
Policy gradient primal-dual mirror descent for
constrained MDPs with large state spaces

Dongsheng Ding and Mihailo R. Jovanović

Abstract— We study constrained sequential decision-making
problems modeled by constrained Markov decision processes
with potentially infinite state spaces. We propose a Bregman
distance-based direct policy search method – policy gradient
primal-dual mirror descent – which includes the natural
policy primal-dual method and the projected policy primal-
dual method as two special cases. When the exact gradient
is known, we prove dimension-free global convergence with a
sublinear rate in both optimality gap and constraint violation.
When the exact gradient is not available, we instantiate our
algorithm in the linear function approximation setting and
establish sample complexity guarantees. The introduction of
the Bregman-distance regularizers enjoys the dimension-free
property with applicability to large-scale spaces, the first of its
kind in the constrained RL literature.

I. INTRODUCTION

The constrained Markov decision process (constrained
MDP) [1] has become a critical environment model in
reinforcement learning (RL) [2], [3]. A popular class of RL
methods for constrained MDPs built on the policy gradient
(PG) method [4] search policies via gradient descent/ascent
or primal/dual type updates (e.g., [5], [6]). More appealing
are their generality in PG methods [7]–[9] and effectiveness
in using Lagrange method to handle constraints [10], [11].
However, PG method and theory for constrained MDPs
with large state spaces is relatively less established from an
optimization perspective [12]–[14].

Our contribution: We propose a Bregman distance-based
direct policy search method for constrained MDPs with
potentially infinite state spaces – policy gradient primal-
dual mirror descent – which includes the natural policy
primal-dual method and the projected policy primal-dual
method as two special cases. When the exact gradient is
known, we exploit the structural properties of value functions
to prove dimension-free global convergence with sublinear
rate O(1/

p
T ), regarding the average optimality gap and

constraint violation, where T is the number of total itera-
tions. When the exact gradient is not available, we present
a sample-based policy gradient primal-dual mirror descent
using the linear function approximation and establish sample
complexity guarantees. The introduction of the Bregman-
distance regularizers enjoys the dimension-free property with
applicability to large-scale spaces, the first of its kind in the
constrained RL literature.
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Related work: There has been considerable interest in
the development of policy gradient primal-dual methods for
constrained MDPs [5], [6], [15]–[17]. The classical perfor-
mance for these algorithms is the asymptotic convergence
to a local stationary point. Several recent works show that
policy gradient primal-dual methods [7], [18]–[23] enjoy
non-asymptotic convergence that is more preferable in prac-
tice. Although these methods are intrinsically related to the
mirror descent analysis [24], the classical mirror descent
method based general Bregman-distance regularizers [25]
have not been utilized. To fill in this gap, we propose a
policy gradient primal-dual mirror descent method based on
Bregman-distance regularizers that covers the natural policy
primal-dual method [7], [18], [20] and a new projected policy
primal-dual method. Moreover, our unified analysis does not
assume a finite state space and any policy parametrization.
Our work is also related to recent works that have signifi-
cantly advanced learning constrained MDPs with large state
spaces using the function approximation [7], [19], [26]–[28].
In contrast, our linear function approximation is more general
than the linear constrained MDP assumption [19], [27], [28].

Paper organization: The rest of the paper is organized
as follows. We provide background material in Section II,
present our method and convergence theory in Section III,
establish a model-free method and its sample complexity in
Section IV. We conclude the paper in Section V.

II. PRELIMINARIES

We consider a discounted constrained Markov decision
process (S,A, P, r, g, b, �, ⇢), where S is the state space, A
is the action space, P is the transition probability measure
which specifies the transition probability P (s0 | s, a) from
state s to state s

0 under action a, r, g: S ⇥ A ! [0, 1] are
the reward/utility functions, b is a constraint offset, � 2 [0, 1)
is the discount factor, and ⇢ is the initial state distribution.

