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This paper focuses on the semiclassical behavior of the spinfoam quantum gravity in four dimensions.
There has been long-standing confusion, known as the flatness problem, about whether the curved
geometry exists in the semiclassical regime of the spinfoam amplitude. The confusion is resolved by the
present work. By numerical computations, we explicitly find curved Regge geometries that contribute
dominantly to the large-j Lorentzian Engle-Pereira-Rovelli-Livine (EPRL) spinfoam amplitudes on
triangulations. These curved geometries are with small deficit angles and relate to the complex critical
points of the amplitude. The dominant contribution from the curved geometry to the spinfoam amplitude is
proportional to e¢Z, where 7 is the Regge action of the geometry plus corrections of higher order in
curvature. As a result, in the semiclassical regime, the spinfoam amplitude reduces to an integral over
Regge geometries weighted by eZ, where T is the Regge action plus corrections of higher order in
curvature. As a by-product, our result also provides a mechanism to relax the cosine problem in the
spinfoam model. Our results provide important evidence supporting the semiclassical consistency of the

spinfoam quantum gravity.
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I. INTRODUCTION

The semiclassical consistency is an important require-
ment in quantum physics. Any satisfactory quantum theory
must reproduce the corresponding classical theory in the
approximation of small . In particular, the semiclassical
analysis is more crucial in the field of quantum gravity. Due
to the limitation of experimental tests, the semiclassical
consistency is one of only few physical constraints for
quantum gravity: a satisfactory quantum theory of gravity
must reproduce general relativity (GR) in the semiclassical
regime.

This paper focuses on the semiclassical analysis of
loop quantum gravity (LQG). LQG as a background-
independent and nonperturbative approach has been dem-
onstrated to be a competitive candidate toward the final
quantum gravity theory (see e.g., [1-6] for reviews). The
path integral formulation of LQG, known as the spinfoam
theory [7-11], is particularly interesting for testing the
semiclassical consistency of LQG, because of the con-
nection between the semiclassical approximation of path

“dqu2017 @fau.edu

2470-0010/2022/106(4)/044005(21)

044005-1

integral and the stationary phase approximation. A central
object in the spinfoam theory is the spinfoam amplitude,
which defines the covariant transition amplitude of LQG.
The recent semiclassical analysis reveals the interesting
relation between spinfoam amplitudes and the Regge
calculus, which discretizes GR on triangulations [12-19].
This relation makes the semiclassical consistency of the
spinfoam theory promising.

Nevertheless, it has been argued that an accidental
flatness constraint might emerge in the semiclassical regime
so that only flat Regge geometries would dominate spin-
foam amplitudes. In contrast, curved geometries were
absent [20-24]. The suspicion of lacking curved geometry
in the semiclassical regime has led to doubt about the
semiclassical behavior. This flatness problem has been a key
issue in the spinfoam LQG for more than a decade.

In this paper, we resolve the flatness problem by
explicitly finding curved Regge geometries from the four-
dimensional Lorentzian EPRL spinfoam amplitude. These
curved geometries are with small deficit angles o, and have
been overlooked in the model because they correspond to
complex critical points slightly away from the real integra-
tion domain. But they can be revealed by a more refined
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FIG. 1. (a) The Aj; triangulation (the center panel) made by
gluing three 4-simplices (in blue, red, and purple). The internal
triangle (135) is highlighted in red. (b) The triangulation o;_s
made by the 1-5 Pachner move dividing a 4-simplex into five 4-
simplices. o;_s has ten internal triangles and five internal
segments / = 1,...,5 (red). (c) The real and complex critical
points x and Z (r). S(r, z) is analytic extended from the real axis
to the complex neighborhood illustrated by the red disk.

stationary phase analysis involving the analytic continuation
of the spinfoam integrand. These curved Regge geometries
still give nonsuppressed dominant contributions to the
spinfoam amplitude. The contributions are proportional to
e'? where 7 is the Regge action of the curved geometry plus
corrections of the second and higher orders in &,. The
spinfoam amplitude reduces to an integral over Regge
geometries weighted by e in the semiclassical regime.

These results are illustrated by the numerical analysis of
the EPRL spinfoam amplitudes on triangulations A; and
o1_s [Figs. 1(a) and 1(b)]. As a by-product, the “cosine
problem” [25] is shown to be relaxed on A;. Moreover, our
results provide important evidence supporting the semi-
classical consistency of the spinfoam theory.

I1. SPINFOAM AMPLITUDE

The four-dimensional triangulation C contains 4-sim-
plices v, tetrahedra e, triangles f, line segments, and points.
We denote the internal triangle by 4 and the boundary
triangle by b (f is either & or b) and assign the SU(2) spins
JnsJ» € Ny/2 to internal and boundary triangles /4, b. The
spin j; = jj or j, relates to the quantum area of f by a; =
8wyGn/jr(j; + 1) [26,27]. The Lorentzian EPRL spin-
foam amplitude on K sums over internal spins {j,},

Z deh / dgdz ]h .(/Leszzrf;jbs'}:ﬂb) s (2 1)
{int h

[dgdz] = Hdgw HdQZ » (2.2)
(v.e) (v,f)

where d;, = 2j, + 1. The boundary states of A(K) are
SU(2) coherent states |j,, &,,) where &, = u,;,> (1,0)7,
u,, € SU(2). jp, &, determines the area and the 3-normal
of b in the boundary tetrahedron e. The summed/integrated
variables are g¢,, € SL(2,C), z,, € CP', and j,. The
boundary j,,¢&,, are not summed/integrated. dg,, is the
SL(2, C) Haar measure. d€2, is a scaling invariant measure
on CP!. The spinfoam action S is complex, linear to j,,, ji,
[15] and has the following expression:

S = Z]hF () + Z]me/out + Z me/out 2 3)

zZ,
Fov, = 2inZueSen) 4z, 2, (2.4)
' ”Zveb”
. Z,
Fr, o e Zva) pnz e (2.5)
' HZv’ebH
Z / 7Z,// Z / 2
Flp = 2in CtrLoen g V2l ”efHZ. (2.6)
||Zve’f| ”Zv’e’f” HZv’e’f”
Zyy = gzez,yf and f = h or b. e and ¢’ are boundary and

internal tetrahedra, respectively. Introducing the dual com-
plex ¥, the orientation of the face f* dual to f induces
df*’s orientation that is outgoing from the vertex dual to v
and incoming to another vertex dual to ’. The logarithms
are fixed to be the principal value. The spinfoam action has
the following continuous gauge freedom:

(i) At each v, there is the SL(2,C) gauge freedom
Gve = X' Gues Zyp +> X2,7, X, € SL(2,C). We
fix one g, to be a constant SL(2,C) matrix for
each 4-simplex. The amplitude is independent of the
choices of constant matrices.

(ii) At each e, there is the SU(2) gauge freedom:
Gve > gv’ehe_l’ Gve > gvehe_la h, € SU(Z) To re-
move the gauge freedom, we set one of the group
element g,, along the edge e to be the upper
triangular matrix. Indeed, any g € SL(2,C) can
be decomposed as g = kh with h € SU(2) and
k € K, where K is the subgroup of upper triangular
matrices,
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K:{k:(i(_)l §>,/1€R\{0},,u€@}. (2.7)

We use the gauge freedom to set g,, € K.

(iii) z,; can be computed by g,, and &, up to a complex
scaling: z,; ¢ (g'l;e)_lfef. Each z,; has the scaling
gauge freedom z,¢ = 4,¢Z,7, 4, € C. We fix the
gauge by setting the first component of z,, to 1.

Then, the real critical point ;Uf is in the form of

;vf = (1,5:1)f)r, where ‘;vf ecC.

We have assumed the sum over internal j, € Ny/2 in
Eq. (2.1) is bounded by j™**. For some internal triangles, £,
Jj™ is determined by boundary spins j, via the triangle
inequality, or j™* is an IR cutoff in case of the bubble
divergence.

Moreover, we would like to change the sum over j, in
Eq. (2.1) to the integral, preparing for the stationary phase
analysis. The idea is to apply the Poisson summation
formula. Firstly, we replace each d;, by a smooth compact
support function 7|_ jm_ () satisfying

Jn €10, and

Jn & [=e. ™ + €, (2.8)

for any 0 < ¢ < 1/2. This replacement does not change the
value of the amplitude A(K) but makes the summand of
> ;, smooth and compact support in j,. Applying the
Poisson summation formula,

S s =3 [ dnfu)erni,

nez kez

the discrete sum over j, in A(K) becomes integral.
Therefore,

A(IC) = Z /RdehnzT[—e,jm“"-&-e](jh)/[dgdz]esm’
h h

{k,ez}

SO =S +4mi> jiky,. (2.9)
h

By the area spectrum, the classical area a; and small 7
imply the large spin j, > 1. This motivates us to under-
stand the large-j regime as the semiclassical regime of
A(K). To probe the semiclassical regime, we scale uni-
formly {j,, jn} = {Ajp, Ajn}, where 1 > 1. Scaling spins
implies S — AS. Then, A(K) is given by

AK)= > / [{din] [22d;,) / [dgdz]e®” | (2.10)

{k,ez}

SO =S+ 470y jiky. (2.11)
h

where j, is real and continuous.

