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Abstract—Optimization algorithms are increasingly being used

in applications with limited time budgets. In many real-time

and embedded scenarios, only a few iterations can be performed

and traditional convergence metrics cannot be used to evaluate

performance in these non-asymptotic regimes. In this paper,

we examine the transient behavior of accelerated first-order

optimization algorithms. For convex quadratic problems, we

employ tools from linear systems theory to show that transient

growth arises from the presence of non-normal dynamics. We

identify the existence of modes that yield an algebraic growth

in early iterations and quantify the transient excursion from the

optimal solution caused by these modes. For strongly convex

smooth optimization problems, we utilize the theory of integral

quadratic constraints (IQCs) to establish an upper bound on the

magnitude of the transient response of Nesterov’s accelerated

algorithm. We show that both the Euclidean distance between

the optimization variable and the global minimizer and the rise

time to the transient peak are proportional to the square root

of the condition number of the problem. Finally, for problems

with large condition numbers, we demonstrate tightness of the

bounds that we derive up to constant factors.

Index Terms—Convex optimization, first-order optimization

algorithms, heavy-ball method, integral quadratic constraints,

Nesterov’s accelerated method, non-asymptotic behavior, non-

normal matrices, transient growth.

I. INTRODUCTION

First-order optimization algorithms are widely used in a
variety of fields including statistics, signal and image pro-
cessing, control, and machine learning [1]–[8]. Acceleration
is often utilized as a means to achieve a faster rate of conver-
gence relative to gradient descent while maintaining low per-
iteration complexity. There is a vast literature focusing on the
convergence properties of accelerated algorithms for different
stepsize rules and acceleration parameters, including [9]–[12].
There is also a growing body of work which investigates
robustness of accelerated algorithms to various types of uncer-
tainty [13]–[19]. These studies demonstrate that acceleration
increases sensitivity to uncertainty in gradient evaluation.

In addition to deterioration of robustness in the face of
uncertainty, asymptotically stable accelerated algorithms may
also exhibit undesirable transient behavior [20]. This is in
contrast to gradient descent which is a contraction for strongly
convex problems with suitable stepsize [21]. In real-time
optimization and in applications with limited time budgets, the
transient growth can limit the appeal of accelerated methods.
In addition, first-order algorithms are often used as a building
block in multi-stage optimization including ADMM [22] and
distributed optimization methods [23]. In these settings, at
each stage we can perform only a few iterations of first-order
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updates on primal or dual variables and transient growth can
have a detrimental impact on the performance of the entire
algorithm. This motivates an in-depth study of the behavior of
accelerated first-order methods in non-asymptotic regimes.

It is widely recognized that large transients may arise from
the presence of resonant modal interactions and non-normality
of linear dynamical generators [24]. Even in the absence of un-
stable modes, these can induce large transient responses, sig-
nificantly amplify exogenous disturbances, and trigger depar-
ture from nominal operating conditions. For example, in fluid
dynamics, such mechanisms can initiate departure from stable
laminar flows and trigger transition to turbulence [25], [26].

In this paper, we consider the optimization problem

minimize
x

f(x) (1)

where f : Rn ! R is a convex and smooth function, and we
focus on a class of accelerated first-order algorithms

xt+2 = xt+1+�(xt+1�xt)�↵rf(xt+1+�(xt+1�xt)) (2)

where t is the iteration index, ↵ is the stepsize, and � is
the momentum parameter. In particular, we are interested in
Nesterov’s accelerated and Polyak’s heavy-ball methods that
correspond to � = � and � = 0, respectively. While these
algorithms have faster convergence rates compared to the
standard gradient descent (� = � = 0), they may suffer from
large transient responses; see Fig. 1 for an illustration. To
quantify the transient behavior, we examine the ratio of the
largest error in the optimization variable to the initial error.

For convex quadratic problems, (2) can be cast as a linear
time-invariant (LTI) system for which modal analysis of the
state-transition matrix can be performed. For both accelerated
algorithms, we identify non-normal modes that create large
transient growth, derive analytical expressions for the state-
transition matrices, and establish bounds on the transient
response in terms of the convergence rate and the iteration
number. We show that both the peak value of the transient
response and the rise time to this value increase with the square

kx
t
�

x
?
k2 2

iteration number t
Fig. 1. Error in the optimization variable for Polyak’s heavy-ball (black) and
Nesterov’s (red) algorithms with the parameters that optimize the convergence
rate for a strongly convex quadratic problem with the condition number 103
and a unit norm initial condition with x

0 6= x
?.
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root of the condition number of the problem. Moreover, for
general strongly convex problems, we combine a Lyapunov-
based approach with the theory of IQCs to establish an upper
bound on the transient response of Nesterov’s accelerated
algorithm. As for quadratic problems, we demonstrate that this
bound scales with the square root of the condition number.

