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Abstract. Debugging type errors when type inference fails is a challenging prob-

lem since there are many different ways to remove the type error, and it’s unclear

which way is intended. While numerous approaches have been proposed to more

precisely locate the real error causes, most of them do not deal with popular

type system extensions, such as type classes. A second problem is that most ap-

proaches do not provide enough information for removing the type error or do so

for a few error causes only.

In this work, we develop an approach called TEC to address both problems. Given

an ill-typed expression that may involve type classes, TEC finds comprehensive

error causes and generates for each cause an error fix with detailed information

for removing the type error. TEC computes all error fixes, ranks them, and iter-

atively presents the most likely error fix to the user until a fix is accepted. TEC

reduces the problem of finding all error fixes to variational typing, which sys-

tematically reuses typing results. Our main technical innovation is a variational

context reduction algorithm that simplifies type class constraints containing vari-

ations. We have evaluated the precision of TEC and found that it outperforms

existing approaches in locating type errors arising from type class uses.

1 Introduction

Type inference allows programs to be statically typed, even without the presence

of type annotations. However, it is particularly difficult to locate the real error

causes and generate informative error messages when type inference fails. In the

last thirty years, numerous approaches have been proposed to address this prob-

lem [38,18,26,23,24,41,39,25,10,35,13,17,31,4,5,42,30,43].

However, while plentiful type system extensions have been proposed and inte-

grated into languages like Haskell, most of the error debugging methods focused on

the Hindley-Milner type system (HM) plus some basic extensions, such as algebraic

data types. On one hand, as type classes in Haskell are so popular nowadays, it is hard

to write a program without involving them, particularly as types for numbers (such as

Int, Integer, and Double) are members of different classes (such as Num, Real, and

Integral) and lists are a member of Traversable. On the other hand, type error de-

bugging for type classes is rudimentary. All Haskell compilers and error debuggers

SHErrLoc [43] and Chameleon [33,34] diagnose type errors only and do not provide

change suggestions. Moreover, they usually report only several likely error causes and

in many cases miss the real cause.

? This work is supported by the National Science Foundation under the grant CCF-1750886.



2 Sheng Chen and Md Rabib Noor

Consider, for example, the erroneous expression rank1 x = (x 1, x True)

adapted from [2]. This expression is ill-typed because it applies the argument to val-

ues of different types. For this expression the most widely used Haskell compiler GHC

version 8.10.6 displays the following message.

* No instance for (Num Bool) arising from the literal ‘1’

* In the first argument of ‘x’, namely ‘1’

In the expression: x 1

In the expression: (x 1, x True)

This error message is not helpful for removing the type error for several reasons. First,

the type information and the location information is inconsistent. The message seems to

say that 1 requires the type system to prove Bool be an instance of the class Num. While

1 gives rise to the type class Num, it doesn’t have anything to do with Bool. Second, it

doesn’t say how to remove the type error, for example, adding an instance definition Num

Bool, changing 1 to something of Bool, and so on. In this small example, it is not hard to

infer that Num Bool is caused by the conflict of 1 and True. However, when the program

is large, the conflicting subexpressions may be far away, and figuring out the exact

problem can be hard. Third, GHC only reports the problem at 1 while, in fact, changing

any of True or either of x will make rank1 well-typed. Moreover, there is no evidence

that 1 is more likely to cause the type error than True. Thus, reporting the problem at 1

is biased for users. For this example, SHErrLocproduces a similar message, except that

it mentions both 1 and True.

We will use the terms error causes and error fixes throughout the paper. Given an

expression, an error cause is a set of subexpressions such that changing them appropri-

ately can make the expression well-typed. We omit the set delimiters if the cardinality

is 1. For example, all of x (either occurrence), 1, True, and {1,True} are possible er-

ror causes for rank1. An error fix is an error cause plus change information, for each

member of the error cause, to make the expression well-typed. For example, the error

cause 1 plus the change of 1 to something of type Bool is an error fix for rank1. Given

an oracle (for example, specified by the paper where the example was introduced), we

say an error cause or error fix is correct if it is consistent with the oracle and incorrect

otherwise. In these terms, both GHC and SHErrLoc only identify error causes and do

not generate error fixes.

When multi-parameter classes and functional dependencies [22] are involved, the

messages become worse. Consider, for example, the expression insert2 adapted

from [34]. The functional dependency ce -> e specifies that the container type ce

uniquely determines the element type e. Many interesting Collects instances may be

defined, such as lists, characteristic functions, bit sets for representing collections of

characters, etc.

class Collects ce e | ce -> e where

empty :: ce

insert :: e -> ce -> ce

insert2 c = insert 1 (insert True c)

The expression insert2 contains a type inconsistency between 1 and True because they

violate the functional dependency [34]. For insert2, GHC generates a similar message
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as before while SHErrLoc generates the following message, where the text with a grey

background is the error cause identified by SHErrLoc. The corresponding constraint for

each error given by SHErrLoc is attached to the end of each message in italics. As a

result, according to [34], these messages are incorrect.

2 errors found

A value with type cons_2 (ce_aL3) (e_aL4) is being used at type Collects

insert2 c = insert 1 (insert True c) cons_2 (ce_aL3) (e_aL4) <= Collects

A value with type cons_2 (ce_aHQ) (e_aHR) is being used at type Collects

insert2 c = insert 1 (insert True c) cons_2 (ce_aHQ) (e_aHR) <= Collects

Based on previous examples, we observe that the tool support for debugging type errors

for type systems with type classes is inadequate. To address this problem, we develop

TEC, which (1) finds comprehensive error causes, (2) generates an error fix for each

cause, and (3) ranks all error fixes and presents them iteratively. For insert2, TEC

generates the following error fix.