III. REAL CRITICAL POINTS AND FLATNESS

For each k; in (2.10), by the naive stationary phase
approximation, the integral with 4 > 1 is approximated by
the dominant contributions from solutions of the critical
equations,

Re(S) = 9,5 = 9,5 =0, (3.1)

9, S = 4nik,,  k, €Z. (3.2)

The solution inside the integration domain is denoted by
{Jns fjw,%vf}. We view the integration domain as a real

manifold and call {j,. ,.. ;vf} the real critical point.

Every solution satisfying the part (3.1) and a non-
degeneracy condition endows a Regge geometry to X with
4D orientation [12-15]. Further imposing (3.2) to these
Regge geometries gives the accidental flatness constraint
to every deficit angle 9, hinged by the internal triangle &
[22,23],

7/5;[ = 47Tkh, kh eZ. (33)
The Barbero-Immirzi parameter y # 0 is finite. When
k, =0, o, at every internal triangle is zero, so the
Regge geometry endowed by the real critical point is flat.
If the dominant contribution to A(XC) with 1> 1 only
comes from real critical points, Eq. (3.3) implies that only
the flat geometry and geometries with yo, = £4xZ, can
contribute dominantly to A(KC), whereas the contributions
from generic curved geometries are suppressed. If this was
true, the semiclassical behavior of A(K) would fail to be
consistent with GR.

A generic {j,, .avm;vf} can endow discontinuous 4D
orientation; i.e., the orientation flips between 4-simplices.
Then (3.3) becomes y ) ), 5,9, (v) = 4nk;, where s, =
+1 labels two possible orientations at each 4-simplex .
©,(v) is the dihedral angle hinged by 4 in v.

IV. COMPLEX CRITICAL POINTS

As we will show, the large-A spinfoam amplitude does
receive nonsuppressed contributions from curved geom-
etries with small but nonzero |§,|. Demonstrating this
property needs a more refined stationary phase analysis
of the spinfoam amplitude: We come back to the amplitude
(2.10) and separate M internal areas j, (h,=1,...,M)
from other internal areas jj, (h=1,....,F —M). F is the
total number of internal triangles. M equals to number of
internal segments / in K. The areas {j, } are suitably
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chosen such that we can change variables from {j;, }’,‘l” _,to
internal segment-lengths {/;}}, (by inverting Heron’s

formula') in a neighborhood of {;h } of a real critical

dMHN G, = 7,dM1,dFM j; where 7 is

pOiIlt {jhv Gue> Zﬁf}
the Jacobian,

(4.1)

L2859 (1,
3/

{kn}

Z{k,, /HthH 22d,;,) /[dgdz]emk)jl_ (4.2)

The partial amplitude Z,{Ck’*} have the external parameters
r={l;, jy, &, } including not only the boundary data but
also internal segment-lengths /;. To study Z,{Ck”}, we apply
the stationary phase analysis for the complex action with
parameters [28,29]: We consider the large-1 integral
[ €5 dVx and regard r as parameters. S(r,x) is an
analytic function of re UCRF,x € KCRY. Ux K is a
neighborhood of (7, x). x is a real critical point of S(r, x).
S(r,z), z=x+iy€ CV, is the analytic extension of
S(r,x) to a complex neighborhood of x. The complex
critical equation 0.S = 0 is solved by z = Z(r) where Z(r)
is an analytic function of r in the neighborhood U. When
r=r, Z(r) = x reduces to the real critical point. When r
deviates away from r, Z (r) € CV can move away from the
real plane R", thus is called the complex critical point [see
Fig. 1(b)]. We have the following large-4 asymptotic
expansion for the integral:
e

/Kem”djvx - G> \Jdet (=82.8(r. 2(r))/27)

x [1+O(1/2)],

=

AS(r,Z(r))

(4.3)

where S(r,Z(r)) and 62.S(r,Z(r)) are the action and
Hessian at the complex critical point.

The crucial information of (4.3) is the integral can
receive the dominant contribution from the complex critical
point away from the real plane. This fact has been over-
looked by the argument of the flatness problem. Moreover,
Eq. (4.3) reduces A(K) to the integral,

'We relate the chosen M areas { Jjn,} to M segment-lengths
{l;} by Heron’s formula as in Regge geometry. Inverting the
relation between {j, }'_, and {/;}L, defines the change of
variables (j, . j;) = (I;. j;) in a neighborhood of the real critical
point. This procedure is just changing variables and does not
impose any restriction.

N
(Z) / [TduN 520+ 0(1/2)].  (44)
I=1

at each k;,. N o« [, (4j,) T [det(=82.S/2x)|~"/% at Z(r).
Given that {/;} determines the Regge geometry on I,
Eq. (4.4) describes the dynamics of Regge geometries with
the effective action S, which does not exclude curved
geometries. In the following, we make the above general
analysis concrete by considering two examples of spinfoam
amplitudes on K = As, 0,_s, and we compute numerically
the complex critical points and S, confirming the resolution
of the flatness problem.

V. ASYMPTOTICS OF A(Aj)

We firstly focus on a simpler example A(A3) where Aj
contains three 4-simplices and a single internal triangle 4.
All line segments of A5 are at the boundary, so M = 0 in
(4.1). The Regge geometry g on Aj is fixed by the (Regge-
like) boundary data {j,, ,,} that uniquely corresponds to
the boundary segment-lengths.

Translate the above general theory to A(Aj3): r=

{jp. Ep} is the boundary data. r = {j,,&,,} determines
the flat geometry g(r) with 8, = 0. X = {j. Gpe. ;vf} is the
real critical point associated to r and endows the orienta-

tions s, =+1 to all 4-simplices. r, g(r), and x are
computed numerically in A1 and A 2. The integration
domain of A(Aj3) is 124 real dimensional. We define local

coordinates x € R!2# covering the neighborhood of x inside
the integration domain (see A 3). S(r,x) is the spinfoam

action, analytic in the neighborhood of (;, ;c) zeC?
complexifies x. S(r, z) extends holomorphically S(r, x) to

a complex neighborhood of x. We only complexify x but do
not complexify r. We focus on k;, = 0, and the different
regimes of the boundary data r result in different large-1
asymptotic behavior of A(Aj).

(i) Regime 1: fixing the boundary data r = rA2 gives
numerically the real critical point for the flat geom-
etry g(r), whose deficit angle is &, = 0. eS(r)

evaluated at the real critical points X gives the
dominant contribution to the asymptotic amplitude,

elS(rx ( )

/ AV (x) S ~ <> \/det 50 2
(5.1)

The asymptotics behaves as a power law in 1/4. Here
we only focus on the contribution from the single real

x [1+0(1/2)].

critical point x. There is another real critical point
which we will discuss in a moment.
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(i) Regime 2: fixing the boundary data r which deter-
mine the segment-lengths for a curved geometry
g(r), the real critical point is absent, then the integral
is suppressed faster than any polynomial in 1/4,

/ d¥xu(x)e) = 0(17%), VYV K>0. (52)

The above asymptotic behavior is based on fixing » and
sending 4 to be large. However, in order to clarify
contributions from curved geometries and compare them
to the contribution from the flat geometry, we should also
let r vary and have an interpolation between two regimes
(5.1) and (5.2). This motivates us to use the complex critical
point of the analytically continued action S(r, z). We vary
the length /54 of the line segment connecting the points 2
and 6, leaving other segment lengths unchanged. A family

of (Regge-like) boundary data r = r+6r parametrized by
l56 1s obtained numerically and gives the family of curved
geometries g(r) with §, # 0 (see A 4).

At each r, the real critical point is absent. But we find the
complex critical point z = Z(r) satisfying 0.S(r,z) =0
with high-precision numerics. At each curved geometry
g(r), the real critical point is absent for &, #0. We
numerically compute the complex critical point Z(r)
satisfying the complex critical equations 0,5(r,z) =0
with Newton-like recursive procedure. First, we linearize
0.S(r,z) = 0 at the pseudocritical point x, € R'?*. Then,
we have the linear system of equations,

02.8(r,xq) - 621 + 0.S(r, xo) = 0. (5.3)
We obtain z; = xy + 0z; by the solution dz;. We again
linearize 0,5(r,z) =0 at zj,

6§.ZS(r,zl) '522 +6ZS(r,z1) ~0, (54)
we obtain z, = z; + 0z, by the solution dz,. We iterate and
linearize the complex critical equations at z,, 23, ..., Z,—1-
The resulting z, = z,_; + 6z, should approximates the
complex critical points Z(r) arbitrarily well for sufficiently
large n. In practice, n = 4 turns out to be sufficient for our
calculation. The numerical results of complex critical point
for each geometry r can be found in the Mathematica
notebook [30].

