R)

}
, (2)

where A ∈ {DQ-GD, DQ-AGD, DQ-HB}, σA is the contrac-
tion factor of the unquantized counterpart of A, ρn ≥ 1 is
the covering efficiency of the quantizer, and φA(n,R) ≥ 1 is
function that we specify; for example,

σDQ-GD(n,R) ≤ max
{
σGD, ρn2−R

}
. (3)

As (2) indicates, each of the novel DQ algorithms achieves
the corresponding σA once the rate passes a hard threshold. In
other words, there is no loss at all due to quantization once
the rate is high enough.

We show an information-theoretic converse of the form

σA(n,R) ≥ max
{
σGD, 2

−R} , (4)

which applies to any “quantized gradient descent” algorithm A
(in the class of “quantized gradient descent” algorithms, sum-
marized in Fig. 1, the server can utilize only the last quantized
input to form the next iterate). Recalling the classical result
of Rogers [68, Th. 3] that shows the existence of quantizers
with covering efficiency ρn → 1 as n → ∞ and comparing
(2) and (4), one can deduce the asymptotic optimality of DQ-
GD within the class of “GD-like” algorithms. In contrast, the
natural method that quantizes the gradient of its current iterate
directly [15]–[17], [69] referred to as naively quantized (NQ)
GD in this paper, has contraction factor (in the single-worker
scenario; see Section V for the multi-worker result)

σNQ-GD(n,R) ≤ σGD +
2κ

κ+ 1
ρn2−R (5)

1The term “linear convergence” is used in the literature as a synonym for
convergence with the rate of geometric progression. Note that SGD converges
only sub-linearly over smooth and strongly convex functions [32]–[34].

2The convergence result on DQ-HB in (2) requires that the function f ∈ Fn

is twice continuously differentiable.

x0

x1 x̂1

−ηu0 = −η∇f(x0) −ηq0
ηe0

x2 x̂2

−η∇f(x1) −ηu1
−ηq1

ηe1

Fig. 2: Illustration of the DQ-GD algorithm (Algorithm 1).

where κ ≥ 1 is the condition number of f. The guarantee (5)
is significantly worse than (3).

Our numerical results indicate that the upper bounds (2)
and (5) accurately represent the actual achieved contraction
factors.

Within a wider class of quantized gradient methods (the
server can utilize full memory of the past), the converse (4)
can be surpassed. Once the rate passes the threshold mentioned
earlier, DQ-HB attains the minimum possible contraction fac-
tor among all algorithms in that wider class, even unquantized
ones.

The rest of the paper is organized as follows. Differen-
tially quantized algorithms are presented in Section II. Their
convergence analyses and an experimental validation on least-
squares problems are shown in Section III. The converses are
presented in Section IV. The multi-worker setting is discussed
in Section V.

II. DIFFERENTIALLY QUANTIZED ALGORITHMS

A. Quantizers employed in DQ algorithms

A quantizer of dimension n and rate R is a function q : D →
Rn, where D ⊆ Rn is the domain, such that the image of q
satisfies

|Im(q)| = 2nR. (6)

This is the classical general fixed-rate quantizer in the informa-
tion theory literature. We fix a dimension-n, rate-R quantizer
q, and we set up quantizer qt to be used at iteration t as

qt(·) = rtq(·/rt) (7)

for a properly chosen sequence of shrinkage factors {rt} (see
(22), (35), and (46), below). Therefore, each quantizer qt has
the same geometric structure but different resolution.

B. Differentially Quantized Gradient Descent

The (unquantized) gradient descent algorithm searches
along the direction of the negative gradient toward which the
function value decreases:

xt+1 = xt − η∇f(xt), (8)

where η > 0 is the constant stepsize chosen to minimize the
function value along the search direction.

In Fig. 2, we illustrate an application of differential quan-
tization (DQ) to GD (8), which yields the DQ-GD algorithm
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(Algorithm 1). At each iteration t, DQ-GD first determines
the iterate xt associated with the corresponding unquantized
algorithm, i.e., GD, by compensating previous scaled quanti-
zation error ηet−1 (Line 4). It then computes the gradient at
zt = xt (Lemma B.1) and sets the quantizer input as (Line 5)

ut = ∇f (x̂t + ηet−1)− et−1, (9)

which in the absence of quantization error et would guide
the iterate x̂t back to xt+1 (see Fig. 2). The recorded scaled
quantization error ηet captures exactly the difference between
x̂t+1 and xt+1 for the next iteration.

See Appendix A for the DQ-GD algorithm with varying
stepsize ηt.

Algorithm 1: DQ-GD

1 Initialize e−1 = 0
2 for t = 0, 1, 2, . . . do
3 Worker:
4 zt = x̂t + ηet−1
5 ut = ∇f(zt)− et−1
6 qt = qt(ut)
7 et = qt − ut

8 Server: x̂t+1 = x̂t − ηqt
9 end

C. Differentially Quantized Accelerated Gradient Descent

Nesterov’s Accelerated Gradient Descent (AGD) [70] keeps
track of two iterate sequences

yt+1 = xt − η∇f(xt) (10)
xt+1 = yt+1 + γ (yt+1 − yt) . (11)

It first performs the gradient descent step (10), and then adds
the momentum term γ (yt+1 − yt) (11) to form a projection
xt+1 of the GD iterate yt+1 to its near future. The momentum
term incorporates second-order effects by leveraging the past
yt. The AGD is the first algorithm that achieved the contrac-
tion factor that is order-wise optimal (in terms of the condition
number of f) among all first-order (gradient) optimization
methods [66] (Lemma B.5). There are various interpretations
of Nesterov’s acceleration phenomenon. We refer the reader
to [71] for a connection to the mirror descent algorithm and
to [72] for an interpretation in terms of differential equation.

Differentially Quantized AGD algorithm is presented as
Algorithm 2. At each iteration t, DQ-AGD uses the past
two quantization errors et−1, et−2 to determine the gradient-
compute point zt (Line 4) and the quantizer input ut (Line 5).
As dictated by the principle of differential quantization, DQ-
AGD computes the gradient at the same point as unquantized
AGD, i.e., zt = xt (Lemma B.4).

D. Differentially Quantized Heavy Ball Method

Polyak’s Heavy Ball (HB) algorithm [67] iterates

xt+1 = xt − η∇f(xt) + γ (xt − xt−1) , (12)

Algorithm 2: DQ-AGD

1 Initialize e−2 = e−1 = 0, ŷ0 = x̂0

2 for t = 0, 1, 2, . . . do
3 Worker:
4 zt = x̂t + η [et−1 + γ (et−1 − et−2)]
5 ut = ∇f(zt)− [et−1 + γ (et−1 − et−2)]
6 qt = qt(ut)
7 et = qt − ut
8 Server:
9 ŷt+1 = x̂t − ηqt

10 x̂t+1 = ŷt+1 + γ (ŷt+1 − ŷt)
11 end

where γ (xt − xt−1) is the momentum term that nudges
xt+1 in the direction of the previous step, and accelerates
convergence to the optimizer. In contrast to AGD, the HB
method only uses the gradient at the current iterate. The
HB method derives from the analogy with physics, since the
continuous-time counterpart of (12) is a second-order ODE
that models the motion of a body (“the heavy ball”) in a field
with potential f under the force of friction. At the expense of
requiring function f in Fn to be further twice continuously
differentiable, the HB algorithm can be shown to converge
with the optimal contraction factor achievable among all first-
order optimization methods [67, Th. 3.1] (Lemma B.8), [66,
Th. 2.1.13] (Lemma C.2). In comparison, the AGD approaches
it only order-wise, but it does not require the second derivative
of f to exist, a significant restriction in practical applications.

Differentially Quantized HB algorithm is presented as Al-
gorithm 3. In accordance with the principle of differential
quantization, the worker computes the gradient at zt = xt
(Lemma B.7). Note that DQ-HB has the same expression for
its quantizer input ut (Line 4) as DQ-AGD (Line 5).

Algorithm 3: Differentially Quantized Heavy Ball
Method (DQ-HB)

1 Initialize e−2 = e−1 = 0, x̂−1 = x̂0

2 for t = 0, 1, 2, . . . do
3 Worker:
4 zt = x̂t + ηet−1
5 ut = ∇f(zt)− [et−1 + γ (et−1 − et−2)]
6 qt = qt(ut)
7 et = qt − ut
8 Server: x̂t+1 = x̂t − ηqt + γ (x̂t − x̂t−1)
9 end

III. CONVERGENCE RATES OF DQ ALGORITHMS

A. Definitions

We denote by ‖·‖ the Euclidean norm, and by B(r) ,
{u ∈ Rn : ‖u‖ ≤ r} the Euclidean ball in Rn with radius r
and center at 0.