This work builds on our recent conference papers [27],
[28]. In contrast to these preliminary results, we provide
a comprehensive analysis of transient growth of accelerated
algorithms for convex quadratic problems and address the im-
portant issue of eliminating transient growth of Nesterov’s ac-
celerated algorithm with the proper choice of initial conditions.
Adaptive restarting, which was introduced in [20] to address
the oscillatory behavior of Nesterov’s accelerated method,
provides heuristics for improving transient responses. In [29],
the transient growth of second-order systems was studied and
a framework for establishing upper bounds was introduced,
with a focus on real eigenvalues. The result was applied to
the heavy-ball method but was not applicable to quadratic
problems in which the dynamical generator may have complex
eigenvalues. We account for complex eigenvalues and conduct
a thorough analysis for Nesterov’s accelerated algorithm as
well. Furthermore, for convex quadratic problems, we provide
tight upper and lower bounds on transient responses in terms
of the condition number and identify the initial condition that
induces the largest transient response. Similar results with
extensions to the Wasserstein distance have been recently
reported in [30]. Previous work on non-asymptotic bounds for
Nesterov’s accelerated algorithm includes [31], where bounds
on the objective error in terms of the condition number were
provided. However, in contrast to our work, this result intro-
duces a restriction on the initial conditions. Finally, while [32]
presents computational bounds we develop analytical bounds
on the non-asymptotic value of the estimated optimizer.

II. CONVEX QUADRATIC PROBLEMS

In this section, we examine transient responses of acceler-
ated algorithms for convex quadratic objective functions,

f(x) =
1

2
xTQx (3a)

where Q = QT ⌫ 0 is a positive semi-definite matrix. In what
follows, we first bring (2) into a standard LTI state-space form
and then utilize appropriate coordinate transformation to de-
compose the dynamics into decoupled subsystems. Using this
decomposition, we provide analytical expressions for the state-
transition matrix and establish sharp bounds on the transient
growth and the location of the transient peak for accelerated
algorithms. We also examine the influence of initial conditions
on transient responses and relegate the proofs to Appendix A.

A. LTI formulation

The matrix Q admits an eigenvalue decomposition, Q =
V ⇤V T , where ⇤ is the diagonal matrix of eigenvalues with

L := �1 � · · · � �r =: m > 0

�i = 0 for i = r + 1, . . . , n
(3b)

Method Optimal parameters Linear rate ⇢

Nesterov ↵ = 4
3L+m � =

p
3+1�2p
3+1+2

1� 2p
3+1

Polyak ↵ = 4
(
p
L+

p
m)2

� = (
p
�1)2

(
p
+1)2

1� 2p
+1

TABLE I
PARAMETERS THAT PROVIDE OPTIMAL CONVERGENCE RATES FOR A

CONVEX QUADRATIC OBJECTIVE FUNCTION (3) WITH  := L/m.

and V is the unitary matrix of the corresponding eigenvectors.
We define the condition number  := L/m as the ratio of the
largest and smallest non-zero eigenvalues of the matrix Q. For
f in (3a), we have rf(x) = Qx, and the change of variables
x̂t := V Txt brings dynamics (2) to

x̂t+2 = (I � ↵⇤) x̂t+1 + (�I � �↵⇤)(x̂t+1 � x̂t). (4)

This system can be represented via n decoupled second-order
subsystems of the form,

 ̂t+1
i = Ai ̂

t
i , x̂t

i = Ci ̂
t
i (5a)

where x̂t
i is the ith element of the vector x̂t 2 Rn,  ̂t

i :=⇥
x̂t
i x̂t+1

i

⇤T , Ci :=
⇥
1 0

⇤
, and

Ai =


0 1

�(� � �↵�i) 1� ↵�i + (� � �↵�i)

�
. (5b)

B. Linear convergence of accelerated algorithms

The minimizers of (3a) are determined by the null space of
the matrix Q, x? 2 N (Q). The constant parameters ↵ and �
can be selected to provide stability of subsystems in (5) for all
�i 2 [m,L], and guarantee convergence of x̂t

i to x̂?i := 0 with
a linear rate determined by the spectral radius ⇢(Ai) < 1. On
the other hand, for i = r+1, . . . , n the eigenvalues of Ai are
� and 1. In this case, the solution to (5) is given by

x̂t
i =

1 � �t

1 � �
(x̂1

i � x̂0
0) + x̂0

i (6a)

and the steady-state limit of x̂t
i,

x̂?i :=
1

1 � �
(x̂1

i � x̂0
i ) + x̂0

i (6b)

is achieved with a linear rate � < 1. Thus, the iterates of (2)
converge to the optimal solution x? = V x̂? 2 N (Q) with a
linear rate ⇢ < 1 and Table I provides the parameters ↵ and
� that optimize the convergence rate [33, Proposition 1].

C. Transient growth of accelerated algorithms

In spite of a significant improvement in the rate of con-
vergence, acceleration may deteriorate performance on finite
time intervals and lead to large transient responses. This is in
contrast to gradient descent which is a contraction [21]. At any
t, we are interested in the worst-case ratio of the two norm of
the error of the optimization variable zt := xt�x? to the two
norm of the initial condition  0 �  ? =

⇥
(z0)T (z1)T

⇤T ,

J2(t) := sup
 0 6= ?

kxt � x?k22
k 0 �  ?k22

. (7)
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Proposition 1: For accelerated algorithms applied to convex
quadratic problems, J(t) in (7) is determined by

J2(t) = max

⇢
max
i r

kCiA
t
ik22, �2t/(1 + �2)

�
. (8)