The absolute error of numerically solving 0.S5(r,z) =0

is measured by

€ =max|0.5(r,z,)| (5.5)
We have z,, well-approximate the complex critical point
Z(r) if € is small (see AS).

We insert Z(r) into S(r, z) and compute numerically the
difference between S(r, Z(r)) and the Regge action Z of
the curved geometry g(r),

6L(r) = S(r, Z(r)) - iZg[g(r)], (5.6)

where Zp[g(r)] = a,(r)8,(r) + > _ay(r)@y(r). (5.7)
b

The areas a,(r),a,(r) and deficit/dihedral
6,(r),0,(r) are computed from g(r).

We repeat the computation for many r from varying /.
The computations give a family of 5Z(r). We relate 8Z(r)
to &,(r) and find the best polynomial fit [see Fig. 2(a)],

angles

6T = ay(y)6; + as(r)8) + as(r)8, + 0(5,).  (5.8)
The coefficients a; at y = 0.1 are given in A 5.

By (4.3), the dominant contribution from Z(r) to A(Aj3)
is proportional to |eS| = ¢Re(S) < 1. As shown in
Figs. 2(a) and 2(c), given any finite A > 1, there are
curved geometries with small nonzero |5,| such that
|A(A3)]| is the same order of magitude as |A(As3)]| at the
flat geometry. The range of &, for nonsuppressed A(A3) is
nonvanishing as far as A is finite. The range of ¢, is
enlarged when y is small, shown in Fig. 2(d).

We remark that the semiclassical behavior of the spin-
foam amplitude is given by the 1/ expansion as (4.3) with
finite A. It is similar to quantum mechanics, where 7 is
finite, and the classical mechanics is reproduced by the
h-expansion. The finite A1 leads to the finite range of
nonvanishing Jj,.

So far we have considered the real critical point x of the

flat geometry with all s, = +1. Given the boundary data r,

there are exactly two real critical points x and x", where x’
corresponds to the same flat geometry but with all s, = —1.
Other six discontinuous orientations (two 4-simplices has
plus/minus and the other has minus/plus) do not leads to
any real critical point (see Figs. 3 and A 6 for §; values)
because they all violates the flatness constraint yé; =
¥ > 5,0,(v) = 0. |6)| is not small for the discontinuous
orientation, so the contribution to A(A3) is suppressed even
when considering the complex critical point.

We focus on the integrals over two real neighborhoods
K, K’ of x,x', since the integral outside K U K’ only gives
suppressed contribution to A(Aj) for large A. The above
analysis is for the integral over K. We carry out a similar
analysis for the integral over K'. The following asymptotic

formula of A(Aj) is obtained with r = r + 6r of curved
geometries g(r),

A
A(A3) — </1) [NJrez/lIR[g(r)]Jr/lﬁI(r)

+ N _e #rlgM+BT 0N 4 0(1/4)],  (5.9)

up to an overall phase. Two complex critical points in
complex neighborhoods of x, X contribute dominantly and
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FIG. 2. (a) plots ¢*Re(S) versus the deficit angle &, at 1 = 10'" and y = 0.1 in A(A5), and (b) plots e*R¢(S) versus the deficit angle

§= /3521267 at2=10" and y = 1 in Z,__. These two plots

show the numerical data of curved geometries (red points) and the

best fits (5.8) and (6.4) (blue curve). (c) and (d) are the contour plots of e"Re(S) a5 functions of (4,6;,) at y = 0.1 and of (y,5;,) at

2 =5x10"in A(A;). (e) and (f) are the contour plots of ¢*R¢(®) as functions of (1,6) at y = 1 and of (y,8) at A = 5 x 10 in Z

O1-5"

They demonstrate the (nonblue) regime of curved geometries where the spinfoam amplitude is not suppressed.

165l
M2 2 2 2 2 2 8 2 8 % % % x ===
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FIG. 3. The log-log plot of |5}| for different s = {s,}, when

vaIying lZ6 = 126 —+ 6126'

give respectively two terms, with phase plus or minus the
Regge action of the curved geometry g(r) plus curvature
corrections 6Z(r) in (5.8) and 6Z'(r) = 6Z(r)*|5, -5, N +
are proportional to [det(—52.S/2x)]~!/? evaluated at these
two complex critical points (see A 6).

As an example of the suspected cosine problem [25],
there has been the guess A(A3) ~ (N e Zr + N e k)3
(each factor is from the vertex amplitude, see e.g., [31])
whose expansion gives eight terms corresponding to all
possible orientations. But Eq. (5.9) demonstrates that
A(A;) only contain two terms corresponding to the
continuous orientations. The cosine problem is relaxed.
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VI. 1-5 PACHNER MOVE

01_5 is the complex of the 1-5 Pachner move refining a
4-simplex into five 4-simplices (see B 1). o,_s has five
internal segments I = 1, ..., 5 [see Fig. 1(b)], in contrast to
A; where all segments are at the boundary. There are ten
internal triangles %2 in o,_s5. The spinfoam amplitude
A(oy_s) is given by (4.1) with M =5 and F = 10. We

consider { jh,gve,;yf} as a real critical point of flat
geometry on o;_s. The flat geometry on o;_s is not
unique. The position of Pg can move continuously in
R* to lead to the continuous family of flat geometries on
01_s. The continuous family of flat geometries result in the
|

A(oy_s) = AS dj126dj136d/ 1469715697236 26, s (1265 J136+ J146+ J1565 J236)

10

5
. . (
ZO'1_5 = Z A5 H d],jl H 2/11[_€’/1jmax+€] (ﬂ]h) /[dgdz]e,ls k)’
h=1

{kn} h=1

where other five internal Spins jyug, j2s6 J346> J356 Ja56 ar€
denoted by j; (h=1,2,...,5). At the real critical point

o

constructed above, the five areas jog, j1365 J1465 156> J236

are determined by the internal segment-lengths /[,
(m=1,2,...,5) via the Heron’s formula. We focus on a

continuous family of real critical points. It implies that all
these real critical points lead to degenerate Hessian
matrices, in contrast to A(A3) where the real critical point
is nondegenerate. Therefore we develop the following
additional procedure to generalize the analysis from Aj
to 0y_s.

We label boundary spins j,,,x by a triple of points m #
n#k=1,2,...,5 and label the internal spins j,,,s by
m,n =1,2,...,5 and point 6. The dual faces and spins are
labeled in the dual cable diagram Fig. 4(b). We pick up five
internal spins j126’ j1367 jl469 j156’ j236 and their corre-
sponding integrals in A(o_s). The integrand is denoted by
Z Namely,

015"

(6.1)

(6.2)

|
neighborhood of (ji26, 136+ J146- J156> J236) € R* around

o o o o o

(J126: J136+ J146: J156+ J236) such that the five j’s in the
neighborhood uniquely correspond to the five segment-
lengths 1,4, m =2, ...,5.

We generalize the analysis of A(A3) to Z, .. Z, _in
Eq. (6.2) contain integrals with the external parameters,

(a)

FIG. 4.

(b)

(a). The dual cable diagram of the A3 spinfoam amplitude: The boxes correspond to tetrahedra carrying g, € SL(2, C). The

strands stand for triangles carrying spins j . The strand with the same color belonging to different dual vertex corresponds to the triangle
shared by the different 4-simplices. The circles as the end points of the strands carry boundary states |j,, &,;,). The arrows represent
orientations. This figure is adapted from [19]. (b). The dual cable diagram of the 1-5 Pachner move amplitude. The internal faces are
colored loops carrying internal spins j,. The boundary faces are black strands carrying boundary spins j,. The arrows represent
orientations. This figure is adapted from [32].
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r = {J126: J136 J 146+ J156> J236+ Jb Eeb }» (6.3)

which including not only boundary data but also five
internal j’s. We focus on the integral in Z; _ at k;, =0.

o o o o o

Given r = r = {126, J136+ J 146+ J156> J236+ Jb Eep }» the inte-
gral has the real critical point {;, 5,1, %a’b} corresponding
to the flat geometry g(r). The data of r and the real critical

point are given in B 1. The Hessian matrix at x is non-
degenerate in Z, _, as confirmed by the numerical check.

The similar parametrizations in A 3 for g,, z, . j; define
the local coordinates x € R!% covering a neighborhood K

of X = (0,0, ...,0). We again express the spinfoam action
as S(r, x). The integral in Z,, _ is of the same type as (A16)
with N = 195.