We fix positive scalars L, and µ, and D, and we say that
a continuously differentiable function f : Rn 7→ R is in class
Fn if
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i) f is L-smooth, i.e.,

‖∇f(v)−∇f(w)‖ ≤ L ‖v −w‖ ; (13)

ii) f is µ-strongly convex, i.e.,

function v 7→ f(v)− µ

2
‖v‖2 is convex; (14)

iii) the minimizer x∗f , arg minx∈Rn f(x) satisfies

‖x∗f − x̂0‖ ≤ D, (15)

where x̂0 is the starting location of iterative algorithms.
We say that f : Rn 7→ R is in class F2

n if it is in Fn and is
in addition twice continuously differentiable.

We denote the condition number of an f ∈ Fn by

κ ,
L

µ
. (16)

Note that κ ≥ 1 due to (13) and (14).
For a bounded-domain quantizer q : D → Rn, we refer to

r(q) , max {δ : B(δ) ⊆ D} (17)

as the dynamic range of q, to

d(q) , min {d : ∀x ∈ D, ‖x− q(x)‖ ≤ d} (18)

as its covering radius, and to

ρ (q) , |Im(q)|1/n d(q)

r(q)
(19)

as its covering efficiency.3 A scalar uniform quantizer qu has
domain [−r(qu), r(qu)]n and covering efficiency

√
n. This is

wasteful: the classical result of Rogers [68, Th. 3] implies that
there exists a sequence of n-dimensional quantizers qn with
ρ (qn) → 1 as n → ∞, while definition (19) implies that
ρ (q) ≥ 1 for any quantizer q.

B. DQ-GD: convergence analysis and simulation results

Unquantized gradient descent with the optimal stepsize
given by

η = ηGD ,
2

L+ µ
(20)

achieves contraction factor

σGD ,
κ− 1

κ+ 1
(21)

over Fn [67, Th. 1.4], [66, Th. 2.1.15] (Lemma B.2). The
following result provides a convergence guarantee for DQ-GD.

Theorem III.1 (Convergence of DQ-GD). Fix a dimension-n,
rate-R quantizer q with dynamic range 1 and covering effi-
ciency ρn. Then, Algorithm 1 with stepsize (20) and dynamic
ranges r0 = LD,

rt+1 = σt+1
GD LD + rt ρn2−R, t = 1, 2, . . . (22)

3Covering efficiency introduced in (19) extends the notion of covering
efficiency of an infinite lattice [73], which measures how well that lattice
covers the whole space, to bounded-domain quantizers.

in the definition of qt (7) achieves the following contraction
factor over Fn (1):

σDQ−GD(n,R) ≤ max
{
σGD, ρn2−R

}
. (23)

Proof sketch. The path of DQ-GD and that of GD are related
as (see Fig. 2, Lemma B.1)

x̂t = xt − ηet−1 (24)

Comparing (24) and Line 4 in Algorithm 1, we see that
zt = xt, i.e., DQ-GD computes the gradient at the unquan-
tized trajectory {xt}. The convergence guarantee of GD [67,
Th. 1.4], [66, Theorem 2.1.15] (Lemma B.2) controls the
difference between the first term in the recursion (24) and the
optimizer x∗f . To bound the second term in (24), we observe
using (19) that for any rt > 0 in (7),

max
u∈B(rt)

‖qt(u)− u‖ = rt max
u∈B(1)

‖q(u)− u‖ (25)

= rt ρn2−R, (26)

i.e. quantizer qt used at iteration t has dynamic range rt
and covering radius (26). To complete the proof, we show
by induction that with rt in (22), the input ut to the quantizer
qt generated by Algorithm 1 always lies within B(rt). Since
recurrence relation (22) represents a geometric sequence, (26)
implies that the quantization error decays exponentially fast.
The stepsize (20) is optimal both for GD [66, Theorem 2.1.15]
and for DQ-GD. See Appendix B-A for details.

The bound in (23) exhibits a phase-transition behavior:
at any R ≥ log2

ρn
σGD

, achieving the contraction factor of
unquantized GD is possible, while at any R < log2

ρn
σGD

,
the achievable contraction factor is only ρn2−R = d(q)

r(q) . The
algorithm converges linearly as long as ρn2−R < 1.

A common approach to quantizing descent algorithms [15]–
[18], [55], [69] we refer to as naive quantization has the
worker directly quantize the gradient of its current iterate.
Applied to GD, it leads to the Naively Quantized Gradient
Descent (NQ-GD) with the quantizer input (cf. (9))

ut = ∇f(x̂t). (27)

In Theorem V.1 in Section V below, we show that

σNQ-GD(n,R) ≤ σGD +
2κ

κ+ 1
ρn2−R. (28)

which is strictly greater than (23).
In Fig. 3, we numerically compare the contraction factor of

DQ-GD (Algorithm 1), the NQ-GD, and the unquantized GD
(8) on least-squares problems

f(x) =
1

2
‖y −Ax‖2 (29)

where y ∈ Rm,A ∈ Rm×n, with m ≥ n. We generate
500 matrices A’s with i.i.d. standard normal entries, one
for each y, and rescale the spectrum of A so that it has a
prescribed condition number κ. We also run the algorithm on
the real-world least-squares matrix ash331 extracted from
the online repository SuiteSpare [74]. For each per-dimension
quantization rate R ≥ 1, we generate 500 instances of the
vector y and x̂0 with i.i.d. standard normal entries. We run the
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Fig. 3: Empirical contraction factors (as circles) and corre-
sponding upper bounds (21), (23), and (28) (as lines).

iterative algorithms for as many iterations T as possible until
reaching the machine’s floating point precision, and report the
average contraction factor. We use the uniform scalar quantizer
for the ease of implementation and take as a consequence a
space-filling loss of

√
n. For smaller values of the data rate

R, quantized GD may not even converge as
√
n2−R ≥ 1. In

that case, we clip off the contraction factor at 1 in the plots.
We set the stepsize and the quantizer’s dynamic range in the
DQ-GD algorithm as prescribed by Theorem III.1, and in the
NQ-GD algorithm as prescribed by Theorem V.1 in Section V
below.

We observe that DQ-GD has a significantly faster contrac-
tion factor than NQ-GD, and that the empirical results closely
track our analytical convergence bounds (23) and (28). The
contraction factor of unquantized GD serves as a lower bound
to both quantized algorithms.

Applying the error feedback mechanism of [10], [22], [44],
developed for SGD, to GD results in an algorithm that forms
the quantizer input as

ut = ∇f(x̂t)− et−1. (30)

Unlike DQ-GD (9), error feedback in (30) results in computing
the gradient along the quantized trajectory {x̂t}, and it is
unclear whether it can even improve upon NQ-GD (28) in
the setting of our paper - nonstochastic GD with a worst-case
performance criterion and without further assumptions on the
quantizer (Appendix E).

C. DQ-AGD: convergence analysis

Unquantized accelerated gradient descent with stepsize

η = ηAGD ,
1

L
(31)

and momentum coefficient

γ = γAGD ,

√
κ− 1√
κ+ 1

(32)

achieves contraction factor

σAGD ,

√
1− 1√

κ
(33)

over Fn (1) [33, Th. 3.18] (Lemma B.5), which improves the
contraction factor of gradient descent σGD = 1− 1

κ +O
(

1
κ2

)
(21) to σAGD = 1− 1

2
√
κ

+O
(
1
κ

)
, a significant improvement

if κ is large and optimal order-wise (the converse to the
optimal contraction factor expands as 1 − 4√

κ
+ O

(
1
κ

)
[66]

(Lemma C.2) and is attained in F2
n by the heavy ball method

[67] (Lemma B.8).
Denote for brevity the constant

λ ,
(
1 + γAGD + γAGDσ

−1
AGD

)√
κ+ 1. (34)

The following result extends (33) to DQ-AGD.

Theorem III.2 (Convergence of DQ-AGD). Fix a dimension-
n, rate-R quantizer q with dynamic range 1 and covering
efficiency ρn. Then, Algorithm 2 with stepsize (31), momentum
coefficient (32), and dynamic ranges r−2 = r−1 = 0,

rt = σtAGDLDλ+ (rt−1 + γAGD(rt−1 + rt−2)) ρn2−R, (35)

t = 1, 2, . . . in the definition of qt (7) achieves the following
contraction factor over Fn (1):

σDQ−AGD(n,R) ≤ max
{
σAGD, ρn2−Rφ(n,R, γAGD)

}
(36)

where

φ(n,R, γ) ,
1

2
(1 + γ) +

1

2

√
(1 + γ)2 +

4γ

ρn2−R
. (37)

Proof sketch. The proof follows the roadmap of the proof
of Theorem III.1 with the following complication. Where
in Algorithm 1 the quantizer input depends on the previous
quantization error et−1, the quantizer input in Algorithm 2
depends on the past two quantization errors et−1 and et−2
(Line 5). The resulting recursion (35) is a second-order linear
non-homogeneous recurrence relation, which unlike (22) does
not simply represent a geometric sequence. The characteristic
polynomial of (35) is

p(r) , r2 − rρn2−R(1 + γAGD)− ρn2−RγAGD, (38)

and ρn2−RφDQ−AGD(n,R) in (36) is its positive, larger-
magnitude root. This implies that the quantization error decays
with the contraction factor in the right side of (36). See
Appendix B-B for details.