Proof: Since V is unitary and dynamics (5) that govern
the evolution of each x̂t

i are decoupled, J(t) is determined by

J2(t) = max
i

sup
 ̂0

i 6=  ̂?
i

(x̂t
i � x̂?i )

2

k ̂0
i �  ̂?i k22

(9)

where  ̂?i :=
⇥
x̂?i x̂?i

⇤T . Furthermore, the mapping from
 ̂0
i �  ̂?i to x̂t

i� x̂?i is given by �i(t) := CiAt
i where the state-

transition matrix At
i is determined by the tth power of Ai,

x̂t
i � x̂?i = CiA

t
i( ̂

0
i �  ̂?i ) =: �i(t)( ̂

0
i �  ̂?i ). (10)

For �i 6= 0,  ̂0
i �  ̂?i =  ̂0

i is an arbitrary vector in R2. Thus,

sup
 ̂0

i 6=  ̂?
i

(x̂t
i � x̂?i )

2

k ̂0
i �  ̂?i k22

= kCiA
t
ik22, i = 1, . . . , r. (11)

This expression, however, does not hold when �i = 0 in (5)
because  0

i � ?i is restricted to a line in R2. Namely, from (6),

x̂t
i � x̂?i =

��t

1 � �
(x̂1

i � x̂0
0)

 0
i �  ?i =


x̂0
i � x̂?i

x̂1
i � x̂?i

�
=

�(x̂1
i � x̂0

i )

1 � �


1
�

� (12)

which, for any initial condition with x̂0
i 6= x̂1

i , leads to

(x̂t
i � x̂?i )

2

k 0
i �  ?i k22

=
�2t

1 + �2
, i = r + 1, . . . , n. (13)

Finally, substitution of (11) and (13) to (9) yields (8).
D. Analytical expressions for transient response

We next derive analytical expressions for the state-transition
matrix At

i and the response matrix �i(t) = CiAt
i in (5).

Lemma 1: Let µ1 and µ2 be the eigenvalues of the matrix

M =


0 1
a b

�

and let t be a positive integer. For µ1 6= µ2,

M t =
1

µ2 � µ1


µ1µ2(µ

t�1
1 � µt�1

2 ) µt
2 � µt

1

µ1µ2(µt
1 � µt

2) µt+1
2 � µt+1

1

�
.

Moreover, for µ := µ1 = µ2, the matrix M t is determined by

M t =


(1� t)µt t µt�1

�t µt+1 (t+ 1)µt

�
. (14)

Lemma 1 with M = Ai determines explicit expressions for
At

i. These expressions allow us to establish a bound on the
norm of the response for each decoupled subsystem (5). In
Lemma 2, we provide a tight upper bound on kCiAt

ik22 for
each t in terms of the spectral radius of the matrix Ai.

Lemma 2: The matrix M in Lemma 1 satisfies

k
⇥
1 0

⇤
M tk22  (t� 1)2⇢2t + t2⇢2t�2 (15)

where ⇢ is the spectral radius of M . Moreover, (15) becomes
equality if M has repeated eigenvalues.

Remark 1: For Nesterov’s accelerated algorithm with the
parameters that optimize the convergence rate (cf. Table I),
the matrix Âr, which corresponds to the smallest non-zero
eigenvalue of Q, �r = m, has an eigenvalue 1 � 2/

p
3+ 1

with algebraic multiplicity two and incomplete sets of eigen-
vectors. Similarly, for both �1 = L and �r = m, Â1 and
Âr for the heavy-ball method with the parameters provided
in Table I have repeated eigenvalues which are, respectively,
given by (1�

p
)/(1 +

p
) and �(1�

p
)/(1 +

p
).

We next use Lemma 2 with M = Ai to establish an
analytical expression for J(t).

Theorem 1: For accelerated algorithms applied to convex
quadratic problems, J(t) in (7) satisfies

J2(t)  max
n
(t� 1)2⇢2t + t2⇢2(t�1), �2t/(1 + �2)

o

where ⇢ := maxi r ⇢(Ai). Moreover, for the parameters
provided in Table I

J2(t) = (t� 1)2⇢2t + t2⇢2(t�1). (16)

Theorem 1 highlights the source of disparity between the
long and short term behavior of the response. While the
geometric decay of ⇢t drives xt to x? as t ! 1, early
stages are dominated by the algebraic term which induces a
transient growth. We next provide tight bounds on the time
tmax at which the largest transient response takes place and the
corresponding peak value J(tmax). Even though we derive the
explicit expressions for these two quantities, our tight upper
and lower bounds are more informative and easier to interpret.

Theorem 2: For accelerated algorithms with the parameters
provided in Table I, let ⇢ 2 [1/e, 1). Then the rise time tmax :=
argmaxt J(t) and the peak value J(tmax) satisfy

�1/log(⇢)  tmax  1 � 1/log(⇢)

�
p
2⇢

e log(⇢)
 J(tmax)  �

p
2

e ⇢ log(⇢)
.

For accelerated algorithms with the parameters provided in
Table I, Theorem 2 can be used to determine the rise time to
the peak in terms of condition number . We next establish
that both tmax and J(tmax) scale as

p
.

