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programmer is unsure whether all definitions are type correct but wants to test the runtime

behavior.

1.1 Challenges applying gradual typing

By integrating static and dynamic typing, gradual typing not only enjoys the benefits of

both typing disciplines but also suffers from their respective shortcomings. For example,

statically typed parts of the code have more restricted expressiveness and may contain

static type errors that yield cryptic error messages (Tobin-Hochstadt et al., 2017), while

dynamically typed parts of the code may contain dynamic type errors that are not captured

until after the software is deployed. More interestingly, combining statically and dynam-

ically typed code together can raise new challenges; for example, Takikawa et al. (2016)

address the challenge of performance degradation in sound gradual typing at the bound-

aries between statically typed and dynamically typed code. This work, extending Campora

et al. (2018a), investigates the problem of migrating gradual programs to be as static as

possible without introducing type errors.

To fully realize the benefits of gradual typing, we need the ability to navigate along a

program’s dynamic-static typing spectrum, in order to make it more static or more dynamic

when and where the respective strengths of each are desired. Answering the following three

questions will help harness the full power of gradual typing.1

Q1. Can we make a gradually typed program as static as possible while maintaining its

well-typedness to keep it executable?

Q2. Can we introduce as few dynamic types as possible to migrate an ill-typed program

to a type correct one while still enjoying the benefits of static typing for the well-

typed parts?

Q3. Can we address the previous questions while keeping some user-indicated parts

static or dynamic? Such parts may be indicated, for example, to reduce the gran-

ularity of boundaries between static and dynamic code during execution, in order to

maintain performance.

The answers to these questions are not obvious. Furthermore, if the answers are yes, it is

not clear whether we can implement the operations suggested by the questions efficiently.

In the first part (up until Section 7), we develop machinery for addressing the question Q1.

We develop solutions for Questions Q2 and Q3 in Sections 8 and 9.3, respectively.

We illustrate the challenges regarding Q1 by considering the following program written

in the calculus by Garcia & Cimini (2015) extended with Haskell functions and notations,

where parameters annotated with � have dynamic types and those without annotations are

inferred to have static types. In the rest of the paper, we say these parameters are dynamic

and static, respectively. This program is adapted from van Keeken (2006) for formatting

rows of a table according to a given width by trimming long rows and padding short rows

with empty spaces.

1 This paper focuses on the problem that only type annotations are changed while program text remains the
same as programs are migrated. Recent work on program migration by Migeed & Palsberg (2019) took a
similar approach.
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rowAtI headOrFoot (fixed::�) (widthFunc::�) (table::�) (border::�) (i::�) =

let widest = maximum (map length table)

row = table !! i

width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot

then replicate (width + 2) border

else border ++ take width (row ++ replicate (width-length row) ' ')

++ border

The local variable width represents the width of the table and is computed by the argument

widthFunc, either by applying it to fixed if fixed is true, or to widest, the size of largest

row in the table. The argument border is added to the beginning and end of each row and

is also used to generate the header or footer row when the Boolean argument headOrFoot is

true. If we bind the variable tbl to a list of strings, we can then call rowAtI in many ways,

such as rowAtI False True (const 3) tbl "_" 0, rowAtI False False id tbl "_" 1,

and rowAtI True False id tbl '_' 0.

After some testing, suppose we want to migrate rowAtI to a version that is as static as

possible by removing � annotations. Removing � annotations turns out to be much trickier

than we may expect. First, if we remove all � annotations, then type inference fails for

rowAtI, since it contains multiple static type errors, for example, the then branch requires

border to have type Char while the else branch requires it to have type [Char]. Second, if

we remove � annotations in a left-to-right order, we will encounter a type error as soon as

the annotation for widthFunc is removed. (In this paper, we follow the spirit of Garcia &

Cimini, 2015 to infer static types only.) However, this does not necessarily indicate that the

error was solely caused by widthFunc being statically typed. In fact, the type error involv-

ing widthFunc is due to the interaction with fixed when computing the value of width.

At this point, we can restore the well-typedness of rowAtI by either re-annotating fixed

or widthFunc with �. Unfortunately, we cannot easily gauge which annotation is better

for typing the rest of the function. If we choose to re-annotate fixed, we will encounter

another type error when the � annotation for border is removed. Does this type error go

away if we instead mark fixed as static and widthFunc as dynamic? The easiest way to

tell is by trying it out.

The example illustrates that parameters give rise to complicated typing interactions.

The type error caused by making one parameter static may be avoided by making another

parameter dynamic, or the type error caused by making two parameters static can be fixed

by making another dynamic, and so on. In general, we must examine all possible combi-

nations of static versus dynamic parameters to identify a program that is both well-typed

and as static as possible. We refer to all of the potential programs produced by adding

or removing � annotations as a migration space. The act of moving from one potential

program to another by changing types is known as a migration. We say a program in the

migration space has a most static type if removing any � from the program will make it

ill-typed. We call a migration that yields a program with a most static type a most static

migration. Due to the nature of type interactions, the most static type, and thus the most

static migration, is not unique. Since every parameter can be either static or dynamic, the

size of the migration space is exponential in the number of parameters for all functions
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in the program. For the program consisting of only rowAtI, which has six parameters, we

would need to try out all 26 = 64 combinations to identify the most static migrations.

The challenges posed by migration between more and less static programs may pre-

vent programmers from fully realizing the potential of gradual type systems. As evidence

for this, the CircleCI project recently abandoned Typed Clojure mainly because the cost

of adding type annotations to Clojure programs was perceived to exceed the benefits.2

Similarly, Tobin-Hochstadt et al. (2017) reported that migration of Racket modules to

Typed Racked requires too much effort.

1.2 Migrating gradual types

In this paper, we address Q1 by (1) developing a type system that efficiently types the entire

migration space and (2) designing a method to traverse the result of typing the migration

space, calculating which � annotations can be removed. In this paper, we mainly consider

the removal of � annotations to support migrating to a more statically typed program; that

is, we make types more precise (Siek & Taha, 2006). However, in Section 8, we describe

how a dual approach can be developed to support the addition of � annotations (addressing

Q2). Also, in Section 9, we describe how the approach can be extended to support further

migration scenarios (addressing Q3). In this work, our development focuses on the ITGL

calculus. We leave the migration problem in presence of other dynamic and static language

features to future work.

As demonstrated in Section 1.1, in general, finding the most static migration requires

exploring the entire migration space, which is exponential in size. This rules out a simple

brute-force approach that type checks each possibility and compares the results to find the

best one.

To illustrate how we can improve on a brute-force search, let us focus on a single param-

eter, say i in the rowAtI function from Section 1.1. To decide whether we can remove the

� annotation, we need to type two programs: one where i is static and one where i is

dynamic. Observe that the two typing processes differ only slightly. Of the three let-bound

variables, only the typing of the second (row) is affected by whether i is static or dynamic.

The typing of the other two let-bound variables is identical in both cases. Moreover, since

the type of row is determined to be the same regardless of whether i is static or dynamic,

the typing of the body of the let-expression is also identical.

This observation suggests that we should reuse typing results while exploring the migra-

tion space to determine which � annotations can be removed. A systematic way to support

this reuse is provided by variational typing (Chen et al., 2012, 2014). In this paper, we

develop a type system that integrates gradual types (Siek & Taha, 2006) and variational

types (Chen et al., 2014) to support reuse when typing the migration space. This type sys-

tem supports efficiently typing the entire migration space, in roughly linear time, even in

the presence of type errors.

After typing the migration space, we want to find the point in that space that is most

static. Although the number of results to be considered is large, this step can be made

efficient by exploiting several relationships between the resulting types. To illustrate these

2 https://circleci.com/blog/why-were-no-longer-using-core-typed/.
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Program � annotations Type for rowAtI

1 + + + + + Bool → � → � → � → � → � → [Char]

2 − + + + + Bool → Bool → � → � → � → � → [Char]

3 − + − + − Bool → Bool → � → [[Char]] → � → Int → [Char]

4 + − + + + Bool → � → (Int→Int) → � → � → � → [Char]

5 + − − + − Bool → � → (Int→Int) → [[Char]] → � → Int → [Char]

6 − − + + + �

7 + + + − + �

8 + + − − − �

Fig. 1. Types for a sample of the migration space for the rowAtI function. The second column

contains a sequence of + and − symbols, indicating whether the � annotation is kept or removed,

respectively, for each of the five parameters annotated with in rowAtI. For example, for program 2,

all parameters except fixed keep their � annotations. The � entries denote that the corresponding

program is ill-typed.

relationships, we list a subset of the migration space for the rowAtI example and their

corresponding types in Figure 1.

The first observation is that some parameters, whether they are static or dynamic, do

not affect the type correctness of the program. In the example, the 3rd and 5th parameters

(table and i, respectively) are examples of such parameters. Given this knowledge and the

fact that program 2 is well-typed, we can deduce that program 3 is also well-typed since

they differ only in the � annotations of the 3rd and 5th parameters. Similarly, given that

program 8 is type incorrect, we can deduce that program 7 is also type incorrect for the

same reason.

