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ABSTRACT

We propose a method for synthesizing invariants that can help

verify relational properties over two programs or two different

executions of a program. Applications of such invariants include

verifying functional equivalence, non-interference security, and

continuity properties. Our method generates invariant candidates

using syntax guided synthesis (SyGuS) and then filters them using

an SMT-solver based verifier, to ensure they are both inductive

invariants and sufficient for verifying the property at hand. To

improve performance, we propose two learning based techniques:

a logical reasoning (LR) technique to determine which part of the

search space can be pruned away, and a reinforcement learning

(RL) technique to determine which part of the search space to

prioritize. Our experiments on a diverse set of relational verification

benchmarks show that our learning based techniques can drastically

reduce the search space and, as a result, they allow our method to

generate invariants of a higher quality in much shorter time than

state-of-the-art invariant synthesis techniques.
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1 INTRODUCTION

Invariant generation is a fundamental problem in program analysis

and verification, e.g., to prove that assertions always hold during

program execution. Loop invariants [25, 33], for example, are con-

ditions that must be true at the beginning and the end of every

iteration of a loop. Since the problem is undecidable in general,

all practical techniques must search for invariants heuristically in

a potentially-infinite space of candidates. While there is a large

body of work on making the search efficient, e.g., using guided

search [32, 59], data-driven sampling [48, 72], supervised learn-

ing [63, 64], continuous logic network [57, 71], and decision tree

with templates [27, 28], they target a single program, as opposed

to relational invariants which is the main focus of this paper.

Relational invariants are logical assertions defined over multiple

programs or program executions. They are useful for reasoning

about the relationship between these programs or program execu-

tions. One example application is to prove functional equivalence,
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i.e., two programs always behave the same when given the same

input [16, 61]. Another example application is to check a security

property called non-interference, i.e., executing a program using

two different values of a secret input does not lead to observable

differences in the public output [6, 11, 13]. The third example appli-

cation is to verify the continuity property, i.e., a program remains

robust with respect to infinitesimal changes to the input [12]. How-

ever, to the best of our knowledge, there is still a lack of techniques

and tools for efficiently synthesizing relational invariants.

State-of-the-art invariant synthesis tools, which were designed

primarily for a single program, cannot be easily adapted to gener-

ate relational invariants. To confirm this, we have experimented

with two state-of-the-art tools: Code2Inv [64] and LinearArbi-

trary [72]. In this experiment, we took two structurally-different

but functionally-equivalent programs, 𝑃1 and 𝑃2, and created a

merged program 𝑃 that executes instructions from 𝑃1 and 𝑃2 in

lockstep; then we specified the equivalence relation as {Φ}𝑃{Ψ},

which is a Hoare triple [33] saying that, if 𝑃1 and 𝑃2 start from

the same state (Φ), after the lockstep execution, they must end

at the same state (Ψ). Unfortunately, neither tools can generate

invariants that are strong enough to help verify the equivalence

relation. Code2Inv [64] generated an invariant in which none of

the predicates was relational, while LinearArbitrary [72] gener-

ated an over-fitted solution that unnecessarily depends on some

arbitrary constants appeared in the sampled data. More details of

this experiment can be found in Section 2.

To overcome the limitations, we have developed a new method

named Code2RelInv, whose input consists of a merged program 𝑃

and a specification in the form of a Hoare triple 𝜑 = ⟨Φ,Ψ⟩, where

Φ is the precondition and Ψ is the postcondition. The output of

Code2RelInv, which is a relational invariant I, is guaranteed to

be both inductive (i.e., a true invariant) and sufficient (i.e., strong

enough to prove the property at hand).

Figure 1 shows the overall flow of Code2RelInv, which uses a

standard syntax guided synthesis (SyGuS) [2] component to generate

invariant candidates (𝐼 ), one at a time, from a hypothesis space

defined by a domain-specific language (DSL). Then, it uses an SMT-

solver based program verifier to check if 𝐼 is both inductive and

sufficient. Candidates that are not inductive, or not sufficient, are

removed. The iterative process continues until a desired invariant

is found, or a predetermined time limit is reached. The novel part

of our method is the component that leverages the learning based

techniques to reduce the search space.

We propose two learning based techniques to make the synthesis

procedure efficient. The first one is logical reasoning (LR) based

search space pruning: as soon as the verifier declares an invariant

candidate 𝐼 as invalid, we analyze the reason why it is invalid and,

based on the reason, skip all other invariant candidates that share

the same reason. In this sense, our method has the ability to learn
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Figure 1: Code2RelInv: Our invariant synthesis method.

from past mistakes. Specifically, our LR based pruning relies on

the SMT solver’s ability to generate unsatisfiability (UNSAT) cores.

The second technique is reinforcement learning (RL) based search

prioritization: the idea is to identify the part of the candidate space

that is more promising and explore it first. This is accomplished

by treating the invariant synthesis process as a Markov Decision

Process (MDP) and use the verifier’s results as positive and negative

rewards to compute an exploration policy. Details of our LR and

RL based techniques can be found in Sections 4 and 5, respectively.

While learning has been used to generate invariants before, e.g.,

in [64] and [72], they do not target relational invariants. The dif-

ference is important, for two reasons. First, the predicates must

be relational, i.e., consisting of variables from different programs.

By definition, these variables have no standard control/data flow

dependencies in the merged program. Thus, any prior technique

relying on the standard program dependencies would not work.

Second, while prior techniques may check whether a generated

invariant is inductive, they do not check whether it is sufficient.

Thus, in many cases, it remains unclear how useful the generated

invariants are in proving the property at hand.

Our method overcomes the above two challenges. At a high level,

it can be understood as a way to intelligently aggregate and learn

from past mistakes. Whenever the verifier declares an invariant

candidate 𝐼 as either not inductive or not sufficient, we use the

information to avoid generating invariant candidates from the same

equivalence class as 𝐼 in the future. We also use the information

to learn an exploration policy to identify invariant candidates that

may have a higher chance of passing the verification.

We have evaluated the proposed method on a diverse set of

relational verification benchmarks, consisting of a set of C pro-

grams and three types of relational properties: equivalence over

various loop optimizations [7], non-interference for DARPA STAC

programs [4] and continuity of a number of sorting algorithms [12].

We experimentally compared our method with a state-of-the-art

invariant synthesizer, Code2Inv [64]. The experimental results

show that, for all benchmarks, our method was able to generate the

desired invariants quickly, whereas Code2Inv failed in most cases.

Furthermore, both of our learning based techniques (LR and RL)

are effective in reducing the search space: with these techniques,

the number of invariant candidates explored by our method can be

reduced by as much as 96%.

To summarize, this paper makes the following contributions:

int 𝑃1(int x,int n)

int i , k = 0;

for (i=0; i!=n; ++i)

x += k*5;

k += 1;

if (i >= 5)

k += 3;

return x;

(a)

int 𝑃2(int 𝑥,int 𝑛̄)

int 𝑖, 𝑘̄ = 0;

for( 𝑖=0; 𝑖!=𝑛̄; ++𝑖)

𝑥 += 𝑘̄;

𝑘̄ += 5;

if (𝑖 >= 5)

𝑘̄ += 15;

return 𝑥;

(b)

Φ : { x = 𝑥, n = 𝑛̄}

int 𝑃
′(int x,int n,int 𝑥,int 𝑛̄)

int i , k = 0; int 𝑖, 𝑘̄ = 0;

while (i!=n && 𝑖 != 𝑛̄)

x += k*5; 𝑥 += 𝑘̄;

k += 1; 𝑘̄ += 5;

if (i >= 5) k += 3;

if (𝑖 >= 5) 𝑘̄ += 15;

i++; 𝑖 ++;

return x, 𝑥;

Ψ : { x = 𝑥 }

(c)

Figure 2: Given two programs 𝑃1 and 𝑃2, we merge them into

a single program 𝑃 to execute the instructions in lockstep.

• We propose a new method for synthesizing relational invari-

ants, which uses both syntax-guided synthesis (SyGuS) and

an SMT solver based program verifier to guarantee that the

invariants are both inductive and sufficient.

• We propose a logical reasoning (LR) based technique, which

leverages the SMT solver’s ability to compute unsatisfiability

cores to prune the search space.

• We propose a reinforcement learning (RL) based technique,

which leverages the verifier’s results as positive and negative

rewards to prioritize the search.

• We conduct experimental evaluation on a diverse set of rela-

tional verification benchmarks to demonstrate the effective-

ness of our method.

