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Abstract—Consider the following distributed optimization sce-
nario. A worker has access to training data that it uses to compute
the gradients while a server decides when to stop iterative
computation based on its target accuracy or delay constraints.
The only information that the server knows about the problem
instance is what it receives from the worker via a rate-limited
noiseless communication channel. We introduce the technique
we call differential quantization (DQ) that compensates past
quantization errors to make the descent trajectory of a quantized
algorithm follow that of its unquantized counterpart. Assuming
that the objective function is smooth and strongly convex, we
prove that differentially quantized gradient descent (DQ-GD)
attains a linear convergence rate of max{σGD, ρn2

−R}, where
σGD is the convergence rate of unquantized gradient descent
(GD), ρn is the covering efficiency of the quantizer, and R is the
bitrate per problem dimension n. Thus at any R ≥ log2 ρn/σGD,
the convergence rate of DQ-GD is the same as that of unquantized
GD, i.e., there is no loss due to quantization. We show a
converse demonstrating that no GD-like quantized algorithm
can converge faster than max{σGD, 2

−R}. Since quantizers exist
with ρn → 1 as n → ∞ (Rogers, 1963), this means that DQ-
GD is asymptotically optimal. In contrast, naively quantized
GD where the worker directly quantizes the gradient attains
only σGD + ρn2

−R. The technique of differential quantization
continues to apply to gradient methods with momentum such as
Nesterov’s accelerated gradient descent, and Polyak’s heavy ball
method. For these algorithms as well, if the rate is above a certain
threshold, there is no loss in convergence rate obtained by the
differentially quantized algorithm compared to its unquantized
counterpart. Experimental results on both simulated and real-
world least-squares problems validate our theoretical analysis.

I. INTRODUCTION

A. Motivation and related work

Distributed optimization plays a central role in large-
scale machine learning where gradient descent (GD) and its
stochastic variant SGD are employed to minimize an objective
function [1]–[8]. Despite the scalability of parallel gradient
training, the frequent exchange of high-dimensional gradients
has become a communication overhead that slows down the
overall learning process [2], [5], [9]–[12].

To reduce the communication cost, one line of research
focuses on gradient quantization with a fixed number of bits
per problem dimension. Scalar quantizers, which quantize
each coordinate of the input vector separately, are often used
to address the communication bottleneck in distributed SGD
algorithms. For each coordinate, the quantization levels are
distributed either uniformly [9], [13]–[16] or non-uniformly
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[17] within the dynamic-range interval. Convergence of such
quantized gradient methods is typically established via relating
the variance of the quantized (thus noisy) gradient to the bit
rate, and the communication cost is further reduced using an
efficient integer coding scheme such as the Elias encoding
[13], [17]. Due to scalar quantization, the obtained conver-
gence rate would pay an extra dimension-dependent factor.
On the other hand, vector quantizers are hard to implement
in practice and hence are less considered in this context. In
this direction, [18], [19] construct vector quantizers from the
convex hull of specifically structured point sets. However, it
has been observed in practice [9] as well as in theory [21] that
gradient methods with fixed bit rate quantizers do not converge
for a low bit rate.

Another common way to reduce the communication band-
width in parallel SGD training is to sparsify the gradient
vectors. For example, the top-k sparsifier (or compressor)
preserves the k coordinates of the largest magnitude and
sends them with full precision [11], [20], [22]–[25]. The
compressors used are either biased [11], [23], [25], [25]–[30]
or unbiased [31]–[33], and the compression error is controlled
by a user-specific accuracy parameter (e.g. k for the top-k
compressor). Similar to the failure of 1-bit SGD (without
mini-batching) due to the biased quantization error [9], [21],
it is observed in [30] that compressed GD with the top-1
compressor does not always converge. For an empirical risk
minimization problem where the global objective function is
the average of local objective functions, recent works [34]–
[36] perform analog gradient compression and communication
by taking the physical superposition nature of the underlying
multiple-access channel into the account.

