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This paper focuses on the semiclassical behavior of the spinfoam quantum gravity in four dimensions.

There has been long-standing confusion, known as the flatness problem, about whether the curved

geometry exists in the semiclassical regime of the spinfoam amplitude. The confusion is resolved by the

present work. By numerical computations, we explicitly find curved Regge geometries that contribute

dominantly to the large-j Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spinfoam amplitudes on

triangulations. These curved geometries are with small deficit angles and relate to the complex critical

points of the amplitude. The dominant contribution from the curved geometry to the spinfoam amplitude is

proportional to eiI , where I is the Regge action of the geometry plus corrections of higher order in

curvature. As a result, in the semiclassical regime, the spinfoam amplitude reduces to an integral over

Regge geometries weighted by eiI, where I is the Regge action plus corrections of higher order in

curvature. As a by-product, our result also provides a mechanism to relax the cosine problem in the

spinfoam model. Our results provide important evidence supporting the semiclassical consistency of the

spinfoam quantum gravity.

DOI: 10.1103/PhysRevD.106.044005

I. INTRODUCTION

The semiclassical consistency is an important require-

ment in quantum physics. Any satisfactory quantum theory

must reproduce the corresponding classical theory in the

approximation of small ℏ. In particular, the semiclassical

analysis is more crucial in the field of quantum gravity. Due

to the limitation of experimental tests, the semiclassical

consistency is one of only few physical constraints for

quantum gravity: a satisfactory quantum theory of gravity

must reproduce general relativity (GR) in the semiclassical

regime.

This paper focuses on the semiclassical analysis of

loop quantum gravity (LQG). LQG as a background-

independent and nonperturbative approach has been dem-

onstrated to be a competitive candidate toward the final

quantum gravity theory (see e.g., [1–6] for reviews). The

path integral formulation of LQG, known as the spinfoam

theory [7–11], is particularly interesting for testing the

semiclassical consistency of LQG, because of the con-

nection between the semiclassical approximation of path

integral and the stationary phase approximation. A central

object in the spinfoam theory is the spinfoam amplitude,

which defines the covariant transition amplitude of LQG.

The recent semiclassical analysis reveals the interesting

relation between spinfoam amplitudes and the Regge

calculus, which discretizes GR on triangulations [12–19].

This relation makes the semiclassical consistency of the

spinfoam theory promising.

Nevertheless, it has been argued that an accidental

flatness constraint might emerge in the semiclassical regime

so that only flat Regge geometries would dominate spin-

foam amplitudes. In contrast, curved geometries were

absent [20–24]. The suspicion of lacking curved geometry

in the semiclassical regime has led to doubt about the

semiclassical behavior. This flatness problem has been a key

issue in the spinfoam LQG for more than a decade.

In this paper, we resolve the flatness problem by

explicitly finding curved Regge geometries from the four-

dimensional Lorentzian EPRL spinfoam amplitude. These

curved geometries are with small deficit angles δh and have

been overlooked in the model because they correspond to

complex critical points slightly away from the real integra-

tion domain. But they can be revealed by a more refined*
dqu2017@fau.edu
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stationary phase analysis involving the analytic continuation

of the spinfoam integrand. These curved Regge geometries

still give nonsuppressed dominant contributions to the

spinfoam amplitude. The contributions are proportional to

eiI where I is the Regge action of the curved geometry plus

corrections of the second and higher orders in δh. The

spinfoam amplitude reduces to an integral over Regge

geometries weighted by eiI in the semiclassical regime.

These results are illustrated by the numerical analysis of

the EPRL spinfoam amplitudes on triangulations Δ3 and

σ1−5 [Figs. 1(a) and 1(b)]. As a by-product, the “cosine

problem” [25] is shown to be relaxed on Δ3. Moreover, our

results provide important evidence supporting the semi-

classical consistency of the spinfoam theory.

II. SPINFOAM AMPLITUDE

The four-dimensional triangulation K contains 4-sim-

plices v, tetrahedra e, triangles f, line segments, and points.

We denote the internal triangle by h and the boundary

triangle by b (f is either h or b) and assign the SUð2Þ spins
jh; jb ∈ N0=2 to internal and boundary triangles h, b. The

spin jf ¼ jh or jb relates to the quantum area of f by af ¼
8πγGℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jfðjf þ 1Þ
p

[26,27]. The Lorentzian EPRL spin-

foam amplitude on K sums over internal spins fjhg,

AðKÞ ¼
X

fjhg

Y

h

djh

Z

½dgdz�eSðjh;gve;zvf ;jb;ξebÞ; ð2:1Þ

½dgdz� ¼
Y

ðv;eÞ
dgve

Y

ðv;fÞ
dΩzvf

; ð2:2Þ

where djh ¼ 2jh þ 1. The boundary states of AðKÞ are

SUð2Þ coherent states jjb; ξebi where ξeb ¼ ueb⊳ð1; 0ÞT ,
ueb ∈ SUð2Þ. jb; ξeb determines the area and the 3-normal

of b in the boundary tetrahedron e. The summed/integrated

variables are gve ∈ SLð2;CÞ, zvf ∈ CP
1, and jh. The

boundary jb; ξeb are not summed/integrated. dgve is the

SLð2;CÞHaar measure. dΩzvf
is a scaling invariant measure

on CP
1. The spinfoam action S is complex, linear to jh, jb

[15] and has the following expression:

S ¼
X

e0
jhFðe0;hÞ þ

X

ðe;bÞ
jbF

in=out

ðe;bÞ þ
X

ðe0;bÞ
jbF

in=out

ðe0;bÞ ; ð2:3Þ

Fout
ðe;bÞ ¼ 2 ln

hZveb; ξebi
kZvebk

þ iγ ln kZvebk2; ð2:4Þ

Fin
ðe;bÞ ¼ 2 ln

hξeb; Zv0ebi
kZv0ebk

− iγ ln kZv0ebk2; ð2:5Þ

Fðe0;fÞ ¼ 2 ln
hZve0f; Zv0e0fi
kZve0fkkZv0e0fk

þ iγ ln
kZve0fk2
kZv0e0fk2

: ð2:6Þ

Zvef ¼ g†vezvf and f ¼ h or b. e and e0 are boundary and

internal tetrahedra, respectively. Introducing the dual com-

plex K�, the orientation of the face f� dual to f induces

∂f�’s orientation that is outgoing from the vertex dual to v
and incoming to another vertex dual to v0. The logarithms

are fixed to be the principal value. The spinfoam action has

the following continuous gauge freedom:

(i) At each v, there is the SLð2;CÞ gauge freedom

gve ↦ x−1v gve, zvf ↦ x†vzvf, xv ∈ SLð2;CÞ. We

fix one ga to be a constant SLð2;CÞ matrix for

each 4-simplex. The amplitude is independent of the

choices of constant matrices.

(ii) At each e, there is the SUð2Þ gauge freedom:

gv0e ↦ gv0eh
−1
e , gve ↦ gveh

−1
e , he ∈ SUð2Þ. To re-

move the gauge freedom, we set one of the group

element gv0e along the edge e to be the upper

triangular matrix. Indeed, any g ∈ SLð2;CÞ can

be decomposed as g ¼ kh with h ∈ SUð2Þ and

k ∈ K, where K is the subgroup of upper triangular

matrices,

FIG. 1. (a) The Δ3 triangulation (the center panel) made by

gluing three 4-simplices (in blue, red, and purple). The internal

triangle (135) is highlighted in red. (b) The triangulation σ1−5
made by the 1-5 Pachner move dividing a 4-simplex into five 4-

simplices. σ1−5 has ten internal triangles and five internal

segments I ¼ 1;…; 5 (red). (c) The real and complex critical

points x
∘
and ZðrÞ. Sðr; zÞ is analytic extended from the real axis

to the complex neighborhood illustrated by the red disk.
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K ¼
�

k¼
�

λ−1 μ

0 λ

�

; λ ∈Rnf0g; μ ∈ C

�

: ð2:7Þ

We use the gauge freedom to set gv0e ∈ K.
(iii) zvf can be computed by gve and ξef up to a complex

scaling: zvf ∝C ðg†veÞ−1ξef. Each zvf has the scaling

gauge freedom zvf ↦ λvfzvf, λvf ∈ C. We fix the

gauge by setting the first component of zvf to 1.

Then, the real critical point z
∘

vf is in the form of

z
∘

vf ¼ ð1;α∘ vfÞT , where α
∘

vf ∈ C.

We have assumed the sum over internal jh ∈ N0=2 in

Eq. (2.1) is bounded by jmax. For some internal triangles, h,
jmax is determined by boundary spins jb via the triangle

inequality, or jmax is an IR cutoff in case of the bubble

divergence.

Moreover, we would like to change the sum over jh in

Eq. (2.1) to the integral, preparing for the stationary phase

analysis. The idea is to apply the Poisson summation

formula. Firstly, we replace each djh by a smooth compact

support function τ½−ϵ;jmaxþϵ�ðjhÞ satisfying

τ½−ϵ;jmaxþϵ�ðjhÞ ¼ djh ; jh ∈ ½0; jmax� and

τ½−ϵ;jmaxþϵ�ðjhÞ ¼ 0; jh ∉ ½−ϵ; jmax þ ϵ�; ð2:8Þ

for any 0 < ϵ < 1=2. This replacement does not change the

value of the amplitude AðKÞ but makes the summand of
P

jh
smooth and compact support in jh. Applying the

Poisson summation formula,

X

n∈Z

fðnÞ ¼
X

k∈Z

Z

R

dnfðnÞe2πikn;

the discrete sum over jh in AðKÞ becomes integral.

Therefore,

AðKÞ ¼
X

fkh∈Zg

Z

R

Y

h

djh
Y

h

2τ½−ϵ;jmaxþϵ�ðjhÞ
Z

½dgdz�eSðkÞ ;

SðkÞ ¼ Sþ 4πi
X

h

jhkh: ð2:9Þ

By the area spectrum, the classical area af and small ℏ

imply the large spin jf ≫ 1. This motivates us to under-

stand the large-j regime as the semiclassical regime of

AðKÞ. To probe the semiclassical regime, we scale uni-

formly fjb; jhg → fλjb; λjhg, where λ ≫ 1. Scaling spins

implies S → λS. Then, AðKÞ is given by

AðKÞ ¼
X

fkh∈Zg

Z

Y

h

djh
Y

h

ð2λdλjhÞ
Z

½dgdz�eλSðkÞ ; ð2:10Þ

SðkÞ ¼ Sþ 4πi
X

h

jhkh; ð2:11Þ

where jh is real and continuous.