2 MOTIVATION

Consider the two programs in Figure 2, taken from [61], where

𝑃2 is obtained from 𝑃1 using a loop optimization called strength

reduction [67]: if variable 𝑘 is incremented in each loop iteration,

the expression 𝑘 ∗ 𝑐 can be safely rewritten as 𝑘 , given that 𝑐 is a

constant and increments to 𝑘 at each iteration are scaled by 𝑐 . Since

variables in the two programs may have different values, for each

variable 𝑥 in 𝑃1, we use 𝑥 to denote the same variable in 𝑃2. To

prove the equivalence, an invariant must be provided to show how

program states in 𝑃1 and 𝑃2 are related to each other.

2.1 Problem Statement

In relational verification, it is a common practice to construct a

merged program 𝑃 , shown in Figure 2 (c), that executes instructions

from 𝑃1 and 𝑃2 in lockstep. Statements from 𝑃1 and 𝑃2 are carefully

aligned, e.g., by adding auxiliary statements or even unrolling some

loop iterations if needed. While techniques for loop alignment are

important, they are not the focus of this work; for more information

please refer to [7, 16].

The property under verification is expressed as 𝜑 := {Φ}𝑃{Ψ},

meaning that, from a state where the precondition Φ holds, execut-

ing 𝑃 leads to a state where the postcondition Ψ holds. Since loops

are the most challenging part in program verification, without loss

of generality, we denote the merged program as 𝑃 := while 𝑔 do 𝑆 .

In this context, we want an invariant I of the program 𝑃 with

respect to the property 𝜑 to satisfy three conditions:

(a) the precondition Φ implies I at the beginning of the loop,

denoted Φ→ I;

(b) I being true at the beginning of a loop implies I being true

at the end of the loop, denoted {I ∧ 𝑔} 𝑆 {I}, and
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(c) I being true at the end of the loop implies the postcondition

Ψ, denoted I ∧ ¬𝑔→ Ψ.

Conditions (𝑎) and (𝑏) imply that I is inductive, and Condition (𝑐)

implies that I is sufficient for proving the property 𝜑 .

2.2 Limitations of Existing Methods

Feeding the merged program 𝑃 to state-of-the-art invariant synthe-

sizers such as Code2Inv and LinearArbitrary does not produce

the desired invariants.

For the example in Figure 2, Code2Inv [64] produces ((𝑖 <=

(0− 1) | | 𝑛 >= (𝑛 +𝑘)) ∧ (𝑛 == 𝑛 | | 𝑖 <= (𝑘 + 0))) which is neither

inductive nor sufficient. Furthermore, since Code2Inv relies on

the standard program dependency information to decide whether

two variables should be put into the same predicate, while pairs of

variables from 𝑃1 and 𝑃2 (such as 𝑘 and 𝑘) do not have control/data

dependencies at all, they never show up in the same predicate.

LinearArbitrary [72] produces (𝑥−𝑥 ≥ 0∧𝑥−𝑥 ≤ 0∧(¬(𝑖 <=

1) ∨ 𝑖 < 2) ∧ (¬(𝑖 <= 2) ∨ ¬(𝑖 ≥ 3)) ∧ . . . ) which is over-fitted

in the sense that some of the predicates unnecessarily depend on

constant values appeared in the sampled data. This is an undesired

consequence of using techniques that learn from sampled data.

2.3 How Our Baseline Method Works

In contrast, our method is able to generate the desired relational

invariant: I := {𝑥 = 𝑥 ∧ 𝑘 ∗ 5 = 𝑘 ∧ 𝑖 = 𝑖}. Note that the invariant

is both inductive and sufficient. Furthermore, the invariant is rela-

tional in that each predicate refers to a pair of program variables

from 𝑃1 and 𝑃2, respectively.

Our method works as follows. First, we capture the space of

invariant candidates using the domain specification language (DSL)

shown in Figure 4. Then, we use the syntax guided synthesis (Sy-

GuS) framework [2] to enumerate invariant candidates from the

hypothesis space, one at a time, and using a verifier if they are both

inductive and sufficient.

The first invariant candidate may be I := {𝑘 = 𝑘∧𝑥 = 𝑥}, whose

abstract syntax tree (AST) is shown in Figure 3 (a) as𝐴𝑆𝑇𝑖 . Here, the

label ∅ means the node is not-in-use (NULL). For I to be inductive,

the formula below must hold:

F𝐼 := (Φ→ I) ∧ ({I ∧ 𝑔} 𝑆 {I}) (1)

This is a classic program verification problem [25, 33], which can

be solved by constructing a set of verification conditions (VCs) and

then discharging these VCs using an SMT solver. In our method,

we use Z3 [17] as the SMT solver.

For I to be sufficient, the formula below must hold:

F𝑠 := (I ∧ ¬𝑔→ Ψ) . (2)

We check this formula also using the Z3 SMT solver.

Since the first invariant candidate is not inductive, it will fail

the check by FI . Therefore, our method generates a new invari-

ant candidate. Without our learning based optimizations, however,

the baseline SyGuS procedure would have produced the candidate

shown on the left of Figure 3(b). This is not efficient because the

new candidate would no only fail the check by FI , but also fail for

the same reason as the initial candidate.

1

2

𝐴𝑆𝑇!

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

3

4 5 6 7

8 9 10 11 12 13 14 15

&&

=

'𝑘 𝑘

=

𝑥̅ 𝑥

𝑁!" = 7

𝐴𝑆𝑇! ∶ %𝑘 = 𝑘 ∧ (𝑥̅ = 𝑥)1

2

𝐴𝑆𝑇!

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

3

4 5 6 7

8 9 10 11 12 13 14 15

&&

=

'𝑘 𝑘

=

𝑥̅ 𝑥

𝛿+

𝑁!" = 5

(a)𝐴𝑆𝑇𝑖 without 𝛿𝑐 (left) and with 𝛿𝑐 (right)

1

2

𝐴𝑆𝑇!"#

∅ ∅ 5 𝑘 ∅ ∅ ∅ ∅

3

4 5 6 7

8 9 10 11 12 13 14 15

&&

=

)𝑘 ∗

=

𝑥̅ 𝑥

1

2

𝐴𝑆𝑇!"#

∅ ∅ ∅ ∅ ∅ ∅ 𝑥 5

3

4 5 6 7

8 9 10 11 12 13 14 15

&&

=

)𝑘 𝑘

=

𝑥̅ ∗

𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝛿$

𝑁%& = 15
𝑊𝑖𝑡ℎ 𝛿$

𝑁%& = 7

(b)𝐴𝑆𝑇𝑖+1 without 𝛿𝑐 (left) and with 𝛿𝑐 (right)

Figure 3: Constructing the next AST bymodifying the current

AST. The 𝑖-th candidate shown in (a), with and without the

conflict predicate 𝛿𝑐 . The (𝑖 + 1)-th candidate shown in (b),

with and without 𝛿𝑐 -based pruning.

2.4 Our Learning-based Optimizations

With a logical reasoning (LR) based technique, our method is able

to identify the reason why the first candidate fails to be inductive.

As shown by the red dashed box in Figure 3(a), it is because the

first candidate contains the conflict predicate 𝛿𝑐 := (𝑘 = 𝑘). In other

words, 𝛿𝑐 contradicts to the program semantics. Thus, as long as a

candidate contains 𝛿𝑐 , it will fail to be inductive.

Since the second candidate on the left of Figure 3(b) also contains

𝛿𝑐 , it would fail to be inductive for the same reason. Thus, our

method avoids generating this candidate in the first place. Instead,

it generates the candidate on the right of Figure 3(b).

In addition to the LR based optimization, our method also uses

a reinforcement learning (RL) based optimization to prioritize the

search. While invariant candidates are being analyzed, the RL agent

uses the verifier’s results as positive and negative rewards to com-

pute an exploration policy. The exploration policy defines, for each

AST node shown in Figure 3, a probability distribution of its possi-

ble values, which can be used by the synthesizer to pick values so

as to maximize the expected reward.

In the running example, assuming that the next AST node to

fill is node 5 and the node type is an Arithmetic Expression 𝜒5 =

{𝑐 ∗ 𝑣𝑎𝑟, 𝑣𝑎𝑟 }, we need to choose one of the two elements. By using

the exploration policy computed by the RL agent, we can pick an

element with a higher probability to generate the next candidate.

3 OUR METHOD

In this section, we present the baseline method, while leaving the

LR and RL based optimizations to Sections 4 and 5, respectively.
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Algorithm 1 Our method for synthesizing relational invariants.