Most distributed SGD algorithms with biased compressors
in the literature apply the idea of error compensation that
can be traced back to the Σ-∆ modulation [37]. To form the
compressor input at each iteration, there are various ways to
add past compression errors back to the computed gradients.
While [38] weights all the past errors in a time-decaying
fashion, the error-feedback scheme (EF) uses only the very last
error and provides convergence for the single-worker setting
[21], [25], [39] as well as the multi-worker setting [30], [40].

Although convergence rates of quantized gradient methods
depend on the bit rate R [13], [16]–[18], few existing works
provide convergence lower bounds in terms of R that apply to
any algorithm within a specified class. For quantized projected
SGD, [16], [18] give lower bounds to a minimax expected
estimation error (i.e. difference between the output function
value and the optimal one), which is in the same order of
convergence as that of the unquantized SGD over convex
functions. However, the allowable quantizer input in [16], [18]
is fixed to be the gradient of the current iterate. Besides,
standard assumptions such as unbiasedness and boundedness
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for the stochastic gradients [41]–[43] are crucial for SGD
and in fact simplify the analysis of the quantized gradient
algorithms. In this paper, we show that the performance of
quantized (non-stochastic) gradient descent can be improved
if this restriction is relaxed.

B. Contributions

We consider the single-worker scenario of the parameter
server framework [10], [13]–[15], [17], [44], [45] consisting
of a worker that computes the gradients and a server that
successively refines the model parameter (i.e. the iterate) and
decides when to stop the distributed iterative algorithm based
on its target accuracy or delay constraints. See Fig. 1.

Worker

access ∇f(zt)

Parameter server

x̂t+1 x̂t − ηqt

iterate x̂t

nR-bit qt

Fig. 1: Quantized gradient descent (QGD) in a single-worker
remote training setting. At each iteration t, the server first
sends the current iterate x̂t to the worker noiselessly, who
computes the gradient at some point zt that is a function of
(but not necessarily equal to) x̂t. Then, the worker forms a
descent direction qt and pushes it back to the server under the
nR bits per iteration constraint.

We study the fundamental tradeoff between the convergence
rate and the communication rate of quantized gradient descent.
We focus on the class Fn of smooth and strongly convex
objective functions f : Rn 7→ R whose minimizers are bounded
in the Euclidean norm. For a quantized iterative algorithm A,
its worst-case linear convergence rate over Fn at rate R bits
per problem dimension is defined as

σA(n,R) , inf
R′≤R

sup
f∈Fn

lim sup
T→∞

‖x̂T (R′)− x∗f ‖
1
T (1)

where x∗f is the optimizer, and x̂0(R′), x̂1(R′), x̂2(R′), . . . is
the sequence of iterates generated by A in response to f ∈ Fn
when it operates at R′ bits per problem dimension.

We consider three popular algorithms that converge lin-
early:1 the classical gradient descent (GD) with fixed step
size, the accelerated gradient descent (AGD) [46], and the
heavy ball method (HB) [47]. We devise a novel technique
for error feedback we call differential quantization (DQ) that
compensates past quantization errors to guide the descent
trajectory of a quantized algorithm to match the descent
trajectory of its unquantized counterpart. By applying the DQ
technique to the GD, AGD, and HB algorithms, we construct
three new quantized iterative optimization algorithms: DQ-
GD, DQ-AGD, and DQ-HB. By analyzing them, we show
achievability bounds of the form2

σA(n,R) ≤ max
{
σA, ρn2−R (1 + φA(n,R))

}
, (2)

1Note that SGD converges only sub-linearly over smooth and strongly
convex functions [41]–[43].