A stochastic policy is a function ⇡: S ! �A that deter-
mines the action chosen by the agent based on the current
state at ⇠ ⇡(· | st) at time t, where �A is a probability
simplex on A. Let the set of all policies be ⇧. A policy
⇡ 2 ⇧, together with the initial state distribution ⇢, induces
a distribution over trajectories ⌧ := {(st, at, rt, gt)}1t=0,
where s0 ⇠ ⇢, at ⇠ ⇡(· | st) and st+1 ⇠ P (· | st, at).

Let the symbol ⇧ be r or g. Given a policy ⇡, the value
function V

⇡

⇧ : S ! R is defined as the following expected
value of total discounted rewards or utilities

V
⇡

⇧ (s) := E
" 1X

t=0

�
t ⇧ (st, at)

��⇡, s0 = s

#
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where expectation is taken over the randomness of the
trajectory ⌧ induced by ⇡. Starting from a state-action pair
(s, a), we introduce the state-action value functions Q⇡

⇧ (s, a):
S ⇥A ! R, and advantage functions A

⇡

⇧ : S ⇥A ! R,

Q
⇡

⇧ (s, a) := E
" 1X

t=0

�
t ⇧ (st, at)

��⇡, s0 = s, a0 = a

#

A
⇡

⇧ := Q
⇡

⇧ (s, a) � V
⇡

⇧ (s).

The fact that r, g 2 [0, 1] yields 0  V
⇡

⇧ (s)  1
1��

. The
expectation over ⇢ is V

⇡

⇧ (⇢) := Es0⇠⇢[V ⇡

⇧ (s0)]. The relation
between V

⇡

⇧ and Q
⇡

⇧ is stipulated by Bellman equations [24]
and V

⇡

⇧ (s) = hQ⇡

⇧ (s, ·),⇡(·|s)i. Let the discounted visitation
distribution d

⇡

s0
and its expectation be

d
⇡

s0
(s) = (1� �)

1X

t=0

�
t
P

⇡(st = s | s0)

and d
⇡

⇢
= Es0 ⇠ ⇢[d⇡s0(s)]. It is useful to introduce the

distribution mismatch coefficient  := sup
⇡

��d⇡
⇢
/⇢
��
1 that

captures exploration difficulty in PG methods [24].
Let b 2 (0, 1/(1��)] be the constraint offset. We consider

a constrained policy optimization problem that maximizes
the reward value function subject to a constraint on the utility
value function [1],

maximize
⇡ 2⇧

V
⇡

r
(⇢)

subject to V
⇡

g
(⇢) � b.

(1)

Assumption 1 (Strict Feasibility): There exists ⇠ > 0 and
⇡̄ such that V ⇡̄

g
(⇢)� b � ⇠.

A. Useful Problem Properties

The max-min problem associated with (1) is given by

maximize
⇡ 2⇧

minimize
�� 0

V
⇡,�

L
(⇢)

where V
⇡,�

L
(⇢) = V

⇡

r
(⇢) + � (V ⇡

g
(⇢) � b) is the La-

grangian. The dual function is defined as V
�

D
(⇢) =

maximize⇡ V
⇡,�

L
(⇢). Let the optimal solution to Prob-

lem (1) be ⇡
? and the optimal dual variable be �

? =
argmin

�� 0 V
�

D
(⇢). We use shorthand V

⇡
?

r
(⇢) = V

?

r
(⇢) and

V
�
?

D
(⇢) = V

?

D
(⇢) whenever it is clear from the context.

Let [x]+ = max(x, 0). Despite non-convexity [7], strong
duality, boundedness of the optimal dual variable, and con-
straint violation hold; see their proofs in [7], [11].

Lemma 1 (Strong Duality & Bounded �
?
): Let Assump-

tion 1 hold. Then, V
?

r
(⇢) = V

?

D
(⇢), and 0  �

? 
(V ?

r
(⇢)� V

⇡̄

r
(⇢)) /⇠.

Lemma 2 (Constraint Violation): Let Assumption 1 hold.
If there exists a policy ⇡ 2 ⇧ and C � 2�? such that V ?

r
(⇢)�

V
⇡

r
(⇢) + C[b� V

⇡

g
(⇢)]+  �, then [b� V

⇡

g
(⇢)]+  2�

C
.