Define the functions

R1(n, γ) , log2(1 + 2γ) + log2 ρn (39)

R2(n, σ, γ) , log2

(1 + γ)σ + γ

σ2
+ log2 ρn (40)

The achievability bound (36) exhibits two phase transitions.
The first one is at ρn2−Rφ(n,R, γAGD) < 1, which is
equivalent to p(1) > 0: if

R > R1(n, γAGD) bits / dimension, (41)
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then DQ-AGD enjoys linear convergence. The second one
is at ρn2−Rφ(n,R, γAGD) ≤ σAGD, which is equivalent to
p(σAGD) ≥ 0: if

R ≥ R2(n, σAGD, γAGD) bits / dimension, (42)

then there is no loss in the long-term convergence behavior of
the DQ-AGD compared to AGD.

Curiously, R1(n, 0) and R2(n, σGD, 0) express the two
phase transitions of DQ-DG that were determined in Sec-
tion III-B.

D. DQ-HB: convergence analysis and numerical comparison

Unquantized heavy ball method with stepsize

η = ηHB ,

(
2√

L+
√
µ

)2

(43)

and momentum coefficient

γ = γHB ,

(√
κ− 1√
κ+ 1

)2

(44)

achieves contraction factor

σHB ,

√
κ− 1√
κ+ 1

(45)

over F2
n (1) [67] (Lemma B.8), which is optimal among all

gradient methods [66, Th. 2.1.13] (Lemma C.2).
The following convergence analysis of DQ-HB applies to

smooth and strongly convex functions that are in addition
twice continuously differentiable.

Theorem III.3 (Convergence of DQ-HB). Fix a dimension-
n, rate-R quantizer q with dynamic range 1 and covering
efficiency ρn. Then, there exists a constant α > 0 such that
Algorithm 3 with stepsize (43), momentum coefficient (44) and
dynamic ranges r−1 = r−2 = 0,

rt = σtHB t
αeα
√

2LD + (rt−1 + γHB(rt−1 + rt−2)) ρn2−R,
(46)

t = 1, 2, . . . achieves the following contraction factor over
F2
n:

σDQ−HB(n,R) ≤ max
{
σHB, ρn2−Rφ(n,R, γHB)

}
, (47)

where φ(n,R, γ) is defined in (37).

Proof sketch. The proof is similar to the proof of Theo-
rem III.2. The recurrence relation (46) differs from (35) in
only the presence of the subexponential factor tα, which
does not matter when we take t → ∞ to obtain (47). This
factor arises from our nonasymptotic sharpening of Polyak’s
convergence result for the unquantized HB (Lemma B.8). See
Appendix B-C for details.

DQ-HB exhibits two phase transitions, a behavior similar
to DQ-HB and DQ-AGD. The two thresholds are given by
R1 (39) and R2 (40) evaluated with σ = σHB and γ = γHB.

Plugging the parameters γ and σ into (40), we can infer
that DQ-HB always has the largest R2 (40) for any condition
number κ ≥ 1 among the three DQ schemes. On the other

hand, whether R2 of DQ-AGD is smaller than that of DQ-
GD depends on whether κ is smaller than a threshold that
is roughly 2.18. For the unquantized algorithms, contraction
factor σHB of HB is always the smallest among the three for
any condition number κ ≥ 1. On the other hand, whether
σAGD of AGD is smaller than σGD of GD depends on
whether κ is greater than a threshold that is roughly 11.83. For
the differentially quantized algorithms, DQ-GD actually has
the best convergence behavior in the transient regime where
R > log2 ρn so that GD converges linearly and R is small
enough so that DQ-HB does not yet outperform GD, i.e.,
ρn2−Rφ(n,R, γHB) > σGD. This is because DQ-GD is the
first among the three DQ algorithms to pass R1 (39) above
which it has linear convergence.

In Fig. 4, we compare the performance of the differen-
tially quantized algorithms DQ-HB (Algorithm 3), DQ-AGD
(Algorithm 2) and DQ-GD (Algorithm 1) on least-squares
problems (29). We use the same experimental setup as in
Fig. 3, with the uniform scalar quantizer. The stepsize, the
interpolation coefficient and the dynamic ranges are set to the
values prescribed by Theorems III.1 (DQ-GD), III.2 (ADQ-
GD), and III.3 (ADQ-HB). We set α = 0 for Algorithm 3,
and DQ-HB still converges empirically for this parameter. We
also record the performance of the corresponding unquantized
gradient methods HB, AGD and GD. The curves exhibit
the two phase transitions and comparative performance as
discussed above. The level lines that the contraction factors
of these DQ schemes rest on for R ≥ R2 are almost the
same as the corresponding linear convergence rates σ of their
unquantized counterparts. We observe that there is a gap
between the worst-case linear convergence rate σAGD that we
design DQ-AGD to follow and the empirical convergence rate
of AGD. This is because AGD applies for functions that are
not necessarily twice continuously differentiable, and the least-
squares problems (29) happen not to be a worst-case problem
class for AGD.

IV. CONVERSES

A. Quantized gradient descent algorithms
In this section, we characterize the optimal contraction

factor achievable within class AGD of quantized gradient
descent algorithms, formally defined next.

Definition IV.1 (Class AGD of quantized gradient descent al-
gorithms). A quantized gradient descent algorithm A ∈ AGD

consists of a central server and an end worker. The algorithm
is initialized with a collection of quantizers q indexed by rate
R such that d(q) → 0 (17) as R → ∞ and a sequence
of dynamic ranges {rt}∞t=1. The worker has access to the
function f. At each iteration t, the server first sends x̂t to the
worker noiselessly, starting from some x̂0 ∈ Rn. The worker
then determines its gradient-access point zt and its quantizer
input ut under the structural constraints

zt ∈ x̂t + span {e0 , . . . , et−1} (48)
ut ∈ ∇f(zt) + span {e0 , . . . , et−1} , (49)

where ei , qi −ui, i = 0, . . . , t− 1 are the past quantization
errors before iteration t, and + denotes Minkowski’s sum.
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Fig. 4: Empirical contraction factors of various DQ algorithms (plotted as lines) and their corresponding unquantized
counterparts (plotted as circles).

Upon receiving qt = qt(ut) (7) from the worker, the server
performs the update

x̂t+1 = x̂t − ηqt (50)

with a fixed stepsize η > 0.

Due to conditions (48) and (49), if there is no quantization
error at each iteration (i.e., if R = ∞), then any quantized
algorithm in AGD reduces to the unquantized gradient descent.
Both DQ-GD and NQ-GD fall in the class AGD.

Theorem IV.1 (Converse within class AGD). The contraction
factor achievable over functions f ∈ Fn within class AGD of
algorithms satisfies

inf
A∈AGD

σA(n,R) ≥ max
{
σGD, 2

−R} (51)

Proof sketch. We fix an A ∈ AGD, and we lower-bound the
contraction factor it achieves at rate R in two different ways.
On one hand, we show that A cannot converge faster than
the unquantized GD. Then, we use an argument similar to
[75] to craft a worst-case problem instance g ∈ Fn for which
the iterates of the unquantized GD satisfy

∥∥xt+1 − x∗g
∥∥ =

σGD

∥∥xt − x∗g
∥∥, which ensures that infA∈AGD σA(n,R) ≥

σGD (Lemma C.1). On the other hand, we notice that if A
is applied at dimension n and rate R, then the set SA ⊆ Rn
of all possible locations of the iterate x̂T after T iterations
of A has cardinality at most 2nRT , and we apply a volume-
division argument to claim that infA∈AGD

σA(n,R) ≥ 2R. See
Appendix C-B for details.

Applying Theorem III.1 with Rogers-optimal quantizers
with ρn → 1 [68, Th. 3] and juxtaposing with Theorem IV.1,

we characterize the optimal contraction factor achievable by
quantized gradient descent in the limit of large problem
dimension as

lim
n→∞

inf
A∈AGD

σA(n,R) = max
{
σGD, 2

−R} . (52)

In other words, DQ-DG achieves the best possible contraction
factor within AGD, in the limit of large problem dimen-
sion. This is rather remarkable: it means not only that DQ-
DG compensates previous quantization errors optimally so
that no rate is wasted, but that our convergence analysis
in Theorem III.1 is tight enough to capture this optimality.
Furthermore, notice that the right side of (52) is < 1 at any
R > 0. This means that at any R > 0 however small, DQ-DG
with Rogers-optimal quantizers converges linearly at a large
enough problem dimension n, i.e. the first phase transition
(39) dissappears.

Although the notion of a contraction factor (1) and thus the
result in (52) are asymptotic in the number of iterations T , the
achievability results in Appendix B-A and converse results in
Appendix B-A used to derive (52) are nonasymptotic. They
show that gap between the achievability and converse bounds
on the finite-T counterpart of (52) is O

(
1
T

)
. Whether DQ-GD

remains optimal at finite T remains an open problem.

