
Defining and Supporting a Debugging Mindset in
Computer Engineering Courses

Henry Duwe, Diane T. Rover, Phillip H. Jones, Nicholas D. Fila
Electrical and Computer Engineering

Iowa State University
Ames, IA USA

{duwe, drover, phjones, nfila}@iastate.edu

Mani Mina
Industrial Design and

Electrical and Computer Engineering
Iowa State University

Ames, IA USA
mmina@iastate.edu

Abstract—While it is commonly held that debugging is a
critical activity for engineers, particularly computer engineers,
it is rarely a core component in engineering curriculum. Often
it is either considered an innate skill or one to be developed
indirectly through coursework. We argue that debugging is more
authentically a constellation of mindsets or intrinsic beliefs,
values, and dispositions that orient behavior. We define the
debugging mindset, describe a series of activities to support the
development of such a mindset, and offer evidence of a debugging
mindset among students in two computer engineering project
courses.

Index Terms—debugging, testing, mindsets, engineering edu-
cation

I. INTRODUCTION

Engineering educators often do not explicitly emphasize
debugging and testing in their classes, and students are often
lacking in these competencies. However, developing testing
methods and skills for verifying and validating that an imple-
mented system is behaving as specified, and applying effective
debugging strategies to identify and correct issues are essential
to responsible development of products and technologies.
While debugging and testing are often framed as distinct skills
that students and engineers may develop, such competencies
more authentically represent related mindsets, or intrinsic
beliefs, values, and dispositions that orient behavior. In this
paper, we define a debugging competency as a constellation of
mindsets, including the testing mindset, describe its relevance
to engineering work, present approaches used in computer
engineering courses to support student development of this
mindset, and investigate evidence of the debugging mindset
among students in these courses.

We define a debugging mindset based on several data
sources: engineering and education literature, interactions with
a departmental industrial advisory council, our own experi-
ences and observations as engineering educators, and student
written reflections. A student with a debugging mindset will
commit to developing and executing a test plan to demonstrate
that a design functions as envisioned. Once a test plan identi-
fies an error in the system design, the debugging mindset in-

This material is based upon work supported by the National Science Foun-
dation (NSF) under awards 1623125 and 2144757. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF.

volves a systematic approach to critically assessing system be-
havior, enumerating and testing hypotheses, and producing an
updated understanding of the system. The debugging mindset
exhibits an openness to various perspectives, navigating levels
of abstraction, making connections, handling uncertainty, and
updating one’s mental model with new information.

In order to support such a debugging mindset among
students taking computer engineering courses, we have de-
veloped activities that have been incorporated in a sequence
of courses in the curriculum. We have taken this approach
in response to (1) the varied ways mindsets can manifest in
student work and (2) the necessity of repeated and diverse
activities to facilitate change in some entrenched mindsets. A
sophomore-level course with a lab project introduced system
sketching, questioning and reflection activities before, during
and after lab work and selectively in other course work. Lab
demonstrations were expanded to including debugging as well
as correct behavior. A junior-level course with a term project
added well-defined testing and design roles that rotate among
students in a lab group. Lab work includes explicit planning
via an iterative, reflective team process.

This paper defines the concept of a debugging mindset in
computer engineering. It presents approaches and observations
from several semesters worth of two courses which targeted
development of these mindsets among students. The paper
concludes with an investigation of evidence of the debugging
mindset among students in the two courses.

II. BACKGROUND

Our work on debugging mindsets builds on literature both
in mindsets and in debugging education.

A. Relevance of Mindsets in Education

A mindset can be described as a belief that orients thought
and action [1]–[3]. For example, as Dweck describes, two
of the most prominent mindsets of concern to educators are
the growth and fixed mindsets. Both are described by the
belief one has about intelligence and development. In a fixed
mindset, one believes that intelligence and other basic qualities
cannot be changed. In a growth mindset, one believes that
“your basic qualities are things you can cultivate through
your efforts, your strategies, and help from others” [1]. These



beliefs affect a host of thought and action, such as how one
responds to failure and effort one applies to challenging tasks.

While investigation of growth and fixed mindsets has been
predominant in engineering education and related fields, others
have studied more direct, profession-oriented mindsets. For
example, several researchers have begun to identify and define
a grouping of mindsets associated with design thinking. Here,
mindsets are thought of as beliefs or stances that affect the way
one approaches design work [2], [3]. In this space, mindsets
are typically identified in sets of multiple mindsets that affect
different aspects of one’s approach. For example, Schweitzer
et al. [4] explored eleven distinct mindsets, ranging from
empathetic towards people’s needs and context to inquisitive
and open to new perspectives and learning to consciously
creative. Dosi et al. [5] identified 22 total design thinking
mindset constructs in their construction of a mindset self-
awareness questionnaire.