The expression contains type errors. Possible fix:

Change: "True", of type: "Bool", to something of type: "Num f => f"

the resulting type will be: (Collects c f, Num f) => c -> c

Show more one-change fixes? (y/n)

We can see that each fix includes the error cause (True), the type it has under normal

type inference (Bool), the type it ought to have to remove the type error (Num f => f),

and the type of the resulting expression after applying this fix. We will refer to these

three type parts as source type, target type, and consequent type, respectively.

This message provides abundant information to remove the type error: the conse-

quent type allows the user to quickly decide if this message is useful. For example, if

the user’s expected type of insert2 is Collects c Bool => c -> c, then the user can

simply skip this message and ask for the next one. Otherwise if the consequent type is

intended, the user can turn to the target type to further decide how she can fix the type

error. In this case, the user can figure out that she should change True to something that

is an instance of the Num type class.

If this message is not useful, the user can hit the letter y to ask for the next message,

which suggests to change 1, with the source type Num a => a, the target type Bool, and

the consequent type Collects c Bool => c -> c. This process continues until all error

fixes are displayed. Later error fixes may involve multiple subexpressions. For example,

after the first four fixes, TEC starts to generate fixes involving two subexpressions.

We have evaluated the precision of TEC in more depth for two benchmarks (Sec-

tion 5) and the result shows that TEC is precise in locating type errors. Also, TEC is

fast enough for practical use. For example, for programs of about 100 LOC and 300

LOC, TEC delivers the first error message within 1.6s and 5.7s, respectively. While the

response time is still slower than compilers, this cost pays off as effective and informa-

tive error messages generated by TEC can save beginners dozens of minutes for fixing

type errors, a view shared by [25].

Overall, our contributions in this paper is developing an error debugger, TEC, that

considers type classes and functional dependencies, finds complete error fixes in leaves
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and their combinations under moderate conditions, and is fast enough for practical use.

Each error fix provides abundant information to remove the type error. Along the way,

we formally develop a type system for finding comprehensive error fixes and a varia-

tional context reduction for simplifying type class constraints.

We give an overview of TEC in Section 2, present a type system in Section 3,

develop constraint generation and variational context reduction in Section 4, present

evaluation in Section 5, discuss related work in Section 6, and conclude in Section 7.

2 TEC, informally

TEC relies on the machineries developed in variational typing [6,7] to efficiently find

comprehensive error fixes. In this section, we first present background on variational

typing and then use an example to illustrate the idea of TEC.

Background Variational typing introduces variations to the type syntax. For example,

the type A〈Int,Bool〉 contains a variation named A, which has two alternatives: Int

and Bool. An expression having the type A〈Int,Bool〉 means that the expression has

either the type Int or Bool, depending on which alternative is taken. Variations can be

considered as a binary type constructor, so A〈Int,B〈Bool,Int〉〉, A〈Int,Bool〉 → Bool,

and A〈Int,Bool〉 → B〈Bool,Int〉 are all valid types.

Variations can be eliminated through a process called selection, which takes a type

φ and a selector s of the form d.i and replaces all occurrences of variations named

d with their ith alternatives in φ. We write bφcd.i for selecting φ with d.i. For in-

stance, bA〈Int,Bool〉cA.2 yields Bool. A decision is a set of selectors. We use ω to

range over decisions. Selection extends naturally to decisions as bφcsω = bbφcscω. Note

that the ordering of selection doesn’t matter. We say ω is complete with respect to φ
if bφcω yields a plain type, which doesn’t contain any choice. Selecting a plain type

with any selector yields the type itself. For instance, bIntcB.2 = Int. Based on the def-

inition of selection, choices with the same name are synchronized in the sense that

we have to select the same alternatives from them and those with different names are

independent. Thus, while A〈Int,Bool〉 → A〈Bool,Int〉 can generate two plain types,

A〈Int,Bool〉 → B〈Bool,Int〉 can generate four with two different parameter types and

two different return types.

An example of debugging with TEC During type inference, compilers infer the most

general types for all the subexpressions visited, which defers the detection of type er-

rors. Thus, compiler error messages are often biased and incomplete. To find compre-

hensive error fixes, TEC systematically assume that each leaf may cause the type error

and find the target type of each leaf to remove the type error in the expression. TEC also

computes the source type and consequent type of changing each leaf (see Page 3 be-

low our error message for the meanings of the terms source type and consequent type).

In fact, TEC also finds error fixes in arbitrary combinations of leaves, and in this case

computes related type information for each leaf in the error fix. After the computation

is finished, TEC determines that a leaf indeed causes the type error if the source type

differs from the target type for that leaf.

TEC reduces this computation process to variational typing by traversing the ex-

pression just once. For each leaf, TEC assigns a variational type whose left and right
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alternatives represent the source and target types, respectively. The source type is the

type a leaf has under normal type inference and the target type is the type that makes the

context well-typed. When a leaf is first visited, the target type is a fresh type variable,

which will be refined to the correct type after the typing constraints are solved.

We illustrate this process with type error debugging for abs True, where abs has

the type ∀α1.Num α1 ⇒ α1 → α1. The following table lists types for subexpressions

and the generated constraints, which are numbered. Each leaf receives a choice type

that includes the source type and the target type for it. In the constraint (1), Num α2,

the constraint in the left alternative, is come from the constraint of Num α2 ⇒ α2 → α2,

which is the type of abs. In that constraint, ε in the right alternative means that the type

α3 has no constraint. The constraint (2) expresses the equivalence constraint between

two types, and we use ≡? to denote such constraints.