The second observation is that if a program is well-typed after removing � annotations

from a set of parameters P, then (1) removing � annotations from a subset of P will also

yield a well-typed program (this corresponds to the static gradual guarantees of Siek et al.,

2015), and (2) the program with all � annotations removed from P is the most statically

typed of these programs. For example, program 3 has a more static type than program 2,

which in turn has a more static type than program 1. Similarly, this relation holds for the

sequence of programs 5, 4, and 1. Note that the number of removed � annotations does

not provide the same ordering. For example, program 3 removes more � annotations than

program 4, but program 4 has a more static type.

The third observation is that if removing all � annotations for a set of parameters causes

a type error, then removing the � annotations for any superset of those parameters must

also cause a type error. For example, given that making the 4th parameter (border) static

in program 7 causes a type error, we can deduce that additionally making the 3rd (table)

and 5th (i) parameters static in program 8 will also cause a type error.

These three observations enable an efficient method for finding the most static program.

For rowAtI, we immediately discover that programs 3 and 5 are most static (neither one

is more static than the other). In this case, we can either pick one of the results or have

a programmer specify the preferable program. In Section 5, we show that these three

observations hold for arbitrary programs, which allows us to develop an efficient method

for finding desired programs in general.
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Fig. 2. Programs explored for searching possible migrations in Migeed & Palsberg (2019) (left) and

this work (right). Programs in blue type check and those in red do not type check. The dashed lines

in the left subfigure denote that an infinite number of programs were omitted from it.

1.3 Relations with other work in program migration

The work by Migeed & Palsberg (2019) also studied the problem of program migration.

However, there are many significant difference between our work and theirs.

Differences in techniques There is a fundamental difference in finding the migrations

in these two approaches. For a given program, their approach finds migrations in the fol-

lowing steps. First, it generates a set of programs where each program replaces a � in the

current program with a Int, Bool, or �→�. Second, it uses the type checking algorithm

from Garcia & Cimini (2015) to type check the each program from the set. If a program

does not type check, then it is not a migration of the original program. Otherwise, it is a

migration, and the whole migration process is continued from the current program. The

two-step process stops when no more programs type check. After this process finishes, all

programs that type check are considered as possible migrations of the original program.

Figure 2 left illustrates the migration process of Migeed & Palsberg (2019) for the

expression λx : � .x x. In the first step, three programs are generated, each replacing the

� with a more precise type. The programs λx :Int.x x and λx :Bool.x x do not type check.

Therefore, they are not migrations of λx : � .x x. In contrast, the program λx : � .x x type

checks and is a migration. Moreover, program migrations are searched starting from

λx : � → �.x x.

Putting aside variational typing, our approach can be viewed as generating all the pro-

grams that are obtained by removing all combinations of the �s in the program. After that,

we use the type inference algorithm from Garcia & Cimini (2015) to check the type correct-

ness and infer the type of each program. All programs that are type correct are migrations

of the original programs. Figure 2 right shows all programs generated in our approach.

Since there is only one � in the expression, there are only two possible expressions that we

need to investigate for migrations: the original expression and the one that removes the �.

To give a more straight view about what the whole search space looks like, we present

in Figure 3 all the programs that are generated for finding migrations for rowAtI. Since

rowAtI contains five �s, the total number of programs we need to investigate is 32. The

figure uses a sequence of five + or − characters to denote each generated program. If the

ith character is a +, then the ith � is kept. Otherwise, it is removed.

As argued in Section 1.1, in general it is necessary to explore all the generated programs

to find the programs that remove as many �s as possible. Our main goal in this paper is to

use variational typing to make the exploration process efficient.
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Fig. 3. Programs explored for finding migrations for rowAtI in our approach. These programs (con-

figurations) constitute the full migration lattice (Takikawa et al., 2016) for the program rowAtI.

Each configuration is identified by a sequence of “+/-” signs, with “+” (“-”) indicating that the cor-

responding � is kept (removed). A configuration with strictly more “-”s is more precise. We present

several lines relating program precision and omit most of them for clarity.

In summary, the main technical difference is that while Migeed & Palsberg (2019)

intertwine program generation and type checking to find migrations, our approach can be

viewed as an efficient way of first generating all programs and then using type inference to

find all migrations.

Differences in behaviors The differences in techniques lead to several significant

behavioral differences in these two approaches, discussed below.

First, the migration space could be infinite in Migeed & Palsberg (2019) but it is always

finite in our approach. The main reason is that in their approach if a program in the

migration space type checks, then programs with more precise type annotations will be

generated, which may be well-typed, yielding more programs being generated. One such

example is in Figure 2. Replacing the original � with �→� makes the expressions type

checks, and replacing any � with �→� will also type check. This process may be repeated

infinitely. In Figure 2, we use dashed lines to indicate such infiniteness.

Instead, our approach generates exactly 2n programs, where n is the number of �s in

the expression. For example, for the expression λx : � .x x, our approach generates two

expressions (including the original one), as can be seen from Figure 2.

Second, as Migeed & Palsberg (2019) use type checking from Garcia & Cimini (2015)

while our approach uses type inference from Garcia & Cimini (2015) and it is well-known

that type inference is often incomplete, their approach can lead to more precise program

migrations than ours for certain programs. For example, for the expression λx : � .x x, their

approach will generate a program λx : � → �.x x. As this program type checks, it is a valid

migration. However, in our approach, we will check the expression λx.x x, obtained by

removing the � from the expression. For this expression, type inference generates two

constraints: β = β1 → β2 and β1 ∼ β, where β, β1, and β2 are three type variables. The

unification algorithm in Garcia & Cimini (2015) fails to solve these two constraints due to

occurs check. Consequently, type inference fails for this expression. As our type inference

is a variational version of the one in Garcia & Cimini (2015), we also fail to infer a type for

λx.x x. As a result, no improvement is possible in our approach for λx : � .x x. In Section 9.2,
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we present an extension to our approach that could infer more precise types, including

finding a migration for the expression λx : � .x x.

Their work uses the term “maximal migration” to denote a migration that cannot be

made more precise (any such effort leads to ill-typed programs). For certain programs, no

maximal migrations exist. The expression λx : � .x x is one such example. The reason is

that a � in any migration can be replaced by a � → �, thus more precise, without making

the program ill-typed. In our work, we use the term “most static migration” to refer to

migrations where no more �s could be removed and replaced with fully static types. For

λx : � .x x, the most static migration is itself (our extension in Section 9.2 finds more static

migrations). In our approach, most static migrations always exist because among a finite

number of migrations we can always find migrations that remove most �s. In case no �s

can be removed and replaced with fully static types, the original expression is considered

as the most static migration. Maximal migrations and most static migrations may coincide.

For example, the programs in Figure 3 that are in blue and in fourth column are maximal

and most static migrations.

Third, while Migeed & Palsberg (2019) find maximal migrations by generating more

precise programs and type checking them individually, we use variational typing to

increase the efficiency of finding most static migrations. We have done a simple evalu-

ation and find out that their approach has an exponential complexity. In particular, adding

a parameter with � type essentially increases the running time by three times. For example,

it takes about 4.7 × 10−5 s to find the max migration for the expression λx : � .succ(succ x),

1.5 × 10−4 s for the expression λx : � .λy : � .x + y, 28.67 s for λx : � .x1 : �.x2 : �.x3 : �.x4 :

�.x5 : �.y : �.y + succ (x5 (x4 (succ x3)(succ (x2 (x1 + x + y))))), and 93.8 s for λx : � .x1 :

�.x2 : �.x3 : �.x4 : �.x5 : �.x6 : �.y : �.y + succ (x5 (x6 + x4 (succ x3)(succ (x2 (x1 + x +

y))))). For these four expressions, our approach takes 4.1 × 10−4, 5.9 × 10−4, 1.7 × 10−3,

and 1.9 × 10−3 s, respectively. The timing result indicates that the idea of variational typ-

ing indeed improves efficiency. We present more comprehensive performance evaluation

in Section 10.

1.4 Additions in the journal version and contributions

This paper extends Campora et al. (2018a) with the following additions.

• In Section 1.3, we discuss in depth the relation between our work and the work

by Migeed & Palsberg (2019).

• In Section 8, we present a solution to fixing static type errors by introducing as few

dynamic types as possible (question Q2), a dual problem to removing as many as

dynamic types (question Q1) .

• In Section 9.2, we present an extension to our constraint solving algorithm that

enables us to find more precise migrations that the approach in Campora et al.

(2018a) was not able to.

• In addition to the migration questions Q1 and Q2, we consider many other migration

scenarios, such as finding the migrations that migrate the greatest number of param-

eters. We present the approaches to support them in Section 9.3. These approaches

reuse or slightly adapt the machinery for supporting Q1, which demonstrates the

potential of our approach for developing more complex migration scenarios.
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• In Section 10, we expand our evaluation by converting programs in

Grift Kuhlenschmidt et al. (2019) to our language and measure their performances.

• We updated related work to discuss the relation with the latest work on gradual

typing, including Migeed & Palsberg (2019), Campora et al. (2018b), and Phipps-

Costin et al. (2021).

We defer the proofs of this paper to Campora et al. (2022). Overall, this paper makes

the following contributions.

1. In Section 1.1, we identify three questions, Q1 through Q3, for migrating gradual

program to fully harness the benefits of gradual typing.

2. In Section 4, we present a type system that integrates gradual types (Siek & Taha,

2006), variational types (Chen et al., 2014), and error-tolerant typing (Chen et al.,

2012). The type system is correct and efficiently types the whole migration space.