B. Quantized gradient methods

All quantized algorithms considered in this paper fall in the
following class.
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Definition IV.2 (Class AGM of quantized gradient methods).
A quantized gradient method A ∈ AGM follows Defini-
tion IV.1 with (50) relaxed to

x̂t+1 ∈ x̂0 + span {q0, . . . , qt} . (53)

In the absence of rate constraints, there are no quantization
errors, i.e. et = 0 for all t, and the class of quantized gradient
methods reduces to the class of unquantized gradient methods
satisfying

xt+1 ∈ x0 + span {∇f(x0), . . . ,∇f(xt)} . (54)

To present our converse result for AGM, we consider
functions f defined on the square-summable Hilbert space4

L2 ,
{
x = [x(1),x(2), . . .] :

∑∞
i=1 x(i)2 <∞

}
. (55)

We say that continuously differentiable function f : L2 7→ R
is in class F∞ if it is L-smooth, µ-strongly convex and its
minimizer is bounded, i.e., f satisfies i)-iii) in Section III-A.

To quantize an infinitely long vector u ∈ L2 to q ∈ L2,
we fix a free parameter n ∈ N, apply a rate-R quantizer q in
Rn (6) to the first n coordinates of u, and set the remaining
coordinates to 0, i.e.,{

[q(1), . . . , q(n)] = q ([u(1), . . . ,u(n)])

q(i) = 0 ∀i > n,
(56)

where u(i) denotes i-th coordinate of vector u ∈ L2.
Although only n coordinates u ∈ `2 are quantized, we can

still control the overall quantization error since in L2,∑
i>n

u(i)2 = on(1) (57)

due to the Cauchy convergence criterion. Here on(1) denotes
a function that vanishes as n → ∞. Thus, (26) continues to
hold for quantization in L2 with ρn replaced by ρn + on(1).
It follows that the achievability bounds in Theorems III.2
and III.3 with with ρn replaced by ρn + on(1) apply to
functions f ∈ F∞.

Contraction factor σA(n,R) over F∞ is defined in the same
way as that over Fn (1) except that n is now a parameter of
the employed quantizer (like ρn) rather than the dimension of
the problem, and the total number of bits sent per iteration is
nR, where R is the quantizer’s rate (6).

Theorem IV.2 (Converse within class AGM). The contraction
factor achievable over functions f ∈ F∞ within class AGM of
algorithms satisfies

inf
A∈AGM

σA(n,R) ≥ max
{
σHB, 2

−R} (58)

where σHB is given in (45).

Proof sketch. The proof is similar to that of Theorem IV.1: we
apply a volume-division argument to recover the 2−R in the

4We do so to take advantage of the sharpest converse in the literature on the
convergence of unquantized gradient methods (54) [66] (Lemma C.2), which
applies to functions on L2. Convergence lower bounds for smooth and strongly
convex functions on Rn (rather than L2) are also known [76]. However, [76]
considers only quadratic functions as objectives, and the considered class of
iterative algorithms is more restrictive than (54) in that the next iterate xt+1

depends on the past p terms xt, . . . ,xt−p+1 for some fixed p ∈ N.

Fig. 5: K-worker quantized gradient method. At each iteration
t, the server broadcasts the current iterate x̂t. Worker k
computes the gradient at some point zt,k that is a function
of (but not necessarily equal to) x̂t. Then, worker k forms a
descent direction qt,k and pushes it back to the server under
an nRk-bit rate constraint.

right side of (58), and we apply a known result on unquantized
gradient methods that states that the best contraction factor
achievable over F∞ is that of the heavy ball method, σHB

[66] (Lemma C.2). See Appendix C-C.

Together, Theorems IV.2 and III.3 imply that for any R ≥
R2(∞, σHB, γHB), DQ-HB attains the optimal contraction
factor within AGM (under the additional assumption that f ∈
F∞ is twice continuously differentiable). The nonasymptotic
achievability and converse results in Appendices B-C and C.2
used to show this result leave open the question of whether
DQ-HB is optimal at finite number of iterations T , as they
determine the finite-length analog of the optimal contraction
factor only with accuracy O

(
log T
T

)
.

V. MULTI-WORKER GRADIENT METHODS

A. Problem setup

In empirical risk minimization [77], [78], the sample aver-
age of the loss function on the data points

f(x) =
1

K

K∑
k=1

fk(x) (59)

arises as a substitute for the expected loss on the true data
distribution that is often unknown. In multi-worker distributed
empirical risk minimization, each worker has access to only
one of the summands in (59), and they communicate to the
parameter server under rate constraints. See Figure 5.

B. Converses

Definitions IV.1 and IV.2 extend naturally to the K-worker
setting. Converses in Theorems IV.1 and IV.2 extend verbatim
to the multi-worker setting where the workers’ rates satisfy the
sum-rate constraint

K∑
k=1

Rk ≤ R. (60)



10

C. Differential quantization

Differential quantization does not apply to K-worker quan-
tized gradient methods since each worker does not know the
local quantization errors stored by the others, and thus cannot
guide the descent trajectory back to the unquantized path.
Thus, whether (51) and (58) are attainable in the multiworker
setting, and how each worker should optimally compensate its
own past quantization errors, remain open problems.

D. Naively Quantized Gradient Descent

The Naively Quantized Gradient Descent applies a common
method of quantizing distributed gradient algorithms [15]–
[18], [55], [69] in which each worker quantizes the gradient
of the current iterate, to GD. It is summarized as Algorithm 4.

Algorithm 4: K-worker NQ-GD

1 for t = 0, 1, 2, . . . do
2 for k = 1 to K do
3 Worker k:
4 qt,k = qt,k(∇fk(x̂t))

5 Server: x̂t+1 ← x̂t − η
K

∑K
k=1 qt,k

6 end
7 end

Our convergence result for NQ-GD holds under the follow-
ing assumptions. We assume that continuously differentiable
summands fk in (59) are (i) Lk-smooth and (ii) µk-strongly
convex, and we continue to assume that (iii) the optimizer of f
is bounded as in (15). Note that f is L-smooth and µ-strongly
convex with

L ,
1

K

K∑
k=1

Lk and µ ,
1

K

K∑
k=1

µk. (61)

Further, we focus on the interpolation setting [79]–[81] that
assumes (iv)

x∗f = x∗fk ∀k = 1, . . . ,K, (62)

where
x∗fk , arg min

x∈Rn

fk(x). (63)

The interpolation setting is motivated by the observation that
almost all local minima are also global in an over-parametrized
neural network with a very large data dimension n [81], and
is implied We denote by Gn the class of functions f (59) that
satisfy the assumptions (i)-(iv).

The minimum contraction factor achievable by K-worker
NQ-GD under the sum rate constraint (60) is given by

σNQ-GD(n,R)

, inf∑K
k=1 Rk≤R

sup
f∈Gn

lim sup
T→∞

∥∥x̂T ({Rk}Kk=1)− x∗f
∥∥ 1

T , (64)

where x̂0({Rk}Kk=1), x̂1({Rk}Kk=1), x̂2({Rk}Kk=1), . . . is the
sequence of iterates generated by NQ-GD (Algorithm 4) in
response to f ∈ Gn when the k-th worker operates at Rk bits
per problem dimension, k = 1, . . . ,K .

Theorem V.1 (Convergence of K-worker NQ-GD). Fix a
dimension-n, rate-Rk quantizer qk with dynamic range 1 and
covering efficiency ρn. Set up the quantizer to be used by
worker k at iteration t as

qt,k(·) = rt,kqk(·/rt,k), (65)

where the dynamic ranges are given by

rt,k =

(
σGD +

ηGD ρn
K

K∑
k=1

min {ν, Lk}

)t
LkD, (66)

and the optimum rate allocation is given by the waterfilling
solution

Rk = | log2 (Lk/ν) |+ bits, (67)

where ν is the water level found from the sum rate constraint
K∑
k=1

| log2 (Lk/ν) |+ = R, (68)

and | · |+ , max{0, ·}. Then, Algorithm 4 with stepsize (20)
achieves the following contraction factor over Gn (64):

σNQ−GD(n,R) ≤ σGD +
ηGD ρn
K

K∑
k=1

min {ν, Lk} . (69)

Proof. Appendix D.

According to (67), higher rates are allocated to users whose
function gradients have higher Lipschitz constants, and if the
Lipschitz constant is low enough in comparison to others no
rate would be allocated at all. In the special case Lk ≡ L,
(69) reduces to

σNQ−GD(n,R) ≤ σGD +
2κ

κ+ 1

ρn
2R/K

. (70)

The bound in Theorem V.1 approaches the converse only in
the limit of large R.

Without assumption (62) that all summands share the min-
imizer, NQ-GD converges only to a neighborhood of x∗f ; the
size of the neighborhood is controlled by the quantization error
and vanishes as R→∞ (Theorem D.2 in Appendix D).

VI. CONCLUSION

This paper formalizes the problem of finding the opti-
mal contraction factor achievable within a class of rate-
constrained iterative optimization algorithms ((1), Defini-
tions IV.1 and IV.2). We show information-theoretic converses
to that fundamental limit (Theorem IV.1, Theorem IV.2).