Proposition 2: For accelerated algorithms with the param-
eters provided in Table I, the rise time tmax := argmaxt J(t)
and the peak value J(tmax) satisfy
(i) Polyak’s heavy-ball method with  � 4.69

(
p
� 1)/2  tmax  (

p
+ 3)/2

(
p
� 1)2p

2 e(
p
+ 1)

 J(tmax)  (
p
+ 1)2p

2 e(
p
� 1)

(ii) Nesterov’s accelerated method with  � 3.01

(
p
3+ 1� 2)/2  tmax  (

p
3+ 1 + 2)/2

(
p
3+ 1� 2)2p
2 e

p
3+ 1

 J(tmax)  3+ 1p
2 e(

p
3+ 1� 2)

.

In Proposition 2, the lower-bounds on  are only required
to ensure that the convergence rate ⇢ satisfies ⇢ � 1/e, which
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t k

2 2

iteration number t iteration number t

(a) x1 = x0 (b) x1 = �x0

Fig. 2. Dependence of the error in the optimization variable on the iteration
number for the heavy-ball (black) and Nesterov’s methods (red), as well as
the peak magnitudes (dashed lines) obtained in Proposition 2 for two different
initial conditions with kx1k2 = kx0k2 = 1.

allows us to apply Theorem 2. We also note that the upper
and lower bounds on tmax and J(tmax) are tight in the sense
that their ratio converges to 1 as ! 1.
E. The role of initial conditions

The accelerated algorithms need to be initialized with x0

and x1 2 Rn. This provides a degree of freedom that can
be used to potentially improve their transient performance. To
provide insight, let us consider the quadratic problem with
Q = diag (, 1). Figure 2 shows the error in the optimization
variable for Polyak’s and Nesterov’s algorithms as well as the
peak magnitudes obtained in Proposition 2 for two different
types of initial conditions with x1 = x0 and x1 = �x0, respec-
tively. For x1 = �x0, both algorithms recover their worst-case
transient responses. However, for x1 = x0, Nesterov’s method
shows no transient growth.

Our analysis shows that large transient responses arise
from the existence of non-normal modes in the matrices Ai.
However, such modes do not move the entries of the state
transition matrix At

i in arbitrary directions. For example, using
Lemma 1, it is easy to verify that Ar in (5b), associated with
the smallest non-zero eigenvalue �r = m of Q in Nesterov’s
algorithm with the parameters provided by Table I has the
repeated eigenvalue µ = 1�2/

p
3+ 1 and At

r is determined
by (14) with M = Ar. Even though each entry of At

r

experiences a transient growth, its row sum is determined by

At
r


1
1

�
=


1 + 2t/(

p
3+ 1� 2)

1 + 2t/
p
3+ 1

�
(1 � 2/

p
3+ 1)t

and entries of this vector are monotonically decaying functions
of t. Furthermore, for i < r, it can be shown that the entries of
At

i [ 1 1 ]T remain smaller than 1 for all i and t. In Theorem 3,
we provide a bound on the transient response of Nesterov’s
method for balanced initial conditions with x1 = x0.

Theorem 3: For convex quadratic optimization problems,
the iterates of Nesterov’s accelerated method with a balanced
initial condition x1 = x0 and parameters provided in Table I
satisfy kxt � x?k2  kx0 � x?k2.

Proof: See Appendix B.

It is worth mentioning that the transient growth of the heavy-
ball method cannot be eliminated with the use of balanced

initial conditions. To see this, we note that the matrices At
r

and At
1 for the heavy-ball method with parameters provided in

Table I also take the form in (14) with µ = (1�
p
)/(1+

p
)

and µ = �(1 �
p
)/(1 +

p
), respectively. In contrast to

At
r

⇥
1 1

⇤T , which decays monotonically,

At
1


1
1

�
=


1 + 2t

p
/(1�

p
)

1 + 2t
p
/(1 +

p
)

�
(1�

p
)t

(1 +
p
)t

experiences transient growth. It was recently shown that an
averaged version of the heavy-ball method experiences smaller
peak deviation than the heavy-ball method [34]. We also
note that adaptive restarting provides effective heuristics for
reducing oscillatory behavior of accelerated algorithms [20].

Remark 2: For accelerated algorithms with the parameters
provided in Table I, the initial condition that leads to the largest
transient growth at any time ⌧ is determined by

 ̂0
r = c

⇥
(1� ⌧) ⇢⌧ ⌧⇢⌧�1

⇤T
,  ̂0

i = 0 for i 6= r

where c 6= 0 and  ̂0
r is the principal right singular vector of

CrA⌧r . Thus, the largest peak J(tmax) occurs for { ̂0
i = 0, i 6=

r} and  ̂0
r = c

⇥
(1� tmax) ⇢tmax tmax ⇢tmax�1

⇤T
, where

tight bounds on tmax are established in Proposition 2.

Remark 3: For �i = 0 in (5), |x̂t
i � x̂?i | decays mono-

tonically with a linear rate � and only non-zero eigenvalues
of Q contribute to the transient growth. Furthermore, for
the parameters provided in Table I, our analysis shows that
J2(t) = maxi r kCiAt

ik22. In what follows, we provide
bounds on the largest deviation from the optimal solution for
Nesterov’s algorithm for general strongly convex problems.

