Automating instrumentation choices for performance
problems in distributed applications with VAIF

Mert Toslali*, Emre Ates*, Alex Ellis”, Zhaoqi ZhangT,
Darby HuyeT, Lan Liu', Samantha Puterman*, Ayse K. Coskun*, Raja R. Sambasivan'

*Boston University, ' Tufts University

ABSTRACT

Developers use logs to diagnose performance problems in
distributed applications. However, it is difficult to know a
priori where logs are needed and what information in them is
needed to help diagnose problems that may occur in the future.
We present the Variance-driven Automated Instrumentation
Framework (VAIF), which runs alongside distributed applica-
tions. In response to newly-observed performance problems,
VAIF automatically searches the space of possible instrumen-
tation choices to enable the logs needed to help diagnose them.
To work, VAIF combines distributed tracing (an enhanced
form of logging) with insights about how response-time
variance can be decomposed on the critical-path portions
of requests’ traces. We evaluate VAIF by using it to localize
performance problems in OpenStack and HDFS. We show
that VAIF can localize problems related to slow code paths,
resource contention, and problematic third-party code while
enabling only 3-34% of the total tracing instrumentation.

CCS CONCEPTS

« Computer systems organization — Cloud computing;
« Software and its engineering — Software testing and
debugging.

KEYWORDS

performance, distributed tracing, distributed systems, logging

ACM Reference Format:
Mert Toslali, Emre Ates, Alex Ellis, Zhaoqi Zhang, Darby
Huye, Lan Liu, Samantha Puterman, Ayse K. Coskun, Raja R.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SoCC 21, November 1-4, 2021, Seattle, WA, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3487000

Sambasivan. 2021. Automating instrumentation choices for
performance problems in distributed applications with VAIF.
In ACM Symposium on Cloud Computing (SoCC °21), November
1-4, 2021, Seattle, WA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3472883.3487000

1 INTRODUCTION

Logs are the de-facto data source engineers use to diagnose
performance problems in deployed distributed applications.
However, it is difficult to know a priori where logs are needed
to help diagnose problems that may occur in the future [23,
40-42]. Exhaustively recording all possible distributed-
application behaviors is infeasible due to the resulting over-
heads. As a result of these issues, distributed applications can
contain lots of log statements, but rarely the right ones in the
locations needed to diagnose a specific problem [23, 41]. New
performance problems cannot be diagnosed quickly because
the detailed logs needed to locate their sources are not present.

Diagnosing problems observed in deployment requires the
ability to customize logging choices during runtime. Two
sets of complementary techniques allow for such customiza-
tion: dynamic logging and automated control of logging
choices. The former allows developers to insert new logs in
pre-defined [10, 15, 23] or almost arbitrary locations [18] of an
application. But, it can result in high diagnosis times because
engineers must manually explore the vast space of possible
logging choices to locate the source of the problem. Only after
doing so can they identify the problem’s root cause and fix it.

To reduce diagnosis times, researchers have developed au-
tomated techniques to choose the neededlogs[8, 13,20, 42,43].
However, they focus on correctness problems, not per-
formance, or are designed for individual processes, not
distributed applications. For example, Log20 [42] helps
diagnose non-fail-stop correctness problems by enabling
logs to differentiate unique code paths. However, fast code
paths need not be differentiated for performance problems,
and slow ones may need additional logs to further pinpoint
the problem source. Log? [13] identifies which logs provide
insight into performance problems in individual processes.
Its value is diminished for distributed applications because it
is unaware of slow requests’ workflows—i.e., the application
processes involved in servicing them.

https://doi.org/10.1145/3472883.3487000
https://doi.org/10.1145/3472883.3487000

SoCC 21, November 1-4, 2021, Seattle, WA, USA

This paper’s goal is to create a logging framework that au-
tomatically enables the logs needed to diagnose performance
problems in request-based distributed applications. We find
that the combination of three insights about the critical-path
sections of requests workflows, distributed tracing (an
enhanced form of logging), and requests’ performance
variance makes such a framework possible.

The insights are as follows. First, in many distributed appli-
cations, requests whose workflows are expected to have simi-
lar critical paths should perform similarly [30]. If they do not—
i.e.,they exhibit high response-time variance—the expectation
is incorrect, and there is something unknown about their crit-
ical paths. This unknown behavior may be performance prob-
lems, such as slow functions, resource contention, or load im-
balances. Second, distributed tracing captures graphs (traces)
of requests’ workflows with resolution equal to the number of
logging points in the application. (Distributed tracing calls log
points tracepoints.) Third, high response-time variance can be
localized to sources of high variance within critical-path por-
tions of requests’ workflow traces, giving insight into where
more tracepoints must be enabled to explain the unknown
behavior. For problems that manifest as consistently-slow
requests instead of high variance ones, a similar process that
focuses on high-latency areas of critical paths can be used.

We present the design of the Variance-driven Automated
Instrumentation Framework (VAIF). VAIF is comprised of
a distributed-tracing infrastructure that allows tracepoints to
be enabled or disabled and control logic that decides where
to enable tracepoints based on the performance-variation
insights. It uses various search strategies (e.g., binary search)
to decide which tracepoints to enable. During normal
operation, VAIF operates identically to distributed tracing
today and generates traces with a default level of tracepoints
enabled. When developers must diagnose why requests are
slow, they “push a button” and VAIF automatically explores
which additional tracepoints must be enabled to locate the
problem source. Similar to dynamic instrumentation, VAIF’s
approach reduces the burden of deciding which logs to enable
a priori. It additionally eliminates the manual effort required
to search the space of possible tracepoint choices.

We implemented two prototype VAIFs for OpenStack [26]
and HDFS [35] by modifying their existing tracing imple-
mentations. In both applications, we find that our prototypes
can enable tracepoints to locate the sources of real and
synthetically injected sources of variance and latency even
when only a minimal number of tracepoints are enabled
by default. We find that many real sources of variance and
latency correspond to bug reports in developer mailing lists.
Our prototypes only enable 3-37% of the tracepoints they
could enable to localize these issues.

We present the following contributions.

Toslali et al.

(1) We identify requirements for any logging (or tracing)
infrastructure must satisfy to address key challenges that
limit their utility for localizing problems. We identify
insights that allow these challenges to be addressed for
performance problems related to slow code paths, code
with unpredictable performance, and resource contention.

(2) Building on the insights, we present the design of VAIF,
an automated instrumentation framework that combines
distributed tracing with control logic that automatically
enables the tracepoints needed to localize new perfor-
mance problems. VAIF’s control-logic components are
modular and can be applied to different distributed appli-
cations instrumented with tracing without modifications.
Our VAIF design includes elements to make it practically
useful: a novel data structure for explaining VAIF’s
tracepoint decisions to developers and mechanisms to
limit VAIF’s explorations when resources available to
tracing are constrained.

(3) We demonstrate the efficacy of our VAIF prototypes by
using them to localize seven sources of high variance and
consistently-slow performance in OpenStack and HDFS.
We find that those localized regions correspond to bug
reports in developer mailing lists. We demonstrate VAIF’s
control-logic algorithms scale to trace sizes observed in
OpenStack, HDFS, DeathStarBench’s social network [17],
and a large Internet company.

2 TOWARDS AUTOMATION

This paper addresses key challenges that reduce the value
of logging in helping diagnose performance problems. This
section introduces these challenges and derives requirements
that any logging framework must satisfy to address them. It
describes key insights and how these requirements can be met
by combining distributed tracing with control logic that fo-
cuses on requests’ response-time variance. Our approach for
satisfying the requirements focuses on requests’ critical paths.
It can help diagnose problems due to slow code paths or func-
tions, resource contention, or problematic third-party code.
We start this section by providing a background of
request-based distributed applications.
Request/response-based distributed applications:
These applications consist of processes that coordinate to ser-
vice requests that they receive from clients (e.g., read a file) or
generate themselves (e.g., garbage collect some data). One or
more processes may be logically grouped into services and/or
service components to reflect a clean breakdown of functional-
ity. Requests’ workflows describe the order and timing of work
done within and among the processes, services, or service com-
ponents involved in servicing them. Requests’ performance is
characterized by their response times, which depend on their
critical paths. A request’s critical path is the highest latency
concurrent path of its workflow that must complete before a

Automating instrumentation choices for performance problems in distributed applications with VAIF

response is sent to the client. Critical-path latencies depend on
algorithm runtimes, request parameters (e.g., read/write sizes
in a storage system [35]), and the resources used by requests
or available to them at the time of their execution.