Input: Merged program 𝑃 , Relational property 𝜑
Output: Relational invariant I

1: I ← ∅, 𝑑𝑙 ← 1, and𝐺 ← {(𝑑𝑙, G) |1 ≤ 𝑑𝑙 ≤ 2H − 1}
2: C ← ∅ and P𝑅𝐿 ← 𝑢𝑛𝑑𝑒𝑓
3: while running time < threshold do
4: I, T ← Gen_Next_InvCandidate(I, 𝑑𝑙,𝐺, C, P𝑅𝐿 )
5: if Proved_Inductive(𝑃 , 𝜑 , I) then
6: if Proved_Sufficient(𝑃 , 𝜑 , I) then return I

7: SC , 𝛿𝑐 ← Prune_by_LR(𝑃 , 𝜑 , I, 𝑑𝑙 , C) ⊲ update 𝑑𝑙, C
8: Prioritize_by_RL(I, T, SC , 𝛿𝑐 , P𝑅𝐿 ) ⊲ update P𝑅𝐿

𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝜙 := 𝑝 | ¬𝜙 | 𝜙 ∨ 𝜙 | 𝜙 ∧ 𝜙
𝐴𝑡𝑜𝑚𝑖𝑐 𝑃𝑟𝑒𝑑 𝑝 := 𝑎 ⊙ 𝑎 | ®𝑎 ⊙ ®𝑎 | A′ ⊙ A′

𝐴𝑟𝑟𝑎𝑦 𝐸𝑥𝑝𝑟 ®𝑎 := getValue(A, 𝑖) | ®𝑎 ⊎ ®𝑎 | 𝜆 ®A.𝐹
𝐴𝑟𝑟𝑎𝑦 𝐼𝑛𝑑𝑒𝑥 𝑖 := 𝑎 | 𝑐
𝐴𝑟𝑖𝑡ℎ 𝐸𝑥𝑝𝑟 𝑎 := 𝑎0 | 𝑎 ⊎ 𝑎 | 𝑎 ⊎ 𝑐
𝐴𝑟𝑖𝑡ℎ 𝐸𝑥𝑝𝑟0 𝑎0 := 𝑐 ∗ 𝑣𝑎𝑟 | 𝑣𝑎𝑟
𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟 ⊙ := = | < | ≤ | > | ≥ | ≠
𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 ⊎ := + | −
𝐴𝑟𝑟𝑎𝑦 𝐹𝑢𝑛𝑐 𝐹 := sum(A, 𝑖𝑙 , 𝑖ℎ ) | min(A, 𝑖𝑙 , 𝑖ℎ ) | max(A, 𝑖𝑙 , 𝑖ℎ )
𝐴𝑟𝑟𝑎𝑦 A′ := A | getSubset(A, 𝑖𝑙 , 𝑖ℎ ) | getSubset1(A, 𝑖 ⊙ 𝑐)

Figure 4: The DSL for relational invariants, where 𝑐 is a set

of constants, 𝑣𝑎𝑟 is a set of variables, andA is a set of arrays.

3.1 Top-level Procedure

Algorithm 1 shows the top-level procedure which takes a merged

program 𝑃 and a property 𝜑 = ⟨Φ,Ψ⟩ as input, and returns the

invariant I as output. It first initializes the data structures: I, 𝑑𝑙 ,

𝐺 , P𝑅𝐿 and C. Here, I is the AST of the invariant candidate, which

is initialized to NULL. The decision level, 𝑑𝑙 , is the index of the

AST node in I that will be modified to generate the next invariant

candidate. While modifying the AST, we follow the depth-first-

search (DFS) order. Therefore, 𝑑𝑙 refers to the backtracking point

during DFS.𝐺 is a data structure that maps each backtracking point

𝑑𝑙 to its unvisited grammar set G; this is elaborated in Section 3.2.

We ignore C and P𝑅𝐿 for now since they implement the learning-

based optimizations to be presented in Sections 4 and 5.

After initializing the data structures, our method uses syntax-

guided synthesis (SyGuS) to generate an invariant candidate I in

the hypothesis space defined by a domain specific language (DSL).

If I is both inductive and sufficient, it will be returned as the output.

Otherwise, subroutines Prune_by_LR and Prioritize_by_RL are

invoked to reduce the search space, before our method generates

another invariant candidate.

In the remainder of this section, we focus on the baseline version

of Algorithm 1 without the LR and RL based optimizations.

3.2 Domain-Specific Language (DSL)

Figure 4 shows the context-free grammar G of the DSL for express-

ing the invariants. G maps a type (i.e., the left-hand side of ":=")

to a set of compatible values (i.e., the right-hand side of ":="). For

instance, the feasible values for representing atomic predicate are

G[𝑝] = {𝑎⊙𝑎, ®𝑎⊙ ®𝑎,A′⊙A′}. The DSL is designed such that invari-

ants in the DSL can be analyzed by any SMT solver that supports

the popular linear integer arithmetic (LIA) and array theories.

Let 𝑣𝑎𝑟 be the set of variables from programs 𝑃1 and 𝑃2,A be the

set of arrays, and 𝑐 be the set of constants. Linear integer arithmetic

expression, 𝑎, is defined over 𝑣𝑎𝑟 and 𝑐 , while array expression ®𝑎 is

defined over A.

Function getValue(A, 𝑖) returns the 𝑖-th element of the arrayA,

while 𝜆 ®A .𝐹 denotes applying function 𝐹 to arrayA, which returns

a single value. Here, function 𝐹 may be sum, min or max, which are

frequently used in programs that manipulate arrays.

Function getSubset(A, 𝑖𝑙 , 𝑖ℎ) returns another array A[𝑖𝑙 , 𝑖ℎ],

which has a subset of the elements. Similarly, getSubset1(A, 𝑖 ⊙ 𝑐)

returns a subset of the elements satisfying the condition (𝑖 ⊙ 𝑐). For

instance, getSubset1(A, 𝑖 ≠ 2) returns a new array 𝑆 = {A[𝑖] |

𝑖 ≠ 2 ∧ 0 ≤ 𝑖 ≤ |A|}.

As an example, consider the expression (𝑖 = 𝑗 + 1) ∧ (𝑑 [1, 𝑗] =

𝑑 [1, 𝑗]) ∧ (𝑏 [ 𝑗] = 𝑎[ 𝑗]) ∧ (𝑎 = 𝑎). In our DSL, it is (𝑖 = 𝑗 +

1) ∧ (getSubset(𝑑, 1, 𝑗) = getSubset(𝑑 , 1, j)) ∧ (getValue(𝑏, 𝑗) =

getValue(𝑎, 𝑗)) ∧ (𝑎 = 𝑎).

3.3 Abstract Syntax Tree (AST)

We use a complete binary tree to represent the ASTs of invariant

candidates. Let H be the height of the tree, the total number of

nodes will be 2H − 1. Figure 5 shows an example tree whose height

isH = 3. Each node has a unique index N ∈ {1, . . . , 2H − 1}. The

index of the root node is 1. Given any node with index N , its two

child nodes have indices 2N and 2N + 1, respectively.

Each node N has a type 𝜒N , which may be 𝑣𝑎𝑟 , 𝑐 , A, or any

element in the set {𝜙, 𝑝, ®𝑎, 𝑖, 𝑎, 𝑎0, ⊙,⊎, . . .}, which corresponds to

the set of grammar rules in Figure 4. If the type 𝜒N is 𝑣𝑎𝑟 , 𝑐 , or A,

the node N corresponds to a scalar variable in 𝑣𝑎𝑟 , a constant in

𝑐 , or an array in A. Otherwise, the node corresponds to a set of

production rules defined by the grammar in Figure 4.

For example, if 𝜒N = 𝑝 , the set of production rules, G[𝜒N], is

{𝑎 ⊙ 𝑎, ®𝑎 ⊙ ®𝑎, A′ ⊙ A′}. Assuming that ®𝑎 ⊙ ®𝑎 is chosen, we have

𝜒N ← ⊙(𝜒2N , 𝜒2N+1), meaning that the two child nodes have a

type 𝜒2N = 𝜒2N+1 = ®𝑎.

Thus, an invariant I can be represented by a set of node (N )

and value (𝑣) pairs:

I := { (N , 𝑣) | 1 ≤ N <= 2H − 1, 𝑣 ∈ G[𝜒N]} (3)

In Figure 5, for example, we have an incomplete invariant under

construction I3 = {(1,&&), (2,=), (4, 𝑣𝑎𝑟1)}.

3.3.1 Constructing an AST. Our baseline method systematically

traverses all ASTs that can be represented by the binary tree. To

simplify implementation, the traversal strictly follows the DFS order.

For the example in Figure 5, the DFS order is 𝐿 = [1, 2, 4, 5, 3, 6, 7].

Similarly, for the example in Figure 3, the DFS order is 𝐿 = [1, 2, 4, 8,

9, 5, 10, 11, 3, 6, 12, 13, 7, 14, 15].