III. GENERAL STRONGLY CONVEX PROBLEMS

In this section, we combine a Lyapunov-based approach
with the theory of IQCs to provide bounds on the transient
growth of Nesterov’s accelerated algorithm for the class FL

m

of m-strongly convex and L-smooth functions. When f is
not quadratic, first-order algorithms are no longer LTI systems
and eigenvalue decomposition cannot be utilized to simplify
analysis. Instead, to handle nonlinearity and obtain upper
bounds on J in (7), we augment standard quadratic Lyapunov
functions with the objective error.

For f 2 FL
m, algorithm (2) is invariant under translation.

Thus, without loss of generality, we assume that x? = 0 is
the unique minimizer of (1) with f(0) = 0. In what follows,
we present a framework based on Linear Matrix Inequalities
(LMIs) that allows us to obtain time-independent bounds on
the error in the optimization variable. This framework com-
bines certain IQCs [35] with Lyapunov functions of the form

V ( ) =  TX + ✓f(C ) (17)

which consist of the objective function evaluated at C and a
quadratic function of  , where X is a positive definite matrix.

The theory of IQCs provides a convex control-theoretic
approach to analyzing optimization algorithms [33] and it was
recently employed to study convergence and robustness of the
first-order methods [14], [17], [32], [36]–[38]. The type of
Lyapunov functions in (17) was introduced in [32], [39] to
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study convergence for convex problems. For Nesterov’s accel-
erated algorithm, we demonstrate that this approach provides
orderwise-tight analytical upper bounds on J(t).

Nesterov’s accelerated algorithm can be viewed as a feed-
back interconnection of linear and nonlinear components

 t+1 = A t + B ut

yt = Cy  t, ut = �(yt)
(18a)

where the LTI part of the system is determined by

A =


0 I

��I (1 + �)I

�

B =


0

�↵I

�
, Cy =

⇥
��I (1 + �)I

⇤ (18b)

and the nonlinear mapping �: Rn ! Rn is �(y) := rf(y).
Moreover, the state vector  t and the input yt to � are
determined by

 t :=


xt

xt+1

�
, yt := (1 + �)xt+1 � �xt. (18c)

For smooth and strongly convex functions f 2 FL
m, � satisfies

the quadratic inequality [33, Lemma 6]


y � y0
�(y) � �(y0)

�T
⇧


y � y0

�(y) � �(y0)

�
� 0 (19a)

for all y, y0 2 Rn, where the matrix ⇧ is given by

⇧ :=


�2mLI (L+m)I
(L+m)I �2I

�
. (19b)

Using ut := �(yt) and yt := Cy t and evaluating (19a) at
y = yt and y0 = 0 leads to,


 t

ut

�T
M1


 t

ut

�
� 0 (19c)

where

M1 :=


CT

y 0
0 I

�
⇧


Cy 0
0 I

�

=


�2mLCT

y Cy (L+m)CT
y

(L+m)Cy �2I

�
.

(19d)

In Lemma 3, we provide an upper bound on the difference
between the objective function at two consecutive iterations
of Nesterov’s algorithm. In combination with (19), this result
allows us to utilize Lyapunov function of the form (17)
to establish an upper bound on transient growth. We note
that variations of this lemma have been presented in [32,
Lemma 5.2] and in [17, Lemma 3].

Lemma 3: Along the solution of Nesterov’s accelerated
algorithm (18), the function f 2 FL

m with  := L/m satisfies

f(xt+2) � f(xt+1)  1

2


 t

ut

�T
M2


 t

ut

�
(20a)

where the matrix M2 is given by

M2 :=


�mCT

2 C2 CT
2

C2 �↵(2� ↵L)I

�

C2 :=
⇥
��I �I

⇤
.

(20b)

Using Lemma 3, we next demonstrate how a Lyapunov
function of the form (17) with ✓ := 2✓2 and C := [ 0 I ]
in conjunction with property (19) of the nonlinear mapping �
can be utilized to obtain an upper bound on kxtk22.

Lemma 4: Let M1 be given by (19d) and let M2 be defined
in Lemma 3. Then, for any positive semi-definite matrix X and
nonnegative scalars ✓1 and ✓2 that satisfy

W :=


ATX A�X ATX B
BT X A BT X B

�
+ ✓1M1 + ✓2M2 � 0

(21)
the transient growth of Nesterov’s accelerated algorithm (18)
for all t � 1 is upper bounded by

kxtk22  �max(X)kx0k22 + (�max(X) + L✓2)kx1k22
�min(X) +m✓2

. (22)

In Lemma 4, the Lyapunov function candidate V ( ) :=
 TX +2✓2f([ 0 I ] ) is used to show that the state vector  t

is confined within the sublevel set { 2 R2n |V ( )  V ( 0)}
associated with V ( 0). We next establish an order-wise tight
upper bound on kxtk2 that scales linearly with

p
 by finding

a feasible point to LMI (21) in Lemma 4.

Theorem 4: For f 2 FL
m with the condition number  :=

L/m, the iterates of Nesterov’s accelerated algorithm (18) for
any stabilizing parameters ↵  1/L and � < 1 satisfy

kxtk22  

✓
1 + �2

↵�L
kx0k22 + (1 +

1 + �2

↵�L
) kx1k22

◆
. (23a)

Furthermore, for the conventional values of parameters

↵ = 1/L, � = (
p
� 1)/(

p
+ 1) (23b)

the largest transient error, defined in (7), satisfies
p
2 (

p
� 1)2

e
p


 sup
{t2N, f 2FL

m}
J(t) 

r
3+

4

� 1
.