2.1 Logging challenges

Past research has identified three challenges with logging
that curtail its value for localizing problems. Such localization
identifies the areas first or most affected by problems,
giving developers strong starting points for their diagnosis
efforts [14]. The challenges are: 1) No perfect one-size-fits-all
logs leading to a tussle between informativeness and
overhead, 2) Extremely large log search spaces, and 3) Data
overload leading to a needle-in-the-haystack problem.

We argue that these challenges must be addressed
separately for correctness and performance problems. This is
because the logs to help localize these two classes of problems
have different goals. Logging for correctness problems aims
to identify the first divergence from normal execution that
will lead to problematic points in the code, such as failure
locations [8, 39, 41, 43] or undesired outputs [42]. In contrast,
logging for performance problems aims to identify areas of
the code or resource conditions that lead requests’ overall
execution to be slow.

We describe the challenges below and identify require-
ments they impose on logging frameworks.

No perfect one-size-fits-all instrumentation leading
to a tussle between logging generality and overhead:
Past research has argued that the logs needed to localize
the source of one problem may not be useful for oth-
ers [23, 36, 41, 42]. The lack of one-size-fits-all logs leads to
a tussle to identify which log statements are most useful and
should be enabled by default. For example, Zhao et al. [42]
state that Hadoop, HBase, and Zookeeper have been patched
over 28,821 times over their lifetimes to add, remove, or
modify static log statements embedded in their code. They
also point out that the 2,105 revisions that modify logs’
verbosity levels reflect the tussle between a desire to balance
overhead and informativeness of log statements.

This challenge results in the following requirement:

R1: Logging frameworks must allow logs to be enabled
selectively by developers during runtime or must automatically
enable logs in response to problems observed during runtime.

Extremely large logging search spaces: Assume a
distributed application that allows log points to be inserted
or enabled at every function’s entry, exit, and exceptional
return. (This is similar to the distributed applications used by
Mace et al. [23] and Erlingsson et al. [15].) Here, the possible
locations where log statements can be enabled is a function of
the number of procedures in the applications’ code base and
the number of machines on which the application executes.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Even modestly-sized distributed applications can have search
spaces with 100s or 1000s of possible log points.

To address this scalability challenge, we refine R1to require
logging frameworks to automatically enable tracepoints. We

also add the following requirement:
R2: Automated Logging frameworks must be capable of

narrowing down the search space when exploring what logs
are needed to localize a newly-observed problem.

Data overload amounting to needle-in-a-haystack
problem: Existing logging infrastructures capture volumi-
nous amounts of data. For example, Facebook’s Canopy, a
distributed-tracing infrastructure captures 1.16 GB/s of trace
data, and individual traces contain 1000s of tracepoints [19].
Problem diagnosis, even when the needed logs are present,
can feel like trying to find a needle in a haystack [29].

This challenge is partially addressed by R1 (automati-
cally choose what instrumentation to enable). To avoid the
needle-in-haystack problem for cases where there may be
multiple problems in the application simultaneously, we add
the following requirement:

R3: Automated logging frameworks must be capable of
explaining their logging decisions.

2.2 Key insights

We discuss insights that let us address the requirements and
discuss how the requirements are addressed next.

The first insight is that in many distributed applications,
requests with similar critical paths—i.e., requests that are pro-
cessed similarly by the distributed application—will have sim-
ilar response times. Existing use of this insight involves using
separate performance counters for different request types or
API calls, such as READs and GET ATTRIBUTES in a distributed-
storage application. Separate counters are used because there
isan expectation that requests of different types will have very
different critical paths and thus have different response times.

The second insight is that distributed tracing [28, 31, 33],
which is an enhanced form of logging, can identify requests’
critical paths with resolution equal to the amount of tracing
instrumentation present. This is because it records graphs
(called traces) of requests workflows. Today, distributed trac-
ing is becoming increasingly popular and an ever-growing
number of distributed applications are being instrumented
with it [12, 19, 21, 26, 34, 35, 38].

This insight, combined with the previous one, means that
that if requests’ whose workflow traces have identical critical
paths do not perform similarly—i.e., their response-time
variance is high—there is some unknown behavior that is not
captured in their traces. This behavior may represent per-
formance problems, such as slow code paths or functions ex-
ecuting, differences in resources used or available to requests,
poorly-written algorithms that unintentionally increase
variance, or third-party code with unpredictable performance.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Figure 1 shows how most distributed-tracing infrastruc-
tures work. (1) Tracing infrastructures propagate per-request
context—unique request IDs and logical clocks—along with
requests’ execution (® in the figure). () They tag records of
logging points executed by requests with requests’ context.
(Logging points that record context are called tracepoints
and shown by () in the figure.) 3)To avoid impacting
performance, tracepoint records are cached in fixed-size
memory buffers within local tracing agents. They are flushed
to a centralized collector periodically or when the system is
idle.(®Asynchronously, a big-data collects tracepoint records
from the collector and orders ones with the same request ID
to create traces of requests’ workflows.

Tracepoints contain a name describing the behavior
they record (e.g., VM_LIST_START) in OpenStack or
CACHE_MISS in a storage system. They also contain an
arbitrary number of key/value pairs, which developers use
to record request/function parameters or information about
resources used/available at the time of requests’ execution.

This paper represents request workflow traces as directed-
acyclic graphs in which nodes are tracepoint names and
edges are happens-before relationships between events.
Graphs are labeled with requests’ response times, and edges
are labeled with inter-tracepoint latencies. Fan-outs in the
graphs represent concurrent activity , and fan-ins represent
synchronization. Hierarchical caller/callee relationships
between groups of tracepoints are either represented by
additional hierarchical edges or inferred by the nesting of
START / END annotations within tracepoint names. This
representation is sufficient to express relationships created
by all current tracing infrastructures.

The third insight is that the variance-sum law [37] can be
applied to traces of requests’ critical paths. For a set of requests

Big Data Job

(4) Trace Collector

]

Ej Agent

Neutron

Legend
Q Request context

Figure 1: Distributed tracing architecture. Traces are be-
ing collected for a simplified version of OpenStack [26].
The blue line shows the workflow of a vM_LIST request.

Toslali et al.

whose trace critical paths appear identical as per the enabled
tracepoints, this law can be interpreted as follows. The vari-
ance of requests’ response times is the variance of the latencies
of their critical-path trace edges plus their covariances.

This insight means that we can identify areas in the
codebase in which unknown behavior resides by identifying
the edges of requests’ critical-path traces that contribute
most to the variance. The unknown, potentially problematic
behavior resides within the code regions that execute
between the tracepoints that form these edges.

2.3 Addressing the requirements

Based on the insights, the requirements can be satisfied for
many classes of performance problems by combining two
technologies. The first is a distributed-tracing infrastructure
that allows tracepoints to be selectively enabled or disabled
during runtime. The second is a control mechanism for
distributed tracing that (mostly) uses variance to guide which
tracepoints to enable. We next describe the principles of this
control mechanism and how they address the requirements.
We use the term critical-path traces to refer to the critical-path
portions of requests’ workflows. We define identical critical
path traces as those which execute the same tracepoints in
the same order and whose nodes have identical names.

Principle #1: Identify requests whose traces exhibit
identical critical paths but which exhibit high response-time
variance. Identify edges of their traces’ critical paths that
contribute most to the variance. Enable additional tracepoints
in the code regions corresponding to these areas.

Principle One differentiates slow code paths from fast
ones and/or isolates code with unpredictable performance.
It addresses R1: enable tracepoints (logs) automatically in
response to problems and R2: narrow down the search space.

This principle is a direct application of the law of total vari-
ation to critical-path traces. Applying this law narrows down
the search space to tracepoints that can execute between the
critical-path trace edges that contribute most to response-
time variance (R2). Enabling some tracepoints in this area
adds them to future traces, either differentiating critical-path
traces further to separate fast ones from slow ones or further
isolating areas from which high variance arises.

Iteratively applying this principle until requests with
identical critical-path traces exhibit low response-time
variation or until no additional tracepoints can be enabled
accomplishes the following. 1) It sufficiently differentiates
fast critical paths from slow ones or 2) isolates high variance
coming from black-box third-party code, problematic
algorithms, or differences in resource usage/availability (R1).