We detail the proofs for important cases of the theorems and lemmas that are

introduced.

3. In Section 5, we investigate the relationship between different candidate migrations

and develop a method for computing the most static migrations.

4. In Sections 6 and 7, we generate and solve constraints to provide type inference for

migrational typing and prove that the constraint solving algorithm is correct.

5. In Section 8, we develop a dual to migrational typing to address the migration

question Q2.

6. In Section 9, we describe extensions to support additional common language

features. We also discuss other migration scenarios and solutions supporting them.

7. In Section 10, we study the performance of our implementation by applying it to syn-

thesized programs. The result shows that our approach scales linearly with program

size.

To improve readability, the following table summarizes where important terms and

operations are introduced. In the “F | P” column, F i and P i are shorthands for Figure

i and Page i, respectively.

Term Notation F | P Operation Notation F | P

static types T F 7 selection �·�d.1 P 12

gradual types G F 7 compatibility (M) ≈ F 8

variational types V F 7 constrained compatibility (M) ≈π F 9

migrational types M F 7 constrained operation (M) opπ F 9

statifier ω F 4 better ordering (G) � P 24

variational statifier � F 7 more static ordering (G) � P 24

choices d〈, 〉 P 12 stricter ordering (δ) � P 25

decisions/eliminators δ P 12/25 less-defined ordering (π ) ≤ F 10

valid eliminators δv P 26 pattern meet (π ) 
 P 35

typing pattern π , �, ⊥ F 9

unification variables κ F 7
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2 Background and preparation

In this section, we briefly introduce two areas of previous work that our type system

for migrating gradual types builds on. In Section 2.1, we present a simple gradually

typed language that represents the starting point for our work. This language is adapted

from Garcia & Cimini (2015), but includes some minor differences to set up the presenta-

tion in Section 4. In Section 2.2, we introduce the concept of variational typing (Chen et al.,

2014), which is the key technique that allows us to efficiently type the entire migration

space.

2.1 Gradual typing

Gradual typing allows the interoperability of statically typed and dynamically typed code.

The original formalization by Siek & Taha (2006) defined gradual typing for a sim-

ply typed lambda calculus extended with dynamic types. Siek & Vachharajani (2008)

and Garcia & Cimini (2015) further investigated gradual typing in the presence of type

inference.

In this paper, we consider the migration of programs in implicitly typed gradual lan-

guages. In Figure 4, we present the syntax and type system of one such language, ITGL,

which is adapted from Garcia & Cimini (2015) and forms the basis for this work. In the

syntax, c ranges over constant values, x over variables, γ over constant types, and α over

type variables. There are two cases for abstraction expressions, one where the parameter is

annotated by � and one where it is not. The rest of the cases are standard. The type system

will be explained below.

The presentation of ITGL in Figure 4 differs from the original in Garcia & Cimini (2015)

in two ways. First, our syntax is more restrictive: we omit a case for explicit type ascription

of expressions, and we do not allow arbitrary type annotations on abstraction parameters.

We also do not consider let-polymorphism here. These restrictions are made to simplify

our formalization later, but we show in Section 9 how they can be lifted. Second, the typing

rules are parameterized by a statifier, ω, which is used in the full migrational type system

later (Section 4). A statifier is a mapping that maps parameter names that have �s to static

types, making an expression to have a more static type. The statifier specifies what static

types to assign to parameters whose � annotations will be removed. For simplicity, we

assume parameters have unique names. In the type system as defined in Figure 4, ω is

always empty, corresponding to the type system in Garcia & Cimini (2015).

In the type system for ITGL in Figure 4, the typing rules for constants and variables are

standard. There are two rules for abstractions, ABS for unannotated parameters which must

have static types, and ABSDYN for annotated parameters which may have dynamic types.

In ABSDYN, we use or (ω(x), �) to return ω(x) if x ∈ dom (ω) or � otherwise. Therefore, if

ω is empty, then or (ω(x), �) will always be �.

Note that a statifier maps parameters to fully static types only, as can be seen from

the definition of ω in Figure 4. As such, mappings such as x �→ � → Int or y �→ � → �

do not belong to ω. This follows the spirit of Garcia & Cimini (2015) that inferred types

should be fully static. Consequently, we cannot find an ω to make the expression λx : � .x x

well-typed, even though the expression λx : � → �.x x is.
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Syntax:

Expressions e ::= c | x | λx.e | λx : �.e | e e | if e then e else e

Static types T ::= γ | α | T → T

Gradual types G ::= γ | α | G → G | �

Statifier ω ::= ∅ | ω, x �→ T

Type system: ω; � �GC e : G

CON
c is of type γ

ω; � �GC c : γ
VAR

x : G ∈ �

ω; � �GC x : G
ABS

ω; �, x �→ T �GC e : G

ω; � �GC λx.e : T → G

ABSDYN

ω; �, x �→ or (ω(x), �) �GC e : G′

ω; � �GC (λx : �.e) : or (ω(x), �) → G′

APP

ω1; � �GC e1 : G ω2; � �GC e2 : G′ dom (G) ∼ G′

ω1 ∪ ω2; � �GC e1 e2 : cod (G)

IF
(ωi; � �GC ei : Gi)

i:1..3 Bool∼ G1

ω1 ∪ ω2 ∪ ω3; � �GC if e1 then e2 else e3 : G2 
 G3

Gradual type consistency:

C1

G ∼ G

C2

G ∼ �

C3

� ∼ G
C4

G11 ∼ G21 G12 ∼ G22

G11 → G12 ∼ G21 → G22

Auxiliary definitions:

dom (G1 → G2) = G1

dom (�) = �

cod (G1 → G2) = G2

cod (�) = �

� 
 G = G

G 
 � = G

G 
 G = G

G11 → G12 
 G21 → G22 = (G11 
 G21) →(G12 
 G22)

Fig. 4. Syntax and type system of ITGL, an implicitly typed gradual language. The operations dom,

cod, and 
 are undefined for cases that are not listed here.

Typing applications is tricky, since dynamically typed arguments can be passed to

functions with statically typed parameters and vice versa. For example, assuming the func-

tion, succ, has static type Int→ Int, both of the following programs in our Haskell-like

notation should be accepted by gradual typing.

inc (num::�) = succ num

foo (f::�) = f True

The APP rule accommodates this with the help of a consistency relation, ∼, that dictates

when two unequal types are compatible with each other. An application is well-typed if
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the domain of the LHS (i.e. the parameter type) is consistent with the RHS, and the type

of the application is the codomain of LHS. The auxiliary functions dom and cod return the

domain and codomain of a function type, respectively, or � for a dynamic type (reflecting

the fact that � is equivalent to � → �).

The gradual type consistency relation is defined in Figure 4 by four rules: C1 defines

that consistency is reflexive, C2 and C3 define that a dynamic type is consistent with any

type, and C4 defines that two functions types are consistent if their respective argument

and return types are consistent. As a result, Int→ Int∼ Int→ � but not Int→ Int∼

Bool→ �, since the argument types are not consistent in the latter case. Note that the

consistency relation is not transitive. Due to C2 and C3, transitivity would lead every

static type to be consistent with every other static type, which is clearly undesirable.

Typing conditional expressions relies on the meet operation, 
, on gradual types.

Intuitively, meet chooses the more static of two base types when one is �. For two equal

static types, meet is idempotent. For two function types, meet is applied recursively to their

respective argument and return types. The meet operation helps assign types to condition-

als when the two branches might not have an identical type but still have consistent types.

Intuitively, meet favors the type of the more static branch of the conditional expression.

2.2 Variational typing

Variational typing (Chen et al., 2012, 2014) enables efficiently inferring types for varia-

tional programs. A variational program represents many different variant programs that

share some parts among each other and which can each be generated through a static

process of selection.

The theoretical foundation for variational typing is the choice calculus (Erwig &

Walkingshaw, 2011), a formal language for representing variational programs. The essence

of the choice calculus is that static variability in programs can be locally captured in

variation points called choices, as demonstrated by the following example.

vfun = A〈succ, even〉 1

This program contains a choice named A with two alternatives, succ and even. We write

�e�d.i to indicate the selection of the ith alternative of each choice named d in e. So,

�vfun�A.1 yields the program succ 1 and �vfun�A.2 yields even 1. We call d.i a selec-

tor and use s to range over selectors. We call d.1 and d.2 the left and right selectors of d,

respectively.

A decision is a set of selectors; we use δ to range over decisions. For each choice d, a

decision contains only one or neither of d.1 and d.2. The elimination of choices extends

naturally to decisions by selecting with each selector in the decision. An expression e is

called plain if it does not contain any choices and is called variational if it does contain

choices. A plain expression obtained by eliminating all choices in a variational expression

is called a variant. For example, succ 1 is a plain expression and a variant of the variational

expression vfun.