(23c)
For balanced initial conditions, i.e., x1 = x0, Nesterov

established the upper bound
p
+ 1 on J in [12]. Theorem 4

shows that similar trends hold without restriction on initial
conditions. Linear scaling of the upper and lower bounds withp
 illustrates a potential drawback of using Nesterov’s accel-

erated algorithm in applications with limited time budgets. As
! 1, the ratio of these bounds converges to e

p
3/2 ⇡ 3.33,

thereby demonstrating that the largest transient response for
all f 2 FL

m is within the factor of 3.33 relative to the bounds
established in Theorem 4.

IV. CONCLUDING REMARKS

We have examined the impact of acceleration on transient
responses of first-order optimization algorithms. Without im-
posing restrictions on initial conditions, we establish bounds
on the largest value of the Euclidean distance between the
optimization variable and the global minimizer. For convex
quadratic problems, we utilize the tools from linear systems
theory to fully capture transient responses and for general
strongly convex problems, we employ the theory of integral
quadratic constraints to establish an upper bound on transient
growth. This upper bound is proportional to the square root
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of the condition number and we identify quadratic problem
instances for which accelerated algorithms generate transient
responses which are within a constant factor of this upper
bound. Future directions include extending our analysis to
nonsmooth optimization problems and devising algorithms that
balance acceleration with quality of transient responses.

APPENDIX

A. Proofs of Section II

We first present a technical lemma that we use in our proofs.

Lemma 5: For any ⇢ 2 [1/e, 1), a(t) := t⇢t satisfies

argmax
t� 1

a(t) = �1/log(⇢), max
t� 1

a(t) = �1/(e log(⇢)).

Proof: Follows from the fact that da/dt = ⇢t(1+t log(⇢))
vanishes at t = �1/ log(⇢).

1) Proof of Lemma 1: For µ1 6= µ2, the eigenvalue
decomposition of M is determined by

M =
1

µ2 � µ1


1 1
µ1 µ2

� 
µ1 0
0 µ2

� 
µ2 �1

�µ1 1

�
.

Computing the tth power of the diagonal matrix and mul-
tiplying throughout completes the proof for µ1 6= µ2. For
µ1 = µ2 =: µ, M admits the Jordan canonical form

M =


1 0
µ 1

� 
µ 1
0 µ

� 
1 0

�µ 1

�

and the proof follows from


µ 1
0 µ

�t
=


µt t µt�1

0 µt

�
.

2) Proof of Lemma 2: From Lemma 1, it follows

⇥
1 0

⇤
M t =

"

�
t�2X

i=0

µi+1
1 µt�1�i

2

t�1X

i=0

µi
1µ

t�1�i
2

#
,

where µ1 and µ2 are the eigenvalues of M . Moreover,

|
t�2X

i=0

µi+1
1 µt�1�i

2 | 
t�2X

i=0

|µi+1
1 µt�1�i

2 | 
t�2X

i=0

⇢t (t� 1)⇢t

|
t�1X

i=0

µi
1µ

t�1�i
2 | 

t�1X

i=0

|µi
1µ

t�1�i
2 | 

t�1X

i=0

⇢t�1  t⇢t�1

by triangle inequality. Finally, for µ1 = µ2 2 R, we have
⇢ = |µ1| = |µ2| and these inequalities become equalities.

3) Proof of Theorem 1: Let µ1i and µ2i be the eigenvalues
and let ⇢i = max {|µ1i|, |µ2i|} be the spectral radius of Ai.
We can use Lemma 2 with M := Ai to obtain

max
i r

kCiA
t
ik22  max

i r

�
(t� 1)2⇢2ti + t2⇢2t�2

i

�

 (t� 1)2⇢2t + t2⇢2t�2
(24)

where ⇢ := maxir ⇢i. For the parameters provided in Table I,
the matrices A1 and Ar, that correspond to the largest and
smallest non-zero eigenvalues of Q, i.e., �1 = L and �r = m,
respectively, have the largest spectral radius [17, Eq. (64)],

⇢ = ⇢1 = ⇢r � ⇢i, i = 2, . . . , r � 1 (25)

and Ar has repeated eigenvalues. Thus, we can write

max
i r

kCiA
t
ik22 � k

⇥
1 0

⇤
At

rk22 =

(t� 1)2⇢2tr + t2⇢2t�2
r = (t� 1)2⇢2t + t2⇢2t�2

(26)

where the first equality follows from Lemma 2 applied to
M := Ar and the second equality follows from (25). Finally,
combining (24) and (26) with � < ⇢ and Proposition 1
completes the proof.