Investigating mindsets in a more practical professional and
task-oriented space helps differentiate mindsets from other
constructs of interest such as skills and tools. While mindsets
may affect skills—e.g., a fixed mindset may limit one’s effort
in learning a challenging new skill—they are distinct. Howard
et al. [2] argue, in the context of design thinking, that focusing
on skills and tools without mindset can be limiting. They
argue that considering design thinking as a series of tools
to enact limits consideration to “design doing”. Similarly, in
only considering skills, one loses appreciation for the nuance
and context within which those skills are applied and what
makes them effective toward a team’s or organization’s goals.
Similarly, we argue that while debugging skills and tools
are relevant to educators and students, considering debugging
mindset(s) provides a more robust and contextualizable land-
scape of engineering student development.

Since mindsets focus on core beliefs, they can be challeng-
ing to change.

B. Debugging Education

Debugging has been long studied in education, particularly
in the context of programming. McCauley et al. [6] reviewed
over 50 papers that primarily focus on the sources and type of
bugs in programs and development of skills for the debugging
process. Specifically, the authors categorize educational de-
bugging supports into reducing misconceptions of the system,
improving comprehension of the programming language, and
developing a systematic process for debugging. While most
works focus on development of debugging skills, several works
stand out in relation to the development of our debugging
mindset and supporting activities.

Chmiel and Loui [7] aim to enhance students debugging
skills by having students complete debugging exercises prior
to developing programs for each assignment. Students were
also required to track bugs they encountered in debug logs.
The logs, in particular, were observed to aid students in both
improving their approach to assignments, but also in their
awareness of their growth.

Nagvajara and Taskin [8] state that there is a relation
between debugging and non-technical competencies such as
creative thinking, creative problem solving, and creativity
in design. More precisely, these non-technical competencies
can be considered prerequisites for debugging—i.e. a student
must develop them to some degree before the student can
acquire debugging skill. Bottcher et al. [9] also recognize
that debugging is a complex skill and requires several non-
technical base competencies to access it. In particular they
identify that a software engineer needs awareness that bug
detection can be done in a systematic way, needs strategies
for finding and fixing bugs, and must ensure that the bugs can
be detected in the future.

Lowe [10] explored debugging itself as an integrated tool
to learn programming logic, language, and design. This work
recognizes that debugging involves a mental model of the
whole system at different levels of abstraction – from test
cases and problem statement to application design to the
source code to the notional machine. Therefore, it argues that
taking a “debugging-first” approach can aide struggling novice
programmers.

We are not the first to recognize the link between de-
bugging and mindsets. In fact, McCauley et al. [6] identify
Dweck’s work as a potential avenue for exploring with respect
to debugging. O’Dell [11] links the debugging mindset to
the growth mindset and proposes a systematic process for
debugging. Morales-Navarro et al. [12] leverage debugging to
promote a growth mindset using the “debugging by design”
technique where students design buggy projects for peers to
solve. Despite the rich potential for a debugging mindset,
there has been little work on actually defining and supporting
a debugging mindset.

III. DEBUGGING MINDSET DEFINITION

We argue for a mindset that is implicit in the skills seen as
related to debugging and resonant with a growth mindset. We
build such a mindset based on the above education literature
on effective debugging, with consideration of two aspects: (1)
observable behaviors that reflect effective debugging practice
and (2) internal beliefs or worldviews that guide these behav-
iors.

People with more developed or expert debugging mind-
set approach unexpected system behavior or “bugs” with a
systematic, iterative process of critical assessment, making
and testing hypotheses, and drawing insights to better under-
stand the system. While the systematic process starts with
a holistic view of the system based on their current mental
model, the debugging mindset is open to asking questions
from various viewpoints and levels of abstraction. As these
questions are answered through documentation, discussion,
and experimental observations, the debugger’s mental model is
updated with new information and connections. This process
is tenaciously followed until their mental model matches the
observed behavior of the system. Those with a debugging
mindset often explicitly plan for debugging both in the process
and the design itself.



TABLE I: An initial debugging mindset rubric.

Mindset
Element

Underlying Belief Underlying Opposing
Belief

Growth
mindset

Failure is part of the
learning process

If I have a bug, I did it
wrong and I’m a failure

Testing
mindset

If it wasn’t tested, it
doesn’t work (or there
are bugs)

If I wrote the code
correctly, I don’t need to
test/if it passes basic
testing, it’s fine

Holistic/
system-level
view

I see an entire system
from different
perspectives, at different
levels of abstraction, and
its various types of
components and
connections

I need to focus on what’s
in front of me (e.g.,
particular perspective,
level, or component in a
system)

Systematic
process

Debugging is a process
and I need to take a
systematic approach

I prefer a trial-and-error
approach

Inquisitiveness It’s fun to explore new
bugs, I’m curious about
the cause

Argh, bugs are a pain to
find and address

Commitment
to rigor

I need to find and address
all the bugs

It just needs to be good
enough; you’ll never
address all the bugs

Intrinsic
value of
debugging

Debugging is an essential
part of the development
process

Debugging is a waste of
time and resources

Undergirding these observable behaviors is a core set of
internal beliefs about debugging. Those with a well-developed
debugging mindset believe debugging is an essential, guaran-
teed, and positive part of the system design process. These
debuggers accept that their mental model is useful, yet
imperfect—bugs will exist. Finding these bugs is an exciting
process of growth and learning in which to actively engage.
This excitement is aided by a confidence that the buggy
behavior will be explained since all buggy behavior has a
root-cause and is not “just happening”. The debugging mindset
does not view the absence of the buggy behavior as the sole
outcome of the debugging process, but views the updated
mental model and richer cache of bugs as critical outcomes.