Subexpr. Types Constraints Idx

abs A〈α2 → α2,α3〉 A〈Num α2,ε〉 (1)

True B〈Bool,α4〉
abs True β1 A〈α2 → α2,α3〉 ≡

? B〈Bool,α4〉 → β1 (2)

In general, traversing an expression generates both type class constraints and type

equivalence constraints. Type equivalence constraints are solved with the variational

unification algorithm from [6]. In addition to a unifier, constraint solving also returns a

pattern to indicate at which variants constraint solving is successful and at which it is

not. Specifically, a pattern, written as π, can be > (denoting constraint solving success),

⊥ (denoting solving failure), or a variation between two patterns (such patterns can be

useful when constraint solving in one variant fails while in the other variant succeeds).

For example, the pattern for solving the constraint A〈Int,Bool〉 ≡? Int is A〈>,⊥〉 since

the constraint solving in the second alternative fails. Type class constraints are solved

using variational context reduction, to be developed in Section 4.1. Similarly, a pattern

is returned to indicate where reduction is successful and where is not.

For the constraints (2) above, the solution is as follows. The returned pattern is >,

since constraint solving is successful for all variants. κs in the solution represent fresh

type variables introduced during unification.

θ= {α2 7→A〈B〈Bool,α4〉,κ1〉,α3 7→A〈κ3,B〈Bool,α4〉→ κ2〉,β1 7→A〈B〈Bool,α4〉,κ2〉}

After that, we apply θ to the constraint (1) and remove the dead alternative (κ1), which

yield the new constraint C1 = A〈Num B〈Bool,α4〉,ε〉. With variational context reduction,

C1 is reduced to (π,C) where π = A〈B〈⊥,>〉,>〉 and C = A〈B〈Num Bool,Num α4〉,ε〉.
The π indicates that C1 can not be reduced to the normal form [21] in variant {A.1,B.1}.

Overall, the result type is φ =C ⇒ θ(β1) with the pattern π.

With φ, θ, and π, we can generate error fixes by considering different decisions. For

any ω, if bπcω is >, then ω corresponds to an error fix that will remove the type error

in the expression. The reason is that, as discussed earlier, only variants where both vari-

ational unification and context reduction are successful will receive >. If either fails,

then the variant contains a ⊥. Given a ω, if d.1 ∈ ω, it means that we do not change the

subexpression where d is created. Otherwise, we change the corresponding subexpres-

sion to something of type bθ(α)cω, where α is the target type for the subexpression. For
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example, let’s consider generating the error fix for the decision ω= {A.1,B.2}. Since

bπc{A.1,B.2} = >, this fix will remove the type error. The decision ω corresponds to

changing True only. The target type is α4 and the constraint for the target type is bCcω

= Num α4, meaning that the overall target type for True is Num α4 ⇒ α4. The consequent

type type is bφcω, which is Num α4 ⇒ α4. This provides all the information needed for

generating our error message in Section 1.

3 Type System

This section presents a type system for computing comprehensive error fixes and stud-

ies its properties. While supporting type class constraints, our formalization is made

general so that it can be instantiated to support other type constraints.

3.1 Syntax

Expressions e, f ::= c | x | λx.e | e e | let x = e in e

Monotypes τ ::= γ | α | τ → τ
Variational types φ ::= τ | d〈φ,φ〉 | φ → φ
Type schemas σ ::= φ | ∀α.C ⇒ φ

Constraints C ::= ε | φ ≡ φ | C∧C | G φ | d〈C,C〉
Axiom schemes Q ::= C | Q ∧Q | ∀α.C ⇒ G τ

| ∀α.C ⇐ G α
Typing patterns π ::= > | ⊥ | d〈π,π〉

Type environments Γ ::= ∅ | Γ,x 7→ σ
Substitutions θ ::= ∅ | θ,α 7→ φ
Choice environments ∆ ::= ∅ | ∆,(l,d〈φ,φ〉)

Fig. 1: Syntax

Figure 1 collects the syntax for

types, expressions, and related

environments. We consider

a formalization for HM plus

multi-parameter type classes.

We use c to range over con-

stants. Our formalization omit

functional dependencies for

simplicity though our imple-

mentation supports them. Types

are stratified into three layers.

Monotypes include constant

types (γ), type variables (α), and

function types. Variational types

extend monotypes with choice

types. We use τ and φ to range over monotypes and variational types, respectively. Type

schemas, ranged over by σ, has the form ∀α.C ⇒ φ, where C specifies the requirements

of types substituting α in φ. We use FV(σ) to return the set of free type variables in σ.

There are two main forms of primitive constraints. The first form is the type equiv-

alence requirement φ1 ≡ φ2, which specifies that φ1 and φ2 must be equivalent. Two

types are equivalent if selecting them with the same decision always yields the same

type. For example, d〈Int,Int〉 ≡ Int. The second is the type class constraint G τ. Com-

pound constraints include C1 ∧C2, where ∧ is commutative, and d〈C1,C2〉, a variation

between C1 and C2 under the name d.

Axiom schemes include constraints (C), abstractions of class declarations (∀α.C ⇐
G α), and those of instance declarations (∀α.C ⇒ G τ). For example, the declaration

class Eq a => Ord a where... gives rise to ∀α.Eq α ⇐ Ord α. We use a left arrow

in the scheme to reflect that any type that is an instance of a subclass (Ord) is also an

instance of the parent class (Eq). Similarly, the instance declaration instance Eq a =>

Eq [a] where... gives rise to ∀α.Eq α ⇒ Eq [α].
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E1

Q ∧C 
C
E2

Q ∧C1 
C2 Q ∧C2 
C3

Q ∧C1 
C3

E3
Q 
C

θ(Q ) 
 θ(C)