III. REAL CRITICAL POINTS AND FLATNESS

For each kh in (2.10), by the naive stationary phase

approximation, the integral with λ ≫ 1 is approximated by

the dominant contributions from solutions of the critical

equations,

ReðSÞ ¼ ∂gve
S ¼ ∂zvf

S ¼ 0; ð3:1Þ

∂jh
S ¼ 4πikh; kh ∈ Z: ð3:2Þ

The solution inside the integration domain is denoted by

fj
∘

h; g
∘

ve; z
∘

vfg. We view the integration domain as a real

manifold and call fj
∘

h; g
∘

ve; z
∘

vfg the real critical point.

Every solution satisfying the part (3.1) and a non-

degeneracy condition endows a Regge geometry to K with

4D orientation [12–15]. Further imposing (3.2) to these

Regge geometries gives the accidental flatness constraint

to every deficit angle δh hinged by the internal triangle h
[22,23],

γδh ¼ 4πkh; kh ∈ Z: ð3:3Þ

The Barbero-Immirzi parameter γ ≠ 0 is finite. When

kh ¼ 0, δh at every internal triangle is zero, so the

Regge geometry endowed by the real critical point is flat.

If the dominant contribution to AðKÞ with λ ≫ 1 only

comes from real critical points, Eq. (3.3) implies that only

the flat geometry and geometries with γδh ¼ �4πZþ can

contribute dominantly to AðKÞ, whereas the contributions

from generic curved geometries are suppressed. If this was

true, the semiclassical behavior of AðKÞ would fail to be

consistent with GR.

A generic fj
∘

h; g
∘

ve; z
∘

vfg can endow discontinuous 4D

orientation; i.e., the orientation flips between 4-simplices.

Then (3.3) becomes γ
P

v∈h svΘhðvÞ ¼ 4πkh where sv ¼
�1 labels two possible orientations at each 4-simplex v.
ΘhðvÞ is the dihedral angle hinged by h in v.

IV. COMPLEX CRITICAL POINTS

As we will show, the large-λ spinfoam amplitude does

receive nonsuppressed contributions from curved geom-

etries with small but nonzero jδhj. Demonstrating this

property needs a more refined stationary phase analysis

of the spinfoam amplitude: We come back to the amplitude

(2.10) and separate M internal areas jho (ho ¼ 1;…;M)

from other internal areas jh̄ (h̄ ¼ 1;…; F −M). F is the

total number of internal triangles. M equals to number of

internal segments I in K. The areas fjhog are suitably
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chosen such that we can change variables from fjhogMho¼1 to

internal segment-lengths flIgMI¼1 (by inverting Heron’s

formula
1
) in a neighborhood of fj

∘

ho
g of a real critical

point fj
∘

h; g
∘

ve; z
∘

vfg. dMþNjh ¼ J ld
MlId

F−Mjh̄ where J l is

the Jacobian,

AðKÞ ¼
X

fkhg

Z

Y

M

I¼1

dlIZ
fkhg
K ðlIÞ; ð4:1Þ

Z
fkhg
K ðlIÞ ¼

Z

Y

h̄

djh̄

Y

h

ð2λdλjhÞ
Z

½dgdz�eλSðkÞJ l: ð4:2Þ

The partial amplitude Z
fkhg
K have the external parameters

r≡ flI; jb; ξebg including not only the boundary data but

also internal segment-lengths lI . To study Z
fkhg
K , we apply

the stationary phase analysis for the complex action with

parameters [28,29]: We consider the large-λ integral
R

K eλSðr;xÞdNx and regard r as parameters. Sðr; xÞ is an

analytic function of r ∈ U ⊂ R
k; x ∈ K ⊂ R

N . U × K is a

neighborhood of ðr∘; x∘Þ. x∘ is a real critical point of Sðr∘; xÞ.
Sðr; zÞ, z ¼ xþ iy ∈ C

N , is the analytic extension of

Sðr; xÞ to a complex neighborhood of x
∘
. The complex

critical equation ∂zS ¼ 0 is solved by z ¼ ZðrÞ where ZðrÞ
is an analytic function of r in the neighborhood U. When

r ¼ r
∘
, Zðr∘Þ ¼ x

∘
reduces to the real critical point. When r

deviates away from r
∘
, ZðrÞ ∈ C

N can move away from the

real plane RN , thus is called the complex critical point [see

Fig. 1(b)]. We have the following large-λ asymptotic

expansion for the integral:

Z

K

eλSðr;xÞdNx ¼
�

1

λ

�N
2 eλSðr;ZðrÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−δ2z;zSðr; ZðrÞÞ=2πÞ
q

× ½1þOð1=λÞ�; ð4:3Þ

where Sðr; ZðrÞÞ and δ2z;zSðr; ZðrÞÞ are the action and

Hessian at the complex critical point.

The crucial information of (4.3) is the integral can

receive the dominant contribution from the complex critical

point away from the real plane. This fact has been over-

looked by the argument of the flatness problem. Moreover,

Eq. (4.3) reduces AðKÞ to the integral,

�

1

λ

�N
2

Z

Y

M

I¼1

dlIN le
λSðr;ZðrÞÞ½1þOð1=λÞ�; ð4:4Þ

at each kh. N l ∝
Q

h ð4jhÞJ l½detð−δ2z;zS=2πÞ�−1=2 at ZðrÞ.
Given that flIg determines the Regge geometry on K,

Eq. (4.4) describes the dynamics of Regge geometries with

the effective action S, which does not exclude curved

geometries. In the following, we make the above general

analysis concrete by considering two examples of spinfoam

amplitudes on K ¼ Δ3; σ1−5, and we compute numerically

the complex critical points and S, confirming the resolution

of the flatness problem.

V. ASYMPTOTICS OF AðΔ3Þ
We firstly focus on a simpler example AðΔ3Þ where Δ3

contains three 4-simplices and a single internal triangle h.
All line segments of Δ3 are at the boundary, so M ¼ 0 in

(4.1). The Regge geometry g on Δ3 is fixed by the (Regge-

like) boundary data fjb; ξebg that uniquely corresponds to

the boundary segment-lengths.

Translate the above general theory to AðΔ3Þ: r ¼
fjb; ξebg is the boundary data. r

∘ ¼ fj
∘

b; ξ
∘

ebg determines

the flat geometry gðr∘Þwith δh ¼ 0. x
∘ ¼ fj

∘

h; g
∘

ve; z
∘

vfg is the
real critical point associated to r

∘
and endows the orienta-

tions sv ¼ þ1 to all 4-simplices. r
∘
, gðr∘Þ, and x

∘
are

computed numerically in A 1 and A 2. The integration

domain of AðΔ3Þ is 124 real dimensional. We define local

coordinates x ∈ R
124 covering the neighborhood of x

∘
inside

the integration domain (see A 3). Sðr; xÞ is the spinfoam

action, analytic in the neighborhood of ðr∘; x∘Þ. z ∈ C
124

complexifies x. Sðr; zÞ extends holomorphically Sðr; xÞ to
a complex neighborhood of x

∘
. We only complexify x but do

not complexify r. We focus on kh ¼ 0, and the different

regimes of the boundary data r result in different large-λ

asymptotic behavior of AðΔ3Þ.
(i) Regime 1: fixing the boundary data r ¼ r

∘
, A 2 gives

numerically the real critical point for the flat geom-

etry gðr∘Þ, whose deficit angle is δh ¼ 0. eSðr
∘
;x
∘Þ

evaluated at the real critical points x
∘

gives the

dominant contribution to the asymptotic amplitude,

Z

dNxμðxÞeλSðr
∘
;xÞ ∼

�

1

λ

�N
2 eλSðr

∘
;x
∘Þμðx∘Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ð−δ2x;xSðr; x
∘Þ=2πÞ

q

× ½1þOð1=λÞ�: ð5:1Þ

The asymptotics behaves as a power law in 1=λ. Here
we only focus on the contribution from the single real

critical point x
∘
. There is another real critical point

which we will discuss in a moment.

1
We relate the chosen M areas fjhog to M segment-lengths

flIg by Heron’s formula as in Regge geometry. Inverting the
relation between fjhogMho¼1 and flIgMI¼1 defines the change of

variables ðjho ; jh̄Þ → ðlI ; jh̄Þ in a neighborhood of the real critical
point. This procedure is just changing variables and does not
impose any restriction.
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(ii) Regime 2: fixing the boundary data r which deter-

mine the segment-lengths for a curved geometry

gðrÞ, the real critical point is absent, then the integral
is suppressed faster than any polynomial in 1=λ,
Z

dNxμðxÞeλSðr;xÞ ¼ Oðλ−KÞ; ∀ K > 0: ð5:2Þ

The above asymptotic behavior is based on fixing r and
sending λ to be large. However, in order to clarify

contributions from curved geometries and compare them

to the contribution from the flat geometry, we should also

let r vary and have an interpolation between two regimes

(5.1) and (5.2). This motivates us to use the complex critical

point of the analytically continued action Sðr; zÞ. We vary

the length l26 of the line segment connecting the points 2

and 6, leaving other segment lengths unchanged. A family

of (Regge-like) boundary data r ¼ r
∘ þ δr parametrized by

l26 is obtained numerically and gives the family of curved

geometries gðrÞ with δh ≠ 0 (see A 4).

At each r, the real critical point is absent. But we find the
complex critical point z ¼ ZðrÞ satisfying ∂zSðr; zÞ ¼ 0

with high-precision numerics. At each curved geometry

gðrÞ, the real critical point is absent for δh ≠ 0. We

numerically compute the complex critical point ZðrÞ
satisfying the complex critical equations ∂zSðr; zÞ ¼ 0

with Newton-like recursive procedure. First, we linearize

∂zSðr; zÞ ¼ 0 at the pseudocritical point x0 ∈ R
124. Then,

we have the linear system of equations,

∂
2
z;zSðr; x0Þ · δz1 þ ∂zSðr; x0Þ ≃ 0: ð5:3Þ

We obtain z1 ¼ x0 þ δz1 by the solution δz1. We again

linearize ∂zSðr; zÞ ¼ 0 at z1,

∂
2
z;zSðr; z1Þ · δz2 þ ∂zSðr; z1Þ ≃ 0; ð5:4Þ

we obtain z2 ¼ z1 þ δz2 by the solution δz2. We iterate and

linearize the complex critical equations at z2; z3;…; zn−1.
The resulting zn ¼ zn−1 þ δzn should approximates the

complex critical points ZðrÞ arbitrarily well for sufficiently
large n. In practice, n ¼ 4 turns out to be sufficient for our

calculation. The numerical results of complex critical point

for each geometry r can be found in the Mathematica

notebook [30].