Figure 5 illustrates the construction of an AST rooted at Node 1.

Assume that all nodes have the initial value ∅, meaning they are

not yet part of the AST. Furthermore, assume the root node has the

type 𝜙 , meaning it is a Boolean expression. Our method starts with

Node 1. If it assigns the operator "&&" to Node 1, the tree maps to

I1 := {(1, &&)}. According to the DSL in Figure 4, the child node

types must be 𝜒2 = 𝜒3 = 𝜙 .

Our method continues with Node 2. If it assigns the operator

"=" to Node 2, the tree maps to I2 := {(1, &&), (2, =)}. According to

the DSL, the child node types are 𝜒4 = 𝜒5 = 𝑎. By following the

DFS order, our method fills the entire tree, to obtain the invariant
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Figure 5: Step-by-step construction of invariant candidate.

candidate. Some nodes may remain ∅, meaning they are still not

part of the AST.

3.3.2 Modifying an AST. Figure 3 illustrates the construction of

the next AST by modifying the current AST. For now, let us focus

on the two ASTs on the left-hand side, since they correspond to

the baseline. Here, 𝐴𝑆𝑇𝑖 is the current AST, and 𝐴𝑆𝑇𝑖+1 is the next

AST that our method generates. According to the DFS order, if the

backtracking point (N𝑑𝑙 ) is 7, we should modify Node 7.

Since Node 7 is of the type 𝜒7 = 𝑎0, which may be either 𝑣𝑎𝑟

or 𝑐 ∗ 𝑣𝑎𝑟 , we change Node 7 from 𝑣𝑎𝑟 to 𝑐 ∗ 𝑣𝑎𝑟 . This results in

assigning the operator ł∗ž to Node 7 and then assigning values to

the child nodes accordingly. The new backtracking point is set to

N𝑑𝑙 = 15.

3.4 Generating Invariant Candidates

We now present the subroutine Gen_Next_InvCandidate, shown

in Algorithm 2. Let us ignore the brown colored statements for now,

since they are specific to our RL based optimization.

Given the current candidate I𝑜𝑙𝑑 , and the backtracking level

𝑑𝑙 , the subroutine retains the values of all nodes in 𝐿[0 : 𝑑𝑙 − 1]

and regenerates values of the remaining nodes as follows. First,

for the node 𝐿[𝑑𝑙], it picks a value that has not yet been visited

by this node, and then labels this value as visited in its grammar

set G[𝜒𝑑𝑙 ] (Lines 7-8). Then, starting from 𝐿[𝑑𝑙], it creates an AST

rooted at 𝐿[𝑑𝑙] by recursively applying the production rules in

Figure 4.

At the end, it computes the new backtracking level𝑑𝑙 . If there are

still unvisited values in G[𝜒𝑑𝑙 ], where G = 𝐺 [𝑑𝑙], the backtracking

level remains unchanged. Otherwise, it becomes the last 𝑑𝑙 ′ where

G[𝜒𝑑𝑙 ′ ] contains unvisited values. After the new backtracking level

is found, our method also resets the grammar set as unvisited for

all levels in between.

Whenever the RL based optimization is enabled, the brown col-

ored statements will be executed. There are two main differences

between this version and the baseline. First, instead of traversing

the ASTs in a strict DFS order, it picks the value 𝑣 by sampling

according to a probability distribution given by P𝑅𝐿 (computed

by the RL agent), and documents the history ⟨I, 𝑣, 0⟩ in a trace T .

Second, at the end of the procedure, instead of backtracking based

on the strict DFS order, it always backtracks all the way to 𝑑𝑙 = 1.

3.4.1 Syntactic Filtering. We have implemented several syntactic

filtering techniques to optimize the baseline method, to get rid of

Algorithm 2 Subroutine Gen_Next_InvCandidate.

1: Input I𝑜𝑙𝑑 , 𝑑𝑙 ,𝐺 , C, and P𝑅𝐿 .

2: Output I, Trace T

3: I ← values of 𝐿[0 : 𝑑𝑙 − 1] in I𝑜𝑙𝑑
4: while ¬ AllNodeAssigned(𝐿, I) do

5: G ← 𝐺 [𝑑𝑙 ]; N𝑑𝑙 ← 𝐿[𝑑𝑙 ]; 𝜒𝑑𝑙 ← 𝑡𝑦𝑝𝑒 [N𝑑𝑙 ]

6: if P𝑅𝐿 = 𝑢𝑛𝑑𝑒𝑓 then

7: 𝑣 ← Pick the first unvisited value in grammar G[𝜒𝑑𝑙 ]

8: Label 𝑣 as visited in G[𝜒𝑑𝑙 ] in𝐺

9: else

10: 𝑣 ∼ P𝑅𝐿 [< I,N𝑑𝑙 >, 𝜒𝑑𝑙 ]

11: SetChildrenType(N𝑑𝑙 , 𝑣);

12: I ← I ∪ { (N𝑑𝑙 , 𝑣) }; ⊲ Adding to partial AST

13: T ← T ∪ <I, 𝑣, 0>;

14: 𝑑𝑙 ← 𝑑𝑙 + 1

15: if all values in G[𝜒𝑑𝑙 ] are visited then

16: 𝑑𝑙 ′ ← 𝑑𝑙 ⊲ Backtracking

17: while all values in G[𝜒𝑑𝑙 ′ ] are visited do

18: 𝑑𝑙 ′ ← 𝑑𝑙 ′ − 1;

19: G ← 𝐺 [𝑑𝑙 ′ ]; N𝑑𝑙 ′ ← 𝐿[𝑑𝑙 ′ ]; 𝜒𝑑𝑙 ′ ← 𝑡𝑦𝑝𝑒 [N𝑑𝑙 ′ ]

20: Label𝐺 [𝑘 ] as unvisited forall 𝑑𝑙 ≥ 𝑘 > 𝑑𝑙 ′

21: 𝑑𝑙 ← 𝑑𝑙 ′

22: if P𝑅𝐿 = 𝑢𝑛𝑑𝑒𝑓 then

23: 𝑑𝑙 ← 1

24: return I, T

the obviously bad invariant candidates. First, we perform a light-

weight checking of I before delivering it to Proved_ Inductive

subroutine. For instance, with a set of conflict predicates stored

in C (which are computed by our LR based optimization), we first

verify if I is consistent with C and if it is, we reject it without

further verification. Second, we enforce a lexicographical ordering

over operands under commutative operators (e.g., ∧), to rule out

the semantically-equivalent but syntactically different invariant

candidates. For instance, if 𝑝𝑟𝑒𝑑1 ∧ 𝑝𝑟𝑒𝑑2 has been explored before,

then 𝑝𝑟𝑒𝑑2 ∧ 𝑝𝑟𝑒𝑑1 will not be explored in the future.

3.4.2 Verification. After generating the invariant candidate I, we

use an SMT solver based verifier to check whether I is induc-

tive and sufficient, using the subroutines Proved_Inductive and

Proved_Sufficient. They are based on the three conditions at the

end of Section 2.1. Recall that Conditions (a) and (b) implies that I

is inductive and Condition (c) implies that I is sufficient. They can

be checked by first constructing two formulas, F𝐼 and F𝑆 , based on

Eq. 1 and Eq. 2 in Section 2.3, and then solving the formulas using

an off-the-shelf SMT solver.

4 LR BASED PRUNING

In this section, we present our logical reasoning (LR) based opti-

mization implemented in the subroutine Prune_by_LR, which is

used by Algorithm 1. At this moment, the invariant candidate I

has been rejected by the verifier. Our goal is to analyze the reason

why I fails and learn from it.

Algorithm 3 shows the pseudo code. Here, the input consists of

the merged program 𝑃 , the relational property 𝜑 , and the failed

invariant I. The output consists of SC and 𝛿𝑐 , where SC is an

unsatisfiability (UNSAT) core and 𝛿𝑐 is a conflict predicate. Together,

they illustrate the reason why I fails the verification. Besides the
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output, the procedure also updates two global data structures C

and 𝑑𝑙 , where C is the accumulative set of all conflict predicates

generated so far, and 𝑑𝑙 is the backtracking level.

In the remainder of this section, we present our method for

constructing the UNSAT core SC , computing the conflict predicate

𝛿𝑐 , performing non-chronological backtracking (by changing 𝑑𝑙),

and computing the strengthening predicate 𝛿𝑆 .

4.1 Constructing the UNSAT Core

We take the inductive part ofFI for demonstration.FI := ∀𝑣 . {I(𝑣)∧

𝑔(𝑣)} 𝑆 (𝑣, 𝑣 ′) {I(𝑣 ′)}. In a loop’s body 𝑆 , 𝑣 stands for old variables

(incoming to the loop) and 𝑣 ′ for new ones (outgoing from the loop),

e.g., a statement 𝑥 = 𝑥 + 1 in a loop’s body is encoded as 𝑥 ′ = 𝑥 + 1

in as an SMT formula.