A variational expression may contain several choices. Choices with the same name

are synchronized and independent otherwise. For example, the variational expression

A〈succ, even〉 A〈2, 3〉 has two variants, succ 2 and even 3, obtained by the decisions
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V ::= γ | α | V → V | d〈V , V 〉

�γ �s = γ �α�s = α �V1 → V2�s = �V1�s →�V2�s �d〈V1, V2〉�d.1 = �V1�d.1

�d〈V1, V2〉�d.2 = �V2�d.2 �d〈V1, V2〉�d1.i = d〈�V1�d1.i, �V2�d1.i〉 �V�(s:δ) = ��V�s�δ

VT-REF

V ≡ V
VT-SYM

V1 ≡ V2

V2 ≡ V1

VT-TRANS
V1 ≡ V2 V2 ≡ V3

V1 ≡ V3

VT-IDEMP d〈V , M〉 ≡ V VT-DEADELIM d〈V1, V2〉 ≡ d〈�V1�d.1, �V2�d.2〉

VT-CHOICE
V1 ≡ V ′

1 V2 ≡ V ′
2

d〈V1, V2〉 ≡ d〈V ′
1, V ′

2〉
VT-FUN

V1 ≡ V ′
1 V2 ≡ V ′

2

V1 → V2 ≡ V ′
1 → V ′

2

Fig. 5. Variational types, selection, and type equivalence.

{A.1} and {A.2}, respectively. The program succ 3 cannot be obtained through selection

and so is not a variant of this expression. On the other hand, the variational expression

A〈succ, even〉 B〈2, 3〉 has four variants, and we can obtain the variant succ 3 with the

decision {A.1, B.2}.

In general, an expression with n distinct choice names can be configured in 2n different

ways. Since variational programs can easily contain hundreds or thousands of independent

choice names (Apel et al., 2016), checking the type correctness of all variants is intractable

by a brute-force strategy of generating all of the variants and typing each one individ-

ually (Thüm et al., 2014). Variational typing solves this problem by sharing the typing

process across all variants, which is achieved by defining and reasoning about variational

types.

Variational types are types extended with choices. We define variational types in

Figure 5. They include constant types (γ ), such as Int and Bool, type variables (α),

function types, and choices over two alternatives.

All concepts and operations on variational expressions carry over to variational types.

For example, Figure 5 defines selections on types. Selecting constant types (and type

variables) with any selector yield themselves. For a function type, selection is recur-

sively applied on the parameter type and return type. Selecting a choice type (d〈V1, V2〉)

with a selector that has the same choice name (d.i) will yield the ith alternative. The

selection is recursively applied to the alternative to eliminate all choices with the same

name. For example, if we do not recursively select, �A〈A〈Int, Bool〉, Bool〉�A.1 yields

A〈Int, Bool〉 while Int is the expected result, which could be achieved by recursively

selecting A〈Int, Bool〉 with A.1. Selecting a choice type (d〈V1, V2〉) with a selector (d1.i)

that has a different choice name will apply the selection to both alternatives. Finally, select-

ing a type with a decision (s : δ) is recursively defined as first selecting the type with s and

then selecting the resulting type with the decision δ.

It is natural to assign variational types to variational expressions. For example,

A〈succ, even〉 has type A〈Int→ Int, Int→ Bool〉. Similar to gradual typing, typing
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applications in the presence of variation is complicated by the fact that “compatible” types

may not be syntactically equal. In particular, 1. the LHS is traditionally expected to be a

function type but in variational typing may be a (nested) choice of function types, and 2.

when checking whether the type of the argument matches the type of the parameter, we

must take into account that either or both may be variational. For example, the type of the

function on the LHS of vfun is A〈Int→ Int, Int→ Bool〉, which is not a function type

directly, but both variants of vfun, succ 1 and even 1, are well-typed.

Typing applications is supported in variational typing through the definition of a type

equivalence relation (Chen et al., 2014), which is presented in Figure 5. Essentially,

type equivalence specifies when a type can be transformed into another without affect-

ing its semantics. The semantics of a variational type maps decisions to the variant

plain types obtained by selecting from the type using the decision. For example,

A〈Int→ Int, Int→ Bool〉, A〈Int, Int〉 → A〈Int, Bool〉, and Int→ A〈Int, Bool〉 are all

equivalent because selecting from each of them with {A.1} yields the same type Int→ Int

and selecting from each of them with {A.2} yields the same type Int→ Bool. As a result,

we can say that vfun has the type Int→ A〈Int, Bool〉, which is a function type with

the argument type Int matching the type of 1. We can thus assign the type Vvfun =

A〈Int, Bool〉 to vfun.

An important result of variational typing is that choice elimination preserves typing.

More specifically, if e has the type V , then �e�δ has the type �V�δ for any decision δ.

For example, �vfun�A.1 yields succ 1, which has the type Int, the same as �Vvfun�A.1. An

implication of this result is that the type of any variant can be easily obtained by making

an appropriate selection into the result type of the variational program. Another important

result of variational typing is that it is significantly faster than the brute-force approach.

3 Road map to migrating gradual types

In Section 1.1, we argued that the complexity of the tasks implied by the questions Q1– Q3,

involving the migration of gradual programs, is exponential. In Section 2.2, we have shown

that variational typing can efficiently type a set of similar programs. A main idea of

this paper is to reduce the problem of typing the migration space to variational typing.

Specifically, we assign each parameter with a � annotation a choice type whose the first

alternative is a � and whose second alternative is a static type (In Section 9.1, we deal

with parameter types that are partially static, such as Int→ �). Consider, for example, the

following function widthV that represents the variationally typed version of the function

width (also shown below) for computing the table width in rowAtI.

width (fixed::�)(widthFunc::�)=if fixed then widthFunc fixed else widthFunc 5

widthV (fixed::A〈�, Bool〉) (widthFunc::B〈�, Int→ Int〉) =

if fixed then widthFunc fixed else widthFunc 5

The function widthV encodes all four possible migrations of width. If VwidthV is the type

of widthV, then �VwidthV�{A.1,B.1} is the type for width with no � annotations removed,

�VwidthV�{A.2,B.1} is the type that replaces � with Bool for fixed and keeps � for widthFunc,
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Fig. 6. Relations between theorems and challenges. The notations in the figure are discussed in

Section 3.

�VwidthV�{A.1,B.2} is the type that keeps � for fixed but replaces � with Int→ Int for

widthFunc, and �VwidthV�{A.2,B.2} is the type that removes both � annotations.

In order to successfully employ variational typing to improve the performance of migra-

tional typing, several technical challenges must be addressed. Figure 6 presents challenges

and relevant theorems. The challenge C2 (error tolerance) does not have any theorems

associated with it so we omit it from the figure.

C1. We refer to this challenge type compatibility. In the presence of dynamic and vari-

ational types, we need to combine the type equivalence relation between variational

types (marked as V≡ in Figure 6) and the consistency relation between gradual

types(marked as G∼ in the figure), which we refer to as the compatibility relation

(marked as M≈ in the figure). After introducing the syntax of the migrational type

system in Section 4.1, we address this problem in Section 4.2. Theorems 1 through

3 prove that the combination is correct.

C2. We refer to this challenge error tolerance. In general, some variants of the varia-

tional program that encodes the migration space may contain type errors. We need

the typing process to continue even in the presence of type errors to determine the

types of all variants. In Section 4.3, we address this problem and give a declarative

specification of our type system.

C3. We refer to this challenge best typing. In the brute-force approach, we need to gen-

erate all expressions (e1, e2, . . . in Figure 6) from the given expression (e in the

figure) by removing all combinations of �s. These expressions will need to be typed

using the type system �GC introduced in Figure 4. Our type system (presented in

Section 4.4) types the expression e directly once without generating other programs

(the judgment π ; � � e : M | � in Figure 6). We thus need to show that our type sys-

tem, by typing only one expression, essentially types all possible expressions that

could be generated. Theorems 4 and 5 prove that this is indeed the case.

In widthV, we explicitly assigned static types to each parameter. One may wonder

whether these are the best types to assign. Maybe other static types could improve

the typing result and produce more general types or fewer type errors. Theorem 6 in

Section 4.5 proves that in our type system, there exists a best typing derivation that

contains the fewest errors and yields most static and general result types.

C4. We refer to this challenge migration extraction. In brute-force approach, we need to

compare typing results for all generated expressions to determine the most static
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Fig. 7. Syntax of expressions, types, and environments.

migrations. While we could type just the original expression once with the best

migrational typing, we need to find out the most static migrations from the typ-

ing result. This may also require the comparison of an exponential number of result

types for the migration space. Fortunately, Theorems 7 through 10 prove that an effi-

cient algorithm exists for finding most static migrations. In Section 5.2, we develop

such an algorithm.

C5. We refer to this challenge type inference. In challenge C3 (best typing) we claimed

that a best migrational typing exists, but how do we find it? We answer this question

by solving the type inference problem in Sections 6 (constraint generation �C in

Figure 6) and 7 (constraint solving U in Figure 6). Theorems 11 through 15 prove

desired properties of type inference.

4 Migrational type system

This section addresses the challenges C1 (type compatibility)–C3 (best typing) from

Section 3 to support efficient migrational typing. After introducing the syntax of types

and expressions in Section 4.1, the compatibility relation is defined in Section 4.2,

addressing C1 (type compatibility). A pattern-constrained typing relation is introduced

in Section 4.3 and defined via typing rules in Section 4.4, addressing C2 (error tolerance).

Finally, the properties of this type system are discussed in Section 4.5, addressing C3 (best

typing).