The absolute error of numerically solving ∂zSðr; zÞ ¼ 0

is measured by

ε ¼ max j∂zSðr; znÞj: ð5:5Þ

We have zn well-approximate the complex critical point

ZðrÞ if ε is small (see A 5).

We insert ZðrÞ into Sðr; zÞ and compute numerically the

difference between Sðr; ZðrÞÞ and the Regge action IR of

the curved geometry gðrÞ,

δIðrÞ ¼ Sðr; ZðrÞÞ − iIR½gðrÞ�; ð5:6Þ

where IR½gðrÞ� ¼ ahðrÞδhðrÞ þ
X

b

abðrÞΘbðrÞ: ð5:7Þ

The areas ahðrÞ; abðrÞ and deficit/dihedral angles

δhðrÞ,ΘbðrÞ are computed from gðrÞ.
We repeat the computation for many r from varying l26.

The computations give a family of δIðrÞ. We relate δIðrÞ
to δhðrÞ and find the best polynomial fit [see Fig. 2(a)],

δI ¼ a2ðγÞδ2h þ a3ðγÞδ3h þ a4ðγÞδ4h þOðδ5hÞ: ð5:8Þ

The coefficients ai at γ ¼ 0.1 are given in A 5.

By (4.3), the dominant contribution from ZðrÞ to AðΔ3Þ
is proportional to jeiλSj ¼ eλReðSÞ ≤ 1. As shown in

Figs. 2(a) and 2(c), given any finite λ ≫ 1, there are

curved geometries with small nonzero jδhj such that

jAðΔ3Þj is the same order of magitude as jAðΔ3Þj at the
flat geometry. The range of δh for nonsuppressed AðΔ3Þ is
nonvanishing as far as λ is finite. The range of δh is

enlarged when γ is small, shown in Fig. 2(d).

We remark that the semiclassical behavior of the spin-

foam amplitude is given by the 1=λ expansion as (4.3) with
finite λ. It is similar to quantum mechanics, where ℏ is

finite, and the classical mechanics is reproduced by the

ℏ-expansion. The finite λ leads to the finite range of

nonvanishing δh.

So far we have considered the real critical point x
∘
of the

flat geometry with all sv ¼ þ1. Given the boundary data r
∘
,

there are exactly two real critical points x
∘
and x

∘ 0
, where x

∘ 0

corresponds to the same flat geometry but with all sv ¼ −1.

Other six discontinuous orientations (two 4-simplices has

plus/minus and the other has minus/plus) do not leads to

any real critical point (see Figs. 3 and A 6 for δsh values)

because they all violates the flatness constraint γδsh ¼
γ
P

v svΘhðvÞ ¼ 0. jδshj is not small for the discontinuous

orientation, so the contribution to AðΔ3Þ is suppressed even
when considering the complex critical point.

We focus on the integrals over two real neighborhoods

K, K0 of x
∘
; x
∘ 0
, since the integral outside K ∪ K0 only gives

suppressed contribution to AðΔ3Þ for large λ. The above

analysis is for the integral over K. We carry out a similar

analysis for the integral over K0. The following asymptotic

formula of AðΔ3Þ is obtained with r ¼ r
∘ þ δr of curved

geometries gðrÞ,

AðΔ3Þ ¼
�

1

λ

�

60

½N þe
iλIR½gðrÞ�þλδIðrÞ

þN −e
−iλIR½gðrÞ�þλδI 0ðrÞ�½1þOð1=λÞ�; ð5:9Þ

up to an overall phase. Two complex critical points in

complex neighborhoods of x
∘
; x
∘ 0
contribute dominantly and
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give respectively two terms, with phase plus or minus the

Regge action of the curved geometry gðrÞ plus curvature
corrections δIðrÞ in (5.8) and δI 0ðrÞ ¼ δIðrÞ�jδh→−δh

. N �
are proportional to ½detð−δ2z;zS=2πÞ�−1=2 evaluated at these

two complex critical points (see A 6).

As an example of the suspected cosine problem [25],

there has been the guess AðΔ3Þ ∼ ðN 1e
iλIR þN 2e

−iλIRÞ3
(each factor is from the vertex amplitude, see e.g., [31])

whose expansion gives eight terms corresponding to all

possible orientations. But Eq. (5.9) demonstrates that

AðΔ3Þ only contain two terms corresponding to the

continuous orientations. The cosine problem is relaxed.

FIG. 2. (a) plots eλReðSÞ versus the deficit angle δh at λ ¼ 1011 and γ ¼ 0.1 in AðΔ3Þ, and (b) plots eλReðSÞ versus the deficit angle

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
10

P

10
h¼1 δ

2
h

q

at λ ¼ 1011 and γ ¼ 1 in Zσ1−5
. These two plots show the numerical data of curved geometries (red points) and the

best fits (5.8) and (6.4) (blue curve). (c) and (d) are the contour plots of eλReðSÞ as functions of ðλ; δhÞ at γ ¼ 0.1 and of ðγ; δhÞ at
λ ¼ 5 × 1010 in AðΔ3Þ. (e) and (f) are the contour plots of eλReðSÞ as functions of ðλ; δÞ at γ ¼ 1 and of ðγ; δÞ at λ ¼ 5 × 1010 in Zσ1−5

.

They demonstrate the (nonblue) regime of curved geometries where the spinfoam amplitude is not suppressed.

FIG. 3. The log-log plot of jδshj for different s ¼ fsvgv when

varying l26 ¼ l
∘

26 þ δl26.
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VI. 1-5 PACHNER MOVE

σ1−5 is the complex of the 1-5 Pachner move refining a

4-simplex into five 4-simplices (see B 1). σ1−5 has five

internal segments I ¼ 1;…; 5 [see Fig. 1(b)], in contrast to
Δ3 where all segments are at the boundary. There are ten

internal triangles h in σ1−5. The spinfoam amplitude

Aðσ1−5Þ is given by (4.1) with M ¼ 5 and F ¼ 10. We

consider fj
∘

h; g
∘

ve; z
∘

vfg as a real critical point of flat

geometry on σ1−5. The flat geometry on σ1−5 is not

unique. The position of P6 can move continuously in

R
4 to lead to the continuous family of flat geometries on

σ1−5. The continuous family of flat geometries result in the

continuous family of real critical points. It implies that all

these real critical points lead to degenerate Hessian

matrices, in contrast to AðΔ3Þ where the real critical point
is nondegenerate. Therefore we develop the following

additional procedure to generalize the analysis from Δ3

to σ1−5.

We label boundary spins jmnk by a triple of points m ≠

n ≠ k ¼ 1; 2;…; 5 and label the internal spins jmn6 by

m; n ¼ 1; 2;…; 5 and point 6. The dual faces and spins are

labeled in the dual cable diagram Fig. 4(b). We pick up five

internal spins j126, j136, j146, j156, j236 and their corre-

sponding integrals in Aðσ1−5Þ. The integrand is denoted by

Zσ1−5
. Namely,

Aðσ1−5Þ ¼
Z

R
5

dj126dj136dj146dj156dj236Zσ1−5
ðj126; j136; j146; j156; j236Þ; ð6:1Þ

Zσ1−5
¼

X

fkhg

Z

R
5

Y

5

h̄¼1

djh̄

Y

10

h¼1

2λτ½−ϵ;λjmaxþϵ�ðλjhÞ
Z

½dgdz�eλSðkÞ ; ð6:2Þ

where other five internal spins j246, j256, j346, j356, j456 are

denoted by jh̄ (h̄ ¼ 1; 2;…; 5). At the real critical point

constructed above, the five areas j
∘

126; j
∘

136; j
∘

146; j
∘

156; j
∘

236

are determined by the internal segment-lengths l
∘

m6

(m ¼ 1; 2;…; 5) via the Heron’s formula. We focus on a

neighborhood of ðj126; j136; j146; j156; j236Þ ∈ R
5 around

ðj
∘

126; j
∘

136; j
∘

146; j
∘

156; j
∘

236Þ such that the five j’s in the

neighborhood uniquely correspond to the five segment-

lengths lm6, m ¼ 2;…; 5.
We generalize the analysis of AðΔ3Þ to Zσ1−5

. Zσ1−5
in

Eq. (6.2) contain integrals with the external parameters,

FIG. 4. (a). The dual cable diagram of the Δ3 spinfoam amplitude: The boxes correspond to tetrahedra carrying ga ∈ SLð2;CÞ. The
strands stand for triangles carrying spins jf . The strand with the same color belonging to different dual vertex corresponds to the triangle

shared by the different 4-simplices. The circles as the end points of the strands carry boundary states jjb; ξebi. The arrows represent

orientations. This figure is adapted from [19]. (b). The dual cable diagram of the 1-5 Pachner move amplitude. The internal faces are

colored loops carrying internal spins jh. The boundary faces are black strands carrying boundary spins jb. The arrows represent

orientations. This figure is adapted from [32].
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r ¼ fj126; j136; j146; j156; j236; jb; ξebg; ð6:3Þ
which including not only boundary data but also five

internal j’s. We focus on the integral in Zσ1−5
at kh ¼ 0.

Given r ¼ r
∘ ¼ fj

∘

126; j
∘

136; j
∘

146; j
∘

156; j
∘

236; j
∘

b; ξ
∘

ebg, the inte-
gral has the real critical point fj

∘

h̄; g
∘

a; z
∘

a;bg corresponding

to the flat geometry gðr∘Þ. The data of r∘ and the real critical

point are given in B 1. The Hessian matrix at x
∘
is non-

degenerate in Zσ1−5
, as confirmed by the numerical check.

The similar parametrizations in A 3 for ga; za;b; jh̄ define

the local coordinates x ∈ R
195 covering a neighborhood K

of x
∘ ¼ ð0; 0;…; 0Þ. We again express the spinfoam action

as Sðr; xÞ. The integral in Zσ1−5
is of the same type as (A16)

with N ¼ 195.

To give the curved geometries, we fix the boundary data

j
∘

b; ξ
∘

eb and deform the five internal segment-lengths

lm6 ¼ l
∘

m6 þ δlm6, m ¼ 1;…; 5. We randomly sample

δlm6 in the range 10−15 to 10−5. Each time, for the each

new internal segment-lengths lm6, we can repeat the pro-

cedure in B 1 to reconstruct the geometry and compute all

the geometric quantities of triangulation: e.g., the areas, the

4D normals of each tetrahedron, and the deficit angles. Some

data of the deformation δlm6 ¼ ðδl16; δl26; δl36; δl46; δl56Þ
and the corresponding deficit angles δh are shown in B 2.