To give the curved geometries, we fix the boundary data
Jp.&ep and deform the five internal segment-lengths

Lo = lpe +0lyg, m=1,...,5. We randomly sample
61,6 in the range 10~ to 107>, Each time, for the each
new internal segment-lengths /,,4, we can repeat the pro-
cedure in B 1 to reconstruct the geometry and compute all
the geometric quantities of triangulation: e.g., the areas, the
4D normals of each tetrahedron, and the deficit angles. Some
data of the deformation 61,5 = (616, Slag, Sls6, Slus, Slse)
and the correspondlng deficit angles 0, are shown in B 2.

Fixing ],, ﬁfeb, varying [,,c = lm6 + 61,6 results in vary-

ing the five areas in r e.g, ]126—]126+5]126,

J136 = J136 + 0J136, - - - Thus we obtain the deformation
of external data r = r + 6r of Z,,_,- We denote by r; the
external data obtained by sampling 6/, and denote the
Regge geometries by g(r;). There are 4 degrees of freedom
of 81, still resulting in flat geometries, whereas there is
1 degree of freedom of 6/,,4 resulting in curved geometries.

We apply the Newton-like recursive method to numeri-
cally compute complex critical points Z(r;) for all r;, the
absolute errors are shown in B 3. Z(r;) is still in the real
plane if r; corresponds to the flat geometry, whereas Z(r;)
is away from the real plane if r; corresponds to the curved
geometry. Once we have complex critical points Z(r;) for
the curved geometries g(r;), we numerically compute the
analytic continued action S(r;, Z(r;)) at complex critical
points and the difference 6Z(r;) = S(r;, Z(r;)) — S(r;, xp)
where x, is the pseudocritical point of S(r;, x). We have
S(r;,xo) = —iZg[g(r)] + ip, where ¢ only relates to the
boundary data and is independent of /,,s as confirmed by
numerical tests (see also [14] for the analytic argument).
The result of |¢5| = ¢*Re(S) is presented in Figs. 2(b), 2(e),
and 2(f), which demonstrate curved geometries with small
|64 do not lead to the suppression of Z, _(I;). Moreover
S(r;, Z(r;)) is numerically fit by (see B 3)

S(ri. Z(r)) = —iZglg(r)] — ax(r)8(r))* + O(8%).  (6.4)

where  5(r;) = /15212 6,(r))? —0.033i +

8.88 x 107> at y = 1. Zg[g(r))] is the Regge action of
g(r;). As a result, we obtain the following large-A con-
tribution to Z, . and A(cy_s) from the neighborhood

and a, =

around (7, x):

155
Z,  ~ G) ” g0 N1 TRIB ()26 +O)

x [1+0(1/2)],

I
Moo~ (3) e

5
« / TT iV el 4005
m=1

(6.5)

x [1+ O(1/4)], (6.6)
where we have made the local changes of variables from
J126 J136s J146s J156> J23e tO Ly, and the Jacobian J; =
|det(aj/al)| (see B3) is absorbed in N = T N). The
spinfoam amplitude A(c;_s) reduces to the integral over
geometries g(r;) in the semiclassical regime.

VII. DISCUSSION

Our results resolve the flatness problem by demonstrat-
ing explicitly the curved Regge geometries emergent from
the large-j EPRL spinfoam amplitudes. The curved geom-
etries correspond to complex critical points that are away
from the real integration domain. They give nonsuppressed
e™Re(S) and satisfy the bound Re(a,(y))8* < 1/4, if we
consider the examples (5.8) and (6.4) neglecting O(5°).
This bound is consistent with the earlier proposal [23] and
the result in the effective spinfoam model [33-35],
although this bound should be corrected when taking into
account O(5;) in (5.8) and (6.4). The similar bound should
be valid to the spinfoam amplitude in general.

All resulting curved geometries are of small deficit
angles 0,,. The large-j spinfoam amplitude is still sup-
pressed for geometries with larger d; violating the above
bound. This is not a problem for the semiclassical analysis.
Indeed, nonsingular classical spacetime geometries are
smooth with vanishing 9;,. To well-approximating smooth
geometries by Regge geometries, the triangulation must be
sufficiently refined, and all §,’s must be small.

The confusion in the flatness problem can be seen as a
wrong order of limits: If one fixes the triangulation first,
one can find boundary data for which the amplitude goes
wrong for large A. But this is the wrong limit. The right one
is for each boundary data (hence each 1), there is a
triangulation for which the amplitude gives a good result
to any desired accuracy [36,37].
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Lastly, the 1-5 pachner move is the elementary step for
the triangulation refinement. Our results provide a new
routine for analyzing triangulation dependence in spinfoam
models. This should closely relate to the spinfoam renorm-
alization [32,38,39], with the goal to address the issue of
triangulation-dependence.

ACKNOWLEDGMENTS

The authors acknowledge Jonathan Engle, Francesco
Gozzini, Wojciech Kaminski, and Carlo Rovelli for helpful
discussions and comments. M. H. receives support from
the National Science Foundation through Grant No. PHY-
1912278. Z.H. is supported by Xi De post-doc funding
from State Key Laboratory of Surface Physics at Fudan
University.

APPENDIX A: THE SPINFOAM
AMPLITUDE A (A;)
1. The flat geometry on Aj

The Aj; triangulation is made by three 4-simplices
sharing a common triangle. A5 has 18 boundary triangles
|

P, =(0,0,0,0), P, =(0,-2v/10/3%4,
Py = (0,0,0,-2+/5/31/4),
Ps = (0,0, =3"/4/5,-31/4V/5),

The 4-simplex with points (12345) has the same 4-simplex
geometry as in [40,41]. We choose Pg in (A1) so that we
have the length symmetry [, =lj3 =1;5 =13 =I5 =
L35 2340, 11y =1y =l3 = 415~ 2.07, lig =L =I5~
3.25, g~ 5.44 and I ~ 3.24.

All tetrahedra and triangles are space-like. The tetrahe-
dron 4D normal vectors N, are determined by the triple
product of three segment-vectors I, /5, 5 (the segment-
vectors are given by P — P’; ) along three line-segments
labeled by 1,2,3 adjacent to a common point,

.0,

(Na) —_ HVPG al’a2 Z3 , (A2)
: || WpalallaZZaS
where the norms || - || is given by the Minkowski metric
n = diag(—,+,+,+), and €uupo follows the convention
€o123 = 1. We list below the 4D normals (N,), of the
tetrahedra in each 4-simplex,

(i) The first 4-simplex with points 12345,
=(1.07,-0.12,-0.17,-0.30),
=(1.07,-0.12,-0.17,0.30),
=(1.07,-0.12,0.35,0),
=(1.07,0.37,0,0), Ns5=(-1,0,0,0). (A3)

—V/5/33/4,
P, = (=371410712,
Pg = (0.90,2.74,-0.98, —1.70).

and one internal triangle. All line segments of A5 are at
the boundary, and the segment-lengths [,,(a #b =
1,2,3,4,5,6) determine the Regge geometry g(r) [g(r)
does not contain the information of the 4-simplex
orientations].

The dual cable diagram for the A; triangulation is
represented in Fig. 4(a). Each box in Fig. 4 carries group
variables g, € SL(2, C).’Each strand carries an SU(2) spin
Jap Where a, b corresponds to two different tetrahedra
sharing the same 4-simplex. We have the identification
Jap’ s along the same strand; e.g., j, 5 = j¢7 along the pink
strand. The red strands dual to the common triangle shared
by three 4-simplices. We use j, to denote the spin j, 5 =
Je.s = Ji1.12 of the internal triangle. The circles at the ends
of the strands represent the SU(2) coherent states.

We firstly construct the flat Regge geometry on Aj, in

order to obtain the corresponding boundary data r=

{Jp-Eep} and compute the associated real critical point
x. We set the six points of Az in R* as

_\/5/31/4%
_\/575/33/47 —\/5/33/4, _\/5/31/4%

(A1)

[
(i) The second 4-simplex with points 12456,

(1,0,0,0), N;=(—1.15,-0.19,—0.26,0.46),
(1.06,0.35,0,0),
(=
(-

1.15,-0.19,0.53,0),
1.15,-0.19,—-0.26,—-0.46).

(A4)

(iii) The third 4-simplex with points 13456,

(=1,0.02,0,0), N, = (=1,0,0,0),
(1,-0.02,-0.01,0.01),
(1,-0.02,0.01,0),

(1,-0.02,-0.01, -0.01).