4) Proof of Theorem 2: Let a(t) := t⇢t. Theorem 1 implies
J2(t) = ⇢2a2(t � 1) + ⇢�2a2(t) and, for t � 1, J(t) has
only one critical point, which is a maximizer. Moreover, since
dJ2(t)/dt is positive at t = �1/ log(⇢) and negative at t =
1 � 1/ log(⇢), we conclude that the maximizer lies between
�1/ log(⇢) and 1� 1/ log(⇢). Regarding maxt J(t), we note
that

p
2⇢a(t � 1)  J(t) 

p
2a(t)/⇢ and the proof follows

from maxt�1 a(t) = �1/(e log(⇢)) (cf. Lemma 5).
5) Proof of Proposition 2: Since for all a  1, we have [40]

a  � log (1� a)  a/(1� a)

⇢hb = 1� 2/(
p
+ 1) and ⇢na = 1� 2/(

p
3+ 1) satisfy

2/(
p
+ 1)  � log(⇢hb)  2/(

p
� 1)

2/
p
3+ 1  � log(⇢na)  2/(

p
3+ 1� 2).

The conditions on  ensure that ⇢hb and ⇢na are not smaller
than 1/e and we combine the above bounds with Theorem 2
to complete the proof.
B. Proof of Theorem 3

The condition x0 = x1 is equivalent to x̂0
i = x̂1

i in (5).
Thus, for �i = 0, equation (12) yields x̂t

i = x̂0
i = x̂?i . For

�i 6= 0, we have  ̂0
i �  ̂?i =

⇥
x̂0
i x̂0

i

⇤T and, hence,

kxt � x?k2
kx0 � x?k2

 max
i r

|x̂t
i � x̂?i |

|x̂t
0 � x̂?i |

= max
i r

|CiA
t
i


1
1

�
| (27a)

where the equality follows from (10). To bound the right-hand
side, we use Lemma 1 with M = Ai to obtain

CiA
t
i


1
1

�
=

⇥
1 0

⇤
At

i


1
1

�
= !t(µ1i, µ2i) (27b)

where µ1i and µ2i are the eigenvalues of Ai and

!t(z1, z2) :=
t�1X

i=0

zi1z
t�1�i
2 �

t�1X

i=1

zi1z
t�i
2 (28)

for any t 2 N and z1, z2 2 C.
For Nesterov’s accelerated method, the characteristic poly-

nomial det(zI � Ai) = z2 � (1 + �)hiz + �hi yields
µ1i, µ2i = ((1 + �)hi ±

p
(1 + �)2h2

i � 4�hi)/2, where �i
is the ith the eigenvalue of Q and hi := 1 � ↵�i. For the
parameters provided in Table I, it is easy to show that:

• For �i 2 [m, 1/↵], we have hi 2 [0, 4�/(1+�)2] and µ1i

and µ2i are complex conjugates of each other and lie on
a circle of radius �/(1 + �) centered at z = �/(1 + �).

• For �i 2 (1/↵, L], µ1i and µ2i are real with opposite
signs and can be sorted to satisfy |µ2i| < |µ1i| with �1 
µ1i  0  µ2i  1/3.

The next lemma provides a unit bound on |!t(µ1i, µ2i)| for
both of the above cases.
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Lemma 6: For any z = l cos(✓)ei✓ 2 C with |✓|  ⇡/2
and 0  l  1, and for any real scalars (z1, z2) such that
�1  z1  0  z2  1/3, and z2 < �z1, the function !t

in (28) satisfies |!t(z, z̄ )|  1 and |!t(z1, z2)|  1 for all
t 2 N, where z̄ is the complex conjugate of z.

Proof: Since !1(z1, z2) = 1, we assume t � 2. We first
address ✓ = 0, i.e., z = l 2 R and !t(z, z̄ ) = tlt�1�(t�1)lt.
We note that d!t/dl = t(t � 1)(lt�2 � lt�1) = 0 only if
l 2 {0, 1}. This in combination with l 2 [0, 1] yield |!t(l, l)| 
max{|!t(1, 1)|, |!t(0, 0)|}  1.

To address ✓ 6= 0, we note that b(t) := sin(t✓)/t satisfies

|b(t)|  |sin(✓)| (29)

which follows from

|sin(t✓)| = |sin((t� 1)✓) cos(✓) + cos((t� 1)✓) sin(✓)|
 |sin((t� 1)✓)| + |sin(✓)|.

For z = l cos(✓)ei✓, we have

!t(z, z̄ ) = (zt � z̄ t � zz̄ (zt�1 � z̄ t�1))/(z � z̄ ) =

(l cos(✓))t�1(sin(t✓)� l cos(✓) sin((t� 1)✓))/sin(✓).

Thus, d!t/dl = 0 only if l = 0, 1, or l? := b(t)/(b(t �
1) cos(✓)). Moreover, it is easy to show that !t(z, z̄ ) is equal
to 0 for l = 0; to (cos(✓))t�1 cos((t� 1)✓) for l = 1; and to
(l? cos(✓))t�1b(t)/ sin(✓) for l = l?. Combining this with (29)
completes the proof for complex z.

To address the case of z1, z2 2 R, we note that
!t(z1, z2) = (zt1(1� z2)� zt2(1� z1))/(z1 � z2). Thus, dif-
ferentiating with respect to z1 yields

d!t

dz1
= (1� z2)

(t� 1)zt�1
1 � z2

Pt�2
i=0 z

t�2�i
1 zi2

z1 � z2
.

Moreover, from |z2| < |z1|, it follows that

(t� 1)|zt�1
1 | > |z2|

t�2X

i=0

|zt�2�i
1 zi2| > |z2

t�2X

i=0

zt�2�i
1 zi2|.