Fixing j
∘

b; ξ
∘

eb, varying lm6 ¼ l
∘

m6 þ δlm6 results in vary-

ing the five areas in r e.g., j126 ¼ j
∘

126 þ δj126,

j136 ¼ j
∘

136 þ δj136; � � �. Thus we obtain the deformation

of external data r ¼ r
∘ þ δr of Zσ1−5

. We denote by rl the

external data obtained by sampling δlm6 and denote the

Regge geometries by gðrlÞ. There are 4 degrees of freedom
of δlm6 still resulting in flat geometries, whereas there is

1 degree of freedom of δlm6 resulting in curved geometries.

We apply the Newton-like recursive method to numeri-

cally compute complex critical points ZðrlÞ for all rl, the
absolute errors are shown in B 3. ZðrlÞ is still in the real

plane if rl corresponds to the flat geometry, whereas ZðrlÞ
is away from the real plane if rl corresponds to the curved

geometry. Once we have complex critical points ZðrlÞ for
the curved geometries gðrlÞ, we numerically compute the

analytic continued action Sðrl; ZðrlÞÞ at complex critical

points and the difference δIðrlÞ ¼ Sðrl; ZðrlÞÞ − Sðrl; x0Þ
where x0 is the pseudocritical point of Sðrl; xÞ. We have

Sðrl; x0Þ ¼ −iIR½gðrÞ� þ iφ, where φ only relates to the

boundary data and is independent of lm6 as confirmed by

numerical tests (see also [14] for the analytic argument).

The result of jeiλSj ¼ eλReðSÞ is presented in Figs. 2(b), 2(e),
and 2(f), which demonstrate curved geometries with small

jδhj do not lead to the suppression of Zσ1−5
ðlIÞ. Moreover

Sðrl; ZðrlÞÞ is numerically fit by (see B 3)

Sðrl; ZðrlÞÞ ¼ −iIR½gðrlÞ� − a2ðγÞδðrlÞ2 þOðδ3Þ; ð6:4Þ

where δðrlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
10

P

10
h¼1 δhðrlÞ2

q

and a2 ¼ −0.033iþ
8.88 × 10−5 at γ ¼ 1. IR½gðrlÞ� is the Regge action of

gðrlÞ. As a result, we obtain the following large-λ con-

tribution to Zσ1−5
and Aðσ1−5Þ from the neighborhood

around ðr∘; x∘Þ:

Zσ1−5
∼

�

1

λ

�155
2

eiλφN 0
le

−iλIR½gðrlÞ�−λa2ðγÞδðrlÞ2þOðδ3Þ

× ½1þOð1=λÞ�; ð6:5Þ

Aðσ1−5Þ ∼
�

1

λ

�155
2

eiλφ

×

Z

Y

5

m¼1

dlm6N le
−iλIR½gðrlÞ�−λa2ðγÞδðrlÞ2þOðδ3Þ

× ½1þOð1=λÞ�; ð6:6Þ

where we have made the local changes of variables from

j126, j136, j146, j156, j236 to lm6, and the Jacobian J l ¼
j detð∂j=∂lÞj (see B 3) is absorbed in N l ¼ J lN

0
l. The

spinfoam amplitude Aðσ1−5Þ reduces to the integral over

geometries gðrlÞ in the semiclassical regime.

VII. DISCUSSION

Our results resolve the flatness problem by demonstrat-

ing explicitly the curved Regge geometries emergent from

the large-j EPRL spinfoam amplitudes. The curved geom-

etries correspond to complex critical points that are away

from the real integration domain. They give nonsuppressed

eλReðSÞ and satisfy the bound Reða2ðγÞÞδ2 ≲ 1=λ, if we

consider the examples (5.8) and (6.4) neglecting Oðδ3Þ.
This bound is consistent with the earlier proposal [23] and

the result in the effective spinfoam model [33–35],

although this bound should be corrected when taking into

account Oðδ3hÞ in (5.8) and (6.4). The similar bound should

be valid to the spinfoam amplitude in general.

All resulting curved geometries are of small deficit

angles δh. The large-j spinfoam amplitude is still sup-

pressed for geometries with larger δh violating the above

bound. This is not a problem for the semiclassical analysis.

Indeed, nonsingular classical spacetime geometries are

smooth with vanishing δh. To well-approximating smooth

geometries by Regge geometries, the triangulation must be

sufficiently refined, and all δh’s must be small.

The confusion in the flatness problem can be seen as a

wrong order of limits: If one fixes the triangulation first,

one can find boundary data for which the amplitude goes

wrong for large λ. But this is the wrong limit. The right one

is for each boundary data (hence each λ), there is a

triangulation for which the amplitude gives a good result

to any desired accuracy [36,37].
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Lastly, the 1-5 pachner move is the elementary step for

the triangulation refinement. Our results provide a new

routine for analyzing triangulation dependence in spinfoam

models. This should closely relate to the spinfoam renorm-

alization [32,38,39], with the goal to address the issue of

triangulation-dependence.
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APPENDIX A: THE SPINFOAM

AMPLITUDE AðΔ3Þ
1. The flat geometry on Δ3

The Δ3 triangulation is made by three 4-simplices

sharing a common triangle. Δ3 has 18 boundary triangles

and one internal triangle. All line segments of Δ3 are at

the boundary, and the segment-lengths labða ≠ b ¼
1; 2; 3; 4; 5; 6Þ determine the Regge geometry gðrÞ [gðrÞ
does not contain the information of the 4-simplex

orientations].

The dual cable diagram for the Δ3 triangulation is

represented in Fig. 4(a). Each box in Fig. 4 carries group

variables ga ∈ SLð2;CÞ.2Each strand carries an SUð2Þ spin
ja;b where a, b corresponds to two different tetrahedra

sharing the same 4-simplex. We have the identification

ja;b’s along the same strand; e.g., j2;5 ¼ j6;7 along the pink

strand. The red strands dual to the common triangle shared

by three 4-simplices. We use jh to denote the spin j4;5 ¼
j6;8 ¼ j11;12 of the internal triangle. The circles at the ends

of the strands represent the SUð2Þ coherent states.
We firstly construct the flat Regge geometry on Δ3, in

order to obtain the corresponding boundary data r
∘ ¼

fj
∘

b; ξ
∘

ebg and compute the associated real critical point

x
∘
. We set the six points of Δ3 in R

4 as

P1 ¼ ð0; 0; 0; 0Þ; P2 ¼ ð0;−2
ffiffiffiffiffi

10
p

=33=4;−
ffiffiffi

5
p

=33=4;−
ffiffiffi

5
p

=31=4Þ;
P3 ¼ ð0; 0; 0;−2

ffiffiffi

5
p

=31=4Þ; P4 ¼ ð−3−1=410−1=2;−
ffiffiffiffiffiffiffiffi

5=2
p

=33=4;−
ffiffiffi

5
p

=33=4;−
ffiffiffi

5
p

=31=4Þ;
P5 ¼ ð0; 0;−31=4

ffiffiffi

5
p

;−31=4
ffiffiffi

5
p

Þ; P6 ¼ ð0.90; 2.74;−0.98;−1.70Þ: ðA1Þ

The 4-simplex with points (12345) has the same 4-simplex

geometry as in [40,41]. We choose P6 in (A1) so that we

have the length symmetry l12 ¼ l13 ¼ l15 ¼ l23 ¼ l25 ¼
l35 ≈ 3.40, l14 ¼ l24 ¼ l34 ¼ l45 ≈ 2.07, l16 ¼ l36 ¼ l56≈
3.25, l26 ≈ 5.44 and l46 ≈ 3.24.

All tetrahedra and triangles are space-like. The tetrahe-

dron 4D normal vectors Na are determined by the triple

product of three segment-vectors l
μ
1; l

μ
2; l

μ
3 (the segment-

vectors are given by P
μ
i − P

μ
j ) along three line-segments

labeled by 1,2,3 adjacent to a common point,

ðNaÞμ ¼
ϵμνρσl

ν
a1l

ρ
a2l

σ
a3

kϵμνρσlνa1l
ρ
a2l

σ
a3k

; ðA2Þ

where the norms k · k is given by the Minkowski metric

η ¼ diagð−;þ;þ;þÞ, and ϵμνρσ follows the convention

ϵ0123 ¼ 1. We list below the 4D normals ðNaÞμ of the

tetrahedra in each 4-simplex,

(i) The first 4-simplex with points 12345,

N1 ¼ ð1.07;−0.12;−0.17;−0.30Þ;
N2 ¼ ð1.07;−0.12;−0.17;0.30Þ;
N3 ¼ ð1.07;−0.12;0.35;0Þ;
N4 ¼ ð1.07;0.37;0;0Þ; N5 ¼ ð−1;0;0;0Þ: ðA3Þ

(ii) The second 4-simplex with points 12456,

N6¼ð1;0;0;0Þ; N7¼ð−1.15;−0.19;−0.26;0.46Þ;
N8¼ð1.06;0.35;0;0Þ;
N9¼ð−1.15;−0.19;0.53;0Þ;
N10¼ð−1.15;−0.19;−0.26;−0.46Þ: ðA4Þ

(iii) The third 4-simplex with points 13456,

N11 ¼ ð−1; 0.02; 0; 0Þ; N12 ¼ ð−1; 0; 0; 0Þ;
N13 ¼ ð1;−0.02;−0.01; 0.01Þ;
N14 ¼ ð1;−0.02; 0.01; 0Þ;
N15 ¼ ð1;−0.02;−0.01;−0.01Þ: ðA5Þ

2
For convenience, the indexes of group variables in Fig. 4(a)

are a ¼ 1; 2; 3.::; 15, the corresponding tetrahedra e are labeled
by the number circles in Fig. 1(a). The correspondence are:
g1 → e2;3;4;5, g2 → e1;2;4;5, g3 → e1;2;3;4, g4 → e1;3;4;5,
g5 → e1;2;3;5, g6 → e1;2;3;5, g7 → e1;2;5;6, g8 → e1;3;5;6,
g9 → e1;2;3;6, g10 → e2;3;5;6, g11 → e1;3;5;6, g12 → e1;3;4;5,
g13 → e1;4;5;6, g14 → e1;3;4;6, g15 → e3;4;5;6.
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The triangles within a 4-simplex are classified into two

categories [13]: The triangle corresponds to the thin wedge

if the inner product of normals is positive; the triangle

corresponds to thick wedge if the inner product of normals

is negative. The dihedral angle θa;b are determined by

thin wedge∶ Na · Nb ¼ cosh θa;b;

thick wedge∶ Na · Nb ¼ − cosh θa;b; ðA6Þ

where the inner product is defined by η. Then we check the

deficit angle δh associated to the shared triangle h,

0 ¼ δh ¼ θ4;5 þ θ6;8 þ θ11;12 ≈ 0.36 − 0.34 − 0.02; ðA7Þ

which implies the Regge geometry is flat.