Example of differentiating slow critical paths from fast
ones: Figure 2 shows three groups of identical critical-path
traces from a distributed-storage system (e.g., Ceph [38] or

Automating instrumentation choices for performance problems in distributed applications with VAIF

HDEFS [35]). Nodes indicate tracepoint names, and edges indi-
cate happens-before relationships. Edges are annotated with
distributions of edge latencies. In Figure 2a, the response-time
variance of READ requests with identical critical-path traces
is high. The figure shows that the trace edge spanning storage
node accesses is the dominant contributor to the variance. Fig-
ure 2b and 2c shows that enabling tracepoints to differentiate
cache hits from misses distinguishes fast critical paths (cache
hits) from consistently slow ones. (The figures show normal
distributions, but our principles hold for arbitrary ones.)
Example of isolating high variance due to third-party
code: Figure 3a shows that the response-time variance of
DIRECTORY LIST requests with identical critical-path traces
is high. The figure shows that the trace edge spanning the
metadata server, which stores directory information, is the
dominant contributor to the overall variance. Figure 3b
shows that enabling tracepoints within the metadata server
eventually reveals that the variance emanates from a
third-party database that is storing the directory info.
Principle #2: Identify requests whose traces have identical
critical paths, have low variance but have high response times
(i.e., are consistently slow). Identify critical-path trace edges
that are dominant contributors to response times and enable
tracepoints in the code regions corresponding to these areas.
Principle Two localizes problems due to slow functions.
It addresses R1: automatically enable instrumentation and R2:
narrow down the search space. It is needed because Principle
One identifies slow critical paths but does not localize slow

Low variance Low variance,

. consistently slow
l—_ 2

o

o

Response time n
Response time

High variance

Prob.
Prob.

Response time

Client_read_start

Wl
Client_RPC_start

SN_read_start

Client_read_start Client_read_start

3 .
4

Client_RPC_start Client RPC_start

SN_read_start SN_read_start

SN_cache_hit

SN_re: nd

SN_cache_miss

SN_read_end
SN_read_end

600

Client_RPC_end

Client_RPC

[0}

Client_read_end

(c) Slow disk acc.

Client_RPC_end

Client_read_end

(b) Fast cache hits

Client_read_end

.f“'r.‘s.
.‘r!F.ﬁ"r.V

}

(a) High variance
in response times

Figure 2: Applying Principle #1 to differentiate fast
critical paths from slow ones.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

High variance High variance

Contributors ID'd

V

Response time

Client_list_start

H
Metadata_list_start
y

Metadata_DB_read

Metadata_DB_read
s

Metadata_list_end

Client_list_end

(b) Variance isolated to DB

Prob.
Prob.

Response time

Client_list_start

Metadata_list_start

Metadata_list_end

Client_list_end

'tl'

(a) High variance

Figure 3: Applying Principle #1 to isolate high variance
emanating from third-party code.

performance to specific code areas. It is similar to the first
principle, except it focuses on response times and edge
latencies directly instead of variance.

Example: Requests corresponding to the critical path
traces in Figure 2c have low variance but have high response
times. The majority contributor to response times is the
edge between the cache_miss tracepoint and the SN_end
tracepoint. Iteratively isolating dominant contributors to
overall response times and enabling tracepoints in these
areas eventually identify the function(s) that contribute most
to response times.

Principle #3: Identify requests whose traces exhibit
identical critical paths but which exhibit high variance in their
response times. Identify which key/value pairs exposed by
already-enabled tracepoints correlate highly with requests’ re-
sponse time. Augment tracepoint names with these keys and
ranges of their values or directly surface them to developers.

Principle Three localizes problems related to resource
usage/availability. It also differentiates slow critical paths
from fast ones when keys’ values record how much work
requests must perform (e.g., read/write sizes in a storage
system). It is an enhancement to Principle One that explores
reasons for variation that are not due to differences in critical
paths themselves but rather due to external factors at the
time of requests’ execution.

Example: OpenStack VM_CREATE requests exhibit high
variance. The edge that contributes most to variance is
build_semaphore_start — build_semaphore_end. The first
tracepoint of this edge exposes a “mutex_queue_length”
key, whose values correlate highly with response times.
Augmenting the “mutex_queue_length” key and ranges of
its values (e.g., 0-5, 6-10, > 10) differentiates critical paths as

SoCC 21, November 1-4, 2021, Seattle, WA, USA

per their queuing times. This localizes the problem to high
resource contention in this area.

Principle #4: Maintain a history of the tracepoints enabled
on behalf of high variance or consistently-slow performance
along with the statistics that motivated these decisions. This
principle allows the framework to explain why it made the
decisions it did to localize problems (R3).

Contrast to related work: Many logging frameworks do
not automatically enable logs or tracepoints [15, 23] (RT) or are
designed to automatically enable instrumentation for fail-stop
correctness problems only [8, 39, 41-43]. Log? [13] partially
addresses R1and R2 by deciding which already-enabled logs
to persist in storage, not which ones to enable in the first place.
It cannot explain its decisions in terms of requests’ perfor-
mance (R3) because it is oblivious to requests’ workflows or
critical paths. Some logging frameworks [42] generically en-
able logs to differentiate unique code paths. This approach is
neither sufficient nor necessary for performance diagnosis. It
is insufficient because additional logs may be needed to iden-
tify where on a code path a problem lies; it is not necessary
when code paths are fast and need not be differentiated.

3 VAIF

VAIF is an automated instrumentation framework that
combines distributed tracing and control logic based on
the principles. It is deployed alongside running distributed
applications. In normal operation, VAIF operates identically
to existing distributed tracing, generating traces using
tracepoints that developers wish to have always on. These
tracepoints may be ones developers have found useful in the
past or ones used for use cases other than performance diag-
nosis, such as correctness. When new performance problems
occur, developers can use VAIF to automatically enrich traces
with the additional tracepoints needed to localize them.
VAIF localizes problems due to slow code or those
with unpredictable performance (high variance). Such
unpredictability may emanate from areas of the application
itself, third-party code the application uses, or from areas
of the application that could benefit from additional tracing
instrumentation. VAIF also explores whether key/value pairs
exposed in tracepoints explain high variance. It allows devel-
opers to specify important keys that they suspect will explain
variance and bin ranges for them. VAIF will augment trace-
point names with these keys if they explain variance. It will
surface other keys whose values explain variance in its output.
Like manual dynamic-instrumentation approaches [15, 23],
VAIF frees developers from the tussle between generality and
overhead. Unlike manual approaches, it also frees them from
having to search the space of tracepoint choices to enable
additional ones. When enabling instrumentation, VAIF works
in a continuous cycle. At each iteration, it uses the principles
to hypothesize (guess) which tracepoints should be enabled

Toslali et al.

next within a high variance or slow area of the application.
It uses the results of previous hypotheses to guide future
ones. It uses a novel data structure, called the hypothesis
forest, to explain the results of its hypotheses to developers.
VAIF’s analyses are most useful for on-path problems. It
also provides value for off-path problems by identifying the
critical-path areas most affected by them.

The rest of this section describes VAIF in more detail. Our
discussions are agnostic to whether tracepoints are enabled
or disabled using dynamic instrumentation [10, 15, 23] or by
modifying existing tracing infrastructures’ tracepoints to ex-
ecute conditional checks before emitting tracepoint records.
We assume tracepoints are uniquely addressable. Some meth-
ods for addressing them include using: their names (as done
for Linux kernel logs); hashes of their names and their keys
(if names are not unique); an external registry that assigns ad-
dresses to tracepoints. We assume unique names from now on.

3.1 Design

Figure 4 shows VAIF’s design, which builds upon existing
distributed tracing. It consists of a control plane and an instru-
mentation plane. Components in the control plane implement
the control logic whereas those in the instrumentation plane
implement the control logic’s hypotheses or provide custom
information about the application.

VAIF works in a continuous loop, which is shown in red
in the figure. At each iteration, VAIF’s instrumentation-plane
components gather new critical-path traces (® in the figure).
The control-plane components examine them to identify
hypotheses of which tracepoints should be enabled next and
which key/value pairs additionally explain high variance
(®). Hypotheses are sent to the instrumentation plane
components ((©)), which enable the relevant tracepoints and
the cycle repeats. VAIF pauses its explorations if any of the
tracing agents’ queues are congested. This prevents cases in
which VAIF does not observe the effects of new hypotheses
because tracepoints records were dropped.

We next describe VAIF’s key components and its inputs
and outputs. Sections 3.2 and 3.3, further discuss the control
logic, how (most of) the search space can be automatically
constructed, and the search strategies.