2The convergence result on DQ-HB in (2) requires that the function f ∈ Fn

is twice continuously differentiable.

where A ∈ {DQ-GD, DQ-AGD, DQ-HB}, σA , σA(∞) is
the linear convergence rate of the unquantized counterpart
of A, ρn is the covering efficiency of the quantizer, and
φA(n,R) ≥ 0 is function that we specify; for example,
φDQ-GD(n,R) ≡ 0. As (2) indicates, each of the novel DQ
algorithms achieves the corresponding σA for R ≥ RA(n),
where

RA(n) , min {R : φA(n,R) = σA} . (3)

In other words, there is no loss due to quantization once the
rate surpasses RA(n).

We show an information-theoretic converse of the form

σA(n,R) ≥ max
{
σGD, 2

−R} , (4)

which applies to any “GD-like” algorithm A (the class of
“GD-like” algorithms is formally defined in Definition IV.1
in Section IV below). Recalling the classical result of Rogers
[48, Th. 3] that shows the existence of quantizers with covering
efficiency ρn → 1 as n→∞ and comparing (2) and (4), one
can deduce the asymptotic optimality of DQ-GD within the
class of “GD-like” algorithms. In contrast, the widely adopted
method that quantizes the gradient of its current iterate directly
[13]–[15], [49] referred to as naively quantized (NQ) GD in
this paper, has linear convergence rate

σNQ-GD(n,R) ≤ σGD + ρn2−R. (5)

The rest of the paper is organized as follows. We present the
DQ-GD algorithm in Section II. In Section III, we present its
convergence analysis and an experimental validation on least-
squares problems. The converse is presented in Section IV.
Extensions to gradient methods with momentum and to the
multiworker setting are discussed in Section V, which con-
cludes the paper. Proofs and many details are in the extended
version [50].

II. DIFFERENTIALLY QUANTIZED GRADIENT DESCENT

A quantizer of dimension n and rate R is a function q : D →
Rn, where D ⊆ Rn is the domain, such that its image satisfies

|Im(q)| ≤ 2nR. (6)

We fix a dimension-n, rate-R quantizer q, and we set up
quantizer qt to be used at iteration t as

qt = rtq(·/rt) (7)

for a properly chosen sequence of shrinkage factors {rt}
(see (19), below). Therefore, each quantizer qt has the same
geometric structure but different resolution.

The (unquantized) gradient descent algorithm updates its
iterate according to

xt+1 xt − η∇f(xt), (8)

where η > 0 is the constant stepsize chosen to minimize the
function value along the search direction.

In Fig. 2, we illustrate an application of differential quan-
tization (DQ) to GD (8), which yields the DQ–GD algorithm
(Algorithm 1). At each iteration t = 0, 1, 2, . . ., DQ–GD first
guides its iterate x̂t back to the iterate xt associated with the
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x0

x1 x̂1

−ηu0 = −η∇f(x0) −q0
ηe0

x2 x̂2

−η∇f(x1) −ηu1
−q1

ηe1

Fig. 2: Illustration of the DQ–GD algorithm (Algorithm 1).

corresponding unquantized algorithm, i.e., GD, by compensat-
ing previous scaled quantization error ηet−1 (Line 4). It then
computes the gradient at zt = xt and sets the quantizer input
as (Line 5)

ut ∇f (x̂t + ηet−1)− et−1. (9)

The recorded quantization error et captures exactly the differ-
ence between x̂t+1 and xt+1 for the next iteration.

Algorithm 1: DQ–GD

1 Initialize e−1 = x̂0 = 0
2 for t = 0, 1, 2, . . . do
3 Worker:
4 zt = x̂t + ηet−1
5 ut = ∇f(zt)− et−1
6 qt = qt(ut)
7 et = qt − ut

8 Server: x̂t+1 = x̂t − ηqt
9 end

III. CONVERGENCE RATE

We denote by ‖·‖ the Euclidean norm, and by B(r) ,
{u ∈ Rn : ‖u‖ ≤ r} the Euclidean ball Rn of radius r with
center at 0.