*For convenience, the indexes of group variables in Fig. 4(a)
are a = 1,2,3..., 15, the corresponding tetrahedra e are labeled
by the number circles in Fig. 1(a). The correspondence are:
g1 = €2345; 92 = €1245, g3 = €1234 g4 = €1345,
gs = €1235; 96 = €1235> 971 = €1256> g8 = €1356>
99 = €1236> Ji10 > €2356> g1 > €1356, G2 7> €1345,
913 = €14565 914 = €13465 915 = €3456-
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The triangles within a 4-simplex are classified into two
categories [13]: The triangle corresponds to the thin wedge
if the inner product of normals is positive; the triangle
corresponds to thick wedge if the inner product of normals
is negative. The dihedral angle 6, , are determined by

thin wedge: N, - N, = cosh@,,,

thick wedge: N, - N, = —cosh@,,, (A6)
where the inner product is defined by 5. Then we check the
deficit angle o, associated to the shared triangle #,
0= 5h = 04’5 + 06,8 + 911,12 ~0.36 —0.34 — 002, <A7)
which implies the Regge geometry is flat.

To determine the 3D normals of triangles, we proceed
with a similar method as in [41]. To transform all 4D

normals to # = (1,0,0,0), we use the following pure
boost A, € O(1,3):

o
(Aa)pp = 077;; +m(NZNW) + t”tp + aN’;ltp
a
—(1=20N,-t)ot*N,,), (A8)
where 6 = 1 for N,y > 0 or6 = —1 for N,y < 0. Then, the

3D normals 7, ;, can be expressed by A, and 4D normals,

R N’ + N4(N, - N,)
Ngp = (Oa nu.b) = (Aa)yp b =

(A9)

associate 7,;, = i, (or —fi, ;) to a strand oriented out-
ward from (or inward to) the box labeled by g,. The data of
1, can be found in the Mathematica notebook [30].

The spinors &, in Eq. (2.3) relate to 7,, by
Hap = (Eapr0Eap). We use the following rule to convert
a unit 3-vector to a normalized spinor (by fixing the phase
convention):

R 1 x+iy)
Hap = (x,v,2) > &Ep=—4 | VI +2z, . (A10
b ( y ) 5,17 \/§< m ( )

The data for j,,,&,, are listed in Tables I-III. In these
tables, j, ;. &, for the internal face are labeled in the bold
text, and the others are the boundary data. We denote the

boundary data in these tables by r = (;’b, Eeb).

Once the flat geometry data :ta, » and ;’a, » are constructed,
we are ready to obtain the real critical points x=
(;‘h, Gus ;a.b) by solving the critical point equations

EqS. (3]) and (32) Here jh = j4’5 = j6.8 = jll,lZ =51is
the same as the area of /.

2. The real critical point

The solution of the critical point equations relates to the
Lorentzian Regge geometry, as described in [13,14]. f]a
relates to the Lorentzian transformation acting on each
tetrahedron and gluing them together to form the Aj

(N, N, )2 -1 ' triangulation. The general form of f}a can be expressed by
- . . 5 R P
Here, n,, are the outwarq normals of the trlanglfs in the g4 = exp <9ref’a Frefa - 5) (A11)
tetrahedron a, then the inward normals are —n, ;. We
TABLE 1. Geometry data ;’a.b, Z‘a’,, for first 4-simplex with points 12345.
b
é:aﬁh
a 1 2 3 4 5
1 (1.,0.01 + 0.011) (0.87,0.01 + 0.491) (0.87,0.46 + 0.171) (0.3, —0.55—-0.781)
2 (1,—0.01,-0.011) (0.49,0.02 + 0.871) (0.49,0.82 + 0.311) (0.95,—-0.17 — 0.251)
3 (0.86,—0.01 4 0.511) (0.51,—0.02 + 0.861) (0.71,0.56 — 0.431) (0.71,—0.24 4 0.671)
4 (0.86,0.48 + 0.161) (0.51,0.82 4 0.271) (0.71,0.59 — 0.391) (0.71,0.71)
5 (0.3,—0.55 - 0.78i) (0.95,-0.17 — 0.251) (0.71,—-0.24 + 0.671) (0.71,0.71)
b
ja.b

a 1 2 3 4 5
1 2 2 2 5
2 2 2 5
3 2 5
4 5
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TABLE II. Geometry data ;’a,b, éa_b for second 4-simplex with points 12456.

b
gu,b
a 6 7 8 9 10
6 (0.95,—-0.17 — 0.251) 0.71,0.71) (0.71,—0.24 4 0.671) (0.3,—-0.55 - 0.781)
7 (0.95,-0.17 — 0.251) (0.29,-0.47 + 0.831) (0.88,—0.02 — 0.481) (1,—0.02 — 0.031)
8 (0.71,0.71) (0.31,—-0.57 4+ 0.76i) (0.71,0.25 + 0.661) (0.31,0.57 — 0.761)
9 (0.71,—-0.24 + 0.671) (0.85,0.02 — 0.521) (0.71,0.19 + 0.681) (0.85,—-0.02 + 0.52i)
10 (0.3,—0.55 —0.78i) (1,0.02 4- 0.031) (0.29,0.47 — 0.831) (0.88,0.02 + 0.48i)
b
ju.b
a 6 7 8 9 10
6 5 5 5 5
7 4.71 5.19 5.19
8 4.71 4.71
9 5.19
TABLE III. Geometry data ;'a_b, 2(,_,, for third 4-simplex with points 13456.
b
gaAb
a 11 12 13 14 15
11 0.71,0.71) (0.31,—-0.57 + 0.761) (0.71,0.25 + 0.661) (0.31,0.57 — 0.761)
12 (0.71,0.71) (0.51,0.82 + 0.271) (0.71,0.59 — 0.391) (0.86,0.48 + 0.161)
13 (0.31,—-0.57 + 0.761) (0.51,0.82 + 0.271) (0.5,0.871) (0,0.95 4+ 0.311)
14 (0.71,0.25 + 0.661) (0.71,0.59 — 0.391) (0.5,0.871) (0.5,-0.871)
15 (0.31,0.57 — 0.76i) (0.86,0.48 + 0.161) (0,—0.95 - 0.311) (0.5, —-0.871) .
b
ju.b
a 11 12 13 14 15
11 5 4.71
12 2 2 2
13 3.18 3.18
14 4.71 3.18
15 4.71

where 6, is the dihedral angle which is defined in
Eq. (A6), ¢ are the Pauli matrices, and ref = 5,6, 12 are
the reference tetrahedra, whose 4D normals equal £¢. The
data for 3D normals 7, , can be found in the Mathematica
notebook [30]. On A; triangulation, we fix g, to be
constant SL(2,C) matrices for a =1, 10, 15, and the

3The choice of a = 1, 10, 15 for the SL(2, C) gauge fixing is
different from the ref =5, 6, 12, because we would like to apply
the SL(2,C) and SU(2) gauge fixings to different sets of g,’s.

group elements g, for the bulk tetrahedra a = 5,8, 12 are
fixed to be the upper triangular matrix.
By Eq. (A11) and the gauge fixing for g,,, z, s, we obtain

the numerical results of the real critical points (jy,, Gus ;a,b)
corresponding to the flat geometry and all s, = +1. j, =5
as the area of the internal triangle. The numerical data of

o

E]a, Z,, are shown in Tables IV-VI.
All the boundary data r = (j, ;. &,) and the data of the

real critical point (jh,ga,;a!b) can be found in the
Mathematica notebook in [30].
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TABLE IV. The real critical point §a, %a,b for the first 4-simplex with points 12345.

a 1 2 3 4 5
5 0.87 —0.06+0.09: 1.16 —0.06+0.09{ 1.02 —0.06—0.17i 1.03 0 10
¢ —0.06—0.09i 1.16 —0.06—-0.09i 0.87 —0.06+0.17i 1.02 0.36 0.97 01
b
‘%a,b>
a 7 8 9 10
6 (1,—-0.18 — 0.261) (1,1) (1,0.42 4 0.221) (1,—-0.33 4 0.941)
7 (1,—1.94 + 1.261) (—0.1 —0.431) (1,—-0.08 — 0.121)
8 (1,0.03 + 1.i) (1,0.22 — 3.721)
9 (1,-0.13 4+ 0.741)

TABLE V. The real critical point §a, %a,b for the second 4-simplex with points 12456.

a 6 7 8 9 10
E] 1 0 0.82 0.09 —0.13i 0.97 0.34 1.04 0.09 + 0.25i 1.26 0.09 —0.13i
“\o 1 0.09 + 0.13i 1.26 0 1.03 0.09 — 0.25§ 1.04 0.09 +0.13i 0.82
b
|;a,b>
a 7 8 9 10
6 (1,—0.18 — 0.261) (1,1) (1,0.42 4+ 0.22i1) (1,-0.33 + 0.941)
7 (1,—1.94 + 1.261) (—=0.1 —0.431) (1,—0.08 — 0.121)
8 (1,0.03 + 1.1) (1,0.22 — 3.72i)
9 (1,—0.13 + 0.74i)

TABLE VI. The real critical point &a, %a‘b for the third 4-simplex with points 13456.

a 11 12 13 14 15
) 1.04 —0.02 0.97 —0.36 1.024-0.001i —0.19+0.003:i 1.012—-0.001i —0.1940.006i 1.0140.001i —0.19+0.003i
7\ —036 097 0 1.03 —0.19-0.003; 1.01-0.001i —0.19-0.006i 1.02+4-0.001: —0.19-0.003; 1.02—-0.001i
b
|2a.b>
a 11 12 13 14 15
11 (1,1) (1,0.1 + 3.73i)
12 (1,1.41 4+ 0.311) (1, 0.92 — 0.41) (1,0.68 4+ 0.151)
13 (1,0.68 + 1.52i) (1,5.35 + 0.08i)
14 (1,0.64 4+ 0.771) (1,0.67 — 1.51)
15 (1,1.92 — 1.16i)

We focus on the Regge-like boundary data r = {j,, &, }-
The Regge-like boundary data determine the geometries of
boundary tetrahedra that are glued with the shape-matching i . i
and orientation-matching conditions [16] to form the QGtermme the flat geometry g(r) on Aj. Generic Regge-
boundary Regge geometry on dA;. Then the resulting 11k§ boundary conditions r determines the curved geom-
boundary segment-lengths uniquely determine the 4D  €lries g(r).