We also identify the many observable behaviors that show
a novice or undeveloped debugging mindset. These are im-
portant to recognize in order to target support for growing a
debugging mindset in students.

Those without a well-developed debugging mindset tend to
immediately jump into their debugging process with a focused
trial and error approach. They often repeat the exact same
experiments multiple times, yielding the same (confounding)
results. When examining the results, they may not actually
consider other perspectives or levels of the system/process
such as whether the test and expected results are correct.
They quickly express frustration at the slow or non-existent
progress—i.e., no bugs are fixed so there is no progress.
This frustration may lead to turning to external help for
the complete solution, including asking instructors for the
“answer” (i.e., bug localization and fixing) rather than help
updating their mental model. More drastic still, students may
give up or turn to copying others’ solutions.

This “anti-debugging mindset” has corresponding internal
beliefs that are critical to consider when trying to inculcate

students with a debugging mindset since these may represent
fundamental roadblocks to developing a debugging mindset.

Someone with an under-developed debugging mindset views
bugs as a failure and thus bad. Debugging causes them extra,
perhaps unplanned, work and is, thus, a punishment for their
failure. Often they lack confidence in fixing the issues and
have corresponding uncertainty and fear around how long a
bug will take to find and correct. Such novice debuggers are
prone to externalizing the blame for the bug—a tool issue,
co-worker/partner issue, documentation issue, or lab manual
issue.

Those with a under-developed debugging mindset also view
the debugging process less iteratively—once a bug is fixed,
they expect the whole system to work rather than appreciating
that the system may have more bugs or their fix may have
introduced bugs. These students believe debugging is about
getting the “right answer” to the specific issue (i.e., fixing
the bug) rather than considering the system and process
holistically.

As an aid for potential evaluation of debugging supports
we have proposed an initial debugging mindset rubric (see
Table I).

IV. CASE STUDIES IN SUPPORTING A DEBUGGING
MINDSET

Debugging as a critical mindset and the resulting prototype
activities to support it emerged from instructional teams, re-
ferred to as x-teams, for two courses — an embedded systems
course and a computer organization course. The x-team model
is being developed and used as part of an NSF Revolutionizing
Engineering Departments (RED) grant [13]–[16]. An x-team
includes and supports the instructor of a course. It leverages
practices and tools from design thinking and engages in col-
laborative design and reflection to implement student centered
teaching approaches [16]. Design thinking tools that have
helped x-teams better address student needs include empathy
maps, personas, and journey maps. In this section we describe
the course-specific context, motivation, and prototype activities
to support debugging mindsets in these two courses.

A. Course 1: Embedded Systems

The Introduction to Embedded Systems course is a 200-
level course in computer, cybersecurity, electrical and soft-
ware engineering majors. The course introduces students to
hardware and software aspects of embedded systems including
microcontrollers, memory, input/output interfaces, embedded
programming in C, initialization and configuration of periph-
erals, polling and interrupt processing, and mobile robots. The
first third of the course covers foundational concepts and skills;
the middle third, understanding and using microcontroller
peripherals; and the final third, implementing a project in
the lab for an autonomous vehicle application. Among the
learning objectives for the course are designing and debugging
applications on embedded platforms, gaining familiarity with
the field of embedded systems, and considering socio-technical
factors in engineering work and solutions.



Fig. 1: Custom mobile robot platform.

The mobile robot in the lab is an iRobot Create 2 (Roomba
compatible) and can be controlled with Open Interface com-
mands from a microcontroller board, as shown in Fig. 1. The
microcontroller board interfaces to input/output devices added
to the robot, including an infrared sensor, ultrasonic sensor,
and servo motor (used to get scans of sensor readings). In
the final project, teams program the microcontroller to move
the robot through a test field and avoid obstacles to reach a
destination.

Students, having wide-ranging backgrounds and skills, in-
troduce many different types of bugs, especially given the
complexity of the embedded system and lab work. Debugging
has not been extensively taught in the course or curriculum,
however, guidance is provided to teaching assistants and stu-
dents in the course. General debugging steps and tips, based on
hypothesis-based approaches, are outlined for students in the
first lab. Teaching assistants are trained to encourage students
to think about and talk through a problem and take key
steps. Also in the first several labs, debugging exercises that
introduce debugging tools and techniques in the development
environment are included in the lab manual.