4.1 Syntax

The syntax of expressions, types, and environments is given in Figure 7. The metavariables

we use to range over the relevant symbol domains are listed at the top of the figure. For

type variables, we typically use β to denote the result type of a function application dur-

ing constraint generation and κ to denote fresh type variables generated during constraint

generation and solving (see Sections 6 and 7). For choice names, we typically use A and B

to denote arbitrary specific choices in examples and d as a generic metavariable to range

over choices names in definitions.

The syntax of expressions, static types, and gradual types is repeated from Section 2.1.

To this, we add variational types, which are static types extended with choices, and
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migrational types, which are gradual types extended with choices. Note that each top-level

parameter is assigned a restricted form of migrational type, which is either a fully static

type, a �, or a choice of restricted migrational types; however, the more general syntax

defined in Figure 7 is needed during the typing process. In Section 9.1, we extend our

framework to allow an arbitrary mix of � and static types for top-level parameters. We

also define type context to facilitate our presentations of both the type system and proofs.

The type system relies on three kinds of environments: a type environment maps vari-

ables to migrational types, a substitution maps type variables to variational types, and a

variational statifier maps variables to variational types. As described in Section 2.1, a stat-

ifier ω records one way of making a program more static (by removing some subset of

� annotations). A variational statifier � instead compactly encodes all possible statifiers

for an expression. Since we want migration in our formalization to assign static types to

parameters whose � annotations are removed, � maps parameters to variational types, but

not migrational types.

Substitutions map type variables to variational types rather than migrational

types since substituting dynamic types is unsound. For example, suppose we have

f �→ α → α → α → α and x �→ � in �. Now, when typing the application f x, we will

substitute {α �→ �}, yielding � → � → � as the type of f x. However, this implies that

f x 2 True is well-typed, even though this violates the initial static type of f. The idea of

substituting type variables with variational types but not migrational types is reminiscent

of Guha et al. (2007), where only certain contracts could be used to instantiate parametric

contract variables. Type substitution, written as θ (M), is defined in the conventional way.

4.2 Type compatibility

In the rest of this section, we use the widthV example from Section 3 to motivate the tech-

nical development of the migration type system and investigate the properties of the type

system. The motivating goal is to type the condition fixed and the application widthFunc

5 in widthV.

According to the annotation of widthV, the parameter fixed has type A〈�, Bool〉. Since

fixed is used as a condition, it should have type Bool. Since both alternatives of the choice

are consistent with Bool, this use should be considered well-typed. The variable widthFunc

has type B〈�, Int→ Int〉, which can be considered equivalent to B〈�, Int〉 → B〈�, Int〉.

(In Section 4.4, we show how to achieve this formally with dom and cod.) The constant

5 has type Int. Since both alternatives of B〈�, Int〉 are consistent with Int, widthFunc 5

should also be considered well-typed.

These two examples demonstrate that we need a notion of compatibility between two

migrational types to express that all of their variants are consistent. Intuitively, the compat-

ibility relation incorporates both type equivalence for variational types (Chen et al., 2014)

and type consistency for gradual types (Siek & Taha, 2006). The definition of compati-

bility (M1 ≈ M2) is given in Figure 8. The relation is reflexive (MT-REFL) and symmetric

(MT-SYM). The relation is transitive (MT-VTTRANS) in the case that no �s are present,

which we indicate by using the metavariable for variational types (V ).

The rules MT-IDEMP and MT-DEADELIM specify compatibility under choice type sim-

plification. Rule MT-IDEMP states that a choice with identical alternatives is compatible
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MT-REFL

M ≈ M
MT-SYM

M1 ≈ M2

M2 ≈ M1

MT-VTTRANS
V1 ≈ V2 V2 ≈ V3

V1 ≈ V3

MT-IDEMP d〈M , M〉 ≈ M MT-DEADELIM d〈M1, M2〉 ≈ d〈�M1�d.1, �M2�d.2〉

MT-CONG
M1 ≈ M2

M[M1] ≈ M[M2]
MT-DYNINTRO

M1 ≈ M2[M]

M1 ≈ M2[�]

Fig. 8. Rules defining type compatibility.

with its alternatives. Rule MT-DEADELIM says that two types are compatible under elim-

ination of dead alternatives. Note that the operation �M1�d.1 in the first alternative of d

replaces each occurrence of a d choice in M1 with its first alternative and thus removes

the second alternative, which is unreachable due to choice synchronization. For exam-

ple, A〈A〈Int, Bool〉, Int〉 ≈ A〈Int, Int〉, since Bool is unreachable in A〈A〈Int, Bool〉, Int〉

because selection with either A.1 or A.2 yields Int. A corresponding relationship holds for

�M2�d.2.

The rule MT-CONG defines that compatibility is a congruence relation. This rule allows

us to replace a type M1 in a context M[] with a compatible type M2. For example,

since Bool≈ B〈Bool, Bool〉, we have A〈Int, Bool〉 ≈ A〈Int, B〈Bool, Bool〉〉 if we view

A〈Int, [ ]〉 as the context. Finally, the rule MT-DYNINTRO states that if two types are com-

patible, replacing part of one type with � preserves compatibility. This rule is correct

because � is compatible with anything. By choosing M to be an empty context, this rule

encodes M ≈ � and thus � ≈ M through MT-SYM.

To illustrate compatibility, we show A〈Int, �〉 ≈ B〈�, Int〉. This should hold, since both

choice types only produce Int or �, which are consistent with each other and themselves.

We can start by A〈Int, Int〉 ≈ Int via MT-IDEMP and Int≈ B〈Int, Int〉 via MT-IDEMP and

MT-SYM. We can then use MT-VTTRANS to derive A〈Int, Int〉 ≈ B〈Int, Int〉. After that,

we can apply MT-DYNINTRO to replace the first Int in B with a �, apply MT-SYM, and

apply another MT-DYNINTRO to replace the second Int in the choice A with a �, yielding

B〈�, Int〉 ≈ A〈Int, �〉. By applying MT-SYM one more time, we can derive the original

goal.

With ≈, we can formalize the application rule as follows.

� � e1 : M1 � � e2 : M2 dom (M1) ≈ M2

� � e1 e2 : cod (M1)

Based on this rule and ≈, we can calculate the type B〈�, Int〉 for widthFunc 5.

We demonstrate the correctness of ≈ by establishing its connection with type equiv-

alence (≡) from Chen et al. (2014) and type consistency (∼) from Siek & Taha (2006)

through the following theorems. In the theorems, we write �M�δ ∈ V and �M�δ ∈ G to

denote that �M�δ yields a variational type (no �) and a gradual type (no variations),

respectively. The first two theorems state the soundness of ≈; the third theorem states

its completeness.
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Theorem 1 (Compatibility encodes equivalence). If M1 ≈ M2, then ∀δ.�M1�δ ∈ V ∧

�M2�δ ∈ V ⇒ �M1�δ ≡ �M2�δ

Theorem 2 (Compatibility encodes consistency). If M1 ≈ M2, then ∀δ.�M1�δ ∈ G ∧

�M2�δ ∈ G ⇒ �M1�δ ∼ �M2�δ .

Theorem 3 (Equivalence and consistency imply compatibility). ∀δ.�M1�δ ≡ �M2�δ ∨

�M1�δ ∼ �M2�δ ⇒ M1 ≈ M2

4.3 Pattern-constrained judgments

The goal in this subsection is to type the application widthFunc fixed in widthV, thus solv-

ing challenge C2 (error tolerance) for migrational typing. According to the type annotation

of widthV, widthFunc has type B〈�, Int→ Int〉, and fixed has type A〈�, Bool〉. Since it is

impossible to derive B〈�, Int〉 ≈ A〈�, Bool〉 (where the former is the domain of the func-

tion type and the latter is the type of the argument), the application rule from Section 4.2

fails to assign a type to widthFunc fixed. If we terminate the typing process, we will not

be able to compute any type for widthV, failing to provide support for program migration.

While the compatibility check between A〈�, Int〉 and B〈�, Bool〉 fails, we observe that �,

the first alternative of A, is compatible with B〈�, Bool〉 and Int, the second alternative of A,

is compatible with �, the first alternative of B. This suggests that we should describe com-

patibility at a more fine-grained level than simply saying whether or not two migrational

types are compatible. We employ the idea of typing patterns (π ) (Chen et al., 2012) to for-

malize this idea (see Figure 9). The patterns � and ⊥ denote that the compatibility check

succeeds and fails, respectively, and the choice pattern d〈π1, π2〉 describes the success or

failure of compatibility checking within the context of choice d.

In Figure 9, we also define selection on patterns, which is similar to selection on types

(�V�δ) in Figure 5. On page 13, we gave a detailed explanation on selection on types, and

we skip the explanation of selection on patterns here.

We can now express the partial compatibility between A〈�, Int〉 and B〈�, Bool〉 by the

typing pattern A〈�, B〈�, ⊥〉〉. It is also possible to give some pattern that has an identical

effect, such as the pattern B〈�, A〈�, ⊥〉〉.

In Figure 9, we define M1 ≈π M2 such that M1 and M2 are compatible for all variants of

π that are �. In contrast, there is no requirement between M1 and M2 at other places. For

example, Int≈A〈⊥,�〉 A〈Bool, Int〉, since Int≈ Int at A.2 (and since we do not care that

Int and Bool are incompatible at A.1).