E4
Q 
C1 Q 
C2

Q 
C1 ∧C2

E5
Q ∧C1 
C2 Q ∧C3 
C4

Q ∧d〈C1,C3〉 
 d〈C2,C4〉

E6
∀ω.bπcω =>⇒ bQ cω 
 bCcω

Q 
π C

T1
Q 
 φ1 ≡ φ2

Q 
 φ2 ≡ φ1

T2
Q 
 φ1 ≡ φ2 Q 
 φ2 ≡ φ3

Q 
 φ1 ≡ φ3 T3 Q 
 φ ≡ φ

T4
Q 
 φ1 ≡ φ2

Q 
C[φ1]↔C[φ2] T5 Q 
 d〈φ,φ〉 ≡ φ

T6 Q 
 d〈φ1,φ2〉 ≡ d〈bφ1cd.1,bφ2cd.2〉
T7

∀α.C ⇒ G τ ∈ Q Q 
 [α 7→ φ](C)

Q 
 [α 7→ φ](G τ)

T8
∀α.C ⇐ G α ∈ Q Q 
 [α 7→ φ](G α) CG ∈C

Q 
 [α 7→ φ](CG)

Fig. 2: Entailment relation of constraints

We use l to range over program locations. Each program element has a unique

location in the program. We use the function `e( f ) to return the location of f in e. We

may omit the subscript e when the context is clear. For simplicity, we assume that f

uniquely determines the location. The exact definition of `(·) doesn’t matter.

The definitions of the type environments Γ and the substitutions θ are conventional,

mapping expression variables to type schemas and type variables to variational types,

respectively. The choice environment ∆ associates each program location l to a choice

type d〈φ1,φ2〉, where d, φ1, and φ2 are the choice, the source type, and the target type

for the subexpression at l, respectively.

3.2 Type System

Constraint Entailment Constraints are related together through the entailment relation

defined in Figure 2. The relation Q 
 C specifies that under axiom Q , the constraint

C is satisfied. The first three rules are standard in constrained type systems [19,28].

The rules E1 and E2 specify that the relation is reflexive and transitive. The rule E3

states that the entailment relation is stable under type substitution. Type substitution,

written as θ(σ), substitutes free type variables in σ with their corresponding mappings

in θ. For instance and class declaration constraints, substitution has no effect. For other

constraints, substitution applies to their type components. The rules E4 and E5 show

how to satisfy the compound constraints C1 ∧C2 and d〈C3,C4〉. The rule E6 introduces
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C;π;Γ ` e : φ|∆ CON
c is of type γ ∃ d

C;π;Γ ` c : d〈γ,φ〉|{(`(c),d〈γ,φ〉)}

VAR
Γ(x) = ∀α.C ⇒ φ ∃ d C1 
d〈bπcd.1,⊥〉 [α 7→ φ′](C)

C1;π;Γ ` x : d〈[α 7→ φ′](φ),φ1〉|{(`(x),d〈[α 7→ φ′](φ),φ1〉)}

UNBOUND
x /∈ dom(Γ) ∃ d π ≤ d〈⊥,>〉

C;π;Γ ` x : φ|{(`(x),φ)}
ABS

C;π;Γ,x 7→ φ ` e : φ′|∆

C;π;Γ ` λx.e : φ → φ′|∆

LET
C;π;Γ,x 7→ φ ` e : φ|∆ α = FV(φ)−FV(Γ) C1;π;Γ,x 7→ ∀α.C ⇒ φ ` e1 : φ1|∆1

C∧C1;π;Γ ` let x = e in e1 : φ1|∆∪∆1

APP
C;π;Γ ` e1 : φ1|∆1 C;π;Γ ` e2 : φ2|∆2 C 
π φ1 ≡ φ2 → φ

C;π;Γ ` e1 e2 : φ|∆1 ∪∆2

Q ;π;Γ `M e : φ|∆ MAIN
C;π;Γ ` e : φ|∆ π1 ≤ π Q 
π1

C

Q ;π1;Γ `M e : φ|∆

Fig. 3: Typing rules

the partial entailment relation 
π, which specifies that the validity of 
 is only limited

to the variants where π has >s.

The rest of the rules in Figure 2 specify the relations between type equivalence

constraints. The rules T1 through T3 express that this relation is reflexive, symmetric,

and transitive. In T4, we use C[ ] to denote a constraint context into which we can plug

a type. The rule says that the satisfiability of a constraint is preserved if a type of it is

replaced by an equivalent type. The notation Q 
C1 ↔C2 is a shorthand for Q ∧C1 


C2 and Q ∧C2 
C1. The rule T5 states that a choice with same alternatives is equivalent

to its alternatives. The rule T6 says that dead alternatives can always be removed without

affecting type equivalence. Here bφ1cd.1 removes all the second alternatives of d choices

inside φ1, which are unreachable because φ1 is in the first alternative of d. For example,

Q 
 A〈Int,A〈Char,Bool〉〉 ≡A〈Int,Bool〉. The rules T7 and T8 deal with entailments

brought in by instance and class declarations, respectively. We use CG to denote type

class constraints having type variables as their arguments.

Typing rules Typing rules are presented in Figure 3. Type judgment has the form

C;π;Γ ` e : φ|∆, which is read as: under the type environment Γ and constraint C the

expression e has the type φ with the validity restriction π, with type change information

collected in ∆. Here Γ, C, π, and e are inputs, and φ and ∆ are outputs. The π indicates

that the typing result is required to be correct only in the alternatives that π has >s

and is not required to be correct in alternatives that π has ⊥s. For example, disregard-

ing ∆, ε;>;Γ ` 1 : Int|∆ is valid. Interestingly, while 1 does not have the type Bool,

ε;⊥;Γ ` 1 : Bool|∆ is also a valid type judgment since ⊥ in the judgment says the re-

sult does not need to be correct. However, the judgment ε;>;Γ ` 1 : Bool|∆ is invalid

because > requires the result to be correct but 1 does not have the type Bool. Intuitively,
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In many rules, we use the condition ∃ d, where d can be a fresh or existing choice

name. This condition allows us to maintain the flexibility of assigning variations to

leaves. If we assign unique variations to leaves, we can change leaves independently.