Instructors and teaching assistants in the course observed
that many students did not take a systematic approach to
debugging, lacked confidence in debugging skills and tools,
and found it difficult to ask useful questions as part of
understanding a problem and searching for errors. Most of
the observable behaviors of the debugging mindset were not
evident, or at least easily seen, in interactions with students
in the lab. Thus we designed new course activities to both
elicit and observe behaviors. The activities were designed to
promote the development of problem solving and learning
strategies associated with debugging. As O’Dell concludes:
“Since solving bugs requires learning, the debugging process
can be made easier by better understanding effective learning

and teaching strategies.” Like O’Dell, we also wanted students
to change the way they perceived the challenge of debugging.
We placed an emphasis on mental models, curiosity and
questioning and reinforced this in various ways throughout the
course. In addition, as a part of every lab demonstration, stu-
dents not only demonstrated functionality but also debugging.
This was intended to foster the beliefs that debugging is part
of the learning experience and is essential to the development
process.

New activities were initiated during spring semester 2020,
but the pandemic curtailed their full realization once students
could no longer go into the lab to experiment. However, their
initial use showed some promise, and they have been used
again in subsequent semesters. The activities were designed
by an instructional team and informed in part through research
about questioning [17], [18]. This resulted in five new activi-
ties:

1) Debugging and Q&A demonstrations added to the tradi-
tional lab demonstration
• Completed weekly with every lab using evaluation

rubrics
2) Lab planning in-class activity based on the Question

Formulation Technique (QFT)
• Facilitated early in the semester with a worksheet and

then used informally
3) Postlab documentation of questioning and debugging

work
• Completed every two weeks as part of a postlab

worksheet
4) Writing your own homework question on a concept of

your choice
• Submitted with homework assignments (about every

three weeks)
5) Applying the five whys method to improve problem

solving
• Suggested practice with homeworks and quizzes and

offered as extra credit for exams and the lab project
Every week, like traditional labs, students demonstrated lab

functionality to a teaching assistant. In addition, they also
completed a debug demo and a Q&A demo, worth the same
number of points as the functional demo. For the debug demo,
they were instructed to use debugging to explain something
about the internal workings of their system. It was evaluated
based on these criteria: (1) using basic debugging functionality
and views in Code Composer Studio; (2) giving a specific
example of program execution and/or a problem in the code;
(3) providing a specific example of testing a change; and (4)
explaining system operation using specific information in one
or more views. For the Q&A demo, they were expected to
(1) formulate a useful question, such as a priority question
during lab planning or a question created while doing the lab;
and (2) generate relevant and appropriately focused questions
that have some purpose, such as to clarify a topic, understand
a relationship, make connections, explore what is and is not



Fig. 2: Sources: https://twitter.com/womenwhocode (left) and unknown (right).

known, make judgments, express curiosity, challenge ways of
thinking, test new ideas, etc.

Postlab assignments were less frequent, but required stu-
dents to document and reflect on lab work. It consists of
three parts: (1) prelab planning notes, such as questions from
the QFT lab planning activity; (2) lab notes, such as follow-
up on their questions, description of debugging, and any
updates to their system sketches, i.e., mental models; and (3)
a reflection on their lab experience. Once again, questioning
and debugging are incorporated as key elements of the learning
experience.

In addition to introducing the Question Formulation Tech-
nique, we incentivized using the five whys method for struc-
tured questioning and root cause analysis. As an industry
practice, it resonates with students, and they can quickly apply
it and see some benefits. In the course, students were rewarded
not only for a correct answer but also for their work to go from
an incorrect to a correct answer.

Beyond the assignments and activities in the course, the
instructor and teaching assistants tried to promote and model
the mindset behaviors and attitudes in class, lab and through
online platforms (e.g., Canvas and Piazza). Questions, bugs,
and debugging stories were shared through Piazza. Motiva-
tional quotes and cartoons were interspersed on Canvas pages,
such as the examples shown in Fig. 2.

B. Course 2: Computer Organization
The Computer Organization and Assembly Level Program-

ming is a 300-level that follows Course 1 in the curriculum.
Student feedback collected through two offerings suggested
that the significant lab experience in the course required
a very large time investment that many students felt was
overwhelming. In particular, they struggled with becoming
familiar with the hardware description language (HDL) and
simulator used in the course. Even eager, engaged, and self-
effective students described parts of the lab experience as
“drinking from a firehose.” Further, students felt that the
testing requirements were uselessly high and tedious. Finally,
there was a frequent notion of feeling lost trying to debug

problems (e.g., identifying whether the issue was a conceptual
issue in the design or testing, an HDL description issue, or a
simulation tool issue). This was reflected in a large fraction
of self-reported time being devoted to “debugging”.

