<SEACWE

8" European-African Conference on Wind Engineering

20-23 September 2022 | Bucharest, Romania

Exploring stochastic dynamics and stability of an aeroelastic harvester
contaminated by wind turbulence and uncertain aeroelastic loads

Luca Caracoglia'”

1) Associate Professor, Northeastern University, Boston, MA 02115, USA, lucac@coe.neu.edu

ABSTRACT: The paper expands a recently developed model that examines the
stochastic stability of a torsional-flutter-based harvester. The new model accounts for
both uncertainty in the aeroelastic loads and wind turbulence in the incoming flow.
Since the blade-airfoil is three-dimensional, three-dimensional flow effect are simulated
through #sp, i.e., a reduction parameter of the static lift slope, dependent on the aspect
ratio of the apparatus. The first uncertainty source is a byproduct of the modelling
simplifications of the aeroelastic loads, which are described by indicial function
approach and ideally applicable to two-dimensional flow. The second source is the flow
turbulence that operates by modifying the Parametric stochastic perturbations are
applied to the parameter describing the memory-effect of the load, simulating
“imperfections” in the load measurement and approximate description through #sp.
Stochastic flutter stability is examined by mean squares. Post-critical states are also
discussed.
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1. INTRODUCTION

Wind energy technology is evolving due to the need for alternative, clean energy resources. Most
applications are related to large horizontal-axis wind turbines that maximize output power. A
competitive, intermediate-scale alternative is represented by simpler, wind-based energy harvesters,
triggered by aeroelastic phenomena (Abdelkefi et al., 2012; Matsumoto, 2013; Pigolotti et al., 2017,
Shimizu et al., 2008). These smaller dimension apparatuses have been studied by several researchers.
For example, “pitch-heave” vibration of a flutter mill, equipped with porous screens to induce
aeroelastic instability, has been proposed (Pigolotti, et al., 2017). Galloping-prone harvesting
apparatuses, i.e., exploiting the “D” section instability, have been studied (Abdelkefi, et al., 2012) as
well as vortex-induced underwater vibration of “tunable” cylindric bodies (Bernitsas et al., 2008).

Caracoglia (2018) proposed a torsional-flutter-based apparatus for extracting wind energy (Fig. 1).
The apparatus exploits the leading-edge torsional flutter instability of a rigid blade-airfoil, rotating
about an axis and connected through a nonlinear torsional spring mechanism. Magnetic induction of
a coil system is employed for energy conversion. Various configurations can be considered with
adjustable position of the rotation axis, ab in Figure 1: the position of the rotation axis can be moved
from the leading edge (a = —1) to the quarter chord position (a = —0.75).

This presentation extends a recent formulation and a state-space model in the dimensionless time
domain, which incorporated the effects of uncertainty in the aeroelastic loads to evaluate the dynamic
stability of the apparatus. In this study, the stochastic model is generalized by also considering the
effects of flow turbulence. These two sources of modeling uncertainty or randomness in the flow
field may unfavorably reduce the potential for energy harvesting and, overall, the efficiency of the
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apparatus. The mean-square, stochastic stability problem using the equations of a state-space model.
Representative numerical solutions will be discussed and analyzed.
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Figure 1. Schematic cross-sectional view of the proposed energy harvester.

2. MODELING BACKGROUND
2.1. Deterministic model without perturbations and flow turbulence

The linear, dynamic angular motion of the one degree of freedom (IDOF) « in Fig. 1 is:
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The right-hand side equation is the aeroelastic torque, derived from Bisplinghoff et al. (1955) for
purely rotational motion about O in Figure 1. The torque depends on the mean wind speed U parallel
to the x axis; /o, is the polar mass moment of inertia of the moving components of the apparatus; w,
is the linear, angular frequency of the linear, spring-supported apparatus; T = tw,, is a dimensionless
time variable; {; is the damping ratio of the apparatus. The quantity k = wb/U is a reduced angular
frequency; k, = w,b/U is the reduced angular frequency of the apparatus; C (k) = F(k) +iG (k) is
the complex function by (Theodorsen, 1935) with i? = —1. Air density is p. Electro-mechanical

coupling will be included in Eq. (2) below.

Mean aerodynamic forces in Eq. (1) are approximately zero with average a = 0. Flow turbulence is
not considered in this section. Three-dimensional torque (lift) (Argentina and Mahadevan, 2005)
effect is simulated by parameter 13, ® AR/ (AR + 2); airfoil aspect ratio AR = £/b depends on the
spanwise length £, not shown in Figure 1. Eq. (1) can be manipulated and solved at incipient torsional
flutter, i.e., by studying the vanishing of total damping (Caracoglia, 2018).

In the post-critical flutter state with a = —1 (leading edge rotation axis), more relevant to energy
harvesting, the model is modified from Eq. (1). A state-space model is formed, composed of seven
nonlinearly coupled electro-mechanical equations. Aeroelastic torque is simulated through unsteady
Wagner function (Bisplinghoff, et al., 1955). The triggering mechanism depends on reduced
frequency k,, damping ratio {, generalized inertia € and cubic stiffness k of the spring-supported
rotational mechanism. The complete dynamic equation with electro-mechanical coupling is:
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with Yy = (1 + 9/8en3p); Y=4b*(Pem.c)/(wado.Rc) is a dimensionless electro-mechanical coupling
with eddy-current power circuit, with Ag; = R;/(wqyL¢) a generalized impedance of the power



circuit with R resistance (ohms) and L. inductance (henries). On the right-hand side of Eq. (2), 1(7)
is a normalized output current; Vae,1, Vae2, tae,1 and a2 are aeroelastic states and @, = 0.5.