Otherwise, if some leaves receive the same variation, then either all or none of them

will be changed. This condition is always satisfied.

The rule CON, dealing with unconstrained constants, says that for a constant c of

the type γ, the source type is γ and the target type is φ, which is unconstrained, meaning

that we can change c to anything to remove the type error. The π component can be

any value since changing a constant will not introduce any error. Here ∆ is assigned

{(`(c),d〈γ,φ〉)} to record the change information. The rule for constrained constants

is very similar to VAR and we will not present it here. The rule VAR for variables has a

similar pattern as CON has. The source type for a variable x is any valid instantiation of

the polymorphic type Γ(x) and the target type φ1 is again unconstrained. Since typing a

variable is always correct, π can be any value. The rule records a change for x in ∆.

We also need a rule for unbound variables since we do not want the typing process

to be terminated. As always, the target type can be an unconstrained type. The question

is, what should be the source type for the variable? Since the variable is unbound, we

couldn’t find out the correct source type. Fortunately, we can avoid this problem by

choosing an appropriate π. Specifically, the first alternative of the typing pattern must

be ⊥, denoting that the typing result of the first alternative that accesses the unbound

variable is invalid. As always, the second alternative can be any value.

To formally express this idea, we first define the more-defined relation between

typing patterns as follows. We write π1 ≤ π2 to express that π2 is more-defined than π1.

Intuitively, π1 ≤ π2 if for any alternative π2 has an ⊥ then so does π1.

π ≤> ⊥≤ π
π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

π1 ≤ π3 π2 ≤ π4

d〈π1,π2〉 ≤ d〈π3,π4〉


 π1 ≡ π2

π1 ≤ π2

The first two rules indicate that all typing patterns are more-defined than ⊥ and less-

defined than >. The third rule states that ≤ is transitive. The fourth rule says that two

choice typing patterns satisfy ≤ if both corresponding alternatives satisfy this relation.

Finally, the last rule reuses the entailment relation defined for variational types by inter-

preting > and ⊥ as two distinct constant types. The rule says that two typing patterns

that satisfy the equivalence relation also satisfy the ≤ relation. This allows us to derive

>≤ d〈>,>〉 since the two sides are equivalent according to the rule T2 in Figure 2.

We formalize the idea for typing unbound variables in the rule UNBOUND with the

help of ≤. The rules ABS for abstractions and LET for let expressions are similar to

those in the constraint-based formalization of HM, except for the threading information

for π and ∆ here. The rule APP deals with applications. The rules for deriving type

equivalence (≡) are given in the upper part of Figure 2.

In general, we are interested in generating error fixes for an expression given user

defined axioms Q . We formalize this idea in the rule MAIN in Figure 3. The type judg-

ment for this rule is very similar to that for other rules and can be read similarly.

Example Let’s consider typing abs True under the constraint C4 =
A〈B〈Num Bool,Num α〉,ε〉, where Γ(abs) = ∀α1.Num α1 ⇒ α1 → α1 and True is

of the type Bool. We present the derivation tree, together with values for symbols
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The correctness of our type system consists of the soundness and completeness of

error fixes, shown in the following theorems. The proofs for both theorems are con-

structed through induction on the corresponding typing process.

Theorem 1 (Error fix soundness). If Q ;π;Γ `M e : φ|∆, then for any ω bπcω = >
implies Q ;Γ;alt(ω,∆) `ALT e : bφcω.

Theorem 2 (Error fix completeness). Given Q , e, and Γ, if Q ;Γ;δ `ALT e : τ, then

there exists some φ and ∆ such that Q ;π;Γ `M e : φ|∆, bφcω = τ, and alt(ω,∆) = δ for

some ω.

4 Constraint Generation and Solving

When an expression is visited, both type constraints and class constraints are generated.

Type constraints are solved using variational unification from [6], yielding substitutions,

which will be applied to class constraints. After that, class constraints are simplified.

Constraint Generation Since constraint generation rules can be systematically de-

rived from the typing rules in Figure 3, we present the rules only for variables and

applications. Other constraint generation rules can be derived similarly.

I-VAR
Γ(x) = ∀α1.C ⇒ φ d,α2,α3 fresh φ1 = [α1 7→ α2](φ)

d〈[α1 7→ α2](C),ε〉;Γ `I x : d〈φ1,α3〉|{(`(x),d〈φ1,α3〉)}

I-APP
C1;Γ `I e1 : φ1|∆1 C2;Γ `I e2 : φ2|∆2 β fresh

C1 ∧C2 ∧φ1 ≡
? φ2 → β;Γ `I e1 e2 : β|∆1 ∪∆2

The judgment for the inference rules has the form C;Γ `I e : φ|∆, read as: given Γ,

e has the type φ with the generated constraint C and the change information ∆. All

components are output except e and Γ. The I-VAR rule is simple: the variable receives a

choice type where the source type is an instantiation of the type schema and the target

type is a fresh type variable. We use ε for the second alternative of the output constraint

since that alternative is unconstrained. With these rules, we can generate the constraints

shown in Section 2 for the example abs True.

4.1 Variational Context Reduction

Our algorithm in this subsection follows the idea of Jones [21] but has to deal with

variations. Given a constraint, context reduction first transforms it into a head-normal

form and then simplifies it with an entailment relation. We discuss them below in detail.