To identify the reason why a candidate fails, we leverage the SMT

solver’s capability of extracting UNSAT cores from an unsatisfiable

formula. However, this is not straightforward because formulas F𝐼
and F𝑆 , which are used for verification, contain universal quantifier

(∀), and when they fail verification, the SMT solver returns satisfy-

ing solutions for the negated formulas ¬F𝐼 and ¬F𝑆 . However, to

generate UNSAT cores, there must be unsatisfiable formulas to start

with. Thus, the question is how to construct unsatisfying formulas

from these two satisfying formulas?

Counterexamples. Consider ¬F𝐼 . When it is evaluated as SAT, the

solver returns a model, consisting of values assigned to the variables

that makes I fail the verification. While it may be tempting to infer

the root cause of the failure from this specific model, the result

would be unsound in general, and most likely would not make sense

in practice. This is because the model may be inconsistent with the

precondition Φ in the relational specification. In fact, checking if

the model can be derived by the precondition Φ would require the

construction of a long series of recursion-free unwindings [72] .

In this work, we propose a novel technique to overcome the

aforementioned challenges. Our method relies on constructing a

so-called mirror formula, ¬𝑀F , such that ¬𝑀F being unsatisfiable

implies that F𝐼 does not hold and candidate invariant I is invalid.

Therefore, we can use the formula ¬𝑀F to extract the UNSAT core.

However, it is worth noting that the reverse does not have to be

true. The invalidity of I does not imply the unsatisfiability of ¬𝑀F .

4.1.1 The Mirror Formula.

Definition 1 (Mirror Formula). Assuming the verification prob-

lem requires the validity of the F𝐼 , defined as the Hoare triple

∀ 𝑣 .{I(𝑣) ∧𝑔} 𝑆 (𝑣, 𝑣 ′) {I(𝑣 ′)}, the mirror formula ¬𝑀F is defined

as ¬∀ 𝑣 .{I(𝑣) ∧ 𝑔} 𝑆 (𝑣, 𝑣 ′) {¬I(𝑣 ′)}.

Whenever F𝐼 fails to be verified, we check if¬𝑀F is unsatisfiable.

If ¬𝑀F is indeed unsatisfiable, we use the UNSAT core extracted

from ¬𝑀F to identify the root cause, which in turn can guide us

to prune the search space. Using the mirror formula to explain the

root cause of an invalid formula F𝐼 is sound in that, as long as an

explanation can be found in this way, it is guaranteed to be the root

cause. This is stated in the following theorem.

Theorem 2 (Soundness of¬𝑀F ). Given an invariant candidate

I and the corresponding FI , the unsatisfiability of its mirror formula,

¬𝑀F , implies the invalidity of I.

Algorithm 3 Our LR based search space pruning.

1: procedure Prune_by_LR(𝑃 , 𝜑 , I)

2: if CheckUnsat(¬𝑀F ) then

3: S𝐶 ← ObtainUnsatCore(𝑃 , 𝜑 , I)

4: 𝛿𝑐 ← UpdateTraverseOrder(S𝐶 , I, C)

5: else

6: S𝐶 , 𝛿𝑐 ← ∅, ∅

7: 𝛿𝑠 ← ObtainAbductPred(𝑃 , 𝜑 , I)

8: if CheckFeasible(𝛿𝑠 , I) then

9: I ← I ∧ 𝛿𝑠
10: if Proved_Inductive(𝑃 , 𝜑 , I) then I𝑖 ← I

11: return SC, 𝛿𝑐

12: procedure UpdateTraverseOrder(S𝐶 , I, TNOW , C)

13: 𝛿𝑐 ← S𝐶 ∩ { 𝛿𝑖 | 𝛿𝑖 ∈ I} ⊲ conflict predicate

14: C ← C ∪ 𝛿𝑐
15: M𝐼 ← {<𝑛𝑖 , 𝛿𝑖> | 1 ≤ 𝑛𝑖 ≤ 2H − 1, 𝛿𝑖 ⊆𝐴𝑆𝑇 I }

16: 𝑛𝑐 ← GetValueByKey(M𝐼 , 𝛿𝑐 ) ⊲M𝐼 [𝑛𝑐 ] = 𝛿𝑐
17: 𝑑𝑙 ← 𝑛𝑐
18: return 𝛿𝑐

We provide the following formal proof to describe the the in-

tuition behind the theorem 2, which illustrates the relationship

between I and ¬𝑀F .

Our key insight is to come up with a negated formula such that

when it is UNSAT, it implies that the invariant is invalid. Accord-

ing to Definition 1, 𝑀F := ∀ 𝑣 .{I(𝑣) ∧ 𝑔}𝑆 (𝑣, 𝑣 ′){¬I(𝑣 ′)}, if 𝑀F
is satisfiable, then all its conjuncts, including ¬I(𝑣 ′) evaluate to

true. Consequently, if𝑀F is satisfiable then I(𝑣 ′) is false, i.e., the

invariant I is invalid. Since𝑀F is universally quantified, the solver

evaluates its negated form ¬𝑀F , and when it is UNSAT, it means

that non-negated one is SAT, and hence, I is invalid. Now, UNSAT

cores can be extracted from ¬𝑀F to prune the search space.

This approach catches only some cases for I being invalid, i.e.,

when I does not work with the fresh variables I(𝑣 ′). There could

be cases when FI fails on its other conjuncts, e.g., on I(𝑣), but

the mirror formula won’t be able to detect those cases. Specifically,

I(𝑣) may not be strong enough to imply I(𝑣 ′). We will elaborate

how we handle this scenario in Section 4.3.

4.1.2 The UNSAT Core Example. For the motivating example in

Figure 2, when the inductive condition, F𝐼 , fails to be verified for

the first invariant candidate shown in Section 2.3, our method

constructs the mirror formula and then computes the UNSAT core:

a13: 𝑘𝑁 = 𝑘 + 1 ∧ a14: 𝑘𝑁 = 𝑘 + 5 ∧

a15: (𝑖 < 5 ∧ 𝑘𝑁𝑁 = 𝑘𝑁 ) ∨ (𝑖 ≥ 5 ∧ 𝑘𝑁𝑁 = 𝑘𝑁 + 3)

a17: (𝑖 < 5 ∧ 𝑘𝑁𝑁 = 𝑘𝑁 ) ∨ (𝑖 ≥ 5 ∧ 𝑘𝑁𝑁 = 𝑘𝑁 + 15) ∧

a21 : kNN = kNN

For ease of presentation, the program variables are shown in the

static single assignment (SSA) format: kN represents the updated

version of 𝑘 and kNN represents the updated version of kN.

Inside this UNSAT core, only a21 is from the invariant candidate

I, while the rest of the constraints in the UNSAT core encodes the

program semantics. Therefore, our method labels a21 as the conflict

predicate 𝛿𝑐 , highlighted by the red dashed box on the right side of

Figure 3(a). In other words, any invariant candidate that contains

𝛿𝑐 is guaranteed to fail verification for the exact same reason.
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4.2 Non-chronological Backtracking

We now discuss how the UpdateTraversalOrder procedure in

Algorithm 3 leverages the UNSAT core S𝐶 to update the backtrack-

ing level 𝑑𝑙 . Since S𝐶 contains both constraints that encode the

program semantics and constraints from the invariant candidate

I, by intersecting I with S𝐶 (Line 13), we are able to extract the

conflict predicate 𝛿𝑐 that falsifies F𝐼 .

We leverage the conflict predicate 𝛿𝑐 to prune the search space,

by forcing the baseline DFS traversal procedure to perform a non-

chronological backtracking. Technically, this is accomplished by

changing the value of the backtracking level (𝑑𝑙 ), which is a global

variable. This allows our method to skip any redundant invariant

candidates that share the same conflict predicate 𝛿𝑐 .

For the running example in Figure 3, without the help of 𝛿𝑐 ,

the baseline DFS traversal would have changed the value of Node

7 of 𝐴𝑆𝑇𝑖 to the * type and obtain 𝐴𝑆𝑇𝑖+1, shown on the left of

Figure 5 (b). Unfortunately, since the new invariant candidate still

contains 𝛿𝑐 , it would fail verification again. Furthermore, if the DFS

traversal continues along this subtree, it may generate many other

ASTs, all of which contain 𝛿𝑐 and thus would fail for the exact same

reason.