The idea of constraining compatibility with patterns is quite powerful. We can even

generalize it to typing judgments. Specifically, the typing relation π ; � � e : M holds if

���δ � �e�δ : �M�δ for all δ such that �π�δ = �. The advantage is that we do not need

to worry about the typing in variants where π has ⊥s. That also means that we should

not use (or trust) the typing result at variants where π has ⊥s. We formally define this

relation in Figure 9. For example, since � � 1 : Int we have A〈�, ⊥〉; � � A〈1, True〉 : Int,

even though True does not have the type Int. We can also generalize this idea to other

operations, such as dom and cod, again defined in Figure 9.
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π ::= ⊥ | � | d〈π , π〉

���δ = � �⊥�δ = ⊥ �d〈π1, π2〉�d.1 = �π1�d.1 �d〈π1, π2〉�d.2 = �π2�d.2

�d〈π1, π2〉�d1.i = d〈�π1�d1.i, �π2�d1.i〉 �π�(s:δ) = ��π�s�δ

PATCOMP

∀δ.�π�δ = � ⇒ �M1�δ ≈ �M2�δ

M1 ≈π M2

PATTYPING

∀δ.�π�δ = � ⇒ ���δ � �e�δ : �M�δ

π ; � � e : M

PATUNARY

∀δ.�π�δ = � ⇒ op (�M1�δ) is defined

opπ (M1) is defined

PATBINARY

∀δ.�π�δ = � ⇒ �M1�δ op �M2�δ is defined

M1 opπ M2 is defined

Fig. 9. Patterns and pattern-constrained relations and operations. . op can be any unary or binary

operation on types. The is defined stipulations in the premise mean that the operations are defined on

their input types, as specified in Figure 4. The is defined in the conclusion indicates that the operation

can be safely carried out on the migrational type when constricted by π .

As shown in the rule PATUNARY, we can also use patterns to constrain unary functions

so that they need to be defined for where only the pattern have �. In the rule, op could be

instantiated to any unary functions, such as dom and cod. We use the following function

dom to illustrate this idea.

dom (M1 → M2) = M1 dom (�) = � dom (d〈M1, M2〉) = d〈dom (M1), dom (M2)〉

The function dom is defined for three cases and is undefined for all other inputs.

For example dom (Int→ Bool) = Int but dom (Int) is undefined. How about

dom (A〈Int→ Bool, Int〉)? We can observe that it is defined for the first alternative but

not the second alternative. In such case, we can constrain dom with a pattern to indicate

that the function does not need to be defined for all alternatives of variations. For our

example, we can use the pattern A〈�, ⊥〉 to convey that we only need the first alter-

native of A to be defined (because the pattern there is a �) while ignore whether the

second alternative is defined or not (because the pattern there is a ⊥). With this idea,

domA〈�,⊥〉(A〈Int→ Bool, Int〉) is defined in both alternatives of A. Moreover, for the sec-

ond alternative, we can say the result dom is any type because ⊥ in that alternative indicates

that the typing result will be discarded. Only typing results in variants where typing pattern

has � are valid and considered.

Similarly, we can define codπ if we have a function cod, which we define in Figure 10.

The rule PATBINARY allows us to constrain binary operations or functions in the same way.

Based on the idea of pattern-constrained judgments, we can define the following rule

for typing function applications (where dom is defined above and cod will be defined in

Figure 10):

π ; � � e1 : M1 π ; � � e2 : M2 domπ (M1) ≈π M2

π ; � � e1 e2 : codπ (M1)

With this new rule, which accounts for migrational types with type errors, we

can revisit the problem of typing widthFunc fixed. Let π = A〈�, B〈�, ⊥〉〉. Since
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π ; � � e : M | �

CON
c is of type γ

π ; � � c : γ |∅
VAR

x �→ M ∈ �

π ; � � x : M |∅

ABS
π ; �, x �→ V � e : M | �

π ; � � λx.e : V → M | �
ABSDYN

π ; �, x �→ d〈�, V 〉 � e : M | � d fresh

π ; � � λx : �.e : d〈�, V 〉 → M | � ∪ {x �→ V}

APP
π ; � � e1 : M1 | �1 π ; � � e2 : M2 | �2 domπ (M1) ≈π M2 M3 = codπ (M1)

π ; � � e1 e2 : M3 | �1 ∪ �2

IF
(π ; � � ej : Mj | �j)

j:1..3 Bool≈π M1 M2 ≈π M3

π ; � � if e1 then e2 else e3 : M2 
π M3 | �1 ∪ �2 ∪ �3

WEAKEN
π ; � � e : M | � π1 ≤ π M =π1

M1

π1; � � e : M1 | �

dom (M1 → M2) = M1 cod (M1 → M2) = M2

dom (�) = � cod (�) = �

dom (d〈M1, M2〉) = d〈dom (M1), dom (M2)〉 cod (d〈M1, M2〉) = d〈cod (M1), cod (M2)〉

M 
 M = M M11→M12
 M21→M22 = (M11
 M21)→(M12 
M22)

� 
 M = M d〈M1, M2〉 
 M = d〈M1 
 M , M2 
 M〉

M 
 � = M G 
 d〈M1, M2〉 = d〈G 
 M1, G 
 M2〉

PAT-OK

π ≤ �

PAT-ERR

⊥ ≤ π

PAT-TRANS

π1 ≤ π2 π2 ≤ π3

π1 ≤ π3

PAT-SINCHC

π1 ≤ π2 π1 ≤ π3

π1 ≤ d〈π2, π3〉

PAT-CHCSIN

π1 ≤ π3 π2 ≤ π3

d〈π1, π2〉 ≤ π3

PAT-CHCCHC

π1 ≤ π3 π2 ≤ π4

d〈π1, π2〉 ≤ d〈π3, π4〉

Fig. 10. Typing rules. The operations dom, cod, and 
 are undefined for cases that are not listed

here. The process for obtaining domπ from dom is detailed in Section 4.3. The operations codπ and


π can be obtained similarly through Figure 9.

widthFunc �→ A〈�, Int→ Int〉 belongs to �, we have π ; � � widthFunc : M , where

M = A〈�, Int→ Int〉. Similarly, we have π ; � � fixed : B〈�, Bool〉. Next, domπ (M) =

A〈�, Int〉. As we have seen earlier, A〈�, Int〉 ≈π B〈�, Bool〉. Thus, all the premises of

the application rule are satisfied, and we can derive π ; � � widthFunc fixed : A〈�, Int〉.

Based on the result pattern, we should not trust the typing information at the variant

{A.2, B.2} since �π�{A.2,B.2} = ⊥.
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While pattern-constrained judgments simplify the presentation, we still face the chal-

lenge of finding appropriate patterns, which are inputs to the typing relation. However, the

pattern is determined by the typing constraints among the subexpressions. For example,

the type of the argument must match the argument type of the function. The reason we use

A〈�, B〈�, ⊥〉〉 in typing widthFunc fixed is that the application is ill-typed at {A.2, B.2}.

Therefore, in a language with type inference, the pattern will be computed during the

inference process (Sections 6 and 7).

4.4 Typing rules

The typing rules are shown in Figure 10. They are based on the compatibility relation

(Section 4.2) and pattern-constrained judgments (Section 4.3). The typing judgment has the

form π ; � � e : M | � and expresses that e has type M under environment � constrained by

the pattern π . The mapping � collects the types that will be assigned to parameters if their

�s are removed. We assume that parameter names from different functions are uniquely

identified in the domain of �. The goal of � is to connect the typing rules here with those

from Figure 4. We discuss this aspect in more detail in Section 4.5 where we investigate

the properties of the type system.

The rules for constants (CON) and variables (VAR) are straightforward. They hold

for arbitrary patterns π because constants and bound variables are always well-typed.

Moreover, since the types remain unchanged, � is always ∅. The rule ABS for an abstrac-

tion whose parameter is not annotated with � is conventional. In rule ABSDYN for an

abstraction whose parameter is annotated with �, we assign the parameter a choice type

where the first alternative is � implying that the � is kept and the second alternative can

be any type for the body to be well-typed. As a result, when variations are first intro-

duced, their first alternatives are �s. This change information is recorded by extending the

� returned from typing the body of the abstraction.

The APP rule for applications is similar to the one in Section 4.3 except that we

must combine the variational statifiers from typing the two subexpressions. The opera-

tions domπ and codπ can be obtained from dom and cod respectively using the idea of

pattern-constrained operations discussed in Section 4.3.

The rule IF types conditionals; it relies on an extended version of the meet operation (
)

from Figure 4 that also handles choices. The definition 
π can be obtained from Figure 9 by

instantiating the op in rule PATBINARY with 
. In Section 4.3, we gave a detailed example

of deriving domπ from dom and 
π can be derived from 
 similarly.