3.1.1 Components.

Control plane: The control plane consists of the control
logic, two search strategies for deciding which tracepoints
to enable in high-variance or slow areas, and a congestion
tracker that periodically receives queue occupancies from
tracing agents. The search strategies are designed to be
generically applicable to many distributed applications. The
congestion tracker informs the control logic when any tracing
agents’ queues are in danger of being congested, which we
define as over 50% occupancy. We use this conservative

Automating instrumentation choices for performance problems in distributed applications with VAIF

v Anstarton
vAAn.end on A
[ivAnstart off

Enabled Hypothesis
Tracepoint List Forest

o Control Logic

path 4 A

Traces Occupancy |
h

Tracepoint *

Decisions :

1
|
|
@ Congestion 0 .
Tracker i >
| Hierarchical Flat
] Search Strategies
f l 9 Control
1
________ ! ! | Plane
B Y Sy
Critical | | Inst.
|
Path | | Plane
|
|
Extractor ! Search Space Control
H _ Decisions

T'“C“f |- -
Trace
Collector 'ﬁ Agent

t
Executed
Tracepoints

D Enabled Tracepoint @ Trace buffer f VAIF Loop

D Disabled Tracepoint App node / Request

Figure 4: VAIF design. The thick red line shows VAIF’s
continuous loop. Solid lines are traces/tracepoints and
dashed lines are control signals. A generic distributed
application instrumented with tracing is shown in the
instrumentation plane.

definition because VAIF does not know how many times
tracepoints will execute once enabled. The control plane also
maintains important state: a global list of tracepoints that
have been enabled by VAIF and the hypothesis forest.

VAIF’s control-plane components are modular and
intended to be used with different distributed applications
and/or tracing infrastructures without modifications.

Instrumentation plane: The instrumentation plane
consists of an application instrumented with tracing, a
critical-path extractor that extracts critical-path portions
from traces and sends them to VAIF’s control-plane com-
ponents, and a search space that describes the application’s
tracepoints. The critical-path extractor works by identifying
the highest-latency trace path from the tracepoint indicating
request reply to that indicating request start. Concurrency
and synchronization may result in multiple paths for a single
trace, each with different latencies. The search space names
all of the tracepoints in the distributed application, including
the keys that will be used in grouping. It also lists tracepoints’
concurrency/synchronization tracepoint names as these
must be enabled for critical-path extraction.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Legacy instrumentation-plane components require modifi-
cations to be used with VAIF. First, the tracing infrastructure’s
libraries must allow tracepoints to be selectively enabled
or disabled during runtime. They must also let developers
specify which tracepoints should be considered always on.
Second, tracing agents co-located with processes must report
queue lengths and receive updates about which tracepoints
to enable or disable. Third, tracing infrastructures must
preserve happens-before relationships between tracepoint
records to allow critical paths to be extracted. This can be
done by exposing APIs to capture them directly (as done
by X-Trace [16, 22], Canopy [19], and Stardust [32]) or by
learning them over alarge number of traces (as done for traces
that preserve only hierarchical caller/callee relationships,
such as Dapper [24] and Artillery [11]).

3.1.2 Usage.

Starting VAIF’s exploration: VAIF takes two inputs to
start its explorations. The first is the application search
space. The second is a list of tracepoints corresponding to
start of execution of request types (or endpoints) that are
experiencing problems. (We assume tracepoints that name
the corresponding replies can be programmatically derived
otherwise, they would need to be provided as well.)

VAIF also takes as input two optional parameters. The first
isathreshold for identifying groups of critical-path traces that
exhibit high variance, specified as a coefficient of variation
(CV or a/p). We use CV for this unpredictability condition
because it is a unitless measure that reflects the intuition
that groups with high response-time spread compared to
their mean are more unpredictable than those with low
spread. The second is a threshold for identifying groups as
consistently slow (CS). It is specified as a percentile of the
relevant request type’s response-time distribution. VAIF
considers any group of traces that show either CV or mean
latency greater than these thresholds as potential problems.
Default values of : CV threshold = 10%, CS threshold = 95%
are used if these optional parameters are not specified.

VAIF’s output and how to use it: VAIF outputs new
traces whose critical paths are enriched with the additional
tracepoints needed to localize problems. Developers can
query the hypothesis forest to identify why tracepoints
observed in a given trace were enabled. For example, for a
given trace, the forest might show that enabling a tracepoint
around a cache differentiated critical paths and generated
two new groups, increasing predictability (lower CV) for
one group and isolating unpredictability (increasing CV) for
the other group. Developers can also examine the hypothesis
forest directly to identify groups of requests with high
response-time variation or groups that are consistently slow.

Shutting down VAIF: Developers can shut down VAIF
after they have diagnosed the problem at hand. Before

SoCC 21, November 1-4, 2021, Seattle, WA, USA

terminating, VAIF will disable all of the additional tracepoints
it enabled.

3.2 Controllogic & hypothesis forest

At each cycle, VAIF’s control logic explores hypotheses of
which tracepoints should be enabled to localize problems.
Hypotheses themselves are of the form “differentiating
traces by whether they include or a lack a newly-enabled
tracepoint helps localize the problem?” Localization amounts
to 1) differentiating groups of identical critical-path traces
with high variance, 2) isolating high-variance application
areas within groups, or 3) isolating application areas that lead
to consistently-slow performance. To explain its decisions,
it maintains a history of its hypotheses and their outcomes
in the hypothesis forest. We describe the hypothesis forest
first, then how the control logic explores hypotheses and
constructs the forest.

3.2.1 Hypothesis forest.

Figure 5 shows an example hypothesis forest. Each tree in
the forest encodes hypotheses made on behalf of a different
request type or endpoint that VAIF is initialized with (e.g.,
OpenStack’s VM_LIST in the figure). This reflects the
intuition that request type is a basic predictor of performance
and that different request types may experience different
problems that benefit from different tracepoints.

Nodes of hypothesis trees (hypothesis nodes) contain
pointers to the results of applying hypotheses. Hypotheses
result in two nodes, one for traces that include the enabled
tracepoint and the other for ones in which it is absent. Each
node includes a field that names the hypothesis tracepoint and
whether it should be present or absent from traces (e.g., +
or ~ ()inthefigure). The root node of each tree shows results
for traces that include the request-type start tracepoint.

Results are: 1) groups of identical critical-path traces that
either include or exclude the tracepoint and 2) any keys in in-
cluded tracepoints that explain variance. Groups store impor-
tant performance information needed for VAIF’s analyses—a
representative trace, response-time distributions of requests
assigned to them, trace edge-latency distributions, and the
number of requests assigned to each group. Tracepoints en-
abled by VAIF on behalf of other paths or trees are removed
from traces before grouping. Such processing allows VAIF to
measure the effects of each hypothesis independently w/o in-
terference from other hypotheses. Always-on tracepoints are
not removed as VAIF does not make hypotheses about them.

3.22 Control logic.
Algorithm VAIF control logic shows the pseudocode. We
describe important aspects below.

Initialization (lines 2-9): HypoTHESIZE() is initialized
with a search strategy (search), statistical thresholds for identi-
fying high variance and consistently slow groups (cs and cv), a

Toslali et al.
ww_LsT | VMLIST
Edge State State tree
Group 0
¥\ Additional
Group State VM_LIST ~ VM_LIST + trees

‘_‘ Response

Time Dist.

#of CP
Traces

-
Legend
D High Variance
e Hypothesis Node

Always-on
ol g % Tracepoint
/ \ Group 2 C) Tracepoint

enabled by VAIF
Group 3 /(Edge

Figure 5: Example hypothesis forest.

set of mandatory tracepoints that must be enabled for VAIF to
work (mdtry), and tracepoints that indicate the start and end
of monitored request types’ execution (req_types). Manda-
tory tracepoints include the concurrency and synchronization
points listed in the search space and those in req_types. VAIF
initializes the hypothesis forest with root nodes correspond-
ing to the start tracepoints in (req_types) and enables the
mandatory tracepoints if they are not always-on ones.

Checking for congestion: (lines 11- 13) The congestion
tracker is consulted to check if any tracing agents’ queue
occupancies over 50%. HypoTHESIZE() sleeps until this
condition ceases to hold.

Consuming new traces (lines 14- 15): New critical-path
traces observed in the interval between the previous cycle and
the current one are added to the hypothesis forest’s leaf nodes.
The leaf to which to add a trace is identified by matching
its tracepoints to hypothesis-tree paths. Once the leaf node
is identified, the trace is processed to remove extraneous
tracepoints and connect surrounding edges. Finally, the trace
is added to the group that matches its (processed) critical path.

Key/value pairs (line 16): Groups are analyzed to
determine if key/value pairs in tracepoints that were enabled
in the previous cycle are correlated with groups’ response
times. The search space is consulted to identify the subset
of the correlated keys that have also been specified by
developers in the search space. Tracepoint names are
augmented with these keys and the developer-specified
bin ranges for them. (Names of tracepoints specified in the
hypothesis nodes are not modified.) Remaining correlated
keys are surfaced in affected groups’ hypothesis nodes.

Identifying potential problems (lines 18-19): Leaves of
the hypothesis tree are analyzed to identify which ones con-
tain problematic groups. These are ones with the most number
of groups that exceed the CV or CS threshold (cv_gs and ¢s_gs)
respectively. Groups must contain enough samples for statis-
tical confidence to be considered (30 in our implementation).

