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ABSTRACT: The paper expands a recently developed model that examines the 
stochastic stability of a torsional-flutter-based harvester. The new model accounts for 
both uncertainty in the aeroelastic loads and wind turbulence in the incoming flow. 
Since the blade-airfoil is three-dimensional, three-dimensional flow effect are simulated 
through η3D, i.e., a reduction parameter of the static lift slope, dependent on the aspect 
ratio of the apparatus. The first uncertainty source is a byproduct of the modelling 
simplifications of the aeroelastic loads, which are described by indicial function 
approach and ideally applicable to two-dimensional flow. The second source is the flow 
turbulence that operates by modifying the Parametric stochastic perturbations are 
applied to the parameter describing the memory-effect of the load, simulating 
“imperfections” in the load measurement and approximate description through η3D. 
Stochastic flutter stability is examined by mean squares. Post-critical states are also 
discussed.  
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1. INTRODUCTION 

Wind energy technology is evolving due to the need for alternative, clean energy resources. Most 
applications are related to large horizontal-axis wind turbines that maximize output power. A 
competitive, intermediate-scale alternative is represented by simpler, wind-based energy harvesters, 
triggered by aeroelastic phenomena (Abdelkefi et al., 2012; Matsumoto, 2013; Pigolotti et al., 2017; 
Shimizu et al., 2008). These smaller dimension apparatuses have been studied by several researchers. 
For example, “pitch-heave” vibration of a flutter mill, equipped with porous screens to induce 
aeroelastic instability, has been proposed (Pigolotti, et al., 2017). Galloping-prone harvesting 
apparatuses, i.e., exploiting the “D” section instability, have been studied (Abdelkefi, et al., 2012) as 
well as vortex-induced underwater vibration of “tunable” cylindric bodies (Bernitsas et al., 2008). 

Caracoglia (2018) proposed a torsional-flutter-based apparatus for extracting wind energy (Fig. 1). 
The apparatus exploits the leading-edge torsional flutter instability of a rigid blade-airfoil, rotating 
about an axis and connected through a nonlinear torsional spring mechanism. Magnetic induction of 
a coil system is employed for energy conversion. Various configurations can be considered with 
adjustable position of the rotation axis, ab in Figure 1: the position of the rotation axis can be moved 
from the leading edge (𝑎 ൌ െ1) to the quarter chord position (𝑎 ൎ െ0.75).  

This presentation extends a recent formulation and a state-space model in the dimensionless time 
domain, which incorporated the effects of uncertainty in the aeroelastic loads to evaluate the dynamic 
stability of the apparatus. In this study, the stochastic model is generalized by also considering the 
effects of flow turbulence. These two sources of modeling uncertainty or randomness in the flow 
field may unfavorably reduce the potential for energy harvesting and, overall, the efficiency of the 



apparatus. The mean-square, stochastic stability problem using the equations of a state-space model. 
Representative numerical solutions will be discussed and analyzed. 

 
Figure 1. Schematic cross-sectional view of the proposed energy harvester. 

2. MODELING BACKGROUND 

2.1.  Deterministic model without perturbations and flow turbulence  

The linear, dynamic angular motion of the one degree of freedom (1DOF) 𝛼  in Fig. 1 is: 
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The right-hand side equation is the aeroelastic torque, derived from Bisplinghoff et al. (1955) for 
purely rotational motion about O in Figure 1. The torque depends on the mean wind speed 𝑈 parallel 
to the x axis; I0α is the polar mass moment of inertia of the moving components of the apparatus; ωα 
is the linear, angular frequency of the linear, spring-supported apparatus; 𝜏 ൌ 𝑡𝜔ఈ is a dimensionless 
time variable; ζα is the damping ratio of the apparatus. The quantity 𝑘 ൌ 𝜔𝑏/𝑈 is a reduced angular 
frequency; 𝑘ఈ ൌ 𝜔ఈ𝑏/𝑈 is the reduced angular frequency of the apparatus; 𝐶ሺ𝑘ሻ ൌ 𝐹ሺ𝑘ሻ ൅ i𝐺ሺ𝑘ሻ is 
the complex function by (Theodorsen, 1935) with iଶ ൌ െ1. Air density is 𝜌. Electro-mechanical 
coupling will be included in Eq. (2) below.  

Mean aerodynamic forces in Eq. (1) are approximately zero with average 𝛼 ൎ 0. Flow turbulence is 
not considered in this section. Three-dimensional torque (lift) (Argentina and Mahadevan, 2005) 
effect is simulated by parameter 𝜂ଷ஽ ൎ AR ሺAR ൅ 2ሻ⁄ ; airfoil aspect ratio AR ൌ ℓ/𝑏 depends on the 
spanwise length ℓ, not shown in Figure 1. Eq. (1) can be manipulated and solved at incipient torsional 
flutter, i.e., by studying the vanishing of total damping (Caracoglia, 2018).  