To determine the 3D normals of triangles, we proceed

with a similar method as in [41]. To transform all 4D

normals to tμ ¼ ð1; 0; 0; 0Þ, we use the following pure

boost Λa ∈ Oð1; 3Þ:

ðΛaÞνρ ¼ σηνρ þ
σ

1 − σNa · t
ðNν

aNaρ þ tνtρ þ σNν
atρ

− ð1 − 2σNa · tÞσtνNaρÞ; ðA8Þ

where σ ¼ 1 for Na0 > 0 or σ ¼ −1 for Na0 < 0. Then, the

3D normals n⃗a;b can be expressed by Λa and 4D normals,

na;b ≔ ð0; n⃗a;bÞ ¼ ðΛaÞνρ
N

ρ
b þ N

ρ
aðNb · NaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNb · NaÞ2 − 1
p : ðA9Þ

Here, n⃗a;b are the outward normals of the triangles in the

tetrahedron a, then the inward normals are −n⃗a;b. We

associate n⃗a;b ¼ n⃗a;b (or −n⃗a;b) to a strand oriented out-

ward from (or inward to) the box labeled by ga. The data of

n⃗a;b can be found in the Mathematica notebook [30].

The spinors ξeb in Eq. (2.3) relate to n⃗a;b by

n⃗a;b ¼ hξa;b; σ⃗ξa;bi. We use the following rule to convert

a unit 3-vector to a normalized spinor (by fixing the phase

convention):

n⃗a;b ¼ ðx; y; zÞ → ξa;b ¼
1
ffiffiffi

2
p

�

ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

;
xþ iy
ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

�

: ðA10Þ

The data for ja;b; ξa;b are listed in Tables I–III. In these

tables, ja;b; ξa;b for the internal face are labeled in the bold

text, and the others are the boundary data. We denote the

boundary data in these tables by r
∘ ¼ ðj

∘

b; ξ
∘

ebÞ.
Once the flat geometry data ξ

∘

a;b and j
∘

a;b are constructed,

we are ready to obtain the real critical points x
∘ ¼

ðj
∘

h; g
∘

a; z
∘

a;bÞ by solving the critical point equations

Eqs. (3.1) and (3.2). Here j
∘

h ¼ j
∘

4;5 ¼ j
∘

6;8 ¼ j
∘

11;12 ¼ 5 is

the same as the area of h.

2. The real critical point

The solution of the critical point equations relates to the

Lorentzian Regge geometry, as described in [13,14]. g
∘

a

relates to the Lorentzian transformation acting on each

tetrahedron and gluing them together to form the Δ3

triangulation. The general form of g
∘

a can be expressed by

g
∘

a ¼ exp

�

θref;an⃗ref;a ·
σ⃗

2

�

; ðA11Þ

TABLE I. Geometry data j
∘

a;b; ξ
∘

a;b for first 4-simplex with points 12345.

b

ξ
∘

a;b

a 1 2 3 4 5

1 … (1.; 0.01þ 0.01i) (0.87; 0.01þ 0.49i) (0.87; 0.46þ 0.17i) (0.3; − 0.55 − 0.78i)

2 (1;−0.01;−0.01i) … (0.49; 0.02þ 0.87i) (0.49; 0.82þ 0.31i) (0.95;−0.17 − 0.25i)

3 (0.86;−0.01þ 0.51i) (0.51;−0.02þ 0.86i) … (0.71; 0.56 − 0.43i) (0.71;−0.24þ 0.67i)

4 (0.86; 0.48þ 0.16i) (0.51; 0.82þ 0.27i) (0.71; 0.59 − 0.39i) … (0.71; 0.71)
5 (0.3;−0.55 − 0.78i) (0.95;−0.17 − 0.25i) (0.71;−0.24þ 0.67i) (0.71; 0.71) …

b

j
∘

a;b

a 1 2 3 4 5

1 … 2 2 2 5

2 … … 2 2 5

3 … … … 2 5

4 … … … … 5
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where θref;a is the dihedral angle which is defined in

Eq. (A6), σ⃗ are the Pauli matrices, and ref ¼ 5; 6; 12 are

the reference tetrahedra, whose 4D normals equal �t. The
data for 3D normals n⃗ref;a can be found in theMathematica

notebook [30]. On Δ3 triangulation, we fix ga to be

constant SLð2;CÞ matrices for a ¼ 1, 10, 15,
3
and the

group elements ga for the bulk tetrahedra a ¼ 5; 8; 12 are

fixed to be the upper triangular matrix.

By Eq. (A11) and the gauge fixing for gve; zvf, we obtain

the numerical results of the real critical points ðj
∘

h; g
∘

a; z
∘

a;bÞ
corresponding to the flat geometry and all sv ¼ þ1. jh ¼ 5

as the area of the internal triangle. The numerical data of

g
∘

a; z
∘

a;b are shown in Tables IV–VI.

All the boundary data r
∘ ¼ ðj

∘

a;b; ξ
∘

a;bÞ and the data of the

real critical point ðj
∘

h; g
∘

a; z
∘

a;bÞ can be found in the

Mathematica notebook in [30].

TABLE II. Geometry data j
∘

a;b; ξ
∘

a;b for second 4-simplex with points 12456.

b

ξ
∘

a;b

a 6 7 8 9 10

6 … (0.95;−0.17 − 0.25i) (0.71; 0.71) (0.71;−0.24þ 0.67i) (0.3;−0.55 − 0.78i)

7 (0.95;−0.17 − 0.25i) … (0.29;−0.47þ 0.83i) (0.88;−0.02 − 0.48i) (1;−0.02 − 0.03i)

8 (0.71; 0.71) (0.31;−0.57þ 0.76i) … (0.71; 0.25þ 0.66i) (0.31; 0.57 − 0.76i)

9 (0.71;−0.24þ 0.67i) (0.85; 0.02 − 0.52i) (0.71; 0.19þ 0.68i) … (0.85;−0.02þ 0.52i)

10 (0.3;−0.55 − 0.78i) (1; 0.02þ 0.03i) (0.29; 0.47 − 0.83i) (0.88; 0.02þ 0.48i) …

b

ja;b

a 6 7 8 9 10

6 … 5 5 5 5

7 … … 4.71 5.19 5.19

8 … … … 4.71 4.71

9 … … … … 5.19

TABLE III. Geometry data j
∘

a;b; ξ
∘

a;b for third 4-simplex with points 13456.

b

ξ
∘

a;b

a 11 12 13 14 15

11 … (0.71; 0.71) (0.31;−0.57þ 0.76i) (0.71; 0.25þ 0.66i) (0.31; 0.57 − 0.76i)

12 (0.71; 0.71) … (0.51; 0.82þ 0.27i) (0.71; 0.59 − 0.39i) (0.86; 0.48þ 0.16i)

13 (0.31;−0.57þ 0.76i) (0.51; 0.82þ 0.27i) … (0.5,0.87i) (0; 0.95þ 0.31i)

14 (0.71; 0.25þ 0.66i) (0.71; 0.59 − 0.39i) (0.5,0.87i) … (0.5;−0.87i)
15 (0.31; 0.57 − 0.76i) (0.86; 0.48þ 0.16i) (0;−0.95 − 0.31i) (0.5;−0.87i) …

b

j
∘

a;b

a 11 12 13 14 15

11 … 5 4.71 … …

12 … … 2 2 2

13 … … … 3.18 3.18

14 4.71 … … … 3.18

15 4.71 … … … …

3
The choice of a ¼ 1, 10, 15 for the SLð2;CÞ gauge fixing is

different from the ref ¼ 5, 6, 12, because we would like to apply
the SLð2;CÞ and SUð2Þ gauge fixings to different sets of ga ’s.
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We focus on the Regge-like boundary data r ¼ fjb; ξebg.
The Regge-like boundary data determine the geometries of

boundary tetrahedra that are glued with the shape-matching

and orientation-matching conditions [16] to form the

boundary Regge geometry on ∂Δ3. Then the resulting

boundary segment-lengths uniquely determine the 4D

Regge geometry gðrÞ on Δ3. The above r
∘ ¼ ðj

∘

a;b; ξ
∘

a;bÞ
is an example of the Regge-like boundary data, which

determine the flat geometry gðr∘Þ on Δ3. Generic Regge-

like boundary conditions r determines the curved geom-

etries gðrÞ.

TABLE IV. The real critical point g
∘

a; z
∘

a;b for the first 4-simplex with points 12345.

a 1 2 3 4 5

g
∘

a

�

0.87 −0.06þ0.09i

−0.06−0.09i 1.16

� �

1.16 −0.06þ0.09i

−0.06−0.09i 0.87

� �

1.02 −0.06−0.17i

−0.06þ0.17i 1.02

� �

1.03 0

0.36 0.97

� �

1 0

0 1

�

b

jz∘a;bi
a 7 8 9 10

6 (1;−0.18 − 0.26i) (1,1) (1; 0.42þ 0.22i) (1;−0.33þ 0.94i)

7 … (1;−1.94þ 1.26i) (−0.1 − 0.43i) (1;−0.08 − 0.12i)

8 … … (1; 0.03þ 1.i) (1; 0.22 − 3.72i)

9 … … … (1;−0.13þ 0.74i)

TABLE V. The real critical point g
∘

a; z
∘

a;b for the second 4-simplex with points 12456.

a 6 7 8 9 10

g
∘

a

�

1 0

0 1

� �

0.82 0.09 − 0.13i

0.09þ 0.13i 1.26

� �

0.97 0.34

0 1.03

� �

1.04 0.09þ 0.25i

0.09 − 0.25i 1.04

� �

1.26 0.09 − 0.13i

0.09þ 0.13i 0.82

�

b

jz∘a;bi
a 7 8 9 10

6 (1;−0.18 − 0.26i) (1,1) (1; 0.42þ 0.22i) (1;−0.33þ 0.94i)

7 … (1;−1.94þ 1.26i) (−0.1 − 0.43i) (1;−0.08 − 0.12i)

8 … … (1; 0.03þ 1.i) (1; 0.22 − 3.72i)

9 … … … (1;−0.13þ 0.74i)

TABLE VI. The real critical point g
∘

a; z
∘

a;b for the third 4-simplex with points 13456.

a 11 12 13 14 15

g
∘

a

�

1.04 −0.02

−0.36 0.97

� �

0.97 −0.36

0 1.03

� �

1.02þ0.001i −0.19þ0.003i

−0.19−0.003i 1.01−0.001i

� �

1.012−0.001i −0.19þ0.006i

−0.19−0.006i 1.02þ0.001i

� �

1.01þ0.001i −0.19þ0.003i

−0.19−0.003i 1.02−0.001i

�

b

jz∘a;bi
a 11 12 13 14 15

11 … (1,1) (1; 0.1þ 3.73i) … …

12 … … (1; 1.41þ 0.31i) (1; 0.92 − 0.4i) (1; 0.68þ 0.15i)
13 … … … (1; 0.68þ 1.52i) (1; 5.35þ 0.08i)
14 (1; 0.64þ 0.77i) … … … (1; 0.67 − 1.5i)
15 (1; 1.92 − 1.16i) … … … …

HAN, HUANG, LIU, and QU PHYS. REV. D 106, 044005 (2022)

044005-12



3. Parametrization of variables

Given the Regge-like boundary condition r, we find the

pseudocritical point ðj0h; g0a; z0a;bÞ inside the integration

domain, where ðj0h; g0a; z0a;bÞ only satisfies ReðSÞ ¼ ∂gve
S ¼

∂zvf
S ¼ 0 but does not necessarily satisfy ∂jh

S ¼ 4πikh.