III. METHOD AND THEORY

We present a direct policy search method for constrained
MDPs and establish convergence when the gradient is exact.

A. Policy Gradient Primal-Dual Mirror Descent

Our Algorithm 1 has two updates. The first one is a
policy mirror descent step that solves a proximal policy
optimization sub-problem in (2). The second update executes
a gradient descent type step for the dual variable in (3).

Algorithm 1 Policy Gradient Primal-Dual Mirror Descent
1: Initialization: Stepsizes ↵ and ⌘, number of iterations

T , ⇡0(a | s) = 1/|A| for all (s, a), and �
0 = 0.

2: for t = 0, 1, . . . , T � 1 do
3: Define policy ⇡

t+1(· | s) for s 2 S,

⇡
t+1(· | s) := argmax

⇡(· |s)2�A

↵
⌦
Q

t

r
(s, ·)+�

t
Q

t

g
(s, ·),⇡(· | s)

↵

�D
�
⇡(· | s),⇡t(· | s)

�
.

(2)
4: Dual update,

�
t+1 = P⇤

�
�
t � ⌘ (V t

g
(⇢)� b)

�
. (3)

5: end for

In line 3, we form a proximal policy optimization problem
as follows. By performance difference lemma [24], we
express the Lagrangian V

⇡,�

L
(⇢) with fixed �

t at time t as

V
⇡,�

t

L
(⇢) = V

⇡
t
,�

t

L
(⇢)

+
1

1� �
Es⇠ d⇡

⇢

⇥
hQ⇡

t

r
(s, ·)+�

t
Q

⇡
t

g
(s, ·),⇡(· | s)�⇡

t(· | s)i
⇤
.

The policy gradient direction is given by d
t

⇢
(s)Qt

L
(s, a) for

any (s, a), where Q
t

L
(s, a) := Q

t

r
(s, a) + �

t
Q

t

g
(s, a) is the

Lagrangian-like function in which we suppress notation ⇡
t

in value functions. Mirror descent step with stepsize ↵ reads,

⇡
t+1(· | s) = argmax

⇡(· |s)2�A

⇣
↵
⌦
d
t

⇢
(s)Qt

L
(s, ·),⇡(· | s)

↵

� d
t

⇢
(s)D

�
⇡(· | s),⇡t(· | s)

� ⌘ (4)

where D(⇡(· | s),⇡0(· | s)) is the Bregman distance. For any
p, p

0 2 �A, the Bregman distance between p and p
0 is

D(p, p0) := h(p) � h(p0) � hrh(p0), p � p
0i, where h is

strictly convex and continuously differentiable on the interior
of �A. By removing d

t

⇢
(s), Update (4) is equivalent to (2).

In line 4, we do projected sub-gradient descent of V ⇡
t
,�

L
(⇢)

at policy ⇡
t under the same state distribution ⇢. By Lemma 1,

it suffices to restrict dual iterates in a bounded interval ⇤ that
contains the optimal �?, e.g., ⇤ = [ 0, 2/((1� �)⇠) ].

Remark 1: The optimality condition for (2) yields two
useful cases: (i) when h(p) = 1

2kpk
2, D(p, p) = 1

2kp�p
0k2,

⇡
t+1(· | s) = P�A

�
⇡
t(· | s) + ↵

�
Q

t

r
(s, ·) + �

t
Q

t

g
(s, ·)

��

where P�A(p) := argmin
p0 2�A

kp � p
0k. This update

works as the projected Q-descent [14]; (ii) when h(p) =P
a2A

pa log pa, D(p, p0) =
P

a2A
pa log

pa

p0
a

,

⇡
t+1(· | s) / ⇡

t(· | s) e↵ (Q
t
r(s,·)+�

t
Q

t
g(s,·))

which recovers the multiplicative weight update [7], [18],
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[19], [29]. Therefore, Update (2) extends [7], [18] to general
Bregman distance-regularizer that subsumes the Euclidean
distance case. We note that explicit policy updates above
define new policies over s 2 S recursively, and a finite state
space is not required at all. It is similar as the unconstrained
policy optimization with function approximation [30]–[32].