We iteratively developed a series of activities aimed at
improving students’ experience with the challenging term lab
project while inculcating a debugging mindset. Of course, no
one-shot activity was going to boost the various aspects of a
debugging mindset alone. Therefore, over the course of four
offerings of the course we added a range of activities, big
and small, that repeatedly reinforced a debugging mindset.
These activities targeted two aspects – motivational and skills-
building. Motivational activities aimed to increase students’
perceived value of testing and debugging both in the short-
and long-term. Skills-building activities aimed to build both
domain-specific testing and debugging skills as well as the
systematic habit of testing and debugging as an intrinsic part
of the design cycle.

In past offerings of the course students were required to
develop their own test plans and justify that their system
designs worked in a report. This led to a common percep-
tion, handed down between course offerings, that “no one’s
processor works.” Long, tedious hours in the lab were spent
on useless work, ultimately destined for failure. Whether or
not this was ultimately true, it made students entering the lab
unmotivated to engage with the lab experience. Furthermore,
if this was really how the students leaving the course felt,
it suggests that even if they had learned a lot during the
course they would not be willing to access that knowledge
going forward. In order to address this we now spend time
during lecture sessions devoted to understanding the role of
testing in computer hardware design industry (e.g., test and
debug engineers) and looking up the silicon errata of the “not
working” processors students are actively using in their per-
sonal computing devices. We pair this with a open-sourced (to
students) testing framework that models a systematic testing
approach. Students collaboratively as a class built up test sets
for their processors. The goal is to motivate students to be able



to demonstrate that their processor works to some level and
to be able to articulate where their processor’s functionality is
wrong or unknown.

The introductory labs assignments were redesigned to pro-
vide students with direct experience with a design cycle
specific to the course. This design cycle explicitly included
testing and debug as first-class components, critical for success
in the course. Initially, students were walked through this
design cycle using a moderately complex design. Students
must fill out small portions during the testing (e.g., test
case inputs/outputs and complete testbench code) and debug
steps (e.g., fix the HDL of the design). In particular, the
provided design files contain three distinct bugs representative
of common errors likely to be seen throughout the course.
This not only practically models where the debugging fits
into a design cycle but aims to help students internalize that
debugging itself is a mechanism of learning more about a
system – in this case a relatively unknown system.

While domain-specific debug tips were sprinkled throughout
the first few labs at timely locations in an attempt to ease pain-
points, no formal debugging module was taught since the goal
was to repeatedly reinforce the debugging mindset. Therefore,
the design cycle was continued throughout the duration of the
course lab experience in required team contract planning, lab
report entries, submitted testbenches, and individual feedback
forms for each lab assignment.

Team contracts reinforced the debugging mindset in two
ways. First, they require students to explicitly assign a separate
person to test each subcomponent. To students this is motivated
as a mechanism to reduce debug time by increasing the number
of perspectives of the system being tested (and thus what
may be wrong with it during debug) as well as by ensuring
that submodules are tested before integration. Second, the
team contract/lab manual examples demonstrate the addition
of time for debugging the system, reinforcing the notion that
debugging is an expected part of the design cycle and learning
rather than a negative result of failed understanding.

Our lab report templates require students to demonstrate that
each of their subcomponents were working with a simulation
waveform and description. Students also had to justify that
their tests were reasonably comprehensive. Additionally, the
lab report waveforms must be accompanied by testbench files
for each subcomponent, emphasizing the systematic approach
to testing and allowing for future use during system-level
debugging.

After each lab assignment was turned in, students filled out
an individual feedback form which included a log of time spent
on various tasks, including debugging. It also asked students to
identify the largest challenges they faced and how they could
overcome such challenges in the future. The hope was that this
would help increase students’ awareness of what caused their
bugs (i.e., their misunderstanding of the system or process)
and how to fix or avoid them going forward (i.e., update their
mental model of the system or process).

Most recently we have included a course-specific “bug
report” (shown in Fig. 3) in early labs that explicitly leads

Quick description (< 10 words) Include answers to the following:
1) What was the system setup?
2) What are the inputs (files, signal values, etc.)?
3) What were the expected results (print outputs, signal/waveform behav-

ior, etc.)?
4) What were the actual observed results (print outputs, signal/waveform

behavior, etc.)?
• Include screen captures of waveforms
• Include log transcript as a file
• Include code or minimum working example?

5) What, if any, errors exist?
6) What, if any, warnings exist? Why are they ok to ignore?
7) Any other behavior you see that you think may be relevant
8) Attempts made to solve/debug this problem – you should have tried at

least one, and include an explanation of your thought process

Fig. 3: Bug report template.

students through a systematic thought process. These are used
to solicit aid from fellow labmates, TAs, and course instructors.
Each student must submit at least one bug report throughout
the course of the introductory labs and substantively respond to
another student’s bug report. Finally, they must post how their
bug was resolved. The goal with this approach is to provide
students with a systematic approach defining the problem/issue
to debug and to explicitly identify differences between their
internal model of the system and the observable output from
the actual system. During the bug report students are required
to have attempted at least one experiment to resolve the
issue and analyze what happened in that case. Given the
systematic nature of the bug report and fact that it offered
a mechanism to get assistance from others, we believe that it
would encourage students to persist in fixing bugs and gain
alternative perspectives on what could be the cause of bugs.