The pseudocritical point ðj0h; g0a; z0a;bÞ is the critical point of
the spinfoam amplitude with fixed jh, jb [14] and endows

the Regge geometry gðrÞ and all sv ¼ þ1 to Δ3. It reduces

to the real critical point ðj
∘

h; g
∘

a; z
∘

a;bÞ when r ¼ r
∘
.

ðj0h; g0a; z0a;bÞ is close to ðj
∘

h; g
∘

a; z
∘

a;bÞ in the integration

domain when r is close to r
∘
(by the natural metrics on

the integration domain and the space of r). The data of the

pseudocritical points are given in [30].

We consider a neighborhood enclose both ðj0h; g0a; z0a;bÞ
and ðj

∘

h; g
∘

a; z
∘

a;bÞ. We use the following real parametriza-

tions of the integration variables, according to the gauge-

fixing in A 2:

(i) As a ¼ 1; 10; 15, ga ¼ g0a.
(ii) As a ¼ 5; 8; 12, ga is gauge-fixed to be an upper

triangular matrix (g0a is upper triangular),

ga ¼ g0a

�

1þ x1a
ffiffi

2
p x2aþiy2a

ffiffi

2
p

0 μa

�

; ðA12Þ

here, μa is determined by detðgaÞ ¼ 1.

(iii) As a ¼ 2; 3; 4; 6; 7; 9; 11; 13; 14, ga is parameterized

as

ga ¼ g0a

0

@

1þ x1aþiy1a
ffiffi

2
p x2aþiy2a

ffiffi

2
p

x3aþiy3a
ffiffi

2
p μa

1

A; ðA13Þ

(iv) The spinors are parametrized by two real parameters,

za;b ¼ ð1; α0a;b þ xa;b þ iya;bÞ; ðA14Þ

where α0a;b is the second component of z0a;b.

(v) For the internal spin jh, we parametrize it by one real

parameter,

jh ¼ j0h þ j; j ∈ R; ðA15Þ

x ∈ R
124 are denoted by these 124 real variables

j; x1;2;3a ; y1;2;3a , and xa;b; ya;b. The parametrizations define

the coordinate chart covering the neighborhood enclosing

both x0 ¼ ðj0h; g0a; z0a;bÞ and x
∘ ¼ ðj

∘

h; g
∘

a; z
∘

a;bÞ. This neigh-

borhood is large since the parametrizations are valid

generically. The pseudocritical point is x0 ¼ ð0; 0;…; 0Þ,
which contains 124 zero components. The spinfoam action

can be expressed as Sðr; xÞ. The integrals in (2.10) (for

K ¼ Δ3) can be expressed as

Z

dNxμðxÞeλSðr;xÞ; ðA16Þ

where N ¼ 124. Both Sðr; xÞ and μðxÞ is analytic in the

neighborhood of x
∘
. We only focus on the integral kh ¼ 0 in

(2.10), since other kh ≠ 0 integrals has no real critical point

by the boundary data r
∘
. Sðr; xÞ can be analytic continue to a

holomorphic function Sðr; zÞ, z ∈ C
N in a complex neigh-

borhood of x
∘
. Here the analytic continuation is obtained by

simply extending x ∈ R
N to z ∈ C

N . The formal discussion

of the analytic continuation of the spinfoam action is given

in [42].

4. Geometrical variations

To obtain the curved geometries, we fix the geometries

of the 4-simplices 12345 and 13456, but change the

geometry of 4-simplex 12356 by varying the length of

l26 (the length of the line segment connecting point 2 and 6)

from 5.44þ 9.2 × 10−17 to 5.44þ 9.2 × 10−5. For each

given l26, we repeat the steps in A 1 and A 2 to reconstruct

the geometry and compute all the geometric quantities,

such as the triangle areas, the 4D normals of tetrahedra, the

3D normals of triangles, ξa;b, the deficit angle, etc. Part of

the data for the fluctuation δl26 ¼ l26 − l
∘

26 and the corre-

sponding deficit angle δh are shown in Table VII. These

TABLE VII. Each cell of the table is the value of internal deficit angle δh with fluctuation δl26¼ l26− l
∘

26.

δl26 9.2×10−17 8.3×10−15 7.3×10−14 6.4×10−13 4.6×10−11 8.3×10−10 7.3×10−9 4.6×10−6 9.2×10−6 9.2×10−5

δh 2.0×10−16 1.8×10−14 1.6×10−13 1.40×10−12 1.00×10−10 1.81×10−9 1.61×10−8 1.00×10−5 2.×10−5 0.0002

TABLE VIII. Deficit angles δh and corresponding absolute errors.

δh 2×10−16 1.8×10−14 1.6×10−13 1.4×10−12 1.0×10−10 1.8×10−9 1.6×10−8 1.6×10−5 2×10−5 0.0002

ε 4.3×10−79 2.5×10−69 1.4×10−64 7.1×10−60 1.3×10−50 2.5×10−44 1.4×10−39 1.4×10−24 4.2×10−24 4.2×10−19
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new geometries gðrÞ are curved geometries because of

nonzero deficit angles.

5. Numerical solving complex critical points

and error estimate

The absolute error ε in the case of γ ¼ 0.1, n ¼ 4 for

some deficit angles are shown in Table VIII. The absolute

errors are small and have the scales as ε ≈ 1.31δ5h at n ¼ 4.

6. Flipping orientations and numerical results

Given the boundary data r
∘
, Table IX lists δsh’s at different

orientations.

As in A 4, we deform the boundary data r ¼ r
∘ þ δr to

obtain curved geometries. Both real critical points with all

sv ¼ þ and all sv ¼ − move smoothly away from the real

plane and become complex critical points. We numerically

compute the other complex critical point Z0ðrÞ with all

sv ¼ − by the same procedure as in A 1–A 5. We compute

δIðrÞ ¼ Sðr; ZðrÞÞ − iIR½gðrÞ�;
δI 0ðrÞ ¼ Sðr; Z0ðrÞÞ þ iIR½gðrÞ�; ðA17Þ

for the sequences of r of curved geometries. δI and

δI 0 associate to two continuous orientations sv ¼ þ and

sv ¼ − respectively. Part of the results are shown in

Table X at γ ¼ 0.1.

The best-fit functions are

δIðrÞ¼ a2ðδþh Þ2þa3ðδþh Þ3þa4ðδþh Þ4þOððδþh Þ5Þ; ðA18Þ

δI 0ðrÞ¼ a�2ðδ−h Þ2−a�3ðδ−h Þ3þa�4ðδ−h Þ4þOððδ−h Þ5Þ; ðA19Þ

where δ�h ≡ δ���
h . a�i is the complex conjugate of ai.

The best fit coefficient ai and the corresponding fitting

errors are

a2 ¼ −0.00016�10−17 − 0.00083�10−16i;

a3 ¼ −0.0071�10−13 − 0.011�10−12i;

a4 ¼ −0.059�10−9 þ 0.070�10−8i: ðA20Þ

Figure 2(a) demonstrates the excellent agreement between

the numerical data and the fitted polynomial function at

γ ¼ 0.1 and λ ¼ 1011.

Then, the asymptotic amplitude is obtained

AðΔ3Þ ¼
�

1

λ

�

60

½N þ
r e

iλIR½gðrÞ�þλδIðrÞ

þN −
r e

−iλIR½gðrÞ�þλδI 0ðrÞ�½1þOð1=λÞ�: ðA21Þ

At γ¼0.1;δ�h ≃�2×10−4, we have N þ
r =N

−
r ≃0.001þ

0.005i;IR≃−0.22γ, δIþ≃−6.30×10−12−3.32×10−11i

and δI− ≃ −6.30 × 10−12 þ 3.32 × 10−11i.

APPENDIX B: 1-5 PACHNER MOVE AND Aðσ1−5Þ
1. Flat geometry, boundary data, and real critical point

The triangulation σ1−5 of the 1-5 Pachner move is made

by five 4-simplices. σ1−5 is obtained by adding an point 6

inside a 4-simplex and connecting point 6 to the other

five points of the 4-simplex by five line segments

ð1; 6Þ; ð2; 6Þ;…; ð5; 6Þ. The dual cable diagram of σ1−5
is in Fig. 4(b)

4
(see also [32]). σ1−5 consists of ten boundary

triangles b [dual to black strands in Fig. 4(b)] and ten

internal triangles h [dual to colored loops in Fig. 4(b)].