The WEAKEN rule states that if a typing pattern can be used to derive a typing, then we

can use a less-defined pattern to derive the same typing. The operation =π1
in the premise

specifies that its arguments must be the same for places where π1 has �s. A typing pattern

π1 is less defined than π2 if it contains ⊥ values at least everywhere π2 does. The purpose

of WEAKEN is to make the typing process compositional. Without this rule, the whole

typing derivation must use the same π . With this rule, we can use different patterns for

typing the children of a construct but adjust them to use the same pattern when typing the

construct itself. To illustrate, consider typing an application e1 e2. It is likely that e1 and

e2 will contain errors at different variants, and thus, the typing patterns for typing them

will be different. Without WEAKEN, we should use a single pattern for typing these two

subexpressions. With WEAKEN, we can use different patterns for typing subexpressions,
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and before typing the application itself we can apply WEAKEN to the typing derivation for

either or both e1 and e2 to make their patterns the same. After that, we can apply the APP

rule.

The less-defined relation on patterns, written as π1 ≤ π2, is formally defined in

Figure 10. The rules PAT-OK and PAT-ERR define that any pattern is less defined than �

and more defined than ⊥. The rule PAT-TRANS defines that the relation is transitive. The

last three rules handle variational patterns. The rule PAT-SINCHC states that a pattern is less

defined than a variational pattern if it is less defined than both alternatives of the variational

pattern. The rule PAT-CHCSIN states that a variational pattern is less defined than a pattern

if both alternatives are. Finally, the rule PAT-CHCCHC says that two variational patterns

satisfy the less-defined relation if their corresponding alternatives do.

4.5 Properties

This subsection investigates the properties of the type system. Since the goal of migrational

typing in Figure 10 is to type all possible programs that remove �s for a given program

at once, we want to investigate whether migrational typing does it currently for individual

programs and whether it indeed types all programs that remove �s. To this end, we consider

the relationship of the rules for migrational typing in Figure 10 and the original rules

for gradual typing in Figure 4. We also consider the relation between different typing

derivations π ; � � e : M | � when different πs and Ms are used for the same � and e,

which addresses challenge C3 (best typing) from Section 3.

We start by introducing some notation. We say a decision δ is complete for an expres-

sion e if it contains d.1 or d.2 for each d created while typing e. For π , a decision δ is

complete if �π�δ yields � or ⊥. Note that a complete decision for π may not be complete

for the expression since patterns compactly represent where typing succeeds and where

it fails. For instance, while typing rowAtI, we created five choices A, B, D, E, and F for

the dynamic parameters from left to right, respectively. Thus, each complete decision for

rowAtI contains five selectors. One typing pattern for rowAtI is:

πa = A〈E〈�, ⊥〉, B〈E〈�, ⊥〉, ⊥〉〉

Both {A.1, E.1} and {A.2, B.2} are complete decisions for πa but not for rowAtI. In the case

that the whole migration space for an expression is well-typed, then the pattern is simply

� and the complete decision is { }. We use the notation δ|2 to collect all of choice names d

such that d.2 ∈ δ.

The notions of decisions (δ), variational statifier (�), and statifier (ω) are closely related.

Specifically, during typing, for each dynamic parameter x, � includes a mapping x �→ V ,

where V is the type that will be assigned to the parameter once its � annotation is removed.

Therefore, given � and δ, we can generate a statifier as follows, where chc(x) returns the

name of the choice created for x.

statifierForDesc (�, δ) = {x �→ �V�δ | x �→ V ∈ � ∧ chc(x) ∈ δ|2}

For example, let

�a = {fixed �→ Bool, widthFunc �→ Int→ Int} δa = {A.2, B.1}

then statifierForDesc (�a, δa) = {fixed �→ Bool}.
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The notation G1 � G2 means that G2 is more static than G1; it is defined as follows.

T1 � T2 � � � � � G

G1 � G3 G2 � G4

G1 → G2 � G3 → G4

We further say that G2 is better than G1, written as G1 � G2, if G1 � G2 or G1 = θ2(G2)

for some θ2. Intuitively, G1 � G2 if G2 is equally or more static than G1 or they are equally

static and for any static part in G1, G2 has the same static type or a type variable. For

example, we have � → α � Int→ Int and Int→ Int� Int→ α.

We next demonstrate the correctness of our type system by showing that, at the places

where the typing pattern is valid, it assigns the same types to all the programs in the

migration space as the brute-force approach does.

Theorem 4 (� removal soundess). If π ; � � e : M | �, then ∀δ.�π�δ = � ⇒

statifierForDesc (�, δ); ���δ �GC e : �M�δ .

This theorem states that, for any removal of � annotations, the typing result

encoded in migrational typing is the same as by typing the program with ITGL.

For example, for π ′
a = A〈�, B〈�, ⊥〉〉 we get π ′

a; � � width : Ma | �a, where Ma =

A〈�, Bool〉 → B〈�, Int→ Int〉 → B〈�, Int〉 and �a is as defined earlier. We can ver-

ify statifierForDesc (�a, δa); � �GC width : Bool→ � → � and �Ma�δa = Bool→ � → �,

where δa is as defined earlier.

Conversely, any removal of � that yields a well-typed program is encoded in some typing

derivation in migrational typing, as expressed in the following theorem.

Theorem 5 (� removal completeness). If ω; � �GC e : G, then there exists some typ-

ing π ; � � e : M | � such that �π�δ = �, �M�δ = G, and statifierForDesc (�, δ) = ω for

some δ.

We can observe that for a given expression, there may be multiple typing derivations

based on the typing rules in Figure 10. The reason is that, for example, the variational types

used for typing the same ABSDYN in different typings could be different. Particularly, we

want to know if there exists a best typing derivation that is more static and more defined

(the corresponding typing pattern contains ⊥ in fewest variants) than all other derivations.

Fortunately, this is indeed the case (Lemma 2). We next investigate the relation between

different typings. In Lemma 1, we will show that different typings can be combined to

make the result as correct as possible (that is, to minimize ⊥s in the result pattern). In

Lemma 2, we show different typing can be combined to be made as good as possible (that

is, to make types more static and more general). Note that the typing process records all

dynamic parameters and corresponding variational types in �. As a result, the domain

of �s in different typings are the same. However, the ranges could be different because

different typings may use different Vs in ABSDYN.

Lemma 1. If π1; � � e : M | � and π2; � � e : M | �, then there is some typing

π ; � � e : M | � such that π1 ≤ π and π2 ≤ π .
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The following lemma states that we can always find a better (in the sense of the better

relation defined at the beginning of this section, in Page 24) variational statifier and typing

for any expression.

Lemma 2. If π ; � � e : M1 | �1 and π ; � � e : M2 | �2, then there is some

typing π ; � � e : M | � such that ∀δ.�π�δ = � ⇒ �M1�δ � �M�δ ∧ �M2�δ �

�M�δ ∧ statifierForDesc (�1, δ) � statifierForDesc (�, δ) ∧ statifierForDesc (�2, δ) �

statifierForDesc (�, δ).

The properties captured by the previous two lemmas can be combined to show that for

any expression there exists a typing that has the most defined pattern and the most static and

general result type. We refer to this typing as the most general static migrational typing,

abbreviated as the MGSM typing.

Theorem 6 (MGSM Typing). For any e and �, there is a MGSM typing π ; � � e : M | �

such that for any π1; � � e : M1 | �1, ∀δ.�π1�δ = � ⇒ �π�δ = � ∧ �M1�δ � �M�δ .

Proof of Theorem 6 The proof of the best typing is a direct consequence of Lemmas 1

and 2, meaning that we can produce a most precise and general typing and then give a most

defined pattern to it. �

To illustrate the use of Theorem 6, the MGSM typing for width is

πb; � � width : Mb | �b, where

�b = {fixed �→ Bool, widthFunc �→ Int→ β} πb = A〈�, B〈�, ⊥〉〉

Mb = A〈�, Bool〉 → B〈�, Int→ β〉 → B〈�, β〉.

Theorem 6 implies that while an infinite number of typings may be derived (due to the ⊥

pattern), we need only care about the MGSM typing since it encodes all the typings for the

whole migration space. Sections 6 and 7 investigate the problem of computing the MGSM

typing.

5 Finding the best migration

This section addresses challenge C4 (migration extraction) from Section 3, that is, given

the MGSM typing, how can we find the most static migrations? We address it by inves-

tigating the relationship between different migrations in Section 5.1 and developing an

algorithm for extracting the most static migration from the typing pattern of an MGSM

typing in Section 5.2.

We use the term eliminator to refer to complete decisions. We say that an eliminator δ2

is stricter than an eliminator δ1, written δ1 � δ2, if δ2 does not select the left alternative

(corresponding to �) in more choices than δ1. Formally,

δ1 � δ2 :⇔ ∀d.d.1 ∈ δ2 ⇒ d.1 ∈ δ1

https://doi.org/10.1017/S0956796822000089 Published online by Cambridge University Press



26 J. P. Campora et al.

We say an eliminator δ is valid if �π�δ = � where π should be clear from the context.

We will use δv to denote valid eliminators. For example, let

δv
a = {A.1, B.1} δv

b = {A.1, B.2} δv
c = {A.2, B.1} δd = {A.2, B.2}

then δv
a � δv

b and δv
b � δd , but δv

b �� δv
c . The eliminators δv

a , δv
b , and δv

c are valid, while δd

is not, with respect to πb from Section 4.5.

5.1 Relationships between migrations

Since every migration can be identified by an eliminator for the MGSM typing, and

since stricter eliminators correspond to more static migrations, the problem of comput-

ing the most static migrations can be reduced to the problem of finding the strictest valid

eliminators.