V. ANALYSIS

A. Methods

We utilized directed content analysis [19] to investigate
connections to the debugging mindset evidenced by students
in each of the courses. Directed content analysis acknowledges
that existing theory may be emerging or incomplete, as in the
case of understanding a debugging mindset among engineering
students, and seeks to better identify or extend the nascent
theory. Here, we leverage the conceptualization of a debugging
mindset described earlier and explore elements, expansions,
and modifications of that conceptualization evidenced in stu-
dent reflections on lab and project work.

We employed the design research tool of empathy maps
[20] to support content analysis. An empathy map organizes
observations of an individual or group based on four key facets
of an experience: (1) what they do or say, (2) what they see or
hear, (3) what they think, and (4) what/how they feel. Together,
these aspects provide a brief, multi-faceted overview of an
individual or group’s experience. In this case, the empathy
maps reflect the experience of debugging within the courses
based on several data sources: student reflections, instructor
observations, and other course artifacts.



Three researchers conducted analysis for Course 1 and
two different researchers conducted analysis for Course 2.
Researchers iteratively moved through the following stages:

• Compile and familiarize self with data
• Identify data excerpts with potential connections to the

debugging mindset
• Code excerpts for evidence of debugging mindset or

opposing mindset
• Individually, place coded excerpts within an empathy map
• Collaboratively within each case, merge individual em-

pathy maps to reflect key themes in students’ experience
of debugging mindsets

• Describe key themes in a narrative and create final
empathy maps

B. Course 1: Embedded Systems Empathy Map

Table II shows a summarized composite empathy map
for the embedded systems course generated from the team’s
review and analysis of student work. The student work used in
the analysis includes several assignments from spring semester
2022: postlab assignments, midterm survey, and final lab
project survey. Debugging was explicitly addressed in the
postlab assignments via the debugging demonstration and
commonly reflected on in other sections. Student comments in
the surveys also directly and indirectly referred to debugging
given its emphasis in the course. Using these assignments,
we found all elements of the debugging mindset shown in
Table I. There were many examples that support the beliefs
behind each element, and a few examples of opposing beliefs
as well.

The growth mindset appeared in comments about time,
iterations and engagement needed for debugging, as well as the
value of partners or teammates in the process. Students also
held the view that more effort on their part in advance (e.g.,
more closely reading the lab manual, refreshing their program-
ming skills) would eliminate some bugs. While some students
were frustrated with the amount of time or information needed,
a sense of failure due to bugs was not evident other than a
perception about falling behind compared to others (though
they eventually realized others weren’t farther ahead). Students
realized that many components in the system can affect its
operation and that focusing too quickly or narrowly may not
solve a problem, thus exhibiting a system-level view. They
sometimes added new information to their system sketches
and connected concepts to practice. Both inquisitiveness and
rigor are fostered with better mental and conceptual models of
the system. Through the project, students generally embraced
debugging as valuable to being an engineer. As students gained
knowledge and experience during the course, they took more
systematic approaches to debugging, including how they used
the debug tool. Nonetheless student work also shows that
some students take a trial-and-error approach, fix just enough
bugs, and test only basic functionality, limiting the debugging
mindset.

TABLE II: Summary empathy map for Course 1.

Do/Say See/Hear

• Described some features of the
debug tool that were used

• Referred to debugging tasks,
such as trial and error, printing,
stepping through, watching
variables, commenting out
code, etc.

• Cited importance of lab
documentation and resources,
such as manuals, prelabs, class
notes, and need to use more
effectively before lab to reduce
time spent completing the lab
(i.e., while debugging, found
helpful information that was
provided)

• Used an iterative process over
time (testing and retesting,
writing and rewriting code)

• Developed solutions to
unforeseen issues

• Asked TAs questions and
interacted with TAs in the
debugging process

• Students start with what’s
familiar, or what they think
they know

• Debugging provided a way to
identify code, system, and men-
tal errors and try to fix them

• Debugging was time-consuming
and even simple issues took a lot
of time to fix

• Time taken to understand the
components was well spent

• Disciplined approach led to suc-
cessful debugging outcomes

• Being too narrowly focused led
to overlooking key information
in other resources

• Debugging was helped by more
information and perspectives

• Communication with and roles
of partners/teammates affect de-
bugging performance

Think Feel

• Better problem solving skills
• Important to understand

equipment and the overall
system, not just the code

• Embedded programming is
both more interesting and more
difficult and takes more time to
get right

• Debugging brings insights
and/or identifies gaps that help
“connect the dots” in the
course and learn more about
embedded systems

• There is value in working with
others

• Useful to have a continuous
debugging approach, i.e., start
small with working code

• Reading more lab information
beforehand will reduce
debugging time

• Code should be thoroughly
understood before using it

• Better hardware will make a
system perform exactly as
written in code

• Liked using the debug tool to
check code status, e.g., vari-
ables, conditions, control flow,
registers, etc.