We introduce the principle of differential quantization that
posits that the quantizer’s input shall be constructed in such a
way as to guide the quantized algorithm’s trajectory towards
the unquantized trajectory. Applied to gradient descent (Al-
gorithm 1), differential quantization leads to the contraction
factor that is optimal within the class of quantized gradient
descent algorithms ((52)). Thus, differential quantization lever-
ages the memory of past quantized inputs in an optimal way,
removing the impact of past quantization errors.

Beyond gradient descent, we apply differential quantization
to gradient methods with momentum - the accelerated gradient
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descent (Algorithm 2) and the heavy ball method (Algo-
rithm 3). In all three cases, differentially quantized algorithms
attain the contraction factor of their unquantized counterparts
as long as the data rate exceeds the corresponding threshold
R2 (40).

Incidentally, in the course of the analysis, we provide a
sharper bound on the convergence of the unquantized HB
algorithm than available in the literature (Lemma B.8). We also
provide a slightly more general worst-case problem instance
for the unquantized GD than available (Lemma C.1).

Quantizers employed at each step have the same geometry
(covering efficiency, (19)) but different resolution (covering
radius, (18)). The resolution is controlled by scaling the
quantizer’s dynamic range (7). To attain the contraction factors
in Theorems III.1, III.2, and III.3, the dynamic range is set to
follow a recursion ((22), (35), (46)). That recursion shrinks the
dynamic range at the fastest possible rate that still guarantees
that the quantizer’s input at each iteration falls within its
dynamic range. This maximizes the usefulness of the bits
exchanged at each iteration. While that recursion for DQ-GD
(22) is simply a geometric sequence, those for DQ-AGD (35)
and DQ-HB (46) are second-order linear non-homogeneous
recurrence relations.

While DQ-GD attains the optimal contraction factor among
quantized gradient descent algorithms (Definition IV.1) and
DQ-HB attains the optimal contraction factor among all gradi-
ent methods, even unquantized, if R ≥ R2(n, σHB, γHB) (40),
it remains an open problem whether the contraction factor of
2−R dictated by the converse (Theorem IV.2) is achievable
in the regime R2(n, σGD, 0) < R < R2(n, σHB, γHB) in the
class of quantized gradient methods (Definition IV.2).

For multi-worker gradient descent, we provide a conver-
gence result on naive quantization, in which the workers
directly quantize their gradients, and show a waterfilling
solution to optimize the allocation of data rates among the
workers under the sum rate constraint (Theorem V.1). That
result approaches the converse (Theorem IV.1) only in the
limit R → ∞, leaving open a tighter characterization of
the optimum convergence factor in that scenario. Differential
quantization does not directly apply to multi-worker optimiza-
tion since the workers cannot compute the unquantized path
without the knowledge of the local quantization errors stored
by the others. We leave as future work the question of how they
should optimally compensate their own quantization errors.
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APPENDIX A
DQ-GD WITH VARYING STEPSIZE

See Algorithm 5, below.

Algorithm 5: DQ-GD with varying stepsize

1 Initialize e−1 = x̂0 = 0
2 for t = 0, 1, 2, . . . do
3 Worker:
4 zt = x̂t + ηt−1et−1
5 ut = ∇f(zt)− (ηt−1/ηt)et−1
6 qt = qt(ut)
7 et = qt − ut

8 Server: x̂t+1 = x̂t − ηtqt
9 end

APPENDIX B
CONVERGENCE ANALYSES OF DQ ALGORITHMS

A. Proof of Theorem III.1

As mentioned in the proof sketch, relation (24) is key to
showing Theorem III.1. The next lemma, which applies to
the more general version of the DQ–DG algorithm shown in
Appendix A, establishes (24).

Lemma B.1 (DQ-GD trajectory). Consider descent trajecto-
ries {x̂t} of Algorithm 5 and {xt} of unquantized GD (8)
with the same sequence of stepsizes {ηt} starting at the same
location x̂0 = x0. Then, at each iteration t,

x̂t = xt − ηt−1et−1. (71)

Proof. We prove (71) via mathematical induction.

• Base case: (71) holds for t = 0 since the starting location
is the same.

• Inductive step: Suppose (71) holds for iteration t. First,
the induction hypothesis, the quantizer input at Line 5 and
the quantizer output at Line 6 of Algorithm 5 together
imply

ut = ∇f(xt)−
ηt−1
ηt

et−1 . (72)

(We define 0/0 , 0 for the very first iteration when
η−1 = 0.) We then have

x̂t+1 = x̂t − ηtqt (73)
= x̂t − ηt(ut + et) (74)

= x̂t − ηt
(
∇f(xt)−

ηt−1
ηt

et−1

)
− ηtet (75)

=
[
xt − ηt∇f(xt)

]
− ηtet (76)

= xt+1 − ηtet, (77)

where (76) is due to the induction hypothesis.

Relation (71) implies for the constant stepsize ηt ≡ η

‖x̂t − x∗f ‖ ≤ ‖xt − x∗f ‖+ η ‖et−1‖ (78)

We use the contraction factor of unquantized GD to bound
the first term of (78):
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Lemma B.2 (Convergence of GD [66, Theorem 2.1.15]). For
any L-smooth and µ-strongly convex function f on Rn, GD
(8) with stepsize (20) satisfies

‖xt − x∗f ‖ ≤ σtGD ‖x0 − x∗f ‖ , (79)

where σGD is defined in (21).

We use the following bound on quantization error to bound
the second term in (78):

Lemma B.3 (DQ-GD quantization error). Let f ∈ Fn.
Quantization errors {et} in Algorithm 1 with stepsize (20)
and dynamic ranges (22) satisfy

‖et‖ ≤ rt ρn2−R (80)

≤ max
{
σGD, ρn2−R

}t
LDσGDbt, (81)

where

bt ,

{
ρn2
−R

|σGD−ρn2−R| σGD 6= ρn2−R

t+ 1 σGD = ρn2−R
(82)

Proof. Once we show that quantizer inputs {ut} satisfy

ut ∈ B(rt), (83)

(80) will follow from (26).
We prove (83) via induction.

• Base case: (83) holds for t = 0 since

‖∇f(x̂0)− e−1‖ = ‖∇f(x̂0)‖ (84)
≤ L ‖x̂0 − x∗f ‖ (85)
≤ LD, (86)

where (85) is due to ∇f(x∗f ) = 0 and L-smoothness (13),
and (86) is due to assumption (15).

• Inductive step: Suppose (83) holds for iteration t. Ap-
plying triangle inequality and (71) to the expression in
Line 5 yields

‖ut+1‖ ≤ ‖∇f(xt+1)‖+ ‖et‖ . (87)

The first term is bounded as

‖∇f(xt+1)‖ ≤ L ‖xt+1 − x∗f ‖ (88)

≤ σt+1
GDL ‖x0 − x∗f ‖ (89)

≤ σt+1
GDLD, (90)

where (88) is due to ∇f(x∗f ) = 0 and L-smoothness (13);
(89) is due to (79); and (90) is due to assumption (15).
Quantization error term ‖et‖ in (87) is bounded by (26)
due to the induction hypothesis. Plugging (90) and (26)
into (87) gives

‖ut+1‖ ≤ σt+1
GDLD + rtρn2−R (91)

= rt+1, (92)

where (92) is due to the choice of the dynamic ranges
(22).

This concludes the proof of (80). To establish (81), we unwrap
recursion (22) as the geometric sum

rt = LD
t∑

τ=0

στGD

(
ρn2−R

)t−τ
(93)

= LD ·

σtGD

1−[ρn2−R/σGD]
t+1

1−ρn2−R/σGD
σGD 6= ρn2−R

t+ 1 σGD = ρn2−R
(94)

≤ LD ·


σtGD

(
1− ρn2

−R

σGD

)−1
σGD > ρn2−R(

ρn2−R
)t (ρn2−R

σGD
− 1
)−1

σGD < ρn2−R

t+ 1 σGD = ρn2−R

,

(95)

where the bound for the case σGD > ρn2−R is ob-
tained by lower-bounding

[
ρn2−R/σGD

]t+1
by 0, and the

bound for σGD < ρn2−R is obtained by lower-bounding[
σGD/ρn2−R

]t+1
by 0.

Putting together the results in Lemmas B.1, B.2, and B.3,
we show the following nonasymptotic (in the iteration number)
convergence result for the DQ-GD:

Theorem B.1 (Convergence of DQ-GD). In the setting of
Theorem III.1, the difference between the iterate and the
optimizer at step t satisfies

‖x̂t − x∗f ‖ ≤ max
{
σGD, ρn2−R

}t
[1 + ηGDLbt−1]D. (96)

Proof. Plugging (79) and (81) into (78), we obtain

‖x̂t − x∗f ‖ ≤ σtGDD (97)

+ max
{
σGD, ρn2−R

}t−1
ηGDLDσGDbt−1,

which leads to (96) by an elementary weakening.

Bound (23) in Theorem III.1 follows immediately by ap-
plying (96) to definition (1) of the contraction factor.