TABLE IX.

s þþþ − − − þþ − − −þ þ − − −þþ −þ − þ −þ
δsh 0 0 0.043 −0.043 0.72 −0.72 −0.68 0.68

TABLE X. δIðrÞ and δI 0ðrÞ at different deficit angles jδsvh j.

jδsvh j 2.×10−15 1.4×10−12 1×10−10 1.61×10−8 2×10−4

δI −6.36×10−34−3.34×10−35 −3.12×10−28−1.63×10−27i −1.59×10−24−8.34×10−24i −4.07×10−20−2.13×10−19i −6.30×10−12−3.32×10−11i

δI 0 −6.36×10−34þ3.34×10−35 −3.12×10−28þ1.63×10−27i −1.59×10−24þ8.34×10−24i −4.07×10−20þ2.13×10−19i −6.30×10−12þ3.32×10−11i

4
For convenience, the indexes of group variables in Fig. 4(b)

are a ¼ 1; 2;…; 25, the corresponding tetrahedra e are labeled by
the numbers in Fig. 1(b) in the paper. The correspondence are
g1 → e1;2;3;4, g2 → e1;2;3;6, g3 → e1;2;4;6, g4 → e1;3;4;6,
g5 → e2;3;4;6, g6 → e1;2;3;5, g7 → e1;2;3;6, g8 → e1;2;5;6,
g9 → e1;3;5;6, g10 → e2;3;5;6, g11 → e1;2;4;5, g12 → e1;2;4;6,
g13 → e1;2;5;6, g14 → e1;4;5;6, g15 → e2;4;5;6, g16 → e1;3;4;5,
g17 → e1;3;4;6, g18 → e1;3;5;6, g19 → e1;4;5;6, g20 → e3;4;5;6,
g21 → e2;3;4;5, g22 → e2;3;4;6, g23 → e2;3;5;6, g24 → e2;4;5;6,
g25 → e3;4;5;6.
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Here, we set the coordinates of P1, P2, P3, P4, P5 the same

as Eq. (A1). The coordinate of the point 6 is

P6 ¼ ð−0.068;−0.27;−0.50;−1.30Þ: ðB1Þ

P1;…; P6 determines a flat Regge geometry on σ1−5. We

obtain five Lorentzian 4-simplices, S12346, S12356, S12456,

S13456, S23456 with all tetrahedra and triangles spacelike. The

lengths of the internal line segments are l16 ≈ 2.01;

l26 ≈ 6.66; l36 ≈ 4.72; l46 ≈ 0.54; l56 ≈ 6.19. The 4D nor-

mals are determined by Eq. (A2). For convenience, we

choose ðNaÞμ with a ¼ 2; 6; 13; 18; 23 to be ð−1; 0; 0; 0Þ as
reference for each 4-simplex. Hence, the 4D normals ðNaÞμ
in each 4-simplex are given by

(i) The first 4-simplex 12346,

N1 ¼ ð1.02;−0.06; 0.17; 0Þ; N2 ¼ ð−1; 0; 0; 0Þ;
N3 ¼ ð−1.15; 0.07;−0.53; 0.19Þ;
N4 ¼ ð1.50; 0.98;−0.54; 0Þ;
N5 ¼ ð−1.04; 0.06;−0.28;−0.06Þ:

(ii) The second 4-simplex 12356,

N6 ¼ ð−1; 0; 0; 0Þ; N7 ¼ ð1.02;−0.06; 0.17; 0Þ;
N8 ¼ ð1.00;−0.03;−0.04; 0.07Þ;
N9 ¼ ð1.03; 0.26; 0; 0Þ;
N10 ¼ ð1.00;−0.02;−0.02;−0.04Þ:

(iii) The third 4-simplex 12456,

N11¼ð1.0;−0.091;−0.13;0.22Þ;
N12¼ð1.3;−0.11;0.79;−0.28Þ;
N13¼ð−1;0;0;0Þ; N14¼ð1.1;0.50;0.077;−0.13Þ;
N15¼ð−1.5;0.14;0.19;−1.1Þ:

(iv) The fourth 4-simplex 13456,

N16 ¼ ð1.0; 0.10; 0; 0Þ;
N17 ¼ ð−1.2;−0.57; 0.30; 0Þ;
N18 ¼ ð−1; 0; 0; 0Þ;
N19 ¼ ð−1.0;−0.19;−0.029; 0.049Þ;
N20 ¼ ð−1.0;−0.14;−0.012;−0.020Þ:

(v) The fifth 4-simplex 23456,

N21 ¼ ð1.0;−0.11;−0.15;−0.26Þ;
N22 ¼ ð1.1;−0.11; 0.49; 0.10Þ;
N23 ¼ ð−1; 0; 0; 0Þ;
N24 ¼ ð1.6;−0.16;−0.22; 1.3Þ;
N25 ¼ ð1.1; 0.42; 0.037; 0.064Þ:

Then we compute all dihedral angles θa;b in each 4-simplex.

We check that all deficit angles δh; h ¼ 1; 2;…; 10 hinged

by ten internal triangles vanish,

0 ¼ δ1 ¼ θ2;3 þ θ12;13 þ θ8;7 ≈ −0.54þ 0.77 − 0.23; 0 ¼ δ2 ¼ θ2;4 þ θ17;18 þ θ9;7 ≈ 0.965 − 0.604 − 0.361;

0 ¼ δ3 ¼ θ3;4 þ θ17;19 þ θ14;12 ≈ 1.37 − 0.47 − 0.90; 0 ¼ δ4 ¼ θ8;9 þ θ18;19 þ θ14;13 ≈ −0.3 − 0.2þ 0.5;

0 ¼ δ5 ¼ θ2;5 þ θ22;23 þ θ10;7 ≈ −0.29þ 0.49 − 0.2; 0 ¼ δ6 ¼ θ3;5 þ θ22;24 þ θ15;12 ≈ −0.3 − 1.2þ 1.5;

0 ¼ δ7 ¼ θ8;10 þ θ23;24 þ θ15;13 ≈ −0.12þ 1.07 − 0.95; 0 ¼ δ8 ¼ θ4;5 þ θ22;25 þ θ20;17 ≈ 1.18 − 0.69 − 0.49;

0 ¼ δ9 ¼ θ9;10 þ θ23;25 þ θ20;18 ≈ −0.28þ 0.42 − 0.14; 0 ¼ δ10 ¼ θ14;15 þ θ24;25 þ θ20;19 ≈ 1.26 − 1.17 − 0.09:

We adapt the similar steps as in Δ3 with Eq. (A8), (A9) and (A10) to compute the normalized spinors ξa;b. We compute

areas ja;b in each 4-simplex,
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b

ξ
∘

a;b

a 1 2 3 4 5

1 … ð0.71;−0.24þ 0.67iÞ (0.86; 0.01 − 0.51i) (0.71; 0.57 − 0.43i) (0.51; 0.02 − 0.86i)

2 (0.64;−0.26þ 0.72i) … (0.51þ 0.02i;−0.13þ 0.85i) (0.66 − 0.04i;−0.64þ 0.40i) (0.71þ 0.01i;−0.16þ 0.68i)

3 (0.97 − 0.03i;−0.03 − 0.25i) (0.32;−0.14þ 0.94i) … (0.42 − 0.01i;−0.49þ 0.76i) (−0.99 − 0.02i;−0.035− 0.11i)

4 (0.56 − 0.02i; 0.67 − 0.49i) (0.82þ 0.05i;−0.51þ 0.24i) (0.80þ 0.01i;−0.44þ 0.40i) … (0.54 − 0.02i; 0.65 − 0.53i)

5 (0.69 − 0.05i;−0.01 − 0.72i) (0.61;−0.19þ 0.77i) (0.99 − 0.02i;−0.05 − 0.15i) (0.81þ 0.09i; 0.48 − 0.33i) …

b

j
∘

a;b

a 1 2 3 4 5

1 … 5 2 2 2

2 … … 1.7 0.96 2.8

3 … … … 0.29 0.60

4 … … … … 0.76

b

ξ
∘

a;b

a 6 7 8 9 10

6 … (0.71;−0.24þ 0.67i) (0.30; 0.55þ 0.78i) (0.71;−0.71) (0.95; 0.17þ 0.25i)

7 (0.64;−0.26þ 0.72i) … (0.51þ 0.01i;−0.13þ 0.85i) (0.66 − 0.04i;−0.64þ 0.40i) (0.71þ 0.01i;−0.16þ 0.68i)

8 (0.33; 0.55þ 0.77i) (0.59þ 0.02i;−0.12þ 0.80i) … (0.62 − 0.02i; 0.77þ 0.11i) (0.14; 0.57þ 0.81i)

9 (0.79,−0.61) (0.78 − 0.04i;−0.53þ 0.32i) (0.51 − 0.01i; 0.85þ 0.12i) … (0.75; 0.66 − 0.06i)

10 (0.96,0.17þ 0.24i) (0.78,−0.15þ 0.61i) (0.12,0.57þ 0.81i) (0.65,−0.76 − 0.07i) …

b

j
∘

a;b

a 6 7 8 9 10

6 … … 5 5 5

7 5 … … … …

8 … 1.7 … 1.6 3.2

9 … 0.96 … … 2.7

10 … 2.8 … … …

b

ξ
∘

a;b

a 11 12 13 14 15

11 … (0.87;−0.01 − 0.49i) (0.30; 0.55þ 0.78i) (0.49; 0.82þ 0.31i) (0.015; 0.58þ 0.82i)

12 (0.97 − 0.03i;−0.03 − 0.25i) … (0.32;−0.14þ 0.94i) (0.42 − 0.01i;−0.48þ 0.76i) (0.99 − 0.02i;−0.036 − 0.106i)

13 (0.33; 0.55þ 0.77i) (0.59þ 0.02i;−0.12þ 0.80i) … (0.62 − 0.02i; 0.77þ 0.11i) (0.14; 0.57þ 0.81i)

14 (0.30 − 0.02i; 0.91þ 0.30i) (0.75 − 0.14i;−0.38þ 0.52i) (0.41þ 0.01i; 0.90þ 0.15i) … (0.09 − 0.024i; 0.94þ 0.32i)

15 (0.14; 0.57þ 0.81i) (0.94 − 0.01i;−0.08 − 0.34i) (0.21; 0.56þ 0.80i) (0.32 − 0.05i; 0.86þ 0.39i) …

b

j
∘

a;b

a 11 12 13 14 15

11 … … … 2 2

12 2 … 1.7 … …

13 5 … … … …

14 … 0.29 1.6 … 0.68

15 2 … … 0.68 …
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b

ξ
∘

a;b

a 16 17 18 19 20

16 … (0.71; 0.59 − 0.39i) (0.71;−0.71) (0.51; 0.82þ 0.27i) (0.51;−0.82 − 0.27i)

17 (0.56 − 0.02i; 0.67 − 0.48iÞ … (0.82þ 0.06i;−0.51þ 0.23i) (0.80þ 0.02i;−0.45þ 0.40i) (0.54 − 0.01i; 0.66 − 0.52i)

18 (0.79;−0.61) (0.78 − 0.04i;−0.53þ 0.32i) … (0.51 − 0.01i; 0.85þ 0.12i) (0.75;−0.66 − 0.06i)