• Enjoyed the challenge of debug-
ging

• Felt like an engineer when solv-
ing problems including debug-
ging

• Frustrated sometimes, e.g., time
spent, uncertainty about the is-
sues, incomplete information,
initial struggles.

• Confused sometimes, e.g., com-
plex system, physical as well
as software issues, various tech-
nical and educational materi-
als, unfamiliarity or inexperi-
ence with lab

• Felt rushed, e.g., finding errors
in the testing area, finishing a
lab before the next lab, falling
behind compared to others

• Satisfaction with finding, fixing
and understanding bugs

C. Course 2: Computer Organization Empathy Map

Table III shows a summarized composite empathy map gen-
erated from the team’s reading of an intermediate individual
feedback form from the term project, a open-ended individual
evaluation of bug reports, and the final team report from
the term project. Overall, debugging and testing were very
common topics of discussion even for questions/assignments
that did not specifically mention debugging/testing. This is
not surprising as students also indicated that a significant



TABLE III: Summary empathy map for Course 2.

Do/Say See/Hear

• Overcame (debugging)
challenges to complete tasks

• Recognized root causes of
failing debugging tasks or
taking too much time on
debugging tasks, especially
after large time-lost error

• Frequently sought external help
(perhaps valuing perspectives)

• Frequently put off systematic
debugging tasks to end

• Spent much of time debugging
without robust mental
engagement

• Debugging forced
(independent) learning

• Debugging was contextual –
needed to learn tools/methods
specific to task

• Actual debugging time longer
than expected

• System-level integration
debugging
challenging/time-consuming

• Teammates significantly
affected debugging success/time

• Testbenches and debug reports
(two parts of debug
infrastructure) points of
reflection/consideration

Think Feel

• I need stronger background
knowledge to support
debugging

• Debugging tasks can be
simplified by design /
implementation choices

• Debugging and testing is a
time-consuming, but inherent
part of the process

• If the whole system is working,
other tests or warnings are
irrelevant

• Systematic and holistic
debugging approaches can help
debugging success

• Many tasks associated with a
systematic testing/debugging
approach are wasted work
(either for project or learning)

• Excited at the experience of
debugging, especially working
through strange/unique errors

• Frustrated at time and effort of
debugging

• Debugging is pain
• Anxious at errors, especially in

a time crunch
• In control once errors are

understood and corrected
• Confused, helpless, or

floundering during the process
of debugging

amount of student time was expended on debugging and
testing aspects. Importantly, using the above assignments we
were able to observe all aspects of the debugging mindset
rubric shown in Table I to some extent.

Many debugging-related student comments touched on the
growth mindset aspect. Students thought they needed more
background knowledge in the specific course context to sup-
port their debugging (e.g., knowledge of VHDL, assembly
programming, or digital logic simulation tools and associated
errors). Despite this perception, students across the spec-
trum of project completion overcame debugging challenges
to complete significant portions of the project. Many stated
or demonstrated that debugging forced them to independently
learn new material and concretely connect it to course content.
Students often root-caused their struggles with debugging.
The most common issues were underestimating debugging
time and not using systematic or holistic debug approaches.
Although these students demonstrated a growth mindset and
some reported learning that they were capable of such indepen-
dent learning, many comments did not reflect an internalization
of the intrinsic role debugging had on their learning.

Students frequently commented on testing in relation to its
role in debugging. Both of these tasks were reported as time-

consuming with frustration and anxiety over perceptions of
wasted work. Despite this frustration, students often acknowl-
edged that debugging and testing were an intrinsic or “vital”
part of the design process. Evidence of this acknowledgement
is a change from semesters prior to the added activities.

Interestingly, while students frequently started out with
some level of confusion and anxiousness and endured a time of
pain or discomfort, once the bugs were found and eliminated
they reported a sense of control and excitement. Indeed, many
student comments reflect a knowledge of how many bugs
remained (i.e., testing mindset) and a desire to see them
eliminated if more time were available (i.e., commitment to
rigor).

VI. CONCLUSION

Empathy-map-aided content analysis of student reflections
provided evidence of the proposed debugging mindset in
each of the course cases. This evidence spanned the seven
constituent mindsets described in Table 1, in both affirmative
and opposing beliefs. New constituent mindsets were not
identified but novel conceptualizations and manifestations of
the extant constituent mindsets were evident in the final
empathy maps. This evidence highlights the relevance of the
proposed debugging mindset to engineering student work,
particularly in the given contexts of computer engineering
laboratory and project work, and the opportunity for future
work to (1) explore the relevance of the debugging mindset
in other engineering student contexts, (2) better understand
what a debugging mindset and its constituent components look
like in an engineering student context, and (3) develop qual-
itative and quantitative instrumentation to support educators
and researchers in identifying the debugging mindset among
engineering students.