Regge geometry g(r) on A;. The above r = (;'a_b,cfa’b)
is an example of the Regge-like boundary data, which
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3. Parametrization of variables

Given the Regge-like boundary condition r, we find the
pseudocritical point (j9, g5, Zg’ ,) inside the integration
domain, where (j. ¢5.z0 ,) only satisfies Re(S) = 9, § =
d,,,8 =0 but does not necessarily satisfy d; S = 4zik),.
The pseudocritical point (jj, g0 z) ,) is the critical point of
the spinfoam amplitude with fixed j,, j, [14] and endows
the Regge geometry g(r) and all s, = +1 to As. It reduces

to the real critical point (j,. g, %) when r=r.
(J9.45.2%,) is close to (jnsGa»Zap) in the integration

domain when r is close to r (by the natural metrics on
the integration domain and the space of r). The data of the
pseudocritical points are given in [30].

We consider a neighborhood enclose both (9, ¢9,20 ,)

and (jj,. Ja» Za ). We use the following real parametriza-
tions of the integration variables, according to the gauge-
fixing in A 2:
() Asa=1,10,15, g, = ¢°.
(i) As a=5,8,12, g, is gauge-fixed to be an upper
triangular matrix (¢9 is upper triangular),

1 2052
1+x_u Xg+iyy
ga292< vaoov2 o),
0 Ha

(A12)

here, u, is determined by det(g,) = 1.
(i) Asa =2,3,4,6,7,9,11, 13, 14, g, is parameterized
as

1y 71 24 52
| 4 Stk X+
V2 V2
Ja=9a| i . (A13)
SRy,

(iv) The spinors are parametrized by two real parameters,

Z,, = (17 ag,b + Xa.b + iya,b)’ <A14)

where ?, is the second component of z ,.

(v) For the internal spin j;,, we parametrize it by one real

parameter,
h=0+i i€R, (A15)
x € R'” are denoted by these 124 real variables
j,x};m,yé‘zﬁ , and x,,,v,,. The parametrizations define

the coordinate chart covering the neighborhood enclosing

both xo = (j).¢9.2%,) and x = (s GasZas). This neigh-
borhood is large since the parametrizations are valid
generically. The pseudocritical point is x, = (0,0, ...,0),
which contains 124 zero components. The spinfoam action
can be expressed as S(r,x). The integrals in (2.10) (for
K = Aj) can be expressed as

/ dNxp(x) e, (A16)

where N = 124. Both S(r,x) and u(x) is analytic in the

neighborhood of x. We only focus on the integral k;, = 0 in
(2.10), since other k; # 0 integrals has no real critical point

by the boundary data 7. S(r, x) can be analytic continue to a
holomorphic function S(r, z), z € CV in a complex neigh-

borhood of x. Here the analytic continuation is obtained by
simply extending x € R" to z € CV. The formal discussion
of the analytic continuation of the spinfoam action is given
in [42].

4. Geometrical variations

To obtain the curved geometries, we fix the geometries
of the 4-simplices 12345 and 13456, but change the
geometry of 4-simplex 12356 by varying the length of
l56 (the length of the line segment connecting point 2 and 6)
from 5.44 492 x 1077 to 5.44 +9.2 x 107>, For each
given l,4, we repeat the steps in A 1 and A 2 to reconstruct
the geometry and compute all the geometric quantities,
such as the triangle areas, the 4D normals of tetrahedra, the
3D normals of triangles, &, ;,, the deficit angle, etc. Part of

the data for the fluctuation 8l,5 = Iy — I, and the corre-
sponding deficit angle &, are shown in Table VII. These

TABLE VII. Each cell of the table is the value of internal deficit angle §;, with fluctuation 6,5 = l56 — L.

Sl 92x107"7 83x1071 7.3x107'* 64x10713

5, 20x1071% 1.8x107* 1.6x10°13

46x10~1
1.40x 1072 1.00x 107" 1.81x107° 1.61x1078

9.2x107% 9.2x107
2.x1075  0.0002

4.6x107°
1.00x 1073

83x 10710 73x107°

TABLE VIIL

Deficit angles 6, and corresponding absolute errors.

1.6x107183 1.4x10712
1.4x107% 7.1x107%0

1.8x 10714
2.5%x107%

6}1 2X10716
e 43x1077

1.0x 10710
1.3x107° 2.5x10~%

1.6x1075  2x107° 0.0002
14x107%* 42x107%* 4.2x107P

1.6x1078
1.4x1073°

1.8x107°
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TABLE IX.
s +++ ——— ++- —— +—— —++ —+— +—+
55 0 0 0.043 —0.043 0.72 —0.72 —0.68 0.68
TABLE X. &Z(r) and 6Z'(r) at different deficit angles |5’ |.
|53 | 2.x107" L4x10712 1x1071 1.61x 1078 2x1074

—3.12x 10728 -1.63x 1072}
—3.12x 1072+ 1.63x 1077;

8T  —6.36x1073-3.34x10"%
8T —636x107* +3.34x10°%

—1.59x 1072 —8.34 x 10724;
—1.59%x 1072* +8.34 x 107

—6.30x 10712 -3.32x 1071}
—6.30x 10712 4+3.32x 107!

—4.07x10720-2.13x 10719}
—4.07x 10720 +2.13x 107"}

new geometries g(r) are curved geometries because of
nonzero deficit angles.

5. Numerical solving complex critical points
and error estimate

The absolute error ¢ in the case of y = 0.1, n =4 for
some deficit angles are shown in Table VIII. The absolute
errors are small and have the scales as & & 1.3152 atn = 4.

6. Flipping orientations and numerical results

Given the boundary data ;, Table IX lists 6; s at different
orientations.

As in A 4, we deform the boundary data r = rF+6rto
obtain curved geometries. Both real critical points with all
s, = + and all s, = — move smoothly away from the real
plane and become complex critical points. We numerically
compute the other complex critical point Z'(r) with all
s, = — by the same procedure as in A 1-A 5. We compute

6L(r) = S(r, Z(r)) — iZg[g(r)],
67'(r) = S(r, Z'(r)) + iZg[g(r)],

(A17)

for the sequences of r of curved geometries. 67 and
87’ associate to two continuous orientations s, = + and
s, = — respectively. Part of the results are shown in
Table X at y = 0.1.

The best-fit functions are

8L(r)=ax(6y ) +a3(8;)  +as(8,)' +0((8,)). (A18)

8T'(r) = a3 (85 ) = a3(8;,)° +a;(8,)* +0((5,)°),  (A19)

where §f =6;:**. a} is the complex conjugate of a;.
The best fit coefficient @; and the corresponding fitting
errors are

a4y = —0.00016. 117 — 0.00083, 1g167.
as = _0'0071:E10_13 - O'OII:EIO_IZi’

a4 = —0.059i10—9 + 0.070i10—8i. (AZO)
Figure 2(a) demonstrates the excellent agreement between
the numerical data and the fitted polynomial function at
y=0.1 and 1 = 10'".

Then, the asymptotic amplitude is obtained

oo
A(A3) — (E) [N:ret}lk[g(r)]Jr/léI(r)

+ Ny e el + 0(1/2)].  (A21)

At y=0.1,567 ~4+2x 1074, we have N, /N7 ~0.001+
0.005i,Tg~—-0.22y, 6I"~—-630x10"12-3.32x10"'1;
and 67~ ~—6.30 x 10712 +3.32 x 1071},

APPENDIX B: 1-5 PACHNER MOVE AND A (6_5)

1. Flat geometry, boundary data, and real critical point

The triangulation ¢_s of the 1-5 Pachner move is made
by five 4-simplices. o,_s is obtained by adding an point 6
inside a 4-simplex and connecting point 6 to the other
five points of the 4-simplex by five line segments
(1,6),(2,6),...,(5,6). The dual cable diagram of o,_s
is in Fig. 4(b)4 (see also [32]). o_5 consists of ten boundary
triangles b [dual to black strands in Fig. 4(b)] and ten
internal triangles & [dual to colored loops in Fig. 4(b)].