B. Proof of Theorem III.2

The proof follows steps similar to those in the proof of
Theorem III.1. First, we prove that, as prescribed by the
principle of differential quantization, DQ-AGD compensates
quantization errors by directing the quantized trajectory back
to the trajectory of AGD:

Lemma B.4 (DQ-AGD trajectory). Iterate sequences {ŷt, x̂t}
of Algorithm 2 and {yt,xt} of AGD (10) starting at the same
location (ŷ0, x̂0) = (y0,x0) are related as, ∀t = 0, 1, 2, . . .,

ŷt = yt − ηet−1 (98)
x̂t = xt − ηet−1 − ηγ (et−1 − et−2) . (99)

Proof. We prove (98) and (99) by induction.

• Base case: (98) and (99) hold for t = 0 since both
algorithms start at the same location.
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• Inductive step: Line 9 yields

ŷt+1 = x̂t − ηqt (100)
= xt − η [et−1 + γ (et−1 − et−2)] (101)
− η [∇f(xt)− [et−1 + γ (et−1 − et−2)] + et]

= yt+1 − ηet, (102)

where (101) is due to induction hypothesis (99) and
Lines 5 and 7, and (102) is due to (10). On the other
hand, plugging (98) and (102) into Line 10 yields

x̂t+1 = ŷt+1 + γ (ŷt+1 − ŷt) (103)
= yt+1 + γ (yt+1 − yt)− η [et + γ (et − et−1)]

= xt+1 − η [et + γ (et − et−1)] , (104)

where (104) is due to (11).

Via triangle inequality, relation (98) implies

‖ŷt − x∗f ‖ ≤ ‖yt − x∗f ‖+ η ‖et−1‖ (105)

The following simple corollary to a known bound on the
contraction factor of unquantized AGD controls the first term
of (105):

Lemma B.5 (Convergence of AGD). For any L-smooth and
µ-strongly convex function f on Rn, AGD ((10), (11) starting
at x0 = y0) with stepsize (31) and momentum coefficient (32)
satisfies

‖yt − x∗f ‖ ≤ σtAGD

√
κ+ 1 ‖x0 − x∗f ‖ (106)

‖xt − x∗f ‖ ≤ σtAGDλ ‖x0 − x∗f ‖ . (107)

Proof. According to [33, Theorem 3.18],

f(yt)− f(x∗f ) ≤ L+ µ

2
σ2t

AGD ‖x0 − x∗f ‖
2
. (108)

Convergence bound (106) w.r.t. {yt} is due to (108) and

f(x)− f(x∗f ) ≥ µ

2
‖x− x∗f ‖

2 (109)

implied by µ-strong convexity [66, Theorem 2.1.8]. On the
other hand, applying triangle inequality to (11) yields

‖xt+1 − x∗f ‖ ≤ (1 + γ) ‖yt+1 − x∗f ‖+ γ ‖yt − x∗f ‖ , (110)

and (107) then follows from (106) and (110).

The following bound on the quantization error controls the
second term in (78):

Lemma B.6 (DQ-AGD quantization error). Let f ∈ Fn.
Quantization errors {et} in Algorithm 2 with stepsize (31),
momentum coefficient (32) and dynamic ranges (35) satisfy

‖et‖ ≤ rtρn2−R (111)
≤ σtAGDc0 + φt+c+ + φt−c−, (112)

where φ± , φ±(γAGD) with

φ±(γ) , ρn2−R

(
1

2
(1 + γ)± 1

2

√
(1 + γ)2 +

4γ

ρn2−R

)
(113)

and c0, c+, c− are specified below in (118), (122) and (123)
respectively.

Proof. Like in the proof of Lemma B.3, to establish (111),
in view of (26) it is enough to show (83). Applying triangle
inequality and (99) to the expression in Line 5 yields

‖ut‖ ≤ ‖∇f(xt)‖+ ‖et−1‖+ γ (‖et−1‖+ ‖et−2‖) . (114)

The first term in (114) is bounded as

‖∇f(xt)‖ ≤ L ‖xt − x∗f ‖ (115)
≤ σtAGDLDλ (116)

where (115) is due to L-smoothness (13), and (116) is due to
(107). Plugging (116) into (114) and applying (26) to bound
quantization error terms in (114), we conclude via induction
(similar to the proof of Lemma B.3) that setting the sequence
of dynamic ranges recursively as (35) ensures (83).

To show (112), we proceed to solve recursion (35). This
step is significantly different from the corresponding step in
the proof of Lemma B.3 since now rt depends not just on rt−1
but also on rt−2. More precisely, recursion (35) is a second-
order linear non-homogeneous recurrence relation.
• Particular solution: Plugging the candidate

pt = σtAGDc0 (117)

into (35), we solve for the constant

c0 =
σ2
AGD

p(σAGD)
LDλ, (118)

where p(r) is the characteristic polynomial in (38) asso-
ciated with recursion (35).

• Homogeneous solution: Since φ+ and φ− are roots of the
quadratic polynomial in (38), the homogeneous solution
is given by

φt = φt+c+ + φt−c−, (119)

• General solution: constants c+, c− in (119) are deter-
mined by plugging initial conditions r−2 = r−1 = 0
into the general solution

rt = pt + φt (120)
= σtAGDc0 + φt+c+ + φt−c−, (121)

which are

c+ = −
c0φ

2
+

σ2
AGD

σAGD − φ−
φ+ − φ−

(122)

c− =
c0φ

2
−

σ2
AGD

σAGD − φ+
φ+ − φ−

. (123)

Lemmas B.4, B.5, and B.6 lead to the following finite-t
convergence bound for the DQ-AGD:

Theorem B.2 (Convergence of DQ-AGD). In the setting of
Theorem III.2, the difference between the iterate and the
optimizer at step t satisfies

‖ŷt − x∗f ‖ ≤ σtAGDc+ φt−1+ c+η + φt−1− c−η (124)
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where c =
√
κ+ 1D+ ηc0σ

−1
AGD, and c0, c+, c− are specified

in (118), (122) and (123) respectively.

Proof. Plugging (106) and (112) into (105) immediately leads
to (124).

Note that if σAGD ≥ φ+, which is equivalent to R ≥ R2

(40), then c0 ≥ 0, c+ ≤ 0, c− ≥ 0; and c0 ≤ 0, c+ ≥ 0,
c− ≤ 0 otherwise. Asymptotic convergence guarantee (36)
in Theorem III.2 follows by plugging (124) into definition (1)
of the contraction factor.

C. Proof of Theorem III.3

The proof of the DQ-HB convergence result in Theo-
rem III.3 follows the same recipe as the proofs of Theo-
rems III.1 and III.2. Lemma B.7 below states that the path
of DQ-HB tracks that of the unquantized HB.

Lemma B.7 (DQ-HB trajectory). Path {x̂t} of DQ-HB
(Line 7) and path {xt} of HB (12) starting at the same loca-
tion x̂−1 = x−1 = x̂0 = x0 are related as, ∀t = 0, 1, 2, . . .,

x̂t = xt − ηet−1. (125)

Proof. We prove (125) via induction.
• Base case: (125) holds for t = 0 by the initialization

e−2 = e−1 = 0 in Line 1 of Algorithm 3 and since the
starting location is the same.

• Inductive step: Plugging expressions on Line 5 and 7 into
Line 8 yields

x̂t+1 (126)
= x̂t − ηqt + γ (x̂t − x̂t−1) (127)
= xt − ηet−1
− η [∇f(xt)− [et−1 + γ (et−1 − et−2)] + et]

+ γ (xt − xt−1 − η (et−1 − et−2)) (128)
= xt − η∇f(xt) + γ (xt − xt−1)− ηet (129)
= xt+1 − ηet, (130)

where (128) is due to the induction hypothesis and (130)
is due to (12).

Applying triangle inequality to (125) gives

‖x̂t − x∗f ‖ ≤ ‖xt − x∗f ‖+ η ‖et−1‖ . (131)

The convergence result for unquantized HB in Lemma B.8,
below, controls the first term in the right side of (131).
Lemma B.8 is a nonasymptotic refinement of Polyak’s original
convergence result [67, Th. 1, Sec. 3.2]. Unlike the original, it
does not require that the algorithm starts “sufficiently close”
to the minimizer (i.e., it establishes global rather than local
convergence), and it also clarifies that the subexponential
factor in the bound is polynomial in t (see (132), below).
This refinement is made possible by a result on joint spectral
radius due to Wirth [82] that is more recent than [67, Th. 1,
Sec. 3.2].