In contrast, our LR based optimization would force the DFS

traversal to backtrack to Node 5 of the current 𝐴𝑆𝑇𝑖 , by changing

N𝑑𝑙 to 5 as shown on the right of Figure 5 (a). As a result, it would

avoid generating the large number of redundant ASTs. Instead, the

new 𝐴𝑆𝑇𝑖+1 would be the one shown on the right of Figure 5 (b),

where the conflict predicate {𝑘 = 𝑘} is now replaced by {𝑘 = 𝑘 ∗ 5}.

As shown in Algorithm 3, with the conflict predicate 𝛿𝑐 , our

method conducts two types of optimizations: clause memorization

and non-chronological backtracking.

For clause memorization, we compute a forbidden set, C, which

is the union of all conflict predicate sets (𝛿𝑐 ). To avoid growing the

forbidden set infinitely, we bound the size of C to a constant by

removing the less frequently used predicate, following the popular

least recently used (LRU) policy for cache replacement. In this

context, however, the frequency refers to the number of invariant

candidates that have conflicts with the predicate.

For non-chronological backtracking, we compute amapM𝐼 which,

given a node index, returns the corresponding subtree of the invari-

ant candidate I. Here, 𝛿𝑖 ⊆𝐴𝑆𝑇 I means the AST representing 𝛿𝑖
is a subtree of the AST representing I. UsingM𝐼 , we can locate

the node 𝑛𝑐 corresponding to the conflict predicate 𝛿𝑐 , as shown

in Line 16 of Algorithm 3. Based on node 𝑛𝑐 , we can modify the

backtracking level 𝑑𝑙 accordingly.

4.3 The Strengthening Predicate

It is worth noting that, if the mirror formula ¬𝑀F is SAT, it does

not imply the validity or invalidity of I. Furthermore, there is

no conflict predicate that falsifies F𝐼 . Although I does not yield

conflicts in this case, it still fails the inductive part of verification.

The reason is that I(𝑣) is not strong enough to imply I(𝑣 ′). In

other words, the failure is due to the inherent weakness of I, rather

than the conflict predicate of I. In such a case, we try to strengthen

I to make it inductive (Lines 6-10 of Algorithm 3).

In general, there can be two reasons why a candidate fails the

verification. One reason is that it is overly constrained, e.g., by a

conflict predicate, and the other reason is that it is under constrained.

In the latter case, we try to strengthen it by conjoining with an

additional predicate.

In the running example, for the invariant represented by I𝑖+1
on the right of Figure 5 (b), the strengthening predicate would be

𝛿𝑆 = {𝑖 = 𝑖}. The conjoined formula I𝑖+1 ∧ (𝑖 = 𝑖) is able to pass

the check F𝐼 .

This is known as abductive reasoning in the literature [18ś20, 53],

and such techniques have been implemented in many existing

tools. Our method relies on the built-in get-abduct function of the

CVC5 solver to implement a subroutine named ObtainAbduct-

Pred, which starts with a true but not inductive invariant I, and

iteratively strengthens it.

In Lines 6-10 of Algorithm 3, we invoke the subroutine when the

current candidate I is consistent with the program semantics but

not yet inductive. It is worth noting that not all solutions returned

by CVC5 are feasible and useful. That is why, in Lines 8 and 10, we

check the feasibility of 𝛿𝑠 and make sure it can make I inductive.

The inductive candidate I𝑖 (line 10) is subsequently used for further

light-weight checkings similar to Sec 3.4.1.

5 RL BASED PRIORITIZATION

In this section, we present our RL based optimization implemented

in the subroutine Prioritize_by_RL, which is used by Algorithm 1.

At this moment, the UNSAT core SC , the conflict predicate 𝛿𝑐 , and

the rollout trace T have all been computed for the failed candidate

I. The rollout trace T , in particular, represents a sequence of values

chosen during the construction of I. Internally, our method first

computes the available information to compute the reward, and

then relies on the reinforcement learning (RL) agent to compute a

policy gradient. Finally, the policy gradient will be used to update

the data structure P𝑅𝐿 used by Algorithm 2.

In the remainder of this section, we present our method in detail.

5.1 The Policy P𝑅𝐿
Inside Algorithm 2, if there are multiple values that can be used to

fill the current node N𝑑𝑙 , the invariant synthesizer picks a value

forN𝑑𝑙 based on a probability distribution of these values provided

by P𝑅𝐿 . For instance, if the type of the current nodeN𝑑𝑙 is 𝜒𝑑𝑙 = 𝜙 ,

which may have values ł¬ž, ł∨ž and ł∧ž, and if the probabilities for

these values are 0.12, 0.16 and 0.47, respectively, the likelihood of

picking the operator "∧" will be the highest.

Our RL based optimization ensures that P𝑅𝐿 represents a policy

that maximizes the chance of generating good invariants. Toward

this end, we model the search for invariants in the hypothesis space

as a Markov Decision Process (MDP), where a state is represented by

the partial invariant I together with N𝑑𝑙 , the node whose value

will be filled next, and an action represents a possible value forN𝑑𝑙 .

We uses standard reinforcement learning techniques over the

MDP to compute the policy P𝑅𝐿 , which is then represented as a GRU

network shown in Figure 6. P𝑅𝐿 takes a state <I,N𝑑𝑙> as input,

and outputs the probability of each syntactic construct associated

with N𝑑𝑙 , such as negation "¬" and conjunction "∧".
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...

...
...

𝑝 [(𝜒 = 𝜙, 𝑣 = ¬)]

𝑝 [(𝜒 = 𝜙, 𝑣 = ∨)]

𝑝 [(𝜒 = 𝜙, 𝑣 = ∧)]

...
𝑝 [(𝜒 = 𝑖, 𝑣 = 𝑐)]

𝜒 = 𝜙 : 𝑝 [𝑣 = ¬] = 0.12, 𝑝 [𝑣 = ∨] = 0.16, 𝑝 [𝑣 = ∧] = 0.47

Hidden

layer

Input

layer

Output

layer
Embedding

State
Action

I

N𝑑𝑙

P𝑅𝐿 (GRU Network)

Figure 6: Illustrating the use of P𝑅𝐿 in our method.

5.2 The Reward Function

The main difference between our method and prior works on using

RL techniques [10, 15, 63] is that, while they merely incorporate

the negative feedback (i.e., the candidate I has been rejected by the

verifier), we are able to extract a richer set of positive and negative

feedbacks from the verifier. Thus, we can more effectively aggregate

and amplify feedbacks from the verifier.

At the center of our method is the reward function constructed

using results of our logical reasoning (LR) subroutine. It aims to

penalize bad candidates and reward good candidates. Here, bad

candidates are the ones that contradict to the semantics of the

merged program 𝑃 . Whenever a candidate I contradicts to the

program semantics, we can construct an unsatisfiable formula and

leverage the SMT solver to compute an UNSAT core SC . In contrast,

good candidates are the ones that are consistent with the program

semantics. Recall that whenever I is consistent with the program

semantics, it satisfies the mirror formula ¬MF , although I is still

not inductive.

Based on the observation, we define the reward function

𝑟 (<I,N>) =




0 if I is incomplete

o/w





+1 if ¬FI is UNSAT

o/w

{
+0.5 if SC = ∅ (𝑖 .𝑒 .,¬𝑀F) is SAT)

−1 if SC ≠ ∅ (𝑖 .𝑒 .,¬𝑀F) is UNSAT)

(4)

The function assigns the reward only when I is a complete AST,

i.e., each AST node has been assigned either a concrete value or

NULL. IfI is a good candidate (i.e.,¬F𝐼 is unsatisfiable), it assigns +1

as the reward. Otherwise, in the second o/w case of Eq. (4), we check

if ¬𝑀F is satisfiable (i.e., SC = ∅), which means I is consistent

with the program semantics but not yet inductive. Thus, we assign

I a positive reward of +0.5, to bias the exploration toward this

direction. However, if ¬𝑀F is unsatisfiable (i.e., SC ≠ ∅), based

on Theorem 2, predicates in I must contradict to the program

semantics. Thus, we assign I a negative reward of -1, to bias the

exploration against this direction.

Thus, our design aims to provide potentially valid (good) candi-

dates with positive rewards and always-conflicting (bad) candidates

with negative rewards. Furthermore, we extract more candidates

from a failed candidate and use the derived candidates to provide

fine-grained feedback to the RL agent. In contrast, prior works

such as Chen et al. [15] only give negative rewards to the failed

candidates. Their sparse reward design makes it more difficult for

reinforcement learning to converge.

5.3 Generating More Feedback

To amplify the feedback from a failed candidate, we propose tech-

niques for deriving other bad candidates (I′) from a bad candidate

I, such that I′ fails the verification for a similar reason. In other

words, we can use I′ to update the policy without exploring it in

the first place.