Automating instrumentation choices for performance problems in distributed applications with VAIF

Algorithm VAIF control logic

1: procedure HYPOTHESIZE(search, mdtry, req_types)
2. init hyp(req_types) > Hypothesis tree
3. init tps_enabled > Enabled tracepoint list
4: init prev > (+) Hypothesis nodes created in last cycle
5. init tps > Trace points enabled in this cycle
6: initct > Congestion Tracker
7
8
9

co0.1 > CV threshold
cs 95 > Consistently-slow threshold
. enable(mdtry)

10: for;; do > Start Cycle

11 while ct.congested_danger() do

12: sleep(cycle_time)

13: end while

14: traces « collector.get_new_traces()

15: hyp.add_traces(traces)

16: search.key_value(prev)

17: prev.make_empty() > Only this cycle’s results
18: cv_gs, cv_nodes < hyp.id_high_cv(cv)

19: cs_gs, cs_nodes < hyp.id_high_cs(cs)

20: tps.add(helper(co_gs, co_nodes, prev, VAR))

21 tps.add(helper(cs_gs, cs_nodes, prev, LAT))

22: enable(tps, tps_enabled)

23: sleep(cycle_time)

24: end for

25: end procedure

26: procedure HELPER(groups, hyp_nodes, prev, type)

27: inittps > Chosen tracepoints
28: fori=1..length(groups) do

29: tp « search.find((groups[i], type)

30: prev.add(hyp_nodes[i].add_child(+tp))

31 hyp_nodes|[i].add_child(~ tp)

32: tps.add(tp)

33: end for

34: returnips

35: end procedure

Generating new hypotheses: (lines 20-21) The search
strategy is called to suggest tracepoints to enable for problem-
atic groups (search.find()). The strategy uses group’s edge-
latency distributions to decide where a new tracepoint should
be enabled. For a high CV group, it chooses the edge that con-
tributes most to the overall variance. For a consistently-slow
group, it chooses the edge with the largest mean latency. New
nodes are created in the hypothesis forest to test inclusion
or absence of the selected tracepoints in future traces. (New
nodes are only created if they don’t already exist as children
of the relevant parent hypothesis node.)

Enabling tracepoints and sleeping (lines 22-23):
The enabled tracepoint list is updated with the tracepoints
selected by the search strategy and is replicated to the tracing

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

agents. The control loop sleeps for a pre-determined duration
to allow new traces to be gathered.

Stopping condition for problematic groups: The most
granular tracepoints are already enabled within edges that
account for the majority (>50%) of overall variance or latency.

3.3 Search space & search strategies

Search space: The search space contains: 1) potential
critical paths in requests’ workflows when all tracepoints
are enabled; 2) tracepoints that demarcate concurrency or
synchronization; 3) keys within tracepoints that should be
incorporated in grouping and bin ranges for them (needed for
search.key_value()). All tracepoints are labeled with whether
they are always on. Search strategies use the search space to
suggest the next tracepoint to enable between high-variance
or -latency trace edges (i.e., search.find()). This requires
matching the group critical-path trace representative against
potential critical paths in the search space to determine
which path it is most likely to be.

Potential critical paths: These are learned by running
exhaustive workloads against the application with all
tracepoints enabled. For traces with multiple concurrent
branches, each unique path within them is stored separately
as a potential critical path. We expect potential critical paths
will be learned as part of organizations’ code or coverage
tests. These tests can be run when deploying an application
or updating it. VAIF will still provide value if the paths stored
in the search space are incomplete.

Developer-specified keys and bin ranges: These are stored
as key name, tracepoint to which they belong, and a set of bin
ranges. We expect developers will specify only a few select
keys (e.g., ones that correspond to request sizes or ones that
indicate queue lengths for a highly-contended resource.)

Concurrency / synchronization points: These are identified
automatically as fan-out and fan-in points in learned paths.

Matching to potential critical paths: For a given group, we
transform its representative trace into a regular expression.
For example, the trace “A->B->C” is transformed into
“.xA.*B.*C.*”. The expression is applied to all potential
critical paths to identify potential matches. We choose
among multiple matching potential critical paths randomly
weighted by frequency of their occurrence during learning.

Search strategies: The two search strategies either use
the hierarchical or happens-before edges in traces.

Hierarchical search: This strategy uses hierarchical edges
(called spans in OpenTelemetry [27]). Given a pair of
tracepoints that denote a hierarchical level (a span), this
strategy determines which pair of tracepoints (subspan) to
enable next. In the case where there are multiple subspans,
we use binary search to pick the middle one.

Flat search: This strategy uses only the happens-before
relationships. Given a pair of tracepoints, this picks a

SoCC 21, November 1-4, 2021, Seattle, WA, USA

tracepoint that occurs between them. Tracepoints are ordered
by happens-before relationships and binary search is used
to pick among them.

3.4 Limitations & discussion

Limitations of using current tracing infrastructures:
VAIF cannot identify if the observed variance is a result
of the application code itself or code in lower layers (e.g.,
kernel). This is because current tracing infrastructures are
limited to capturing elements of requests’ workflows in the
application only. In some cases, key/value pairs exposed
within tracepoints can provide insights into variance coming
from lower layers (e.g., flow IDs for the network).

Limitations of push-button, statistical approach:
VAIF cannot provide value for transient or infrequent
problems that disappear before developers use VAIF. Many
existing tracing infrastructures cannot collect traces for these
problems because they use a low trace sampling rate [31].
VAIF’s approach of enabling tracepoints only when needed
may allow for higher sampling rates, allowing traces of these
problems to be collected with always-on tracepoints.

Potential for combinatorial explosion: Such potential
exists when VAIF is used with applications that have many
potential critical paths. In such cases, VAIF’s search strategies
will have to match against a very large number of paths to
choose tracepoints. VAIF’s hypothesis forest may contain
an excessively large number of groups if VAIF must enable
many tracepoints or if many tracepoints are always on. § 5.2
shows that matching time is not an issue for the applications
and workloads we use. VAIF mitigates explosion in groups
by exploring only one hypothesis (tracepoint) at a time per
branch in the hypothesis forest and processing traces to
remove tracepoints irrelevant to the current hypothesis.

Dealing with asynchronous design patterns: VAIF
requires additional help to provide value for asynchronous de-
sign patterns where the latencies of interest are not reflected
in critical paths’ response times. Developers must establish
additional tracing edges to stitch together asynchronous
patterns’ paths (e.g., as done using OpenTelemetry’s 1ink
relationship). They must also identify tracepoints whose
timestamps capture the latency of interest. We employed this
tactic to capture paths for asynchronous OpenStack requests,
such as VM_CREATE and VM_DELETE.

4 VAIF PROTOTYPES

We wrote two prototype VAIF implementations for Open-
Stack [26] and HDFS [35]. Both implementations use the
same control-plane components, which amount to 7k LoC
in Rust. Prototypes’ tracing infrastructures use modified
versions of these applications’ existing tracing infrastructures
(OSProfiler [25] and X-Trace [16] for OpenStack and HDFS
respectively). Our prototypes address tracepoints by either

Toslali et al.

unique name (HDFS) or a combination of name and line
number in code (OpenStack).

Modifications to OSProfiler and OpenStack: We wrote
a python-based tracing agent that uses the filesystem to store
the enabled tracepoint list. We modified the decorator func-
tion OSProfiler places around select class objects to check the
tracepoint list before emitting tracepoint records. These mod-
ifications total 80 LoC. A tracepoint incurs 0.1ms for its con-
ditional check, a significant portion of which is due to Python
itself. This overhead is much lower than OpenStack’s response
times, which are on the order of 10s of seconds. We addition-
ally modified OSProfiler to capture concurrency and synchro-
nization and link together OpenStack’s asynchronous calls.

Modifications to X-Trace: We modified (50 LoC) the
X-Trace logger library to implement the conditional check. A
tracepoint incurs 0.05ms of overhead for its conditional check
due to VAIF. HDFS requests take on the order of seconds to
execute. HDFS instrumented with X-Trace already captures
concurrency and synchronization.

Creating search spaces: We collected search-space paths
using workload generators that we built. Our OpenStack
workload generator uniformly issues a mixture of CREATE,
LIST, and DELETE request types for the same set of volume,
server, and floating IP resources. The workload runs for a
specified number of rounds and chooses a randomly selected
number of concurrent workers per round (between 5-25). For
HDFS, we use a similar workload generator parameterized
to issue file writes (1MB), varying sizes of file reads (10kb,
100kb, 1MB) and LisT requests for randomly selected files.
Experimental evaluation sections (§5 and §6) use the same
workload generators.