In the post-critical flutter state with 𝑎 ൌ െ1 (leading edge rotation axis), more relevant to energy 
harvesting, the model is modified from Eq. (1). A state-space model is formed, composed of seven 
nonlinearly coupled electro-mechanical equations. Aeroelastic torque is simulated through unsteady 
Wagner function (Bisplinghoff, et al., 1955). The triggering mechanism depends on reduced 
frequency 𝑘ఈ, damping ratio 𝜁ఈ generalized inertia 𝜀 and cubic stiffness 𝜅 of the spring-supported 
rotational mechanism. The complete dynamic equation with electro-mechanical coupling is: 
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with 𝜓଴ ൌ ሺ1 ൅ 9/8𝜀𝜂ଷୈሻ; Ψ=4b2(Φe.m.c.)2/(ωαI0αRC) is a dimensionless electro-mechanical coupling 
with eddy-current power circuit, with 𝜆ோ௅ ൌ 𝑅஼/ሺ𝜔ఈ𝐿஼ሻ  a generalized impedance of the power 
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circuit with 𝑅஼  resistance (ohms) and 𝐿஼  inductance (henries). On the right-hand side of Eq. (2), ι(τ) 
is a normalized output current; νae,1, νae,2, μae,1 and μae,2 are aeroelastic states and Φ଴ ൌ 0.5. 

2.2. Stochastic model with inflow turbulence and aeroelastic load perturbations  

First, Along-wind turbulence 𝑢ሺ𝜏ሻ  is simulated as a zero-mean, Gaussian white noise, fully 
correlated over the surface of the apparatus. This hypothesis is compatible with the observation that 
atmospheric turbulence length scales are considerably larger than the characteristic length of the 
apparatus √𝑏ଶ ൅ ℓଶ ൌ 𝑏√1 ൅ ARଶ ൎ 10𝑏  (even for large AR ൌ 10ሻ . The Gaussian process 
parametrically modifies the constant flow speed term 𝑈ଶ in Eq. (1) to ሺ𝑈 ൅ 𝑢ሺ𝜏ሻሻଶ ൎ 𝑈ଶሾ1 ൅ 2𝑢ොሺ𝜏ሻሿ 
with normalized 𝑢ො ൌ 𝑢/𝑈, i.e., the noise is multiplicative with standard deviation 𝜎௨ෝ equal to the 
flow turbulence intensity. 

Second, aeroelastic load modeling errors are simulated using the Jones (1939) formulation of the 
Wagner function and the aeroelastic states defined in Eq. (2). The format of the dynamic equations 
describing the two aeroelastic states 𝜈௔௘,ଶሺ𝜏ሻ and 𝜇௔௘,ଶሺ𝜏ሻ that are randomly perturbed, is: 
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where the parameter ∆ௗଶሺ𝜏ሻ is another zero-mean, white noise of pre-assigned standard deviation 
𝜎ௗଶ , whereas the noise-free reference or constant mean value is 𝑑̅ଶ ൌ 0.3 . By contrast, the two 
remaining states, 𝜈௔௘,ଵሺ𝜏ሻ and 𝜇௔௘,ଵሺ𝜏ሻ, are unaffected. Noting that the same random load variation 
∆ௗଶሺ𝜏ሻ is applied to both Eqs. (3a-3b) above as a second multiplicative noise, the resultant system of 
differential equations is parametric, enabling both incipient and post-critical operational analyses.  

A system of stochastic differential equations (Grigoriu, 2002) is derived as a function of two scalar, 
independent unit Wiener noises 𝐵௨ෝሺ𝜏ሻ (from 𝑢ොሻ and 𝐵∆ଶሺ𝜏ሻ (from ∆ௗଶ) and vector 

 𝐖ୣ୫ሺ𝜏ሻ ൌ ൣ𝛼ሺ𝜏ሻ, d𝛼 d𝜏⁄ , 𝜈௔௘,ଵሺ𝜏ሻ, 𝜈௔௘,ଶሺ𝜏ሻ, 𝜇௔௘,ଵሺ𝜏ሻ, 𝜇௔௘,ଶሺ𝜏ሻ, 𝜄ሺ𝜏ሻ൧
்
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The final Itô-type equation depends on a nonlinear (NL) drift 𝐪୒୐,∆ function, a linear (L) diffusion 
matrix 𝐐୐,∆ଶ  that specifically depends on the “unit aeroelastic Wiener error” 𝐵∆ଶሺ𝜏ሻ  (rescaled to 
account for standard deviation 𝜎ௗଶ), and a nonlinear diffusion functional 𝚯୒୐,௨ෝሺ𝐖ୣ୫;𝜎௨ෝሻ, which is 
applied to “unit Wiener turbulence” 𝐵௨ෝሺ𝜏ሻ and depends on the standard deviation 𝜎௨ෝ. This equation 
is: 