*For convenience, the indexes of group variables in Fig. 4(b)
area = 1,2, ...,25, the corresponding tetrahedra e are labeled by
the numbers in Fig. 1(b) in the paper. The correspondence are

g1 7 €1234
g5 = €23465
99 = €1356>
913 = €1256>
917 7 €1346>
921 ™ €2345
925 = €3456-

044005-14

92 = €1236
96 = €1235>
g10 = €2356>
g14 = €1456>
918 = €1356>
922 7 €2346>

93 = €1246
97 = €1236>
g11 7 €1245
915 = €2456>
919 = €1456>
923 = €2356>

94 = €134.6>
g8 = €1256>
g12 7 €1246>
Jd16 = €1345>
920 = €3456>
924 = €2456>
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Here, we set the coordinates of Py, P,, P53, P4, P5 the same
as Eq. (Al). The coordinate of the point 6 is

Pg = (—0.068,—0.27,—0.50,—1.30).  (BI)

Py, ..., Pg determines a flat Regge geometry on oy_s. We
obtain five Lorentzian 4-simplices, S12316: S123565 5124565
S13456> S23456 With all tetrahedra and triangles spacelike. The
lengths of the internal line segments are [~ 2.01,
Ly = 6.60, 35 ~ 4.72, 146 ~ 0.54, [s¢ ~ 6.19. The 4D nor-
mals are determined by Eq. (A2). For convenience, we
choose (Na)ﬂ witha = 2,6,13,18,23 to be (—1,0,0,0) as
reference for each 4-simplex. Hence, the 4D normals (N,),
in each 4-simplex are given by
(1) The first 4-simplex 12346,

(1.02,-0.06,0.17,0), N, =
(—1.15,0.07,-0.53,0.19),
(1.50,0.98, —0.54,0),
(—1.04,0.06, —0.28, —0.06).

(_1905 09 0)’

(i) The second 4-simplex 12356,

(—1,0,0,0),
(1.00, —0.03, =0.04, 0.07),
(1.03,0.26,0,0),

(1.00, —0.02, =0.02, —0.04).

N; = (1.02,-0.06,0.17,0),

0 =38, =03+ 0115 + 07 & —0.54 + 0.77 — 0.23,
0 =3y =034+ 01719 + 01412 ~ 1.37 = 0.47 — 0.90,
0 =35 = 0y5 + Ox 03 + 0197 ~ —0.29 + 0.49 — 0.2,
0 =35; =0 10 + Oy 24 + 01513 ¥ —0.12 + 1.07 — 0.95,
0 = 8o = O 10 + O3 25 + O 15 ~ —0.28 + 0.42 — 0.14,

(iii) The third 4-simplex 12456,

1.0,-0.091,-0.13,0.22),
1.3,-0.11,0.79,—0.28),
1,0,0,0), Ny =(1.1,0.50,0.077,-0.13),
1.5,0.14,0.19,—1.1).

(
(
(=
(=

(iv) The fourth 4-simplex 13456,

(1.0,0.10,0,0),

(—=1.2,-0.57,0.30,0),
(=1,0,0,0),
(-
(-

1.0,-0.19, -0.029, 0.049),
1.0,-0.14,-0.012, —-0.020).

(v) The fifth 4-simplex 23456,

(1.0,-0.11,-0.15, —0.26),
(1.1,=0.11,0.49,0.10),

(~1,0,0,0),
(
= (

1.6,-0.16,—0.22,1.3),
1.1,0.42,0.037,0.064).

Then we compute all dihedral angles 8, ;, in each 4-simplex.
We check that all deficit angles §,,h = 1,2, ..., 10 hinged
by ten internal triangles vanish,

0=25,=0,4+ 0175 + 057 ~0.965 — 0.604 — 0.361,
0 =35y =059+ 01510+ 01413703 -02+0.5,
0 =3 =055+ 0noy+ 015108 =03 - 12+ 15,
0 =85 = Oy 5+ Orr s + 017 ~ 1.18 = 0.69 — 0.49,

O == 510 = 9]4’15 + 924,25 + 920’19 ~ 126 —_ 117 —_ 009

We adapt the similar steps as in A; with Eq. (A8), (A9) and (A10) to compute the normalized spinors &, ,. We compute

areas j,, in each 4-simplex,
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)

b

o
éa.b

1

2

3

4

5

1 (0.71,-0.24 + 0.671) (0.86,0.01 —0.511) (0.71,0.57 — 0.431) (0.51,0.02 — 0.861)
2 (0.64,—0.26 + 0.72i) (0.51 +0.02i, —0.13 4 0.851) (0.66 — 0.04i, —0.64 + 0.40i)  (0.71 4 0.01i, —0.16 + 0.68i)
3 (0.97 —0.03i,—0.03 — 0.251) (0.32,—0.14 + 0.94i) (0.42 —0.011,—0.49 + 0.76i) (—0.99 —0.021, —0.035 — 0.111)
4 (0.56—10.021,0.67 —0.491) (0.82 4 0.051, —0.51 4 0.24i) (0.80 + 0.01i, —0.44 + 0.401) (0.54 —0.021,0.65 — 0.531)
5 (0.69 — 0.051,—0.01 — 0.721) (0.61,—0.19 + 0.771) (0.99 —0.021, —0.05 — 0.151)  (0.81 +0.091,0.48 — 0.33i)
b
ja,b
a 1 2 3 4 5
1 5 2 2 2
2 1.7 0.96 2.8
3 0.29 0.60
4 0.76
b
Sab
a 6 7 8 9 10
6 (0.71,—-0.24 4 0.671) (0.30,0.55 4 0.781) (0.71,-0.71) (0.95,0.17 + 0.251)
7 (0.64,—0.26 + 0.72i) (0.51 +0.01i, —0.13 + 0.851))  (0.66 — 0.04i, —0.64 + 0.40i)  (0.71 4 0.01i, —0.16 + 0.68i)
8 (0.33,0.55 + 0.771) (0.59 + 0.021, —0.12 + 0.801) (0.62 —0.021,0.77 + 0.111) (0.14,0.57 + 0.811)
9 (0.79,—0.61) (0.78 — 0.04i, —0.53 + 0.32i) (0.51 —0.011,0.85 + 0.121) (0.75,0.66 — 0.061)
10 (0.96,0.17 + 0.24i) (0.78,—0.15 4+ 0.611) (0.12,0.57 4 0.811) (0.65,—0.76 — 0.071)
b
ja,h
a 6 7 8 9 10
6 5 5 5
7 5
8 1.7 1.6 32
9 0.96 2.7
10 2.8
b
":a.b
a 11 12 13 14 15
11 (0.87,—0.01 — 0.49i1) (0.30,0.55 4 0.781) (0.49,0.82 + 0.311) (0.015,0.58 + 0.821)

12 (0.97 —0.03i,-0.03 — 0.25i)

(0.32,—0.14 + 0.94i)

(0.59 + 0.02i, —0.12 + 0.801) .

(0.42 —0.01i, —0.48 + 0.76i) (0.99 —0.02i, —0.036 — 0.106i)

13 (0.33,0.55 + 0.771) . (0.62 —0.021,0.77 + 0.111) (0.14,0.57 + 0.811)
14 (0.30 —0.021,0.91 4 0.30i) (0.75 —0.141, —0.38 4+ 0.52i) (0.41 + 0.01i,0.90 + 0.151) (0.09 —0.0241, 0.94 + 0.32i)
15 (0.14,0.57 + 0.811) (0.94 — 0.011, —0.08 — 0.341) (0.21,0.56 4 0.801) (0.32 —0.051,0.86 + 0.391)

b

}u.h

a 11 12 13 14 15
11 2 2
12 2 1.7
13 5
14 0.29 1.6 0.68
15 2 0.68
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b
Eab
a 16 17 18 19 20
16 (0.71,0.59 — 0.391) (0.71,-0.71) (0.51,0.82 + 0.271) (0.51,-0.82 — 0.27i)

17 (0.56 —0.02i,0.67 — 0.481)

(0.82 +0.061, —0.51 4+ 0.23i)  (0.80 4- 0.02i, —0.45 4 0.40i)  (0.54 — 0.011i, 0.66 — 0.521)
18 (0.79,-0.61) (0.78 — 0.04i, —0.53 + 0.32i)