5 EXPERIMENTAL EVALUATION

We evaluate our prototype implementations of VAIF using
two applications (OpenStack and HDFS) and two trace
datasets (a large Internet company and DeathStarbench’s
Social Network [17]). We seek to answer the following
questions: (1) How scalable are VAIF’s search space and
matching process? (2) How big are traces when only the
tracepoints needed for VAIF to start its explorations are
enabled? (3) How do different search strategies perform
with problems injected in various locations? (4¢) How many
tracepoints does VAIF enable without any injected problems?

5.1 Experimental setup

Benchmark Applications.

OpenStack: This is a widely-used distributed application
for managing clouds. We use the OpenStack Stein release.
Our cluster consists of 9 Compute and 1 Controller node.

HDFS: This is a widely-used distributed-storage applica-
tion. It exhibits complex and highly concurrent behaviors.

Automating instrumentation choices for performance problems in distributed applications with VAIF

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

System # of Unique # of Unique / Overall Min/Mean/Max Search Space Size (MB Construction Time to
Tracepoints Paths in Search Space Path Length / # Tracepoints) Time (s) Match (ps)

OpenStack 296 46 /561 8/515/911 4.8 /23694 0.7 730

Internet company 4194 2815/27196 2/10.3/ 2060 3.8/28945 13.3 499

Deathstar 413 103 /3569 20/46.6/133 8.2/48070 11.2 230

HDFS 111 1032 /78832 208/513/573 54.0 / 529468 470.6 7123

Table 1: Search statistics. The results show that VAIF’s search space and matching can be used for all four systems.

We use the latest version of HDFS that includes X-Trace
(2.7.2). Our HDFS cluster has 6 DataNodes and 1 Namenode.
Large Internet Company traces: The 18k traces we have
access to are from a single region. The traces are obfuscated,
so we use them only for scalability experiments (§ 5.2).
Social Network traces: This open-source dataset is collected
from a version of the Social Network application that is instru-
mented with X-Trace [7]. It contains 8,000 traces consisting
of COMPOSE_POST, REGISTER, and FOLLOW requests.
Infrastructure. All experiments are run on 9 CloudLab
nodes running Ubuntu 18.04 and Linux Kernel 4.15.0. Each
node has 8-core CPUs and 64 GB of memory.
VAIF. Our prototypes use CV threshold = 10% and CS
threshold = 95% percentile. We use 30 seconds as the cycle
time. VAIF only makes decisions for groups that have
accumulated 30 samples.

5.2 Scalability of search

Methodology: We analyze 1) the scalability of VAIF’s search
space on four different trace datasets, and 2) the overhead
of VAIF’s control plane in terms of matching durations. To
construct the search space’s potential critical paths from
OpenStack and HDFS, we enable all of the tracepoints and
run the same workload generators discussed in the implemen-
tation (§ 4). We use all of the traces in the Social Network and
Internet Company datasets to construct their search spaces.
Results: Table 1 presents the results based on the ratio of
unique to total potential critical paths, search space size, and
time to match. (For brevity, potential critical paths are listed as
paths in the Table.) The number of unique tracepoints and the
trace-path lengths vary depending on the system. The ratio
of unique to total potential critical paths is very low across all
applications, with large Internet Company exhibiting the high-
est ratio (0.05). VAIF exploits this repetitive behavior by keep-
ing only unique potential critical paths in the search space.
We find that matching time, which dictates the minimum
quanta at which VAIF can make decisions, is on the order of
100s of microseconds for most of the applications. The large
Internet Company results show that VAIF accommodates
large traces from real production workloads and the matching
time is only 500us. It is higher for HDFS (7ms) due to high
concurrency that results in numerous paths even though
the number of unique tracepoints is low. In practice, decision
periods would be in the order of seconds or minutes to collect

a sufficient number of request traces, thus microsecond to
millisecond lower limits for matching are negligible.

5.3 Minimal trace sizes

Methodology: We use our workload generators to collect
traces from OpenStack and HDFS with only mandatory
tracepoints enabled—i.e., those that indicate request-type
start/end and concurrency/synchronization. (We call such
traces workflow skeletons.) We compare these to traces
collected by unmodified OpenStack’s OSProfiler and HDFS’s
X-Trace, which have all tracepoints enabled by default. (We
call unmodified OSProfiler or X-Trace Vanilla tracing and
their traces Vanilla traces.)

Results: Figure 6 shows average trace sizes for different
request types’ traces. Skeletons are 95% smaller on average
across all request types. Most request types’ execution is
sequential, so the skeletons only have tracepoints for request
start/end. Other request types exhibit concurrent behavior
(e.g., WRITE in HDFS), requiring additional tracepoints in
the skeleton to demarcate concurrency and synchronization.

o’ Vanilla-OSProfiler
= VAIF-skeleton

| I I
o
&
N

Request Type

S

Trace Size (Log scale)

Cr@a[s
[Y, //SI
Us/%
C,@e/e
by,
ety
0,66/@
%t

Yoy,

(a) OpenStack.
400 s N
o Vanilla-XTrace Vanilla-XTrace
% 300 mm VAIF-skeleton 1500 mm VAIF-skeleton
@ 200
g 1000
‘._— 100 .
0 - b— H 500 I
S S £) N t— i
& © & & § &
$ < § é s
Request Type Request Type
(b) SocialNetwork. (c) HDFS.

Figure 6: Skeleton vs. Vanilla. OpenStack’s results are
shown in log scale due to the large difference between
skeleton and vanilla trace sizes for this application.

SoCC 21, November 1-4, 2021, Seattle, WA, USA

5.4 Comparison of search strategies

Methodology: We run VAIF with a delay injected into
a location in OpenStack and compare Hierarchical and
Flat searches’ efficacy to localize it. We consider the most
challenging case for the search strategies: 1) VAIF starts with
only mandatory tracepoints enabled and so has little initial
guidance about where to enable tracepoints; 2) delays are
injected to affect VM_CREATE requests, which generate the
largest traces and execute the most number of unique trace-
points compared to other OpenStack requests. We repeat the
experiment 10 times with delay locations chosen randomly
and delay latencies chosen from a normal distribution (u=5s
and o =30). VAIF is re-initialized between each run.

Results: Figure 7a shows the average number of tracepoints
enabled to localize delayed regions for both search strategies.
Both search strategies localize delays with 100% precision.
Delays may reside in areas that are far from mandatory trace-
points and/or in hierarchically deep locations in the codebase.
Yet, flat search enables only 10 tracepoints on average and
hierarchical only enables 15. We observe that Flat search
performs better than Hierarchical search. Figure 7b addition-
ally compares sizes of VM_CREATE traces generated by both
search strategies to Vanilla OSProfiler tracing. We find that
VAIF’s search strategies reduce trace sizes by 89% on average.

N
o

o

of tracepoints enabled
o 8
Trace Size
S
o

o

Flat Hierarchical Vanilla VAIF

(a) Search comparison. (b) Trace size comparison.

Figure 7: Comparison of search strategies.

5.5 Nominal operations

Methodology: We analyze the sizes of traces VAIF generates
in OpenStack without any injected problems. We compare
the result with the Vanilla OSProfiler tracing (all tracepoints
enabled). We start VAIF with only mandatory tracepoints
enabled and let it run until there are no problematic groups or
VAIF localizes the problems with most granular tracepoints
enabled. As per our findings in (§ 5.4), we use the Flat search
strategy from now on.

Results: Figure 8 shows the distribution of average trace
sizes for nine different request types on OpenStack (same
as § 5.3). When enabling instrumentation to differentiate
critical paths or isolate the code areas that contribute most to
variance or response times, VAIF enables significantly fewer
tracepoints than Vanilla OSProfiler. As a result, VAIF reduces
trace sizes for different request types by 90% on average.

Toslali et al.
10° '
o)
N, 2
n 10
2 S
® —_
~ 10 —
]
I .
Vanilla Skeletons VAIF

Figure 8: Average per-request-type Vanilla, Skeleton,
and VAIF trace sizes under nominal operation.

6 CASE STUDIES

VALIF serves as a fundamental step for developers to diagnose
performance problems, localizing them to a specific area of
the system. We envision that developers will use VAIF in two
ways; 1) match anomalous traces (e.g., slow requests) to the
hypothesis forest to figure out the performance hypotheses,
2) query the hypothesis forest by the request type to inquire
about the sources of performance problems.