 d𝐖ୣ୫ ൌ 𝐪୒୐ሺ𝐖ୣ୫;𝜎௨ෝ,𝜎ௗଶሻd𝜏 ൅ √2𝜋𝐐୐,∆ଶ𝐖ୣ୫d𝐵∆ଶሺ𝜏ሻ ൅ 2𝚯୒୐,௨ෝሺ𝐖ୣ୫;𝜎௨ෝሻd𝐵௨ෝሺ𝜏ሻ. (5) 

The non-zero elements of the 7-by-7 matrix 𝐐௅,∆ଶ are exclusively three, i.e.,  

 ൫𝐐୐,∆൯ସ,ଶ
ൌ ൫𝐐୐,∆൯଺,ଵ

ൌ 𝜎ௗଶ𝑘ఈିଵ𝑐ଶ,   ൫𝐐୐,∆൯଺,଺
ൌ െ𝜎ௗଶ𝑘ఈିଵ, (6a, 6b) 

In Eq. (5) the Wong and Zakai (1965) correction terms have been included. Mean – square stability 
is examined using second moment (largest) Lyapunov exponent of a “relevant dynamics” sub-vector 
of the system, i.e., 𝚵ሺ𝜏ሻ ൌ ሾ𝛼, d𝛼/𝑑𝜏ሿ் ൌ ሾ𝑊ୣ୫,ଵ,𝑊ୣ୫,ଶሿ். The stability varies as a function of mean 
wind speed 𝑈 or 𝑘ఈ. This approach enables evaluation of both incipient and post-critical flutter, i.e., 
the output current 𝜄 ൌ 𝑤ୣ୫,଻ and energy conversion. The second moment Lyapunov exponent Λ𝚵ሺ2ሻ 
is evaluated by Monte Carlo sampling. The realizations of Eq. (5) are solved by Euler numerical 
integration (Kloeden et al., 1994), from which the exponent is approximated as Λ𝚵ሺ2ሻ ൎ

log ቀE ቂฮ𝚵൫𝜏௝൯ฮ
ଶ
ቃቁ 𝜏௝ൗ with discrete time 𝜏௝ and time index 𝑗 sufficiently large (infinity). Monte  

3. PRELIMINARY RESULTS, DICUSSION AND CONCLUSIONS 

Numerical solution of the stochastic model in a post-critical state is considered. The reference 
quantities are set as follows: electro-mechanical coupling Ψ ൌ 0.01, generalized impedance 𝜆ோ௅ ൌ
0.75, AR ൌ 4 and 𝜅 ൌ 100 in dimensionless units. Three basic configurations are investigated: Type 
0 with ωα/2π=0.25 Hz, b=0.25 m, I0α/ℓ=20 kg-m2/m, Type 1 with ωα/2π=0.20 Hz, b=0.25 m, I0α/ℓ=40 
kg-m2/m; Type 2 with ωα/2π=0.10 Hz, b=0.50 m, I0α/ℓ=300 kg-m2/m. 



 

Figure 2. Second Moment Lyapunov Exponent (MLE) Λ𝚵ሺ2ሻ, at various flow speeds 𝑈, for Type-0, Type-1 
and Type-2 apparatus - random aeroelastic load with mean value 𝑑̅ଶ ൌ 0.3 and standard deviation 𝜎ௗଶ ൌ

0.07; negligible turbulence 𝜎௨ෝ ൎ 0.  

Fig. 2 summarizes an example of stochastic stability analysis at various mean flow speeds 𝑈 for 
random aeroelastic load with mean value 𝑑̅ଶ ൌ 0.3 and standard deviation 𝜎ௗଶ ൌ 0.07. At this time, 
the effect of flow turbulence is neglected 𝜎௨ෝ ൎ 0. The figure panels reveal the predominantly stable 
condition of Type-1 apparatus, i.e., inefficient from the point of view of harvesting, with Lyapunov 
exponent Λ𝚵ሺ2ሻ ൏ 0 . On the contrary the right panel shows the departure from a stable configuration 
for the other two types at 𝑈 ൌ 18.8 m/s. Type-2 apparatus also exhibits incipient instability at a lower 
flow speed (center panel) with Λ𝚵ሺ2ሻ  crossing the zero axis. The figure demonstrates that the 
proposed numerical solution approach is adequate for the purpose of stability analysis. Further 
evidence will be presented to examine the combined effect of both flow turbulence and randomly 
perturbed aeroelastic load, as well as the performance of the apparatus in terms of output current. 
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