2.2.Stochastic model with inflow turbulence and aeroelastic load perturbations

First, Along-wind turbulence u(t) is simulated as a zero-mean, Gaussian white noise, fully
correlated over the surface of the apparatus. This hypothesis is compatible with the observation that
atmospheric turbulence length scales are considerably larger than the characteristic length of the
apparatus Vb2 + £2 = by/1 + AR? ~ 10b (even for large AR = 10) . The Gaussian process
parametrically modifies the constant flow speed term U2 in Eq. (1) to (U + u(7))? ~ U?[1 + 214i(7)]
with normalized @i = u/U, i.e., the noise is multiplicative with standard deviation oy equal to the
flow turbulence intensity.

Second, aeroelastic load modeling errors are simulated using the Jones (1939) formulation of the
Wagner function and the aeroelastic states defined in Eq. (2). The format of the dynamic equations
describing the two aeroelastic states Vg o (7) and piq, » () that are randomly perturbed, is:
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where the parameter Ay, (7) is another zero-mean, white noise of pre-assigned standard deviation
642, Whereas the noise-free reference or constant mean value is d, = 0.3. By contrast, the two
remaining states, Vg, 1(7) and g, (), are unaffected. Noting that the same random load variation
A4, (7) is applied to both Egs. (3a-3b) above as a second multiplicative noise, the resultant system of
differential equations is parametric, enabling both incipient and post-critical operational analyses.

=k, (d,+A, (@) (ea-4,,), (3a,3b)

A system of stochastic differential equations (Grigoriu, 2002) is derived as a function of two scalar,
independent unit Wiener noises Bz (7) (from @) and By, (7) (from A,,) and vector

Wen (T) = [a(r), da/dr, Vae,1 (o), Vae,2 (o), Hae,1 (), Hae,2 (), L(T)]T = [Wem,l' ey Wem,7]T~ 4)

The final It6-type equation depends on a nonlinear (NL) drift qyy, o function, a linear (L) diffusion
matrix Qy, 5, that specifically depends on the “unit aeroelastic Wiener error” By, (7) (rescaled to
account for standard deviation o,4,), and a nonlinear diffusion functional @y, 53(Wep; 03), which is
applied to “unit Wiener turbulence” B;(7) and depends on the standard deviation oy. This equation
is:

dWe, = qNL(Wem; (7)) Udz)dT +V 27TQL,AZWemdBAZ )+ ZONL,ﬁ(wem; O'a)dBa(T). 4)

The non-zero elements of the 7-by-7 matrix Q, 5, are exclusively three, i.e.,
(QL,A)4’2 = (QL,A)&1 = Ogz2kg 'y, (QL,A)6’6 = —og2kz", (6a, 6b)

In Eq. (5) the Wong and Zakai (1965) correction terms have been included. Mean — square stability
is examined using second moment (largest) Lyapunov exponent of a “relevant dynamics” sub-vector
of the system, i.e., E(7) = [a, da/d7]" = [Wem 1, Wem 2]"- The stability varies as a function of mean
wind speed U or k,. This approach enables evaluation of both incipient and post-critical flutter, i.e.,
the output current ¢ = Wep, 7 and energy conversion. The second moment Lyapunov exponent Az (2)
is evaluated by Monte Carlo sampling. The realizations of Eq. (5) are solved by Euler numerical
integration (Kloeden et al., 1994), from which the exponent is approximated as Az(2) =

log (E

3. PRELIMINARY RESULTS, DICUSSION AND CONCLUSIONS

E(Tj) ||2]) / 7;with discrete time 7; and time index j sufficiently large (infinity). Monte

Numerical solution of the stochastic model in a post-critical state is considered. The reference
quantities are set as follows: electro-mechanical coupling ¥ = 0.01, generalized impedance A, =
0.75, AR = 4 and k = 100 in dimensionless units. Three basic configurations are investigated: Type
0 with w,/27=0.25 Hz, b=0.25 m, 1o,/¢=20 kg—mz/m, Type 1 with w,/27=0.20 Hz, b=0.25 m, ly./¢=40
kg-m?/m; Type 2 with 0,/27=0.10 Hz, b=0.50 m, Io,/¢=300 kg-m?*/m.
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Figure 2. Second Moment Lyapunov Exponent (MLE) Ag(2), at various flow speeds U, for Type-0, Type-1
and Type-2 apparatus - random aeroelastic load with mean value d, = 0.3 and standard deviation 0, =
0.07; negligible turbulence o5 = 0.

Fig. 2 summarizes an example of stochastic stability analysis at various mean flow speeds U for
random aeroelastic load with mean value d, = 0.3 and standard deviation o4, = 0.07. At this time,
the effect of flow turbulence is neglected o; = 0. The figure panels reveal the predominantly stable
condition of Type-1 apparatus, i.e., inefficient from the point of view of harvesting, with Lyapunov
exponent Az(2) < 0. On the contrary the right panel shows the departure from a stable configuration
for the other two types at U = 18.8 m/s. Type-2 apparatus also exhibits incipient instability at a lower
flow speed (center panel) with Az(2) crossing the zero axis. The figure demonstrates that the
proposed numerical solution approach is adequate for the purpose of stability analysis. Further
evidence will be presented to examine the combined effect of both flow turbulence and randomly
perturbed aeroelastic load, as well as the performance of the apparatus in terms of output current.
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