This section presents seven case studies of how we used
VAIF to identify performance problems in OpenStack and
HDFS. All but one of the case studies were discovered by ex-
amining the output of the nominal-run experiment (§ 5.5). One
problem was re-injected to show effectively it can be localized
using VAIF. Table 2 presents an overview of the case studies
and VAIF’s output for them. The table includes one additional
metric, correlation coefficient (R), which is the correlation
between the problematic group’s response times and localized
edge’s latencies. We discuss four of the case studies below.
Case 1. In OpenStack, instances can be deleted using the VM
DELETE command. We find that some VM DELETE requests
take 28 seconds, where the mean latency is around 20. We
query the hypothesis forest by the slowest request. VAIF finds
the delete groups have high CV values (0.18) to begin with. In
exploration of variance, VAIF enables three tracepoints and it
localizes the high variance to unplug_os_vif function. This
function constitutes 85% of the variance and 42% of response
time in this request type. Our analysis from there leads us
to a bug report about the performance of this function ([5, 6]).
For this problem, VAIF helps diagnose a performance bug
due to a delay in a function.

Case 2&3. All instances on OpenStack can be listed using
the command VM List. Matching the slowest trace to the
hypothesis forest shows that the request’s latency emanates
from three edges. This trace’s group shows high CV (0.2), and
the enabled tracepoints constitute 63% of all variance and
60% of the latency. We further examine the code correspond-
ing to those three edges and find the following; 1) two edges
(keystone_post&get) correspond to where identity service
(keystone) is utilized for authentication token, 2) the third

Automating instrumentation choices for performance problems in distributed applications with VAIF

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Case App Localized to Description CV «o® o«u R 19

1 (O] Unpredictable perf. (lib.) OS-vif library shows latency variation [5, 6] 0.12 85% 42% 0.74 85%
2 0os Unpredictable perf. (service) Identity service degrades by entries [4]

3 (O Unpredictable perf. (impl.) Lack of instrumentation in a long function [3] 0.2 63% 60% 076 75%
4 oS Unpredictable perf. (lib.) Inefficient implementation in libvirt driver [1, 2] 0.12 85% 30% 0.86 96%
5 oS Resource Contention Too low limit on simultaneous vm creations [9] 0.21 96% 73% 0.98 97%
6 os Slow codepath Consistently slow workflows in ip-create requests 03 81% 65% 0.96 66%
7 HDES Unpredictable perf. (impl.) Retry mechanism in code 0.11 86% 20% 094 77%

Table 2: Case studies. We report the localization descriptions and following measures; coefficient of variation
(CV) of the problematic group, variance contribution of the localized edge (xc?), response-time contribution of
the localized edge (ccp), correlation between edge and request latency (R), and reduction in traces (6) compared to

Vanilla tracing. OS corresponds to OpenStack.

edge corresponds to a function (get_all) that constitutes 2000
LoC and performs numerous DB lookups to get every instance,
including deleted ones. We corroborate these findings in the
bug reports ([3, 4]), which state that VM List experiences
latency variations due to a) the token table getting large in
identity service, and b) the function not being able to scale well
with the number of VMs and users. In this case, VAIF helps di-
agnose performance problems by isolating latency to (1) a spe-
cific service and operation and (2) an inefficient function. The
latter case also provides an insight to developers as inefficient
tracing (i.e., more tracepoints can be added to the 2000 LoC).
Case 5. We re-inject the resource-contention problem
described in Section 2.3. The root cause is a configuration flag
that artificially limits the number of concurrent VM_CREATE
requests. VAIF finds that VM CREATE groups have high
CV (0.21) initially. VAIF finds that the highest-variance
edge constitutes 96% of the variance and 73% of the re-
sponse time. The first tracepoint of the highest variance
edge (_build_semaphore_start) is where a nova-compute
manager semaphore is acquired. Further, VAIF finds a
high correlation between a key-value pair exposed by the
tracepoint (i.e., the number of simultaneous VM creations)
and request’s latency (R=0.85 w/ p-val 107°).

7 RELATED WORK

Dynamic instrumentation: Much work has focused on
allowing logs or customizable probes to be inserted in appli-
cations at arbitrary or pre-determined locations [10, 15, 23].
These tools provide a powerful basis to build automated ap-
proaches to customizing instrumentation. VAIF can leverage
these approaches to enable tracepoints. PivotTracing [23]
is designed to correlate monitoring data collected for specific
requests across the processes involved in their workflows.
It could be a good fit to VAIF if the query language it exposes
is extended to support VAIF’s specific use case.

Automatically customizing instrumentation during
runtime: Past approaches explore how to customize instru-
mentation to diagnose problems [8, 20, 42, 43]. But these
methods generally focus on correctness, not performance

and are not designed for distributed applications.
Enhancing instrumentation offline: Many existing
techniques aim to enhance instrumentation offline before
applications are run [40, 41]. For example, Yuan et al. identify
what extra information is needed in existing logs to help
diagnose failures [41]. In another paper, Yuan et al. [40]
create a tool that automatically inserts instrumentation at
key locations determined by an analysis of common problems
types. VAIF complements these methods by helping diagnose
new, unanticipated performance problems during runtime.
Discarding instrumentation: Log? [13] collects logs that
span semantically meaningful intervals and discards ones
with low latency or variance. Its after-the-fact approach
allows it to make less greedy choices than VAIF, but it requires
alllogs to be enabled in the first place. Its choices of which logs
to keep might be both more indiscriminate and more useful
than VAIF’s choices. It may be more indiscriminate because it
is unaware of requests’ workflows and thus may enable logs
in areas of the application that are not performance sensitive.
It may be more useful for off-critical-path problems.

8 SUMMARY

It is difficult to know where logs must already be enabled
to help debug performance problems that may occur in
the future. This paper presents the design of VAIF, which
combines distributed tracing and variance-based control logic
to automatically explore which tracepoints to enable. We
demonstrated the efficacy of VAIF’s implementation by using
it to diagnose problems in OpenStack [26] and HDFS [35].

Acknowledgements: We thank our shepherd, Indrajit Roy, along with
Juraci Krohling, Yuri Shkuro, Gary Brown, and the anonymous reviewers
for their invaluable feedback. This research is supported by the National
Science Foundation under Grant No. CNS-2016178 and by Red Hat, Inc.

REFERENCES

[1] 2016. Instance stuck resuming from suspend state during load test.
https://bugzilla.redhat.com/show_bug.cgi?id=1425516.

[2] 2016. nova libvirt driver instance stuck. https://ask.openstack.org/en
/question/91508/nova-libvirt-driver-instance-stuck-on-spawning/.

https://bugzilla.redhat.com/show_bug.cgi?id=1425516
https://ask.openstack.org/en/question/91508/nova-libvirt-driver-instance-stuck-on-spawning/
https://ask.openstack.org/en/question/91508/nova-libvirt-driver-instance-stuck-on-spawning/

SoCC 21, November 1-4, 2021, Seattle, WA, USA

[3] 2016.

[10

(11

[12

(14

(15

[16

(17

(19

[t

—

[

=

=

=

]

=

Nova list is extremely slow with lots of vms.
//bugs.launchpad.net/nova/+bug/1160487.

2016. OpenStack Identity service is responding slowly. https:
//docs.openstack.org/operations-guide/ops-maintenance-slow.html.
2016. OVS plugin VIF plugging slow for VMs. https:
//ask.openstack.org/en/question/128160/ovs-plugin-vif-
plugging-slow-for-vms-with-multiple-nics/.

2016. Update on os-vif progress. https://openstack-
dev.openstack.narkive.com/gLpnyr]Jl/nova-neutron-update-
on-os-vif-progress-port-binding-negotiation.

V. Anand and]J. Mace. 2021. X-Trace DeathStarBench Dataset.
https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces.
Piramanayagam Nainar Arumuga and Ben Liblit. 2010. Adaptive bug
isolation. In International Conference on Software Engineering. ACM
Press, New York, New York, USA, 255-264.

Emre Ates, Lily Sturmann, Mert Toslali, Orran Krieger, Richard
Megginson, Ayse K. Coskun, and Raja R. Sambasivan. 2019. An
Automated, Cross-Layer Instrumentation Framework for Diagnosing

https:

Performance Problems in Distributed Applications. In Proceedings
of the ACM Symposium on Cloud Computing (Santa Cruz, CA, USA)
(SoCC ’19). Association for Computing Machinery, New York, NY, USA,
165-170. https://doi.org/10.1145/3357223.3362704

Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. 2004. Dy-
namic instrumentation of production systems. In ATC °04: Proceedings
of the 2004 USENIX Annual Technical Conference.

Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F
Wenisch. 2014. The mystery machine: end-to-end performance analysis
of large-scale internet services. In OSDI” 14: Proceedings of the 11th
USENIX conference on Operating Systems Design and Implementation.
CockroachDB. 2019. https://www.cockroachlabs.com/.

Rui Ding, Hucheng Zhou, Jian-Guang Lou, Hongyu Zhang, Qingwei
Lin, Qiang Fu, Dongmei Zhang, and Tao Xie. 2015. Log?: A cost-aware
logging mechanism for performance diagnosis. In ATC ’15: Proceedings
of the 2015 USENIX Annual Technical Conference.