(0.51 —0.01i,0.85 + 0.12i) (0.75, —0.66 — 0.061)
19 (0.30 —0.021,0.91 4+ 0.30i) (0.75 —0.151, —0.38 4+ 0.53i)  (0.41 + 0.01i,0.90 + 0.151) (0.1 —0.031,0.95 + 0.32i)
20 (0.46—0.02i,0.85 —0.271))  (0.73 —0.02i,0.53 — 0.43i) (0.61,—-0.79 — 0.061) (0.37 4 0.02i, 0.88 4 0.30i1)
b
ju.b
a 16 17 18 19 20
16 2
17 2 0.96 0.29
18 5 1.6
19 2
20 . 0.76 2.7 0.68
b
Sab
a 21 22 23 24 25
21 (0.49,-0.02 — 0.871) (0.95,0.17 + 0.25i) (0.015, —0.58 — 0.821) (0.49,—-0.82 — 0.31i)
22 (0.69 —0.051,—-0.01 — 0.72i) 0.61,-0.18 +-0.77i) ~ (0.99 —0.02i,—0.05 — 0.151)  (0.81 + 0.09i, 0.48 — 0.331)
23 (0.96,0.17 + 0.24i) (0.78, —0.15 + 0.61i) (0.12,0.57 + 0.81i) (0.65,—0.76 — 0.07i)
24 (0.141,0.57 + 0.811) (0.94 — 0.011, —0.08 — 0.341) (0.21,0.56 + 0.801)

(0.32 —0.051,0.86 + 0.391)
25 (0.46 —0.02i,0.84 — 0.271) (0.73 —0.021,0.53 — 0.43i) (0.61,—0.79 — 0.06i) (0.37 4 0.02i, 0.88 4 0.301)

b
ja.b
a 21 22 23 24 25
22 2 2.8 0.60 0.76
23 5 3.2 2.7
24 2 0.68
25 2

The boundary data r= {Jp, Eep } are given in the above tables. The real critical point (jj,, Ea, %aﬁb) corresponding to the
above flat Regge geometry is obtained by solving critical point equations Egs. (3.1) and (3.2). To remove the gauge
freedom, We choose g,, a =1,6,11,16,21, to be identity and g,, a =2,3,8,9,14,15,17,20,22,23, to be upper
triangular matrix. In each 4-simplex, we choose a = 1,6, 11, 16,21 as the references and use Eq. (A11) to obtain critical
points Ea. The resulting ;a and Zavb are given below. The critical point in ;_5 endows the continuous orientation s, = —1 to
all 4-simplices.

a 1 2 3 4 5
g 1.02 —0.06 —0.17i 0.99 —0.06—0.17i 0.83 —0.12—-0.61i 0.99 0.55+0.29i 094 —0.12—-0.45i
¢ —0.06 +0.17i 1.02 0 1.01 0 1.20 0.25 1.14 4 0.074i 0 1.02
b
‘ga.b>
a 2 3 4 5
1 (1,-0.33 + 0.941) (1,0.08 — 0.691) (0.68 — 0.73i) (1,0.18 — 1.431)
2 (1,-0.14 + 1.501) (1,-0.93 + 0.371) (1,-0.16 + 0.771)
3 (1,—0.93 + 0.48i) (1,0.078 — 0.58i)
4 (1,0.64 — 0.881)
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a 6 7 8 9 10
g 1 0 099 —0.06 —0.17i 1.03  —0.03 + 0.045: <0.98 0.25) 0.98 —0.02 + 0.02i
“ 0 1 0 1.01 0 0.96 0 102 0 1.02
b
‘Zal7>
a 6 7 8 9 10
6 (1,1.82 +2.571) (1,-1) (0.18 + 0.261)
7 (1,-0.33 4+ 0.941)
8 (1,—0.14 + 1.501) (1, 1.36 4+ 0.271) (1,4.60 + 6.50i)
9 (1,-0.93 4 0.371) (1,-1.11 —0.0721)
10 (1,-0.16 + 0.771)
a 11 12 13 14 15
g 1.08 —0.03 + 0.04i 0.77 —0.08 — 0.62i 0.96 0.85 045-0.11i 1.52 —0.14+0.2i
o —0.03 — 0.04¢ 0.93 0.0240.04i 1.32—-0.02i 0.03 + 0.04i 0 1.18 0 0.66
b
‘%a.b>
a 11 12 13 14 15
11 (1, 1.77 4 0.801) (1,9.6 + 13.581)
12 (1,0.03 —0.62i) (1,-0.23 + 1.31i)
13 (1,1.82 4 2.571)
14 (1,-0.84 + 0.33i) (1,1.21 4 0.14i) (1,5.92 + 4.04i)
15 (1,0.027 — 0.53i) (1,6.48 +9.171)
a 16 17 18 19 20
g 1.00  —0.07 096 0.27 +0.28i 1.02 0 0.96 +0.01;  0.19 —0.06i 1.01 —-0.12-0.01i
¢ —0.07 1.00 0 1.04 —0.26 0.98 —0.26 — 0.38i 0.99 0 0.99
a
b
2u.h>
a 16 17 18 19 20
16 (1,—-1.7 — 0.68i)
17 (1,0.87 — 0.48i) (1,-0.82 + 0.58i) (1,-0.76 + 0.751)
18 (1,-1) (1, 1.21 + 0.14i)
19 (1,1.51 4 0.421)
20 (1,0.88 — 0.59i1) (1,—1.20 — 0.13i) (1,2.54 + 0.65i1)
a 21 22 23 24 25
g 0.87 —0.06+0.086i 0.97 —0.13—-0.45i 0.98 —0.016+0.023i 1.64 —0.17+0.24i 1.04 —0.14—-0.01i
¢ —0.06—0.085i 1.16 0 1.03 0 1.02 —0.05-0.07i 0.62 0.26 0.99 —0.003i
b
‘zmb>
a 21 23 25
22 (1,0.18 — 1.431) (1,-0.15 4 0.78i) (1,0.078 — 0.58i) (1,0.64 — 0.88i)
23 (1,0.18 + 0.261) (1,4.6 + 6.51) (1,—1.11 —0.072i)
24 (1,5.72 4 8.08i) (1,4.58 +3.90i)
25 (1,—-1.41 —0.31i)
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TABLE XI. Deficit angles as 8l,,6 = (3.0 x 107,3.7 x 107, —3.1 x 107, —2.8 x 107°, —3.6 x 107°).

5 5, 55 54 85 6 5, 8y o 510 5
6.1x107° 26x107* 1.1x10* 14x10* 46x107° 14x107° 1.8x107° 13x10* 1.1x10* 4.1x107° 1.2x10~*

TABLE XII. Deficit angles as 6l,,6 = (—3. x 1078,5.0 x 1078,3.4 x 1078,3.1 x 1078,4.0 x 1078).

5 5, 5 8, 55 86 5 S 8o 810 P
15%x 1070 64x10° 28x10°° 3.5x 1070 1.1x 1076 3.6x 1077 45x 1077 33x 1070 2.8x10° 1.0x 10 2.9 x 106

2. Geometrical variations

Some data of the deformation 61,5 = (614, 8lsg, 8136, Slus, 5lss) and the corresponding deficit angles &, are shown in
Tables XI and XII,
Here 6 is the average of deficit angles 6 = 10 0, 8.

3. Complex critical points and numerical results

The absolute errors in the case y = 1, n = 3 for some averaged deficit angles are shown in the Table.

0 12x107* 12x107° 2.1x 1070 6.5 x 1077 1.3x1078 1.2x 10710 1.5x 1071 1.4 x 10712
€ 4.0x 1071 2.1 %1071 2.0x 1072 2.0 x 10777 23 x 1073 23x107% 50x 1074 5.0 x 1077

Some numerical results of the difference 6Z(r;) = S(r;, Z(r;)) — S(r1, xo) at the complex critical points are shown in
the Table.

5 1.2x 107 2.1x10°° 38 x 1078 6.5x 10710 6.5 x 10712
8T —12x107"24+45%x1071% —38x107"04+14x10753i —13x107"2+47x107"7i —38x103 +14x1020; —38x 1072 +1.4x107%i

The best-fit function is 67 = —a,(y)5* + O(5°), the best fit coefficient and the corresponding fitting errors at y = 1 is

, =8.88x 1073

+10-12 i0'033:|:10_10’ (BZ)

We use Fig. 2(b) in the paper to demonstrate the excellent agreement between the numerical data and the best-fit function.
The Jacobian 7, in Eq. (6.6) reads

Lilaslaslastse (114 + i — 136) (s + I — I36)
164/~ 1, +2(B + Be) By — (B — Be)?
Al - 136)(136 Be) = B335 + (1 = Bo) (B = Be) s + B (11 — o)1}
\/_l + 2 l%ﬁ + l )ll3 l%ﬁ - 12 \/_l + 2 l%ﬁ + l )l 23 7 (l%() - l%f))z

X .
Ve + 2B+ BBy - (g - li6>2\/ —ls + 2l + Bo)lis — (Hg — B5)?
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