While the analysis was not designed to identify causal links
between course pedagogy and the development of debugging
mindsets among students in each course case, there was evi-
dence of whether and how students’ debugging mindsets could
change within a course. For example, the Course 2 empathy
map demonstrated that students often recognized causes for
“debugging failures” when they spent substantive amounts of
time working through errors. Latent clues to the growth this
points to is evident in complementary empathy map items that
demonstrate negative experiences in the process of debugging
and positive experiences based on outcomes of debugging.
Strong conclusions should not be drawn from this evidence,
but it does point to further work that should be completed to
better understand how students develop debugging mindsets
and how educators can support such development.

REFERENCES

[1] C. S. Dweck, Mindset: The new psychology of success. Ballantine
Books: New York, 2016.

[2] Z. Howard, M. Senova, and G. Melles, “Exploring the role of mindset in
design thinking: Implications for capability development and practice,”
Journal of Design, Business & Society, vol. 1, no. 2, pp. 183–202, 2015.

[3] H. G. Nelson and E. Stolterman, The design way: Intentional change in
an unpredictable world. MIT press, 2014.



[4] J. Schweitzer, L. Groeger, and L. Sobel, “The design thinking mindset:
An assessment of what we know and what we see in practice,” Journal
of Design, Business & Society, vol. 2, no. 1, pp. 71–94, 2016.

[5] C. Dosi, F. Rosati, M. Vignoli et al., “Measuring design thinking
mindset,” in DS 92: Proceedings of the DESIGN 2018 15th International
Design Conference, 2018, pp. 1991–2002.

[6] R. McCauley, S. Fitzgerald, G. Lewandowski, L. Murphy, B. Simon,
L. Thomas, and C. Zander, “Debugging: a review of the literature from
an educational perspective,” Computer Science Education, vol. 18, no. 2,
pp. 67–92, 2008.

[7] R. Chmiel and M. Loui, “An integrated approach to instruction in
debugging computer programs,” in 33rd Annual Frontiers in Education,
2003. FIE 2003., vol. 3, 2003, pp. S4C–1.

[8] P. Nagvajara and B. Taskin, “Design-for-debug: A vital aspect in
education,” in 2007 IEEE International Conference on Microelectronic
Systems Education (MSE’07), 2007, pp. 65–66.

[9] A. Böttcher, V. Thurner, K. Schlierkamp, and D. Zehetmeier, “Debug-
ging students’ debugging process,” in 2016 IEEE Frontiers in Education
Conference (FIE), 2016, pp. 1–7.

[10] T. Lowe, “Debugging: The key to unlocking the mind of a novice
programmer?” in 2019 IEEE Frontiers in Education Conference (FIE),
2019, pp. 1–9.

[11] D. H. O’Dell, “The debugging mindset: Understanding the psychology
of learning strategies leads to effective problem-solving skills.” Queue,
vol. 15, no. 1, pp. 71–90, 2017.

[12] L. Morales-Navarro, D. A. Fields, and Y. B. Kafai, “Growing mindsets:
Debugging by design to promote students’ growth mindset practices

in computer science class.” in Proceedings of the 15th International
Conference of the Learning Sciences-ICLS 2021, 2021.

[13] N. D. Fila, S. McKIlligan, and K. Guerin, “Design thinking in engi-
neering course design,” in 2018 ASEE Annual Conference & Exposition,
2018.

[14] N. D. Fila, S. McKIlligan, and S. Abramsky, “How engineering ed-
ucators use heuristics when redesigning an undergraduate embedded
systems course,” in 2018 ASEE Annual Conference, 2018.

[15] N. D. Fila, D. Rover, M. Mina, and P. Jones, “Designing a course
together: A collaborative autoethnographic study of a cross-functional
team course design project in engineering,” in 2020 ASEE Virtual Annual
Conference, 2020.

[16] S. McKilligan, N. Fila, D. Rover, and M. Mina, “Design thinking as a
catalyst for changing teaching and learning practices in engineering,” in
2017 IEEE Frontiers in Education Conference (FIE). IEEE, 2017, pp.
1–5.

[17] “Qft teaching and learning resources,” Right Question Institute.
[Online]. Available: https://rightquestion.org/education/resources/

[18] S. Moaveni and K. Chou, “Using the five whys methods in the
classroom: How to turn students into problem solvers,” Journal of STEM
education, vol. 17, no. 4, 2017.

[19] H.-F. Hsieh and S. E. Shannon, “Three approaches to qualitative content
analysis,” Qualitative health research, vol. 15, no. 9, pp. 1277–1288,
2005.

[20] D. Gray, “Updated Empathy Map Canvas,” Jul.
2018. [Online]. Available: https://medium.com/the-xplane-collection/
updated-empathy-map-canvas-46df22df3c8a