Kiciman Emre and Lakshminarayanan Subramanian. 2005. Root
cause localization in large scale systems. In Root cause localization in
large scale systems, Vol. Proc. 1st Workshop on Hot Topics in Systems
Dependability (HotDep).

Ulfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. 2011.
Fay: extensible distributed tracing from kernels to clusters. In SOSP ’11:
Proceedings of the 23" ACM Symposium on Operating Systems Principles.
Rodrigo Fonseca, Michael J. Freedman, and George Porter. 2010. Expe-
riences with tracing causality in networked services. In INM/WREN °10:
Proceedings of the 1% Internet Network Management Workshop/Workshop
on Research on Enterprise Monitoring.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. 2019. An Open-Source Benchmark Suite for Microservices
and Their Hardware-Software Implications for Cloud and Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery,New York,NY, USA, 3-18. https://doi.org/10.1145/3297858.3304013
Sudhanshu Goswami. 2005. https://lwn.net/Articles/132196/.
Jonathan Kaldor, Jonathan Mace, Michat Bejda, Edison Gao, Wiktor
Kuropatwa, Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan,
Brendan Viscomi, Vinod Venkataraman, Kaushik Veeraraghavan, and
Yee Jiun Song. 2017. Canopy: An end-to-end performance tracing and
analysis system. In SOSP ’17: Proceedings of the 26th Symposium on

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Toslali et al.

Operating Systems Principles.

Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. 2003.
Bug isolation via remote program sampling. In PLDI ’03: Programming
Language Design and Implementation. ACM.

Jonathan Mace. 2017. End-to-End Tracing: Adoption and Use Cases.
Survey. Brown University. https://cs.brown.edu/~jcmace/papers/ma
ce2017survey.pdf.

Jonathan Mace and Rodrigo Fonseca. 2018. Universal context
propagation for distributed system instrumentation. In EuroSys’18:
Proceedings of the Thirteenth EuroSys Conference.

Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing:
dynamic causal monitoring for distributed systems. In SOSP ’15:
Proceedings of the 25th Symposium on Operating Systems Principles.
Gideon Mann, Mark Sandler, Darja Krushevskaja, Sudipto Guha, and
Eyal Even-dar. 2011. Modeling the parallel execution of black-box
services. In Proceedings of the 3" USENIX Workshop on Hot Topics in

Cloud Computing.

Mirantis OSProfiler [n.d.]. OSProfiler. https://docs.openstack.org
/osprofiler/latest/.

Openstack [n.d.]. OpenStack web site. https://www.openstack.org.

OpenTelemetry website [n.d.].
http://opentelemetry.io/.

Austin Parker, Daniel Spoonhower, Jonathan Mace, Ben Sigelman, and
Rebecca Isaacs. 2020. Distributed tracing in practice: Instrumenting,
analyzing, and debugging microservices. O’Reilly Media.

A. Rabkin and R. H. Katz. 2013. How Hadoop Clusters Break. IEEE
Software 30, 4 (2013), 88-94.

Raja R. Sambasivan and Gregory R. Ganger. 2012. Automated diagnosis
without predictability is a recipe for failure. In Proceedings of the
4th USENIX conference on Hot Topics in Cloud Computing. USENIX
Association, 21-21.

Raja R. Sambasivan, Ilari Shafer, Jonathan Mace, Benjamin H Sigelman,
Rodrigo Fonseca, and Gregory R. Ganger. 2016. Principled workflow-
centric tracing of distributed systems. In SoCC ’16: Proceedings of the
Seventh Symposium on Cloud Computing.

Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat,
Spencer Whitman, Michael Stroucken, William Wang, Lianghong Xu,
and Gregory R. Ganger. 2011. Diagnosing performance changes by
comparing request flows. In NSDI’11: Proceedings of the 8™ USENIX
Conference on Networked Systems Design and Implementation.

Yuri Shkuro. 2019. Mastering Distributed Tracing: Analyzing performance
in microservices and complex systems. Packt Publishing Ltd.

Benjamin H. Sigelman, Luiz A. Barroso, Michael Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. 2010. Dapper, a large-scale distributed systems tracing
infrastructure. Technical Report dapper-2010-1. Google.

The Apache Hadoop Distributed File System 2013. The Apache Hadoop
Distributed File System. http://hadoop.apache.org/hdfs/.
Marc-André Vef, Vasily Tarasov, Dean Hildebrand, and André
Brinkmann. 2018. Challenges and Solutions for Tracing Storage
Systems: A Case Study with Spectrum Scale. ACM Transactions on
Storage (TOS) 14, 2 (May 2018), 18—24.

Larry Wasserman. 2010. All of Statistics: A Concise Course in Statistical
Inference. Springer Publishing Company, Incorporated.

Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell D E Long, and
Carlos Maltzahn. 2006. Ceph: a scalable, high-performance distributed
file system. In OSDI "06: Proceedings of the 7" USENIX Symposium on
Operating Systems Design and Implementation.

Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy. 2010. SherLog: error diagnosis by connecting clues
from run-time logs. In ASPLOS ’10: Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming Languages and

OpenTelemetry website.

https://bugs.launchpad.net/nova/+bug/1160487
https://bugs.launchpad.net/nova/+bug/1160487
https://docs.openstack.org/operations-guide/ops-maintenance-slow.html
https://docs.openstack.org/operations-guide/ops-maintenance-slow.html
https://ask.openstack.org/en/question/128160/ovs-plugin-vif-plugging-slow-for-vms-with-multiple-nics/
https://ask.openstack.org/en/question/128160/ovs-plugin-vif-plugging-slow-for-vms-with-multiple-nics/
https://ask.openstack.org/en/question/128160/ovs-plugin-vif-plugging-slow-for-vms-with-multiple-nics/
https://openstack-dev.openstack.narkive.com/gLpnyrJl/nova-neutron-update-on-os-vif-progress-port-binding-negotiation
https://openstack-dev.openstack.narkive.com/gLpnyrJl/nova-neutron-update-on-os-vif-progress-port-binding-negotiation
https://openstack-dev.openstack.narkive.com/gLpnyrJl/nova-neutron-update-on-os-vif-progress-port-binding-negotiation
https://gitlab.mpi-sws.org/cld/trace-datasets/deathstarbench_traces
https://doi.org/10.1145/3357223.3362704
https://www.cockroachlabs.com/
https://doi.org/10.1145/3297858.3304013
https://lwn.net/Articles/132196/
https://cs.brown.edu/~jcmace/papers/mace2017survey.pdf
https://cs.brown.edu/~jcmace/papers/mace2017survey.pdf
https://docs.openstack.org/osprofiler/latest/
https://docs.openstack.org/osprofiler/latest/
https://www.openstack.org
http://opentelemetry.io/
http://hadoop.apache.org/hdfs/

Automating instrumentation choices for performance problems in distributed applications with VAIF

[40

(41

[42

[43

]

—

]

[t

Operating Systems.

Ding Yuan, Soyeon Park, Peng Huang, Yang Liu, Michael M Lee,
Xiaoming Tang, Yuanyuan Zhou, and Stefan Savage. 2012. Be
conservative: enhancing failure diagnosis with proactive logging.
In OSDI’ 12: Proceedings of the 10th conferences on Operating Systems
Design & Implementation.

Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan
Savage. 2012. Improving software diagnosability via log enhancement.
ACM SIGPLAN Notices 47, 4 (June 2012), 3-14.

Xu Zhao, Kirk Rodrigues, Yu Luo, Michael Stumm, Ding Yuan, and
Yuanyuan Zhou. 2017. Log20: Fully automated optimal placement of
log printing statements under specified overhead threshold. In SOSP
’17: Proceedings of the 26th Symposium on Operating Systems Principles.

Zhigiang Zuo, Lu Fang, Siau-Cheng Khoo, Guoqing Xu, and Shan
Lu. 2016. Low-overhead and fully automated statistical debugging
with abstraction refinement. In OOPSLA ’16: Proceedings of the ACM
international conference on Object oriented programming systems
languages and applications.

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

	Abstract
	1 Introduction
	2 Towards automation
	2.1 Logging challenges
	2.2 Key insights
	2.3 Addressing the requirements

	3 VAIF
	3.1 Design
	3.2 Control logic & hypothesis forest
	3.3 Search space & search strategies
	3.4 Limitations & discussion

	4 VAIF prototypes
	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Scalability of search
	5.3 Minimal trace sizes
	5.4 Comparison of search strategies
	5.5 Nominal operations

	6 Case studies
	7 Related Work
	8 Summary
	References