We fix positive scalars L, and µ, and D, and we say that
a continuously differentiable function f : Rn 7→ R is in class
Fn if

i) f is L-smooth, i.e.,

‖∇f(v)−∇f(w)‖ ≤ L ‖v −w‖ ; (10)

ii) µ-strongly convex, i.e.,

function v 7→ f(v)− µ

2
‖v‖2 is convex; (11)

iii) the minimizer x∗f , arg minx∈Rn f(x) satisfies

‖x∗f ‖ ≤ D. (12)

We denote the condition number of an f ∈ Fn as

κ ,
L

µ
. (13)

Note that κ ≥ 1 due to (10) and (11).

For a bounded-domain quantizer q : D → Rn, we refer to

r(q) , max {δ : ∃c ∈ Rn s.t. B(δ) ⊆ D} (14)

as the dynamic range of q, to

d(q) , min {d : ∀x ∈ D, ‖x− q(x)‖ ≤ d} (15)

as its covering radius, and to

ρ (q) , |Im(q)|1/n d(q)

r(q)
, (16)

as its covering efficiency.3 A scalar uniform quantizer qu has
domain [−r(qu), r(qu)]n and covering efficiency

√
n. This is

wasteful: the classical result of Rogers [48, Th. 3] implies that
there exists a sequence of n-dimensional quantizers qn with
ρ (qn) → 1 as n → ∞, while definition (16) implies that
ρ (q) ≥ 1 for any quantizer q.

Unquantized gradient descent achieves the convergence rate

σGD =
κ− 1

κ+ 1
(17)

over Fn [46, Th. 2.1.15]. The following result provides a
convergence guarantee for DQ–GD.

Theorem III.1 (Convergence of DQ–GD). Let f ∈ Fn. Fix
a dimension-n, rate-R quantizer q with dynamic range 1 and
covering efficiency ρn. Then, Algorithm 1 with the stepsize

η =
2

L+ µ
(18)

implemented with the the shrinkage factors

rt = DL
t∑

τ=0

στGD

(
ρn2−R

)t−τ
(19)

in the definition of qt (7) achieves the following convergence
rate over F1

n (1):

σDQ-GD(n,R) ≤ max
{
σGD, ρn2−R

}
, (20)

Proof sketch. The path of DQ-GD and that of GD are related
as (see Fig. 2)

x̂t = xt − ηet−1 (21)

Comparing (21) and Line 4 in Algorithm 1, we see that
zt = xt, i.e., DQ-GD computes the gradient at the unquan-
tized trajectory {xt}. The convergence guarantee of GD [46,
Theorem 2.1.15] controls the first term in the recursion (21).
To bound the second term in (21), we observe using (16) that
for any rt > 0 in (7),

max
u∈B(rt)

‖qt(u)− u‖ = rt max
u∈B(1)

‖q(u)− u‖ (22)

=
ρn
2R
rt, (23)

i.e. quantizer qt used at iteration t has dynamic range rt
and covering radius (23). To complete the proof, we show
by induction that with rt in (19), the input ut to the quantizer
qt generated by Algorithm 1 always lies within B(rt), and as

3Covering efficiency introduced in (16) extends the notion of covering
efficiency of an infinite lattice [51], which measures how well that lattice
covers the whole space, to bounded-domain quantizers.
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a result the quantization error decays exponentially fast. The
stepsize (18) is optimal both for GD [46, Theorem 2.1.15] and
for DQ-GD. See [50] for details.

The bound in (20) exhibits a phase-transition behavior: at
any R ≥ log2 ρn/σGD, achieving the convergence rate of
unquantized GD is possible, while at any R < log2 ρn/σGD,
the achievable convergence rate is only 2−R.

The Naively Quantized Gradient Descent (NQ–GD) is a
common method of quantizing descent algorithms [13]–[17],
[49] where the worker directly quantizes the gradient of its
current iterate (cf. (9))

ut ← ∇f(x̂t). (24)

In the extended version [50], we show that (cf. (20))

σNQ-GD(n,R) ≤ σGD + ρn2−R. (25)

In Figure 3, we numerically compare the linear convergence
rate of DQ-GD (Algorithm 1), the NQ-GD, and the unquan-
tized GD (8) on least-squares problems

f(x) =
1

2
‖y −Ax‖2 (26)

where y ∈ Rm,A ∈ Rm×n, with m ≥ n. We use the uniform
scalar quantizer for the ease of implementation and take as a
consequence a space-filling loss of

√
n.