Therefore, d!t/dz1 6= 0 over our range of interest for z1, z2.
Thus, !t(z1, z2) may take its extremum only at the boundary
z1 2 {0,�1}, i.e. |!t(z1, z2)|  max{|!t(0, z2)|, |!t(1, z2)|}.
Finally, it is easy to show that |!t(0, z2)| = |zt�1

2 | < 1, and
|!t(�1, z2)| = |(�1)t(z2 � 1) + 2zt2|/(1 + z2)  1.

We complete the proof of Theorem 3 by noting that the
eigenvalues of Ai for Nesterov’s algorithm with parameters
provided in Table I satisfy the conditions in Lemma 6.

C. Proofs of Section III

1) Proof of Lemma 3: For any f 2 FL
m, the L-Lipschitz

continuity of the gradient rf ,

f(xt+2)� f(yt)  (rf(yt))T (xt+2 � yt) +
L

2
kxt+2 � ytk22

(30a)
and the m-strong convexity of f ,

f(yt)� f(xt+1)  (rf(yt))T (yt � xt+1)� m

2
kyt � xt+1k22

(30b)
can be used to show that (20) holds along the solution of
Nesterov’s accelerated algorithm (18). In particular, for (18)

we have ut := rf(yt) and

xt+2 � yt = �↵ut

yt � xt+1 = �(xt+1 � xt) =
⇥
��I �I

⇤
 t.

(31)

Substituting (31) into (30a) and (30b) and adding the resulting
inequalities completes the proof.

2) Proof of Lemma 4: Pre- and post-multiplication of
LMI (21) by (⌘t)T and ⌘t := [ ( t)T (ut)T ]T yields

0 � (⌘t)T


ATX A�X ATX B
BT X A BT X B

�
⌘t + ✓1(⌘

t)TM1⌘
t

+ ✓2(⌘
t)TM2⌘

t �

(⌘t)T


ATX A�X ATX B
BT X A BT X B

�
⌘t + ✓2(⌘

t)TM2⌘
t

where the second inequality follows from (19c). This yields

0  V̂ ( t) � V̂ ( t+1) � ✓2(⌘
t)TM2⌘

t (32)

where V̂ ( ) :=  TX . Also, since Lemma 3 implies

�(⌘t)TM2⌘
t  2

�
f(xt+1) � f(xt+2)

�
(33)

combining (32) and (33) yields

V̂ ( t+1) + 2✓2f(x
t+2)  V̂ ( t) + 2✓2f(x

t+1).

Thus, using induction, we obtain the uniform upper bound

V̂ ( t) + 2✓2f(x
t+1)  V̂ ( 0) + 2✓2f(x

1). (34)

This allows us to bound V̂ by writing

�min(X)k k22  V̂ ( )  �max(X)k k22. (35a)

We can also upper and lower bound f 2 FL
m as

mkxk22  2f(x)  Lkxk22. (35b)

Finally, combining (34) and (35) yields

�min(X)k tk22 + m ✓2kxt+1k22 
�max(X)k 0k22 + L ✓2kx1k22.

We complete the proof by noting that kxt+1k2  k tk2.
3) Proof of Theorem 4: To prove (23a), we need to find a

feasible solution for ✓1, ✓2 and X in terms of the condition
number . Let us define

X :=


x1I x0I
x0I x2I

�
= x2


�2I ��I
��I I

�

✓2 := ✓1(L+m)�/(1� �)

x2 := ((L+m)✓1 + ✓2)/↵ = ✓2/(↵�).

(36)

If (36) holds, it is easy to verify that X ⌫ 0 with �min(X) = 0,
�max(X) = (1 + �2)x2 = ✓2(1 + �2)/(↵�), and ATXA �
X = 0. Moreover, the matrix W on the left-hand-side of (21)
is block-diagonal, W := diag (W1,W2), and negative semi-
definite for all ↵  1/L, where

W1 = �m(2✓1LCT
y Cy + ✓2 CT

2 C2) � 0

W2 = � ((2� ↵(L+m)) ✓1 + ↵(1� ↵L) ✓2) I � 0.

Thus, the choice of (✓1, ✓2, X) in (36) satisfies the con-
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ditions of Lemma 4. Using the expressions for the largest
and smallest eigenvalues of the matrix X in equation (22)
in Lemma 4, leads to the upper bound for kxtk22 in (23a).
Furthermore, from (23a) we have

kxtk22  
�
1 + (1 + �2)/(↵�L)

�
k 0k22

and the upper bound in (23c) follows from the fact that, for
↵ and � in (23b), 1 + (1 + �2)/(↵�L) = 3 + 4/(� 1).

To obtain the lower bound in (23c), we employ our frame-
work for quadratic objective functions in Section II. In partic-
ular, for the parameters ↵ and � in (23b), the largest spectral
radius ⇢(Ai) corresponds to An, which is associated with the
smallest eigenvalue �n = m of Q. Since An has repeated
real eigenvalues ⇢ = 1� 1/

p
, using similar arguments as in

Theorem 1 for quadratic problems we obtain,

J(tmax) =
q
(tmax � 1)2⇢2tmax + t2max⇢

2(tmax�1)

�
p
2 (tmax � 1) ⇢tmax �

p
2(
p
� 1)2/(e

p
)

which completes the proof.
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