19 (0.30 − 0.02i; 0.91þ 0.30i) (0.75 − 0.15i;−0.38þ 0.53i) (0.41þ 0.01i; 0.90þ 0.15i) … (0.1 − 0.03i; 0.95þ 0.32i)

20 (0.46 − 0.02i; 0.85 − 0.27i) (0.73 − 0.02i; 0.53 − 0.43i) (0.61;−0.79 − 0.06i) (0.37þ 0.02i; 0.88þ 0.30i) …

b

j
∘

a;b

a 16 17 18 19 20

16 … … … … 2

17 2 … 0.96 0.29 …

18 5 … … 1.6 …

19 2 … … … …

20 … 0.76 2.7 0.68 …

b

ξ
∘

a;b

a 21 22 23 24 25

21 … (0.49;−0.02 − 0.87i) (0.95; 0.17þ 0.25i) (0.015;−0.58 − 0.82i) (0.49;−0.82 − 0.31i)

22 (0.69 − 0.05i;−0.01 − 0.72i) … (0.61;−0.18þ 0.77i) (0.99 − 0.02i;−0.05 − 0.15i) (0.81þ 0.09i; 0.48 − 0.33i)

23 (0.96; 0.17þ 0.24i) (0.78;−0.15þ 0.61i) … (0.12; 0.57þ 0.81i) (0.65;−0.76 − 0.07i)

24 (0.141; 0.57þ 0.81i) (0.94 − 0.01i;−0.08 − 0.34i) (0.21; 0.56þ 0.80i) … (0.32 − 0.05i; 0.86þ 0.39i)

25 (0.46 − 0.02i; 0.84 − 0.27i) (0.73 − 0.02i; 0.53 − 0.43i) (0.61;−0.79 − 0.06i) (0.37þ 0.02i; 0.88þ 0.30i) …

b

j
∘

a;b

a 21 22 23 24 25

22 2 … 2.8 0.60 0.76

23 5 … … 3.2 2.7

24 2 … … … 0.68

25 2 … … … …

The boundary data r
∘ ¼ fj

∘

b; ξ
∘

ebg are given in the above tables. The real critical point ðj
∘

h; g
∘

a; z
∘

a;bÞ corresponding to the

above flat Regge geometry is obtained by solving critical point equations Eqs. (3.1) and (3.2). To remove the gauge

freedom, We choose ga, a ¼ 1; 6; 11; 16; 21, to be identity and ga, a ¼ 2; 3; 8; 9; 14; 15; 17; 20; 22; 23, to be upper

triangular matrix. In each 4-simplex, we choose a ¼ 1; 6; 11; 16; 21 as the references and use Eq. (A11) to obtain critical

points g
∘

a. The resulting g
∘

a and z
∘

a;b are given below. The critical point in σ1−5 endows the continuous orientation sv ¼ −1 to

all 4-simplices.

a 1 2 3 4 5

g
∘

a

�

1.02 −0.06 − 0.17i

−0.06þ 0.17i 1.02

� �

0.99 −0.06 − 0.17i

0 1.01

� �

0.83 −0.12 − 0.61i

0 1.20

� �

0.99 0.55þ 0.29i

0.25 1.14þ 0.074i

� �

0.94 −0.12 − 0.45i

0 1.02

�

b

jz∘a;bi
a 2 3 4 5

1 (1;−0.33þ 0.94i) (1; 0.08 − 0.69i) (0.68 − 0.73i) (1; 0.18 − 1.43i)

2 … (1;−0.14þ 1.50i) (1;−0.93þ 0.37i) (1;−0.16þ 0.77i)

3 … … (1;−0.93þ 0.48i) (1; 0.078− 0.58i)

4 … … … (1; 0.64 − 0.88i)
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a 6 7 8 9 10

g
∘

a

�

1 0

0 1

� �

0.99 −0.06 − 0.17i

0 1.01

� �

1.03 −0.03þ 0.045i

0 0.96

�

�

0.98 0.25

0 1.02

�

�

0.98 −0.02þ 0.02i

0 1.02

�

b

jz∘a;bi
a 6 7 8 9 10

6 … … (1; 1.82þ 2.57i) (1,−1) (0.18þ 0.26i)

7 (1;−0.33þ 0.94i) … … … …

8 … (1;−0.14þ 1.50i) … (1; 1.36þ 0.27i) (1; 4.60þ 6.50i)

9 … (1;−0.93þ 0.37i) … … (1;−1.11 − 0.072i)

10 … (1;−0.16þ 0.77i) … … …

a 11 12 13 14 15

g
∘

a

�

1.08 −0.03þ 0.04i

−0.03 − 0.04i 0.93

� �

0.77 −0.08 − 0.62i

0.02þ 0.04i 1.32 − 0.02i

� �

0.96 0

0.03þ 0.04i 1.04

� �

0.85 0.45 − 0.11i

0 1.18

� �

1.52 −0.14þ 0.2i

0 0.66

�

b

jz∘a;bi
a 11 12 13 14 15

11 … … … (1; 1.77þ 0.80i) (1; 9.6þ 13.58i)

12 (1; 0.03 − 0.62i) … (1;−0.23þ 1.31i) … …

13 (1; 1.82þ 2.57i) … … … …

14 … (1;−0.84þ 0.33iÞ (1; 1.21þ 0.14i) … (1; 5.92þ 4.04i)

15 … (1; 0.027− 0.53i) (1; 6.48þ 9.17i) … …

a 16 17 18 19 20

g
∘

a

�

1.00 −0.07

−0.07 1.00

� �

0.96 0.27þ 0.28i

0 1.04

� �

1.02 0

−0.26 0.98

� �

0.96þ 0.01i 0.19 − 0.06i

−0.26 − 0.38i 0.99

� �

1.01 −0.12 − 0.01i

0 0.99

�

a

b

jz∘a;bi
a 16 17 18 19 20

16 … … … … (1;−1.7 − 0.68i)

17 (1; 0.87 − 0.48i) … (1;−0.82þ 0.58i) (1;−0.76þ 0.75i) …

18 (1,−1) … … (1; 1.21þ 0.14i) …

19 (1; 1.51þ 0.42i) … … … …

20 … (1; 0.88 − 0.59i) (1;−1.20 − 0.13i) (1; 2.54þ 0.65i) …

a 21 22 23 24 25

g
∘

a

�

0.87 −0.06þ0.086i

−0.06−0.085i 1.16

� �

0.97 −0.13−0.45i

0 1.03

� �

0.98 −0.016þ0.023i

0 1.02

� �

1.64 −0.17þ0.24i

−0.05−0.07i 0.62

� �

1.04 −0.14− 0.01i

0.26 0.99− 0.003i

�

b

jz∘a;bi
a 21 23 24 25

22 (1; 0.18 − 1.43i) (1;−0.15þ 0.78i) (1; 0.078− 0.58i) (1; 0.64 − 0.88i)

23 (1; 0.18þ 0.26i) … (1; 4.6þ 6.5i) (1;−1.11 − 0.072i)

24 (1; 5.72þ 8.08i) … … (1; 4.58þ 3.90i)

25 (1;−1.41 − 0.31i) … … …
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2. Geometrical variations

Some data of the deformation δlm6 ¼ ðδl16; δl26; δl36; δl46; δl56Þ and the corresponding deficit angles δh are shown in

Tables XI and XII,

Here δ is the average of deficit angles δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
10

P

10
h¼1

δ2h

q

.

3. Complex critical points and numerical results

The absolute errors in the case γ ¼ 1, n ¼ 3 for some averaged deficit angles are shown in the Table.

δ 1.2 × 10−4 1.2 × 10−5 2.1 × 10−6 6.5 × 10−7 1.3 × 10−8 1.2 × 10−10 1.5 × 10−11 1.4 × 10−12

ε 4.0 × 10−15 2.1 × 10−19 2.0 × 10−22 2.0 × 10−27 2.3 × 10−31 2.3 × 10−39 5.0 × 10−43 5.0 × 10−47

Some numerical results of the difference δIðrlÞ ¼ Sðrl; ZðrlÞÞ − Sðrl; x0Þ at the complex critical points are shown in

the Table.

δ 1.2 × 10−4 2.1 × 10−6 3.8 × 10−8 6.5 × 10−10 6.5 × 10−12

δI −1.2 × 10−12 þ 4.5 × 10−10i −3.8 × 10−16 þ 1.4 × 10−13i −1.3 × 10−19 þ 4.7 × 10−17i −3.8 × 10−23 þ 1.4 × 10−20i −3.8 × 10−27 þ 1.4 × 10−24i

The best-fit function is δI ¼ −a2ðγÞδ2 þOðδ3Þ, the best fit coefficient and the corresponding fitting errors at γ ¼ 1 is

a2 ¼ 8.88 × 10−5�10−12
− i0.033�10−10 : ðB2Þ

We use Fig. 2(b) in the paper to demonstrate the excellent agreement between the numerical data and the best-fit function.

The Jacobian J l in Eq. (6.6) reads

l16l26l36l46l56ðl214 þ l216 − l246Þðl215 þ l216 − l256Þ
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−l412 þ 2ðl216 þ l226Þl212 − ðl216 − l226Þ2
q

×
f½ðl216 − l236Þðl226 − l236Þ − l213l

2
23�l212 þ ðl216 − l226Þ½ðl236 − l226Þl213 þ l223ðl216 − l236Þ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−l413 þ 2ðl216 þ l236Þl213 − ðl216 − l236Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−l423 þ 2ðl226 þ l236Þl223 − ðl226 − l236Þ2
q

×
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−l414 þ 2ðl216 þ l246Þl214 − ðl216 − l246Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−l4
15
þ 2ðl216 þ l2

56
Þl2

15
− ðl216 − l2

56
Þ2

q :

TABLE XI. Deficit angles as δlm6 ¼ ð3.0 × 10−6; 3.7 × 10−6;−3.1 × 10−6;−2.8 × 10−6;−3.6 × 10−6Þ.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ

6.1 × 10−5 2.6 × 10−4 1.1 × 10−4 1.4 × 10−4 4.6 × 10−5 1.4 × 10−5 1.8 × 10−5 1.3 × 10−4 1.1 × 10−4 4.1 × 10−5 1.2 × 10−4

TABLE XII. Deficit angles as δlm6 ¼ ð−3. × 10−8; 5.0 × 10−8; 3.4 × 10−8; 3.1 × 10−8; 4.0 × 10−8Þ.

δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ

1.5 × 10−6 6.4 × 10−6 2.8 × 10−6 3.5 × 10−6 1.1 × 10−6 3.6 × 10−7 4.5 × 10−7 3.3 × 10−6 2.8 × 10−6 1.0 × 10−6 2.9 × 10−6
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