Constraint Transformation We define the function toHnf(C,Q ) to transform C

into the head-normal form with the given Q . A type class constraint is in head-

normal form if at least one argument is a type variable. The result is (C2,π), mean-

ing that C2 is the normal form for C but transformation was successful only in vari-

ants where π have >s. When Q is ε, it means that no axiom is given. For example,

toHnf(A〈Num Bool,Num Int〉,ε) yields (ε,A〈⊥,>〉), meaning that the transformation is
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failed in A.1 but is successful in A.2. The operation (C1,π1) (op1,op2) (C2,π2) below

is defined as (C1 op1 C2,π1 op2 π2) and o1 d〈,〉 o2 yields d〈o1,o2〉 where o denotes any

object.

toHnf(C1 ∧C2,Q ) = toHnf(C1,Q ) (∧,⊗) toHnf(C2,Q )

toHnf(d〈C1,C2〉,Q ) = toHnf(C1,Q )(d〈,〉,d〈,〉)toHnf(C2,Q )

toHnf(C,Q ) = toHnf′(inHnf(C),C,Q )

The operation ⊗ in the rule puts two patterns together. It is defined with three rules:

(1) >⊗π = π, (2) ⊥⊗π=⊥, and (3) d〈π1,π2〉⊗π = d〈π1 ⊗π,π2 ⊗π〉. ⊗ can be under-

stood as logical and if we view > and ⊥ as logical true and false, respectively.

When the constraint is a class constraint, toHnf delegates the real task to toHnf′,

which, in addition to C and Q , takes a ϖ, a variational boolean value, as its first argu-

ment. This argument indicates whether C is already normalized or not. It could be True,

False, or a variation over ϖs.

toHnf′(True,C,Q ) =(C,>)

toHnf′(d〈ϖ1,ϖ2〉,C,Q ) =toHnf′(ϖ1,bCcd.1,Q )(d〈,〉,d〈,〉) toHnf′(ϖ2,bCcd.2,Q )

toHnf′(False,C,Q ) =











(ε,>) byInst(C,Q ) = (ε,>)

toHnf(C2,Q ) byInst(C,Q ) = (C2,>)

(ε,⊥) otherwise

toHnf′ pattern matches against ϖ. When ϖ is True, it means that C is already normalized

and C itself, together with a >, is returned. Note that ϖ equals True doesn’t mean that

C is plain, but rather, all possible variants in C are normalized. When ϖ is a variational

value, it means that at least some variant in C is not normalized. In this case, the con-

straint C is broken down into two constraints bCcd.1 and bCcd.2, which are normalized

and the results are packed back using the choice d. When ϖ is False, then, due to how

ϖ is computed, C must be plain. We call byInst to possibly reduce C using instance

declarations.

There are three possible outcomes of byInst. First, byInst returns (ε,>), which

means that C is successfully reduced with no new constraint generated. For example,

byInst(Ord Bool,Q ) belongs to this case if Q includes the default instance declarations

in Haskell. Second, byInst returns (C2,>), which means that C is successfully reduced

to C2, which is in turn normalized using toHnf. For example, byInst(Ord [α],Q ) belongs

to this case. Third, byInst returns (ε,⊥), which means that no rule in Q can be used to

reduce C and the reduction fails. For example, if Q includes Haskell default class in-

stances, then byInst(Num Bool,Q ) belongs to this case. For each case, toHnf′ returns

corresponding values. Since the argument C to byInst is always plain, the definition of

byInst is very similar to that in [21]. We omit its definition here.

The value ϖ for C is computed with the function inHnf. Thus, the results from

different arguments are combined together through the ⊕ operation, which is defined

below. In this section, we use the notation d〈o〉 to denote d〈o1,o2〉 for any object o.

inHnf(G φ) =
⊕

hnf(φ)

True⊕ϖ = True False⊕ϖ =ϖ d〈ϖ〉⊕ϖ3 = d〈ϖ⊕ϖ3〉
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The following function hnf(φ) decides if φ is normalized. The notation True ‖ d〈hnf(φ)〉
means that d〈hnf(φ)〉 is simplified to True if both alternatives of d are True and is

unchanged otherwise.

hnf(α)= True hnf(γ)= False hnf(φ1 → φ2)= False hnf(d〈φ〉)= True ‖ d〈hnf(φ)〉

Algorithmic Constraint Entailment We define the function entail(C1,C2,Q ) to de-

cide whether C2 is entailed by C1. In [21], entail returns a boolean value. However,

here we need a variational boolean value, reflecting that entailment may only hold for

certain variants. For example, entail(A〈Num α,Ord α〉,Ord α,Q ) yields A〈False,True〉,
indicating that the entailment relation holds only in A.2.

Since a normalized constraint can not be simplified by instance declarations any-

more, our definition of entail is quite simple: just checking if C2 belongs to the super

classes of C1, as expressed below.

entail(C1,C2,Q ) =belong(C2,bySuper(C1,Q ))

bySuper(d〈C〉,Q ) =d〈bySuper(C,Q )〉

bySuper(C1 ∧C2,Q ) =bySuper(C1,Q )∧bySuper(C2,Q )

bySuper(G φ,Q ) =G α∧ bySuper(CG,Q ) where ∀α.CG ⇐ G α ∈ Q

The definition of bySuper is quite simple. In the third case we find super classes for

constraints like G φ, which can just be simplified to a sequence of type variables. Given

C1 and C2, belong returns True if they are the same and False if they are primitive and

have different class names. We omit the definition of belong here because it is quite

simple. For plain class constraints, a simple equality testing is enough, and for varia-

tional class constraints, the definition recurse into their alternatives. When the second

argument of belong is a ∧ over two constraint operands, belong returns True if the first

argument of belong belongs to any operand.