B. Convergence Analysis

For brevity, we suppress notation ⇡
t in value functions and

use shorthand D(⇡t+1
,⇡

t) for D(⇡t+1(· | s),⇡t(· | s)). The
optimality condition for (2) yields Lemma 3 in Appendix A.

Lemma 3: In Algorithm 1, for any ⇡(· | s) 2 �A,

↵
⌦
Q

t

r
(s, ·) + �

t
Q

t

g
(s, ·), (⇡ � ⇡

t+1)(· | s)
↵
+D

�
⇡
t+1

,⇡
t
�

 D(⇡,⇡t) � D
�
⇡,⇡

t+1
�
.

The performance difference lemma [24] sets up one-step
policy performance in Lemma 4; see Appendix B for proof.

Lemma 4: In Algorithm 1, for any s 2 S,
�
V

t+1
r

(s)� V
t

r
(s)
�
+ �

t
�
V

t+1
g

(s)� V
t

g
(s)
�

� 1

↵(1� �)
E
s0 ⇠ d

t+1
s

⇥
D
�
⇡
t+1

,⇡
t
�
+ D

�
⇡
t
,⇡

t+1
� ⇤

.

A key step is to establish the following average perfor-
mance bound in Lemma 5; see Appendix C for proof.

Lemma 5: In Algorithm 1, for any T > 0,

1

T

T�1X

t=0

�
V

?

r
(⇢)� V

t

r
(⇢)
�
+

1

T

T�1X

t=0

�
t
�
V

?

g
(⇢)� V

t

g
(⇢)
�

 1

(1� �)2T
+

2⌘

(1� �)3
+

D0

↵(1� �)T
(5)

where D0 := Es⇠ d?
⇢

⇥
D(⇡?(· | s),⇡0(· | s))

⇤
.

Lemma 5 gives an upper bound on the average perfor-
mance on a combination of two gaps, V ?

r
(⇢) � V

t

r
(⇢) and

V
?

g
(⇢) � V

t

g
(⇢). However, this bound does not necessarily

imply convergence in the optimality gap, V ?

r
(⇢)�V

t

r
(⇢), and

the feasibility gap or constraint violation, b�V
t

g
(⇢). We next

exploit the dual update (3) to bound them. We summarize
our bounds in Theorem 6; see Appendix D for proof.

Theorem 6 (Dimension-Free Bound): Let Assumption 1
hold. Suppose ⇤ = [0, 2/((1� �)⇠)]. For any T > 0, if
↵ = D0 and ⌘ = (1� �)/(2

p
T ) in Algorithm 1, then

1

T

T�1X

t=0

�
V

?

r
(⇢)� V

t

r
(⇢)
�

 4

(1� �)2
p
T

(6a)

"
b� 1

T

T�1X

t=0

V
t

g
(⇢)

#

+

 4(⇠ + 1/⇠)

(1� �)2
p
T
. (6b)

In Theorem 6, the average optimality gap/constraint vio-
lation decay to zero in O(1/

p
T ), where T is the number of

total iterations, if we choose stepsizes ↵ and ⌘ appropriately.
The rate O(1/

p
T ) often refers to the sublinear rate in

stochastic convex optimization [33], although our constrained
problem is non-convex. This dimension-free bound has no
dependence on the size of state/action space and the distri-

bution mismatch coefficient, which covers algorithms using
KL distance [18] or softmax policy [7] as two special cases.

Theorem 6 demonstrates O(1/✏2) iteration complexity
for yielding an ✏-optimal policy: we select a policy ⇡

out

uniformly over iterates ⇡
(1)

, . . . ,⇡
(T ),

E
⇥
V

?

r
(⇢)� V

⇡
out

r
(⇢)
⇤
 ✏ and E

⇥
b� V

⇡
out

g
(⇢)
⇤
 ✏.

IV. FUNCTION APPROXIMATION

We remove the exact gradient assumption and instantiate
Algorithm 1 using function approximation as Algorithm 2.