We observe that DQ-GD has a significantly faster conver-
gence rate than NQ-GD, and that the empirical results closely
track our analytical convergence bounds (20) and (25). The
convergence rate of unquantized GD serves as a lower bound
to both quantized algorithms.

IV. CONVERSE

In this section, we characterize the optimal convergence rate
achievable within class AGD of quantized gradient descent
algorithms, formally defined next.

Definition IV.1 (Class AGD of quantized algorithms). A
quantized gradient descent algorithm A ∈ AGD consists of
a central server and an end worker. The worker is initialized
with a sequence of quantizers qt, and has access to the function
f. We say that A is applied at dimension n and rate R if
the objective function f ∈ Fn, and |Im(qt)| ≤ 2nR. At each
iteration t, the server first sends x̂t to the worker noiselessly,
starting from some x̂0 ∈ Rn. The worker then determines its
gradient-access point zt and its quantizer input ut under the
structural constraints

zt ∈ x̂t + span {e0 , . . . , et−1} (27)
ut ∈ ∇f(zt) + span {e0 , . . . , et−1} , (28)

where ei , qi −ui, i = 0, . . . , t− 1 are the past quantization
errors before iteration t, and + denotes Minkowski’s sum.
Upon receiving qt = qt(ut) from the worker, the server
performs the update

x̂t+1 = x̂t − ηqt (29)

with a fixed stepsize η > 0.
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Fig. 3: Empirical convergence rates (as circles) and corre-
sponding upper bounds (17), (20), and (25) (as lines). The
real-world least-squares matrix ash331 is extracted from
the online repository SuiteSpare [52]. For smaller values of
the data rate R, quantized GD may not even converge as√
n2−R ≥ 1. In that case, we clip off the convergence rate

at 1. For each per-dimension quantization rate R ≥ 1, we
generate 500 instances of the vector y and x̂0 with i.i.d.
standard normal entries. In the case of Gaussian ensemble,
we also generate 500 matrices A’s with i.i.d. standard normal
entries, one for each y, and rescale the spectrum of A so that
it has a prescribed condition number κ. We run the iterative
algorithms for as many iterations T as possible until reaching
the machine’s finest precision.

Due to conditions (27) and (28), if there is no quantization
error at each iteration (i.e., if R = ∞), then any quantized
algorithm in AGD reduces to the unquantized gradient descent.
Both DQ-GD and NQ-GD fall in the class AGD.

Theorem IV.1 (Converse within class AGD). The best linear
convergence rate achievable within class AGD of algorithms
satisfies

inf
A∈AGD

σA(n,R) ≥ max
{
σGD, 2

−R} (30)

Proof sketch. We fix an A ∈ AGD, and we lower-bound the
convergence rate it achieves at rate R in two different ways.
On one hand, we show that A cannot converge faster than
the unquantized GD. Then, we use an argument similar to
[53] to craft a worst-case problem instance g ∈ Fn for which
the iterates of the unquantized GD satisfy

∥∥xt+1 − x∗g
∥∥ =

σGD

∥∥xt − x∗g
∥∥, which ensures that infA∈AGD σA(n,R) ≥

σGD. On the other hand, we notice that if A is applied
at dimension n and rate R, then the set SA ⊆ Rn of all
possible locations of the iterate x̂T after T iterations of A

1203
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on February 07,2023 at 19:57:25 UTC from IEEE Xplore.  Restrictions apply. 



has cardinality at most 2nRT , and we apply a volume-division
argument to claim that infA∈AGD σA(n,R) ≥ 2R. See [50] for
details.