With entail, we can now define the simplification operation as follows.

simp(C1,C3,Q ) simplifies the constraint C1 with the already simplified constraint C3

and the axiom Q .

simp(ε,C3,Q ) =C3 simp(d〈C〉,C3,Q ) = d〈simp(C,C3,Q )〉

simp(C1 ∧C2,C3,Q ) = simp(C2,entail(C2 ∧C3,C1,Q )CC1,Q )

When C1 becomes ε, simp terminates and returns C3. For a variational constraint, simp

simplifies its individual alternatives. To simplify the compound constraint C1 ∧C2, we

check to see if we can simplify each of C1 and C2 by the other. Formally, we first decide

the result of ϖ = entail(C2 ∧C3,C1,Q ). If the result is True, then C1 can simply be

dropped. However, the entailment may hold in certain variants only, and we can not

drop the whole C1 in this case. We handle this situation by replacing each variants in C1

whose ϖ is True with a ε and leaving other variants unchanged. This process is defined

through the operation ϖCC1. Its definition is quite simple and is omitted here.

Overall, with toHnf and simp, context reduction for C under the axiom Q is defined

as (simp(C1,ε,Q ),π), where (C1,π) = toHnf(C,Q ).
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5 Evaluation

Following the ideas in this paper, we have implemented a prototype of TEC. The pro-

totype supports functional dependencies using the idea from [20]. Our prototype is im-

plemented into Helium [17] rather than GHC due to the overhead of implementing it

into the latter. Our implementation generates constraints and solves them. During con-

straint generation, a ∆ is generated to record location information and choices created.

Constraint solving will update ∆ with concrete type information. Type error messages

are generated from ∆, the typing pattern from constraint solving, and the result type of

the expression, following the method described in Section 2.

TEC reuses the heuristics in counter-factual typing [4] for ranking all the error fixes

calculated and introduces two more heuristics. First, we favor fixes whose consequent

types have lower ratios of unification variables. Given a type, the ratio is defined as the

number of unification variables over the number of primitive types. The rationale of

this rule is that less internal information should be leaked to the outside of the ill-typed

expression. Second, we prefer fixes whose source type and target type have closer class

constraints. Two class constraints are closer if they have a similar number of primitive

constraints or share a class hierarchy. The rationale of this rule is to avoid exotic changes

related to type classes.

Error locating precision To evaluate the precision of TEC, we created two bench-

marks. The first is created by taking all examples involving type classes from all the pa-

pers [33,34,39] in the literature (We do not include class directive examples from [17]

since none of TEC, GHC, and SHErrLoc supports them). This benchmark contains

17 programs. The second benchmark is extracted from student programs [36], which

were logged as undergraduate students in an introductory Haskell course were attempt-

ing their homework assignments. All intermediate program versions were logged. We

obtained about 5000 programs in total, filtered out all programs that have type errors

related to type classes, and then randomly chose 60 from them.

We next investigate how different tools perform in the presence of type classes. We

consider TEC, GHC 8.10.6, and SHErrLoc. The precisions of these tools for Bench-

marks 1 and 2 are shown in the following table. In both benchmarks, the first several

messages are already correct and later messages (after 2 messages in Benchmark 1 and

3 in Benchmark 2) do not help.

Tool
Precision (%) after # of msgs (Bench. 1) Precision (%) (Bench. 2)

1 2 > 2 1 2 3 > 3

TEC 65 88 88 55 72 78 78

SHErrLoc 47 59 59 42 58 63 63

GHC 41 53 53 33 40 40 40

Figure 5 presents the result for Benchmark 1 in more detail. A tool receives a filled

circle if the first two messages from the tool help to locate the real error cause and

an unfilled circle otherwise. Some examples from the paper contain an accompanying

“oracle” stating how to remove the type error. For these examples, we compare reported

error message against the oracles. For other messages, no oracles are given. Since there

are usually many different causes for a type error, a message is regarded as correct if it
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Tool
Example # [33] Example # [34] Example # [39] This paper

5 6 2 3 6 10 12 13 14 3 6 38 70 73 rank1 insert2 insert3

TEC

SHErrLoc

GHC

Fig. 5: A comparison of TEC, SHErrLoc and GHC for examples from the literature.

Filled and unfilled circles denote that the first two messages from the corresponding

tool are useful and not useful, respectively.

points to at least one error cause. If the message is not helpful at all, then it is classified

as incorrect. One such instance is that SHErrLoc says that Example 3 [34] is well-typed

while in fact it is ill-typed, and the message of SHErrLoc is regarded as incorrect.

Both GHC and SHErrLoc are very good at locating type errors when the type an-

notations do not subsume the real inferred types. Both of them are successful for all

the 6 examples of this kind. TEC also performs quite well for this kind. It can sug-

gest a correct type annotation as well as find fixes in expressions so that the signature

becomes valid. GHC also performs well in locating type errors violating functional de-

pendencies when involved literals (for example ’1’ and True) have constant types (for

example Char and Bool). However, when the involved literals have constrained types,

the messages are always not helpful (for example the message for insert2). TEC al-

ways works well since it always finds an alternative type for the erroneous expression.

SHErrLoc doesn’t work well for functional dependencies. For other examples, TEC

and SHErrLoc work better than GHC. The Example 6 [33] requires one to report that

Integral and Fractional has no overlapping instances, and none of the evaluated tools

are able to report this.