Assumption 2 (Linear Value Function): There are known
feature maps �⇧: S⇥A ! Rd such that for any (s, a) 2 S⇥A

and ⇡ 2 �A, Q⇡

⇧ (s, a) = h�⇧(s, a), w⇡

⇧ i, where w
⇡

⇧ 2 Rd;
there also is a known feature map 'g: S ! Rd such that for
any s 2 S and ⇡ 2 �A, V ⇡

g
(s) = h'g(s), u⇡

g
i, where u

⇡

g
2

Rd. Moreover, k�rk, k�gk, k'gk  1 for all (s, a) 2 S⇥A,
and kw⇡

r
k, kw⇡

g
k, ku⇡

g
k  W for all ⇡.

Assumption 2 adopts the linear Q assumption [24]. It is
more general than the linear structure in [19], [27], [28].

Algorithm 2 has two stages. In the first stage, we rollout
K sample trajectories by executing the policy ⇡

t with h steps
and continuing a unifom policy UnifA := 1

|A| with h
0 steps,

where h and h
0 follow a geometric distribution Geo(1��). In

each round k, by collecting rewards from step h to h+h
0�1,

we can justify E[Rk] = Q
t

r
(sk, ak) as in [34], where s

k ⇠ d
t

⇢

and a
k ⇠ UnifA. This estimation applies to Q

t

g
and V

t

g
.

Let LR({(xk
, y

k)}K
k=1) ⇡ argminkwkW

P
K

k=1(yk �
hxk

, wi)2 be a near-optimal solution to the empirical linear
regression with data set {(xk

, y
k)}K

k=1, and ⌫
t := d

t

⇢
�UnifA.

In the second stage, we approximate Q
t

⇧(·, ·) and V
t

r
(⇢) in

line 9 by solving least-square problems in line 8 using K

samples. After obtaining estimates Q̂
t

⇧(·, ·) and V̂
t

r
(⇢), we

perform the policy and dual updates as Algorithm 1. The
approximation error is measured by the losses,

L
t

⇧(w⇧) := E(s,a)⇠ ⌫t

h�
Q

t

⇧(s, a)� h�⇧(s, a), w⇧i
�2i

E
t

g
(ug) := Es⇠ ⇢

h�
V

t

g
(s)� h'g(s), ugi

�2i
.

Assumption 3 (Bounded Statistical Error): For the itera-
tions {ŵt

r
, ŵ

t

g
, û

t

g
}T�1
t=0 that are generated by Algorithm 2,

E
⇥
L
t

r
(ŵt

r
)
⇤
, E
⇥
L
t

g
(ŵt

g
)
⇤
, E
⇥
E

t

g
(ût

g
)
⇤
 ✏stat

where expectation is over randomness in (ŵt

r
, ŵ

t

g
, û

t

g
).

Theorem 7 (Agnostic Learning): Let Assumption 1 hold.
Suppose ⇤ = [0, 2/((1� �)⇠)]. For any T > 0, if we use
↵ = log |A| and ⌘ = (1� �)/(2

p
T ) in Algorithm 2, then

E
"
1

T

T�1X

t=0

�
V

?

r
(⇢)�V

t

r
(⇢)
�
#
. W

2 + 1

(1� �)2
p
T

+

p
|A|✏stat

(1� �)7/2⇠
(7a)

E
"
b� 1

T

T�1X

t=0

V
t

g
(⇢)

#

+

. W
2 + 1/⇠2

(1� �)3
p
T

+

p
|A|✏stat

(1� �)5/2
.

(7b)
where . denotes  up to an absolute constant.
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We sketch the proof of Theorem 7 in Appendix E. Due
to Assumption 2, function approximation error appears in
Theorem 7 as an additional effect

p
✏stat. When we apply

✏stat = O(1/K) for K SGD steps [35], the sample complex-
ity reads TK = O(1/✏4) sample trajectories for obtaining
an ✏-optimal policy. When there is no approximation error:
K ! 1, the rate matches the one in Theorem 6.

Algorithm 2 Policy Gradient Primal-Dual Mirror Descent
with Linear Function Approximation

1: Initialization: Stepsizes ↵ and ⌘, number of iterations
T , ⇡0(a | s) = 1/|A| for all (s, a), �0 = 0, and ⇢.