Recall that in Section 4, we compute the UNSAT core SC for a bad

candidate I, together with the set of conflict predicates 𝛿𝑐 , which

is a subset of the constraints of I . Taking SC and 𝛿𝑐 as input,

we obtain I′ by mutating operators or operands in I such that

I′ ∧ 𝑃 (i.e., I′ ∧ (SC \ 𝛿𝑐 )) remains UNSAT. It ensures that I′ fails

verification due to the same UNSAT Core.

As an example, consider the failed I = {𝑥 = 𝑥 ∧ 𝑘 = 𝑘} in the

motivating example, from which we can obtain the UNSAT Core

SC = {𝑘𝑁 = 𝑘 + 1 ∧ 𝑘𝑁 = 𝑘 + 5 ∧ k = k ∧ kN = kN} and the

conflict predicate 𝛿𝑐 = {k = k ∧ kN = kN}.

Assume that the difference between the two, SC \ 𝛿𝑐 = {𝑘𝑁 =

𝑘 + 1 ∧ 𝑘𝑁 = 𝑘 + 5}, encodes part of the program semantics 𝑃 . In

this case, we may mutate I to obtain I′ = {𝑥 = 𝑥 ∧ 𝑘 + 1 = 𝑘}.

Since I′ ∧ 𝑃 remains UNSAT, the newly created I′ is guaranteed to

fail verification for the same reason.

Given the reward function, policy gradient methods [66] can

be used to update the policy P𝑅𝐿 . Recall that, in Algorithm 2,

each invariant candidate I corresponds a rollout trajectory T =

{(𝑠1, 𝑎1, 𝑟1), (𝑠2, 𝑎2, 𝑟2) ...(𝑠 | T | , 𝑎 | T | , 𝑟 | T | )}, which is a sequence of

state-action-reward tuples, obtained by picking the actions using

the current policy P𝑅𝐿 . In the final state, 𝑠 | T | =<I,N𝑑𝑙>. Each

candidate I corresponds to a trace T . A set of new traces T ′ is

obtained by the newly generatedI′. To amplify the solver feedback,

the policy gradient is computed based on a set of traces T ′ rather

than a single trace T . The objective of policy gradient methods

is to update the policy P𝑅𝐿 such that it maximizes the expected

cumulative reward.

6 EVALUATION

Wehave implemented ourmethod in a software tool (Code2RelInv),

which relies on LLVM 3.6 to parse the merged C programs and con-

struct the internal representation (IR) for the programs. It considers

three types of relational properties: equivalence, continuity and

non-interference, by encoding them uniformly at the IR level as a

set of logical constraints. For equivalence, the encoding (e.g., 𝑥 = 𝑥 )

is straightforward. For continuity, the encoding is guided by the

set of continuity analysis rules from Chaudhuri et al. [12]. For non-

interference, it adopts the instrumentation-based technique of Chen

et al. [13] to account for secret-induced resource usage.

Our baseline SyGuS search procedure is implemented in C++.

Our LR based optimization is implemented using Z3 as the SMT

solver to compute conflict predicates. It also uses CVC5 to compute

abductive predicates. Our LR based optimization is implemented
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Table 1: The list of relational verification benchmarks.

Name Description of the verification Name Description of the verification

problem problem

E1 Strength Reduction [7] N1 Array Safe [4]

E2 Loop Simple Optimization [7] N2 Array Unsafe [4]

E3 Loop Align [7] N3 LoopAndBranchSafe [4]

E4 Loop Pipelining [7] N4 LoopAndBranchUnSafe [4]

E5 Loop Sinking [7] N5 NoSecret Safe [4]

E6 Loop Unswitching [7] N6 NoTaint Unsafe [4]

E7 Loop Var Reduction [7] N7 Sanity Safe [4]

E8 Static Caching [7] N8 Sanity Unsafe [4]

N11 modPow1 Safe (DARPA STAC)

C1 BubbleSort [12] N12 modPow1 Unsafe (DARPA STAC)

C2 Insertion-sort (Inner) [12] N13 modPow2 Safe (DARPA STAC)

C3 Insertion-sort (Outer) [12] N14 modPow2 Unsafe (DARPA STAC)

C4 Selection-sort (Inner) [12] N15 k96 Safe [30, 50]

C5 Selection-sort (Outer) [12] N16 k96 Unsafe [30, 50]

C6 Bellman-Ford [12] N17 gpt14 Safe [30, 50]

C7 Floyd-Warshall [12] N18 gpt14 Unsafe [30, 50]

using PyTorch, which has RL agents for computing the exploration

policy. For evaluation purposes, we have compared our method

with the state-of-the-art tool Code2Inv [64] on all benchmarks.

6.1 Benchmarks

Our benchmarks consist of 33 relational verification problems from

three sources, as shown in Table 1. The equivalence verification

problems, E1 to E8, are from Barthe et al. [7]. The goal is to prove the

correctness of various types of loop optimizations [1, 5, 8, 39]. The

continuity verification problems, C1 to C7, are from Chaudhuri et

al.[12]. The non-interference verification problems, N1 to N18, are

from the DARPA STAC program and other side-channel security

examples [30, 50]. Here we omit N9, N10 since they are straight-line

code without loops. While some of the programs were in Java [4],

we translated them to C before applying our tool. Our underlying

program verifier supports linear integer arithmetic (LIA) and array

theories.

Our experiments were designed to answer two questions:

RQ.1 How effective is Code2RelInv in generating the desired

relational invariants?

RQ.2 How effective are the new LR-based and RL-based techniques

in reducing the search space?

We ran all experiments on Cloudlab with Intel Xeon Silver CPU

2.20GHz along with NVIDIA 12GB PCI P100 GPU.

6.2 Results for Evaluating the Effectiveness

To answer RQ.1, we applied our method to all benchmarks, and

compared it with Code2Inv [64]. The results are shown in Table 2.

For each benchmark, Column 1 shows the name, and Columns 2-5

show the running time of our method in seconds and the quality

of the invariant. Here, 𝑇𝑏𝑎𝑠𝑒 denotes the baseline, 𝑇+𝑅𝐿 denotes

the baseline plus RL-based optimization, and 𝑇+𝑅𝐿+𝐿𝑅 denotes the

baseline plus RL- and LR-based optimizations. Columns 6-7 show

the running time of Code2Inv [64] and the quality of its invariant.

Here, T/O means timed out after 4 hours, ✓ means the invariant is

both inductive and sufficient, ✗ means the invariant is not sufficient,

and − means the method fails to generate any invariant (due to

assertion failure or exception).

The results in Table 2 show that our method is significantly more

effective in generating relational invariants. In fact, it succeeds on

all benchmarks, whereas Code2Inv [64] only succeeds on four of

them. In the four cases where it succeeds, it runs more than 1000x

slower than our method. It also has 4 T/O cases.

6.3 Results for Evaluating the Optimizations

To answer RQ.2, we compared the running time of our method,

with and without the learning based optimizations, also in Table 2.

The running time of the baseline with syntactic filtering (𝑇𝑏𝑎𝑠𝑒 ) is

the largest, including three T/O cases (E4, E7 and E8). The reason

why E4, E7, and E8 are difficult is because the invariants needed

to prove these properties are more complex and the depth of their

corresponding ASTs are 5-8. As a result, the baseline version has

to explore an extremely large candidate space. With the RL based

optimization, the running time (𝑇+𝑅𝐿) is significantly reduced; all

benchmarks are completed within 0.5 hour. With both the RL and

the LR based optimizations, the running time (𝑇+𝑅𝐿+𝐿𝑅 ) becomes

the shortest.

To better understand why our RL and LR based optimizations

are effective, we also collected the number of invariant candidates

explored by our method. The results are shown in Table 3. Here,

#𝑏𝑎𝑠𝑒 is the number of ASTs (of invariant candidates) explored by

the baseline SyGuS search. #+𝑅𝐿 is the number of ASTs explored

after adding RL-based optimization, and #+𝑅𝐿+𝐿𝑅 is the number of

ASTs explored after adding both optimizations. For each benchmark,

the minimal number is in bold font.

The results show that, among the three versions, #+𝑅𝐿+𝐿𝑅 is

always the smallest. Furthermore, in many cases, such as E1, the

reduction is drastic (from 1389 candidates to 5 candidates). On

average, our method is able to skip ≥ 89.4% of invariant candidates.