Lemma B.8 (Convergence of HB). For any L-smooth, µ-
strongly convex, twice continuously differentiable function f on

Rn, there exists a constant α > 0 such that the HB algorithm
(12) starting at x−1 = x0 with stepsize (43) and momentum
coefficient (44) satisfies

‖xt − x∗f ‖ ≤ σtHB t
αeα
√

2‖x0 − x∗f ‖. (132)

Proof. Iterative process (12) can be written in the form[
xt+1 − x∗f
xt − x∗f

]
=

[
xt + γ(xt − xt−1)− x∗f

xt − x∗f

]
− η

[
∇f(xt)

0

]
(133)

=

[
(1 + γ)I −γI

I 0

] [
xt − x∗f

xt−1 − x∗f

]
− η

[
∇2f(vt)(xt − x∗f )

0

]
(134)

=

[
(1 + γ)I −γI − η∇2f(vt)

I 0

] [
xt − x∗f

xt−1 − x∗f

]
, (135)

where (134) holds for some vt on the line segment between
xt and x∗f by the mean value theorem, since f is twice
continuously differentiable by the assumption. Denoting the
matrix in (135) by At, we unroll the recursion as[

xt+1 − x∗f
xt − x∗f

]
= At ·At−1 · . . . ·A0

[
x0 − x∗f
x−1 − x∗f

]
. (136)

It follows that∥∥∥∥[xt+1 − x∗f
xt − x∗f

]∥∥∥∥
2

≤ ‖At · . . . ·A0‖2

∥∥∥∥[ x0 − x∗f
x−1 − x∗f

]∥∥∥∥
2

. (137)

It is shown in [82, Lemma 2.3] that if matrices A1, . . . ,At all
belong to a bounded set A, then there exists a constant α > 0
such that ∀t = 0, 1, . . .,

‖At · . . . ·A0‖2 ≤ ρ(A)t+1(t+ 1)αeα (138)

where

ρ(A) , lim sup
t→∞

sup
t
ρ(At), (139)

where ρ(At) is the spectral radius of At. It is shown in [67,
Proof of Th. 1, Sec. 3.2] that if

γ = max

{(
1−

√
ηL
)2
, (1−√ηµ)

2

}
, (140)

then

ρ(At) ≤
√
γ. (141)

With the optimal choice of η (43) the right side of (141) is
equal to σHB (45).

In our setting A is bounded since for twice continuously
differentiable functions, L-smoothness and µ-strong convexity
are equivalent to

µI � ∇2f(v) � LI, (142)

in the positive semidefinite order, thus (138) applies. Inequality
(132) follows after applying (141) to (138) and the latter
to (137).

Remark B.1. Polyak’s convergence result [67, Th. 1, Sec. 3.2]
guarantees only the existence of D > 0 such that for all start-
ing points x−1,x0 with ‖x∗f − x−1‖ ≤ D, ‖x∗f − x0‖ ≤ D
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and all 0 < ε < 1 − σHB, there exists a c > 0 such that (cf.
(132))

‖xt − x∗f ‖ ≤ c(σHB + ε)t (143)

under the same assumptions on f and the same stepsize and
momentum coefficient as in Lemma B.8. This is a local
convergence result because convergence is not guaranteed
for any starting location but only for locations in a small
enough neighbourhood of x∗f . Furthermore, (132) refines the
subexponential factor in (143).

We ensure that the quantization error term ‖et−1‖ in
(131) decays exponentially fast by adjusting the sequence of
dynamic ranges (7) carefully:

Lemma B.9 (DQ-HB quantization error). Let f ∈ F2
n. Quan-

tization errors {et} in Algorithm 3 with with stepsize (43),
momentum coefficient (44) and dynamic ranges (46) satisfy

‖et‖ ≤ rtρn2−R (144)

≤
(
σtHBc0 + φt+c+ + φt−c−

)
tα, (145)

where φ± , φ±(γHB) (113), and c0, c+, c− are as in
(118), (122) and (123) respectively, with LDλ replaced by
eα
√

2LD, and σAGD by σHB.

Proof. Applying triangle inequality and (125) to the expres-
sion in Line 5 yields the same expression as in the analysis
of DQ-AGD (114):

‖ut‖ ≤ ‖∇f(xt)‖+ ‖et−1‖+ γ (‖et−1‖+ ‖et−2‖) . (146)

The first term in (146) is bounded as

‖∇f(xt)‖ ≤ L ‖xt − x∗f ‖ (147)

≤ σtHB t
αeα
√

2LD (148)

where (115) is due to L-smoothness (13), and (148) is due to
(132). Applying the argument used to show (111) in the proof
of Lemma B.6 leads to (144).

To show (145), consider the recursion r′−1 = r′−2 = 0,

r′t = σtHB e
α
√

2LD +
(
r′t−1 + γHB(r′t−1 + rt−2)

)
ρn2−R,

(149)

We show by strong induction that

rt ≤ tαr′t, (150)

where rt solves (46). Base case r0 = r′0 holds by the initial
conditions. Assuming that (150) holds for 1, . . . , t − 1, we
establish (150) for t using (46) and the fact that tα is increasing
in t:

rt ≤ σtHB t
αeα
√

2LD (151)

+
(
(t− 1)αr′t−1 + γHB((t− 1)αr′t−1 + (t− 2)αr′t−2)

)
ρn2−R

≤ tαr′t. (152)

Using (144) and (150), we can show (145) by solving the
recursion (149). But this is the same recursion as in (35), up
to the constants, thus the solution in the proof of Lemma B.6
applies.

We now apply Lemmas B.7, B.8 and B.9 to state a finite-t
refinement of Theorem III.3.

Theorem B.3 (Convergence of DQ-HB). In the setting of
Theorem III.3, the difference between the iterate and the
optimizer at step t satisfies

‖x̂t − x∗f ‖ ≤
(
σtHBc+ φt−1+ c+ + φt−1− c−

)
tα (153)

where c = eα
√

2D + ηc0σ
−1
HB, and φ+, φ−, c0, c+, c− are as

in Lemma B.9.

Proof. Plugging (132) and (145) into (131) and using (t −
1)α < tα leads to (153).

APPENDIX C
CONVERSES

A. Converse for unquantized GD

As explained in the proof sketch, the lower bound in (51) is
a combination of an unquantized GD converse and a volume-
division converse. The former relies on the following con-
verse result, obtained by constructing a least-square problem
instance that satisfies Nesterov’s upper bound in Lemma B.2
with equality.

Lemma C.1 (Optimality of σGD). Consider GD (8) with
starting point x0 and any constant stepsize η. Then, there
exists a problem instance f ∈ Fn such that the distance to the
optimizer at each iteration t of GD satisfies

‖xt+1 − x∗f ‖ ≥ σGD ‖xt − x∗f ‖ , (154)

with equality if η is the optimal stepsize given in (20).

Proof of Lemma C.1. We first find an x∗f ∈ B(D) such that

‖x0 − x∗f ‖ ≥ D (155)

and then construct a least-squares problem instance f ∈ Fn
(29) that admits x∗f as a unique minimizer and satisfies (154).
Note that f is

σ2
1(A)-smooth and σ2

n(A)-strongly convex (156)

where we denote by σi(A) the i-th largest singular value of
matrix A ∈ Rm×n. The gradient of f at iteration t is

∇f(xt) = A> (Axt − y) . (157)

The first-order optimality condition ∇f(x∗f ) = 0 implies

A>y = A>Ax∗f . (158)

To each x∗f ∈ B(D) that satisfies (155), there corresponds a
y ∈ Rm such that (158) holds. This is because m ≥ n, i.e.
we have more degrees of freedom than the problem dimension
when selecting the vector y. Since we can always select an
A with σ1(A) =

√
L and σn(A) =

√
µ and a y to ensure

(158), we have f ∈ Fn. It remains to show how to set the right
singular vectors of A to ensure (154).

Plugging (157) into (8) yields

xt+1 = xt − ηA>A(xt − x∗f ). (159)

Subtracting x∗f from both sides of (159), we conclude that the
distance to the optimizer x∗f satisfies

‖xt+1 − x∗f ‖ ≤ σ1
(
I− ηA>A

)
‖xt − x∗f ‖ , (160)
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where equality is achieved if xt − x∗f points in the direction
corresponding to the largest singular vector of the matrix I−
ηA>A. Since

σ1
(
I− ηA>A

)
= max

{∣∣1− ησ2
n(A)

∣∣ , ∣∣1− ησ2
1(A)

∣∣} ,
(161)

we designate the unit vector

v1 ,
x0 − x∗f
‖x0 − x∗f ‖

(162)

as the right singular vector of A corresponding to either
σ1(A) if

∣∣1− ησ2
1(A)

∣∣ achieves the maximum in (161) or
σn(A) otherwise. This is determined solely by the stepsize
η; the optimal stepsize (20) ensures that

∣∣1− ησ2
1(A)

∣∣ =∣∣1− ησ2
n(A)

∣∣ = σGD. To complete the construction of A,
we complement v1 with n−1 orthonormal vectors to form an
orthonormal basis {vi}ni=1 of Rn. Then,

x1 − x∗f = σ1
(
I− ηA>A

)
(x0 − x∗f ) , (163)

and using (159) it is easy to show by induction that

xt+1 − x∗f = σ1
(
I− ηA>A

)
(xt − x∗f ) , (164)

which implies that (160) holds with equality ∀t = 0, 1, . . ..

Remark C.1. While variants of Lemma C.1 are known in
the literature (e.g. [75, Example 1.3]), they are not directly
applicable because of our need to satisfy (15). Furthermore,
Lemma C.1 constructs a worst-case problem instance for
any initial point and constant stepsize chosen by the GD,
whereas the worst-case problem instance constructed in [75,
Example 1.3] is tailored to a particular starting point x0 6= 0
and the optimal η (20).