Applying Theorem III.1 with Rogers-optimal quantizers
with ρn → 1 [48, Th. 3] and juxtaposing with Theorem IV.1,
we characterize the optimal convergence rate achievable in the
limit of large problem dimension as

lim
n→∞

inf
A∈AGD

σA(n,R) = max
{
σGD, 2

−R} . (31)

In other words, DQ-DG achieves the best possible convergence
rate within AGD, in the limit of large problem dimension. This
is rather remarkable: it means not only that DQ-DG compen-
sates previous quantization errors optimally so that no rate is
wasted, but that our convergence analysis in Theorem III.1 is
tight enough to capture this optimality. Furthermore, notice
that the right side of (31) is < 1 at any R > 0. This
means that at any R > 0 however small, DQ-DG with
Rogers-optimal quantizers converges linearly at a large enough
problem dimension n.

V. EXTENSIONS

A. Gradient methods with momentum

Gradient methods with momentum, such as Nesterov’s
accelerated gradient descent (AGD) [46], and Polyak’s heavy
ball (HB) method [47], rely on the memory of past iterations to
smoothen the descent paths and to accelerate the convergence.
Differential quantization applies to quantize these algorithms
as well. See [50] for the details on DQ-AGD and DQ-HB, the
differentially quantized versions of these algorithms. Where
in DQ-GD (9) the quantizer input depends on the previous
quantization error et−1, the quantizer input ut at iteration t
of DQ-AGD and DQ-HB depends on the past two quantization
errors et−1 and et−2:

ut ∇f(zt)− [(1 + γ)et−1 − γet−2] (32)

for an appropriately chosen extrapolation coefficient. By solv-
ing a second-order linear non-homogeneous recurrence rela-
tion (the dynamic ranges’ recursion is more straightforward
in DQ-GD), we obtain the sequence of dynamic ranges that
allows us to show achievability bounds of the form (2). For
A ∈ {DQ-AGD, DQ-HB}, the function φA(n,R) > 0 grows
as 2R/2 with R. As (2) indicates, each of the novel DQ
algorithms achieves the corresponding σA for R ≥ RA(n),
where RA(n) is defined in (3). In other words, there is no
loss due to quantization once the rate surpasses RA(n). Since
σHB < σAGD < σGD, this means that DQ-AGD, DQ-HB
outperform DQ-DG at a large enough data rate R. This is no
contradiction to the converse in Theorem IV.1 because these
algorithms belong to the class AGMM ⊃ AGD, which relaxes
(29) as

x̂t+1 ∈ x̂0 + span {q0, . . . , qt} . (33)

Unlike DQ-GD that enjoys linear convergence for any R >
0, DQ-AGD and DQ-HB exhibit a second phase transition: for
R ≤ R′A, where

R′A , max
{
R : 2−R

(
1 + lim

n→∞
φA(n,R)

)
= 1
}
, (34)

these algorithms do not converge linearly even for an arbitrar-
ily large n. Thus for small rates R, DQ–GD outperforms these
momentum methods.

B. Multiworker gradient methods

The converse in Theorem IV.1 extends to quantized gradient
descent on a sum of K smooth and strongly convex objective
functions where each worker has access to only one of the
summands and the sum rate is constrained by nR bits per
iteration across the workers. Differential quantization does not
directly apply to K-worker quantized gradient descent since
each worker does not know the local quantization errors stored
by the others, and thus cannot guide the descent trajectory
back to the unquantized path. Thus, whether (30) is attainable
in the multiworker setting, and how should each worker
optimally compensate its own past quantization errors remains
an open problem. In this direction, we show in [50] that the
multiworker NQ-GD attains convergence rate σGD +c ρn2−R,
where c is a constant that is optimized by the rate allocation
Rk ∼ log2 Lk, where Lk is the smoothness parameter of the
k-th local function. Although to the best of our knowledge
this is the fastest convergence result for distributed quantized
(non-stochastic) gradient descent, it approaches the converse
only in the limit of large R.
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