The following function demonstrates the shortcoming of TEC.

class Collects ce e where insert :: e -> ce -> ce

insert3 :: Collects ce Bool => ce -> ce

insert3 c = insert 1 (insert False c)

The type error is due to the mismatch between the type 1 and the Bool in the type signa-

ture. TEC doesn’t work well because the target type α4 of 1 gives rise to the wanted con-

straint Collects ce α4, which can not be deduced from the given constraint Collects

ce Bool. Moreover, suggesting (Collects ce Bool, Collects ce α4) => ce -> ce

as the type signature is incorrect since this type is ambiguous [39] as α4 doesn’t ap-

pear in ce -> ce. As a result, we can not identify 1 as an error cause. One way to fix

this problem is to unify the wanted constraint with the given constraint if the deduction

fails. However, it’s unclear how to systematically apply this idea and we leave it for

future work. SHErrLoc again reports that insert3 is well-typed. This example demon-

strates that the folklore knowledge [3,25] about the completeness of error debugging by

searching does not hold when the type system extends to type classes. Note, this is not

inconsistent with Theorem 2 because this happens when the condition Q ;Γ;δ `ALT e : τ
of the Theorem does not hold.

Benchmark 2, among 60 programs, contains 13 programs where type errors are due

to missing or extra parentheses. No existing tools are known to handle such errors well.
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The programs for which SHErrLoc doesn’t perform well are those that are ill-typed but

SHErrLoc reports that they are well-typed. GHC doesn’t work well for programs where

no type annotations are present: the reported locations are quite far away from the real

error causes. TEC works well for both situations, and achieves a better precision. In this

benchmark, we did not observe any program like insert3 that TEC could not find an

error fix. In the future, we will investigate how often programs like insert3 happen in

practice.

From the evaluation results of these benchmarks, we conclude that TEC is quite

effective in locating the real error causes. We have also investigated the running time of

TEC in detail. However, due to space limitation, we do not elaborate further. Briefly, the

response time of TEC for programs around 100 LOC is about 1.6 seconds and that for

about 300 LOC is 5.7 seconds. The reason that TEC has a long response time is that it

first calculates all possible fixes (including changing 1 location, 2 locations, and up to all

locations) at once before they are ranked. In the future, we will work on improving the

response time by computing typing results in phases such that fixes that change only

one or two locations will be returned and ranked before computing other fixes. This

strategy works because in fixing type errors users prefer to change fewer locations.

6 Related Work

Approaches Supporting Type Classes Besides GHC, SHErrLoc [43,42],

Chameleon [33,34,39], and the Top framework [17] also debug type errors involving

type class constraints. SHErrLoc is a general method for locating static inconsistencies,

including type errors. SHErrLoc treats many Haskell features, such as type classes, type

families, and type signatures. Given a program, it works by calling GHC to generate typ-

ing constraints, builds a graph representation from the constraints, and then locates the

most likely error cause using a Bayesian model. Chameleon is an extensible framework

that supports HM and type classes. Given an ill-typed program, it first expresses typing

constraints in constraint handling rules (CHRs) and then finds the minimal unsolvable

constraints and reports the corresponding program source. Chameleon can also explain

why a type error happens while our approach gives concrete messages for removing the

type error. In this sense, they are complementary to each other. Another difference is

that our approach finds all error causes while Chameleon doesn’t.

Top aims to generate high quality error messages. It supports type classes through

overloading of identifiers. A main feature of Top is that it uses type inference direc-

tives [16] and type class directives [15] to customize error messages. Directives allow

certain type errors to be detected earlier. TEC doesn’t support directives but focuses

on how to change expressions to, for example, avoid class constraints, satisfy class

constraints, and make context reduction successful. While TEC generates informative

messages at all error causes, Top does so for several, usually one or two, locations only.

Therefore, these two approaches are again complementary.

Other Approaches Due to the large body of previous work in error debugging, we are

able to only give a brief discussion. This work is similar to CFT [4] but we deal with type

errors in type class uses while that does not. As type classes are prevalent in Haskell, we

believe that this difference is significant. This work can be viewed as searching for type
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error fixes at the type level, and [37] searches error fixes at the expression level. Thus,

while this work can reuse typing processes to scale to large programs, the scalability of

that work is unclear. Also, the error messages from this work contains more information

than that work. [4] discussed the relation between CFT and discriminative sum types

for locating type errors [27]. As the difference between our work and [27] is similar, we

will not discuss that work further in this paper.

It has been a long history of locating the most likely error cause in the research

community. The first approach, developed by [18], is based on maximal flow of the

graph representation of typing constraints. Essentially, it could be understood as ma-

jority voting. Numerous approaches based on reordering the unification process have

been developed, including algorithms M [24], G [12], and the symmetrical versions of

W and M [26]. Recent developments include dedicated heuristics [14] and a Bayesian

model [42] for locating the most likely error cause.

Instead of just finding the mostly likely error causes, many error slicing approaches

have been developed [35,13,31], which highlight all program text that contributes to

the type error. The shortcoming of error slicing approaches, as noted in [17], is that

they usually cover too many locations, and give no hint about which location more

likely causes the type error. The approach by [29,30] takes the advantages of approaches

locating most likely error causes and those slicing type errors in that it can find all error

causes and iteratively presents the most likely one. TEC takes this approach one step

further of providing an informative message for each error cause. A very different line

of research explains type errors from various perspectives [38,11,1,40,9,32].

7 Conclusions

We have presented TEC, an efficient approach for debugging type errors in type systems

with type classes and its extensions of multi-parameter classes and functional depen-

dencies. For most expressions, TEC finds error causes in all possible combinations of

leaves of the program AST and generates an informative error message for each error

cause. We have evaluated TEC and the result shows that it can locate type errors quite

precisely.

In some rare cases, TEC fails to find complete error fixes when the generalization

of an error fix causes both context reduction failure and ambiguous types due to class

usage. In the future, we will investigate how we can systematically fix this problem

and integrate our solution into TEC. In the future, we also plan to perform a user study

to find out how well TEC helps students in fixing type errors, such as how many type

errors students investigate for fix type errors and whether TEC helps shorten students’

type error debugging time. Finally, we plan to collect users’ feedback for fine tuning

our heuristics for ranking error fixes.
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