B. Proof of Theorem IV.1

On one hand, we have

inf
A∈AGD

σA(n,R) ≥ inf
A∈AGD

σA(n,∞) (165)

≥ σGD, (166)

where (165) holds because the left side of (165) is non-
increasing in the data rate R by definition (1), and (166) is
by Lemma C.1 since the infinite-rate algorithm in AGD is the
one incurring no quantization error at each iteration, i.e., the
GD itself.

On the other hand, to show

inf
A∈AGD

σA(n,R) ≥ 2−R, (167)

we fix an algorithm A ∈ AGD operating at R′ ≤ R bits per
dimension. The set of possible outputs of A after T iterations

SA ,
{
x̂t ∈ Rn | x̂t is the output

of A after T iterations
} (168)

has cardinality
|SA| = 2nR

′T . (169)

Given SA, consider the minimum-distance quantizer qA

qA(x) = arg min
x̂∈SA

‖x̂− x‖ (170)

with dynamic range D and covering radius d (qA) (18). In other
words, 2nR

′T Euclidean balls of radius d (qA) with centers in
SA cover B(D); therefore

D

d (qA)
≤ 2R

′T . (171)

(This classical volume-division argument also shows that
ρ (qA) ≥ 1 (19)).

Since one can construct an f ∈ Fn such that

‖qA(x
∗
f )− x∗f ‖ = d (qA) , (172)

(167) follows by rearranging (171) and taking the limit T →
∞.

C. Proof of Theorem IV.2

The following lemma shows that gradient iterative methods
cannot achieve an arbitrarily low contraction factor.

Lemma C.2 ([66, Th. 2.1.13]). For any gradient method
(54), there exists an L-smooth and µ-strongly convex function
f : L2 → R such that, ∀t = 0, 1, . . .,

‖xt − x∗f ‖ ≥ σtHB ‖x0 − x∗f ‖ . (173)

The proof of Theorem IV.2 follows the same steps as the
proof of Theorem IV.1, with the replacement of the converse
for unquantized GD (Lemma C.1) by Lemma C.2.

APPENDIX D
CONVERGENCE ANALYSIS OF K-WORKER NQ-GD

The path of NQ-GD satisfies the following recursive rela-
tion.

Lemma D.1 (NQ-GD trajectory). At each iteration t =
0, 1, 2, . . ., the path of NQ-GD with stepsize (20) satisfies

‖x̂t+1 − x∗f ‖ ≤ σGD ‖x̂t − x∗f ‖+
ηGD

K

K∑
k=1

‖et,k‖ , (174)

where et,k , qt,k −∇fk(x̂t), and σGD is defined in (21).

Proof of Lemma D.1. The update rule (Line 5) and the quan-
tizer inputs (Line 4) together imply

x̂t+1 = x̂t −
ηGD

K

K∑
k=1

(∇fk(x̂t) + et,k) (175)

= x̂t − ηGD∇f(x̂t)−
ηGD

K

K∑
k=1

et,k (176)

where (176) is due to (59). Triangle inequality now implies

‖x̂t+1 − x∗f ‖ (177)

≤ ‖x̂t − ηGD∇f(x̂t)− x∗f ‖+
ηGD

K

K∑
k=1

‖et,k‖ . (178)

Applying the coercive property of smooth and strongly convex
functions [66, Th. 2.1.12] in the same manner as in [66, Proof
of Th. 2.1.5] to further upper-bound the first term in (178)
gives (174).
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Denote for brevity

σ , σGD + C, (179)

C ,
ηGDρn
K

K∑
k=1

Lk
2Rk

. (180)

Minimizing (179) under the sum rate constrant (60) is a convex
optimization problem whose solution is given by (67) and
whose optimal value is given by the right side of (69). The
following nonasymptotic result, which with the optimal rate
allocation immediately yields Theorem V.1, uses an inductive
argument to simultaneously bound both terms in the right-hand
side of (174).

Theorem D.1 (Convergence of NQ-GD). In the setting of
Theorem V.1,

‖x̂t − x∗f ‖ ≤ σtD, (181)

where σ is defined in (179).

Proof. We prove (181) by induction.
• Base case: for t = 0, (181) holds by (15).
• Inductive step: Suppose (181) holds for iteration t. Then,

by Lk-smoothness of fk, (62) and the inductive hypothe-
sis,

‖∇fk(x̂t)‖ ≤ Lk ‖x̂t − x∗f ‖ (182)
≤ σtLkD, (183)

which due to the choice of dynamic ranges (66) and (26)
leads to

‖et,k‖ ≤
ρn
2Rk

σtLkD. (184)

Applying (184) and the inductive hypothesis to (174)
yields

‖x̂t+1 − x∗f ‖ ≤ σt [σGD + C]D, (185)

which is exactly (181) for t + 1 if the optimal rate
allocation is employed.

Without assumption (iv) (62) that the summands fk share
the minimizer, NQ-GD converges only to a neighborhood of
x∗f , albeit exponentially fast. The radius of this neighborhood
vanishes as the data rate R→∞:

Theorem D.2. In the setting of Theorem V.1 but without
assumption (iv) (62) on the objective function, setting the
dynamic ranges to r′t,k, where

r′t,k = rt,k + 2LkD

(
C
t−1∑
τ=0

στ + 1

)
, (186)

rt.k is defined in (66), and C is defined in (180), NQ-GD
achieves

‖x̂t − x∗f ‖ ≤ σtD

+ 2DC
t−1∑
τ=0

στ ,
(187)

where σ is defined in (179).

Proof. We follow the reasoning in the proof of Theorem D.1
until (182), which we replace by

‖∇fk(x̂t)‖ ≤ Lk
∥∥x̂t − x∗fk

∥∥ (188)

≤ Lk
(
‖x̂t − x∗f ‖+

∥∥x∗fk − x∗f
∥∥) (189)

≤ Lk (‖x̂t − x∗f ‖+ 2D) (190)

≤ Lk

(
σtD + 2DC

t−1∑
τ=0

στ + 2D

)
, (191)

where (191) applies inductive hypothesis (187). Due to (191),
the choice of dynamic ranges (186) ensures that the quantizer
input stays within its dynamic range, which limits the quan-
tization error to ρn2−Rk times the right-hand side of (191)
(recall (26)). Plugging this bound on quantization error in
(174) and applying inductive hypothesis (187) again estab-
lishes (187) for t+ 1.

APPENDIX E
ANALYSIS OF QUANTIZED GD WITH ERROR FEEDBACK

OF [10], [22], [44]

We derive the following convergence guarantee on quan-
tized GD with the error feedback mechanism of [10], [22],
[44].

Lemma E.1 (Trajectory of GD with error feedback of [10],
[22], [44]). Let f be an L-smooth and µ-strongly convex
function on Rn. Then, the distance to the optimizer at each
iteration t ∈ N of quantized gradient descent (50) with
quantizer input (30) and stepsize (20) is bounded as

‖x̂t+1 − x∗‖ ≤ σGD ‖x̂t − x∗‖+ ηGD ‖et‖
+ (σGD + ηGDL)η ‖et−1‖ . (192)

Proof. Using (30), the quantizer output can be computed as

qt =
[
∇f(x̂t) + et

]
− et−1, (193)

and plugging (193) into (50) gives

x̂t+1 = x̂t − η∇f(x̂t)− ηet + ηet−1. (194)

Denoting a shifted trajectory by

x̃t , x̂t + ηet−1, (195)

we rewrite (194) as

x̃t+1 = x̃t − η∇f(x̃t − ηet−1), (196)

which via triangle inequality implies

‖x̃t+1 − x∗‖ ≤ ‖x̃t − x∗ − η∇f(x̃t)‖ (197)
+ η ‖∇f(x̃t)−∇f(x̃t − ηet−1)‖ (198)

≤ σGD ‖x̃t − x∗‖+ η2L ‖et−1‖ , (199)

where the first term in the right side of (199) is obtained by the
convergence guarantee of GD (Lemma B.2), and the second
term is due to L-smoothness (13). Since (195) implies

‖x̃t − x∗‖ − η ‖et−1‖ ≤ ‖x̂t − x∗‖ (200)
≤ ‖x̃t − x∗‖+ η ‖et−1‖ , (201)
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we leverage (199) to control ‖x̂t+1 − x∗‖ as follows:

‖x̂t+1 − x∗‖
≤ σGD ‖x̃t − x∗‖+ η2L ‖et−1‖+ η ‖et‖ (202)
≤ σGD ‖x̂t − x∗‖+ η ‖et‖+ (σGD + ηL)η ‖et−1‖ , (203)

where (203) is due to (200).

Compared to the guarantee on NQ-GD in Lemma D.1, that
on GD with error feedback of [10], [22], [44] in Lemma E.1
has an extra error term. Thus, it is unclear whether the error
feedback mechanism of [10], [22], [44] can even improve upon
NQ-GD in our nonstochastic problem setting.
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Montréal, Canada, Dec. 2018, pp. 4447–4458.

[23] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems 31, Montréal, Canada, Dec.
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[36] S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik,
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