We also investigated the two individual components in LR based

pruning, for computing conflict predicates and abductive predicates,

respectively. We found that, in general, the time to compute conflict

predicates is short and yet non-chronological backtracking based on

these conflict predicates is almost always effective in speeding up

our method. In contrast, the time to compute abductive predicates

may be significantly longer, and may not always speed up our

method. In E4, E7, C1, C3 andC5, it took an extremely long time. This

is because the get-abduct function of CVC5, which is the abductive

reasoning routine used in our method, may diverge in an infinite

chain of speculations. Thus, unlike conflict predicates, abductive

predicates must be used more judiciously.

Nevertheless, our results show that, by using abductive predi-

cates and conflict predicates in the same procedure, we can improve

the overall performance consistently.

7 RELATED WORK

Invariant Synthesis.We have already mentioned two most closely

related invariant synthesis techniques: Code2Inv [64] and Lin-

earArbitrary [72]. LinearArbitrary is a data-driven technique,

which uses sampled data to generate linear classifies. Other exam-

ples in this category include ICE-DT [27, 28], LoopInvGen [48, 49],

Guess-and-Check [60, 61], and [29, 58]. A problem with these tech-

niques is that, while the synthesized predicates are consistent with

sampled data, they may over-fit and thus produce unnecessarily
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Table 2: Comparing the performance of our method (Code2RelInv) and the existing method Code2Inv [64].

Benchmark
Code2RelInv Code2Inv [64]

Benchmark
Code2RelInv Code2Inv [64]

𝑇𝑏𝑎𝑠𝑒 (s) 𝑇+𝑅𝐿 (s) 𝑇+𝑅𝐿+𝐿𝑅 (s) Qual 𝑇Code2Inv(s) Qual 𝑇𝑏𝑎𝑠𝑒 (s) 𝑇+𝑅𝐿 (s) 𝑇+𝑅𝐿+𝐿𝑅 (s) Qual 𝑇Code2Inv(s) Qual

Equivalence Non-interference

E1 46.20 33.88 9.83 ✓ 1623.07 ✓ N1 44.91 36.20 17.44 ✓ - -

E2 49.87 29.01 15.33 ✓ 1899.45 ✓ N2 18.54 29.31 10.19 ✓ - -

E3 49.26 40.41 14.12 ✓ - - N3 46.36 37.21 12.72 ✓ 2556.73 ✓

E4 T/O 1225.41 809.65 ✓ - - N4 35.08 30.60 10.05 ✓ - -

E5 42.35 37.49 17.29 ✓ - - N5 33.08 29.13 12.08 ✓ 2177.92 ✓

E6 48.25 38.36 15.14 ✓ - - N6 35.19 34.29 9.88 ✓ - -

E7 T/O 218.37 24.50 ✓ - - N7 44.47 39.92 16.34 ✓ T/O ✗

E8 T/O 1642.55 1140.72 ✓ - - N8 42.52 38.83 15.17 ✓ - -

Continuity N11 46.47 32.34 13.05 ✓ T/O ✗

C1 45.82 34.95 15.86 ✓ - - N12 45.86 34.22 13.18 ✓ - -

C2 44.95 35.12 13.88 ✓ - - N13 67.02 35.25 15.50 ✓ T/O ✗

C3 45.27 32.02 15.22 ✓ - - N14 67.52 43.34 17.46 ✓ - -

C4 45.04 34.85 20.67 ✓ - - N15 96.62 46.22 29.18 ✓ T/O ✗

C5 44.97 35.83 18.97 ✓ - - N16 102.32 49.15 27.44 ✓ - -

C6 43.24 35.09 17.61 ✓ - - N17 91.94 46.24 18.54 ✓ T/O ✗

C7 45.04 32.40 17.38 ✓ - - N18 145.69 47.96 14.48 ✓ - -

Table 3: Comparing the number of invariant candidates ex-

plored by our method with different optimizations.

Benchmark
Inv. Candidates

Benchmark
Inv. Candidates

#𝑏𝑎𝑠𝑒 #+𝑅𝐿 #+𝑅𝐿+𝐿𝑅 #𝑏𝑎𝑠𝑒 #+𝑅𝐿 #+𝑅𝐿+𝐿𝑅

Equivalence Non-interference

E1 1389 147 5 N1 1244 284 101

E2 1627 139 22 N2 276 117 38

E3 1953 245 18 N3 1381 340 56

E4 - 8735 5086 N4 323 112 29

E5 1538 175 31 N5 148 104 21

E6 921 131 124 N6 317 159 23

E7 - 2612 172 N7 1265 379 108

E8 - 10483 7241 N8 1025 356 93

Continuity N11 1362 203 57

C1 1402 397 114 N12 1395 268 52

C2 1360 445 85 N13 1686 313 64

C3 1397 352 123 N14 1601 328 49

C4 1528 392 216 N15 2857 335 127

C5 1245 461 176 N16 2914 409 156

C6 1169 417 183 N17 2673 381 114

C7 1443 305 161 N18 3225 376 68

complicated invariants. We have shown an example of this problem

in Section 2. Our method does not have this problem, because it

focuses on the program semantics instead of the sampled data.

Code2Inv [64] is a neural network based technique, which uti-

lizes graph neural networks to encode the program dependency and

TreeLSTM to embed the partial invariant [63]. Other techniques

in this category include Cln2Inv [57] and G-CLN [71]. The main

problem with these techniques is that, since neural networks fo-

cus on encoding program dependency information, they are often

ineffective in synthesizing relational predicates. This has been con-

firmed by our experiments in Section 6. There are also other tech-

niques for synthesizing polynomial invariants using program anal-

ysis techniques such as symbolic execution [44ś46], abstract inter-

pretation [54, 55], or compositional recurrence analysis [21, 36, 37].

However, they all target a single program, whereas our method

aims to verify relational properties.

There is also a class of constrained Horn clause (CHC) solvers, de-

veloped for generating loop invariants but in principle may be used

to verify relational properties as well. We have evaluated a state-of-

the-art CHC solver, Spacer [38]. Unfortunately, it returns unknown

for most of our benchmarks. Given a set of CHC constraints with un-

known predicate symbols, the CHC solver aims to produce a defini-

tion of the unknown predicate symbols such that all the constraints

are satisfied. This is accomplished by first checking if all bounded

unrollings of the CHC system satisfy the constraints, and then in-

creasing the bound gradually until the proof no longer depends on

the bound. Some CHC solvers [3, 35, 42, 56, 72] focus on develop-

ing new unwinding techniques while other solvers [34, 38, 43, 62]

implicitly unwind the system. Specifically, Shemer et al. [62] re-

fine the property directed inference technique to support relational

verification, which is orthogonal to our learning-based method for

producing relation invariant.

Program Synthesis. Besides invariant synthesis, learning based

techniques have been used to improve program synthesis [10, 40,

41, 63]. Most of them utilize on-policy learning and often take the

verifier’s result as is. An exception is Chen et al. [15] who perform

off-policy learning and incorporate some additional feedback from

the verifier. However, it does not use fine-grained feedback such as

the ones computed by our method, from both the conflict predicates

and the abductive predicates. Furthermore, the enumerative search

procedure in [15] may produce ill-formed candidates, which do not

occur in our method.

Besides learning, other types of information have also been used

for pruning the search space [22ś24, 31, 52, 68]. Some of them

leverage semantic information of the DSL to check the feasibil-

ity of partial programs [22, 23], while others, such as Blaze [68],

use abstract interpretation to build the space of feasible programs.

There are also type-directed pruning techniques to avoid infeasible

programs [24, 26, 31, 47, 52]. However, our LR based pruning goes

far beyond by pruning these well-formed but semantically-weak

program candidates.

Relational Verification. In relational verification, one widely

used approach is to carefully craft a domain-specific proof logic [9,

13, 65, 70] or a set of domain-specific proof rules [12]. Another ap-

proach is to construct and leverage a merged program via syntactic

or semantic alignment [7, 14, 16, 51, 62]. While the two approaches

differ, both require high-quality relational invariants to make the

proof go through. While some prior works in this domain [13, 69]

also involve invariant synthesis, they focus on simple equalities
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which are too weak for most of benchmarks used in this paper,

including the motivating example in Section 2. Furthermore, unlike

our method, which requires the invariants to be both inductive and

sufficient, they do not guarantee that the generated invariants are

sufficient [13].

8 CONCLUSION

We have presented a method for synthesizing relational invari-

ants that are guaranteed to be both inductive and sufficient. our

method leverages both syntax guided synthesis (SyGuS) and learn-

ing based techniques to prune the search space and prioritize the

search. We have evaluated our method on a diverse set of relational

verification benchmarks where the properties include equivalence,

continuity, and non-interference. The experimental results show

that our method can generate high-quality invariants for all cases

whereas a state-of-the-art invariant synthesis tool fails most of the

time. Furthermore, our learning based optimizations drastically

reduce the search space.
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