2: for t = 0, 1, . . . , T � 1 do
3: for round k = 1, . . . ,K do
4: Sample h ⇠ Geo(1� �) and h

0 ⇠ Geo(1� �).
5: Draw s0 ⇠ ⇢ and collect a trajectory

{s0, a0, r0, g0, . . . , sH , aH , rH , gH} by executing
⇡
t for first h steps and UnifA for next h0 steps.

6: Define s̄
k = s0, sk = sh, ak = ah, R̄k =

P
h�1
i=0 ri,

R
k =

h+h
0�1X

i=h

ri, and G
k =

h+h
0�1X

i=h

gi.

7: end for
8: Compute ŵ

t

r
, ŵt

g
, and û

t

g
as

ŵ
t

r
= LR({(�r(s

k
, a

k), Rk)}K
k=1)

ŵ
t

g
= LR({(�g(s

k
, a

k), Gk)}K
k=1)

û
t

g
= LR({('g(s̄

k), R̄k)}K
k=1).

9: Define value functions

Q̂
t

⇧(·, ·) := h�⇧(·, ·), ŵt

⇧i and V̂
t

g
(·) := h'g(·), ût

g
i.

10: Define policy ⇡
t+1(· | s) for s 2 S,

⇡
t+1(· | s) = argmax

⇡(· |s)2�A

↵
⌦
Q̂

t

r
(s, ·)+�

t
Q̂

t

g
(s, ·),⇡(· | s)

↵

�D
�
⇡(· | s),⇡t(· | s)

�
.

(8)
11: Dual update,

�
t+1 = P⇤

�
�
t � ⌘ ( V̂ t

g
(⇢)� b )

�
. (9)

12: end for

V. CONCLUSION

We have studied a policy gradient primal-dual mirror
descent for solving constrained MDPs with potentially in-
finite state spaces. We prove that the average optimality gap
and constraint violation decay to zero in a sublinear rate
when the exact gradient is known. When the exact gradient
is not available, we present a sample-based algorithm and
establish the sample complexity bound. Future directions
include improving the rate for single-time scale primal-dual
method and tightening sample complexity.
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dient primal-dual method for constrained Markov decision processes,”
in Proceedings of the Advances in Neural Information Processing

Systems, 2020, pp. 8378–8390.
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APPENDIX

A. Proof of Lemma 3

By the optimality condition for (2), for any ⇡(· | s),
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Combining (11) with (10) completes the proof.

B. Proof of Lemma 4

Applying performance difference lemma [24] to
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t in Lemma 3 for the inequality.

C. Proof of Lemma 5

We repeat the first step of proving Lemma 4. By �
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Application of (16) to RHS of (15) completes the proof.
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D. Proof of Theorem 6

We first bound the optimality gap. Since �
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Adding (18) to the inequality (5) from both sides yields,
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We simplify RHS of (19) by taking ↵ = D0, and ⌘ = 1��
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E. Proof of Theorem 7

Since the idea is similar as proving Theorem 6, we only
sketch some key steps. First, we employ techniques for
proving Lemma 5 to show the average performance,
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Differing from Lemma 5, the estimation error enters as,
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If we add (21) to the inequality (20) from both sides, and take
↵ = log |A| and ⌘ = 1��
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, we obtain the first bound. The
second step is to apply the same reasoning of proving (19),
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Adding (22) to the inequality (20) from both sides yields,

E
"
1

T

T�1X

t=0

�
V

?

r
(⇢)� V

t

r
(⇢)
�
+

�

T

�
b� V

t

g
(⇢)
�
#

 1

(1� �)2T
+

2⌘(W + 1)

(1� �)3
+

3(1 + 1/⇠)

(1� �)2

s
|A|
1� �

✏stat

+
log |A|

↵(1� �)T
+

�
2

2⌘T
+

p
✏stat

(1� �)⇠
+ ⌘�.

(23)
Finally, simplifying RHS of (23) with ↵ = log |A| and ⌘ =
1��
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and application of Lemma 2 lead to the second bound.
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