Instead of considering all valid eliminators for an expression (which is exponential in

the number of dynamic parameters), we instead consider the valid eliminators of the typing

pattern for the MGSM typing of the expression. The reason is that typing patterns are

usually small, yielding fewer eliminators that we have to consider (in fact, later results will

show that we do not have to consider even all of these). For example, the pattern πa from

Section 4.5 for rowAtI has only 5 eliminators while the expression itself has 32. As another

example, from the pattern πb, defined at the end of Section 4.5 (page 25), we can see that

δv
ab = {A.1} compactly represents δv

a and δv
b for width.

Our first question is whether any eliminator that is stricter than an invalid eliminator

could be valid. This question seems irrelevant for this example because the invalid elimi-

nator δd is already the strictest for πb. However, this is not the case in general, and knowing

the answer to this question helps us to prune the search space. For example, the elimi-

nator {A.1, B.1, E.2} is invalid for πa, and we want to know whether any of the stricter

eliminators—{A.1, B.2, E.2}, {A.2, B.1, E.2}, and {A.2, B.2, E.2}—are valid. The following

theorem answers this question.

Theorem 7 (Error Irrecoverability). Let π ; � � e : M | � be an MGSM typing for e and �.

If �π�δ = ⊥, then ∀δ1.δ � δ1 ⇒ �π�δ1
= ⊥.

This theorem implies that we can simply ignore invalid eliminators and focus on valid

ones, since all invalid eliminators lead to ill-typed expressions.

Proof by contradiction. Assume there is some δ1 such that δ � δ1 but �π�δ1

= �. According to Theorem 4, we have statifierForDesc (�, δ1); ���δ �GC e : �M�δ1
,

which means that e is well-typed under the statifier statifierForDesc (�, δ1).

Based on the definition of statifier generation (Section 4.5), we know that δ �

δ1 implies that statifierForDesc (�, δ) ⊆ statifierForDesc (�, δ1). Therefore, applying

statifierForDesc (�, δ) to e yields a less static expression than statifierForDesc (�, δ1)

does. Based on the static gradual guarantee for ITGL (Miyazaki et al., 2019), the typing

relation statifierForDesc (�, δ); ���δ �GC e : �M�δ is satisfied. According to Theorem 6,

this implies that �π�δ = �, which contradicts our condition that �π�δ = ⊥. Therefore, there

is no δ1 such that δ � δ1 but �π�δ1
= � exists, completing the proof. �

https://doi.org/10.1017/S0956796822000089 Published online by Cambridge University Press



Migrating gradual types 27

A valid eliminator for the typing pattern corresponds to potentially many valid elimina-

tors for the expression. We say that a valid pattern eliminator δ1 covers a valid expression

eliminator δ2 if δ1 ⊆ δ2. Among all the expression eliminators covered by a pattern elim-

inator, one is the strictest. For example, the eliminator δv
ab for pattern πb covers the

eliminators δv
a and δv

b for typing width, and δv
b is the strictest. As another example, the

valid eliminator δv
ae = {A.1, E.1} for pattern πa covers eight valid eliminators (two options

for each of the three choice names that do not appear in the pattern) for typing rowAtI, and

{A.1, E.1, B.2, D.2, F.2} is the strictest among them.

Among all expression eliminators covered by a pattern eliminator, stricter ones yield

better result types. This is expressed by the following theorem.

Theorem 8 (Strict eliminators select better result types). If π ; � � e : M | � is the MGSM

typing for e and �, then δv
1 � δv

2 ∧ �π�δv
1
= � ∧ �π�δv

2
= � ⇒ �M�δv

1
� �M�δv

2
.

Proof Based on Theorem 4, we have statifierForDesc (�, δv
1 ); ���δ �GC e : �M�δv

1

and statifierForDesc (�, δv
2 ); ���δ �GC e : �M�δv

2
. Since δv

1 � δv
2 , we have

statifierForDesc (�, δv
1 ) ⊆ statifierForDesc (�, δv

2 ) based on the definition of statifier gen-

eration (Section 4.5). As a result, more precise types are given to variables in a well-typed

manner and the gradual guarantee (Siek et al., 2015) gives us �M�δv
1
� �M�δv

2
. �

As an example illustrating Theorem 8, consider δv
a , δv

b , and Mb, introduced in Section 4.5.

We can verify that both δv
a � δv

b and �Mb�δv
a
� �Mb�δv

b
, where �Mb�δv

a
= � → � → �, and

�Mb�δv
b
= Bool→ � → �.

Theorem 8 provides a way to order the eliminators covered by a single pattern elimina-

tor, but how about ordering different valid eliminators of the typing pattern? Considering

pattern πb, neither of the valid eliminators δv
b or δv

c is stricter than the other. Similarly,

for pattern πa, neither of the valid eliminators is stricter than the other. In fact, this prop-

erty holds not only for these two examples but also for a class of typing patterns that are

in pattern normal form. We say a pattern is in normal form if it does not contain idem-

potent choices (choices with identical alternatives) and does not nest a choice in another

choice with the same name (no dead alternatives). We capture this property in the following

theorem.

Theorem 9 (Eliminator Incomparability). Let π ; � � e : M | � be MGSM typing for e and

� and π is in normal form, then �δv .δv
1 � δv ∧ δv

2 � δv if δv
1 and δv

2 are distinct.

Proof of Theorem 9 Proof by contradiction. Assume there exists such a δv . First, δv
1

contains at least one selector of the form d.1 for some d. Otherwise, the program can be

fully migrated to be static, and the typing pattern will be �, making δv
1 and δv

2 be the same.

Similarly, this holds for δv
2 . Without loss of generality, we assume δv

1 contains d1.1 and δv
2

contains d2.1. We consider several cases.

• δv
1 = {d1.1, d2.1} and δv

2 = {d1.1, d2.2} or {d1.2, d2.1} or {d1.2, d2.2}. Based on δv
2 ,

δv
3 = {d1.1, d2.2} is a valid eliminator based on the inverse of the implication in

Theorem 7. From δv
1 and δv

3 , we can infer that both alternatives of d2 are �, meaning

that it is an idempotent variation and π is not in normal form.
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• δv
1 = {d1.1, d2.2}, {d1.2, d2.1}, or {d1.2, d2.2}. The reasoning is similar to the previous

case by showing that the variation d2 is idempotent.

• δv
1 = {d1.1} and δv

2 = {d1.2, d2.1}. The decision δ = {d1.2, d2.2} satisfies δv
1 � δ ∧

δv
2 � δ. If δ is a valid eliminator, then we can again show that d2 is idempotent,

a contradiction that π is in normal form.

We could swap the assignments to δv
1 and δv

2 , but this will yield the same proof result. �

It follows from the theorem that for any two valid eliminators δv
1 and δv

2 for π1, δv
1 �� δv

2

and δv
2 �� δv

1 . Two eliminators that are incomparable with respect to � will remove �s for

different parameters for the same expression, leading to types that are incomparable by

� (defined in Section 4), and thus incomparable by �. For example, since δv
b �� δv

c and

δv
c �� δv

b , we have Gb �� Gc and Gc �� Gb, where Gb = �Mb�δv
b
= � →(Int→ β) → β and

Gc = �Mb�δv
c
= Bool→ � → �.

Combining Theorems 8 and 9 yields the following result about finding most static

migrations. We develop an algorithm for extracting such migrations in Section 5.2.

Theorem 10 (Uniqueness of most static migrations). Let π ; � � e : M | � be the MGSM

typing for e and �, and π is in normal form. Then, the number of most static migrations

for e equals the number of valid eliminators for π .

Proof of Theorem 10 The proof follows directly from Theorems 9 and 8. Theorem 9

implies that complete decisions are not comparable, and no other complete decisions

are better than them. Theorem 8 implies that tighter selectors yields more precise

types. By definition, each complete decision yields a most static migration, since

no types better than those produced by complete decisions can be assigned to the

expression. �

It follows from the theorem that e has a unique most static migration if π1 has only one

valid eliminator.

5.2 Extracting most static migrations

The most static migrations for a program are identified by valid eliminators that describe

whether to pick the � annotation or the inferred type for each parameter. We compute this

set of eliminators from an MGSM typing in three steps: (1) simplify the typing pattern to

its normal form, (2) collect the valid eliminators for the normal form, and (3) expand each

valid eliminator into a strictest eliminator for the corresponding expression.

Simplifying a typing pattern to its normal form has two advantages. First, the valid

eliminators are fewer and smaller. Second, we can use the result of Theorem 10 to find

most static migrations. We use the following rules to simplify patterns to normal forms.

d〈π , π〉� π d〈π1, π2〉� d〈�π1�d.1, �π2�d.2〉
π1 � π2

π [π1] � π [π2]

The first two rules remove idempotent choices and dead alternatives. The third rule enables

simplifying parts of a larger pattern. For example, we can use the third and the first rule to

simplify the pattern πc = A〈E〈B〈�, �〉, ⊥〉, B〈E〈�, ⊥〉, ⊥〉〉 to pattern πa from Section 4.5.
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We use the function ve (π ) to build the set of valid eliminators for a pattern π in normal

form.

ve (�) = {∅} ve (⊥) =∅ ve (d〈π1, π2〉) = {{d.1} ∪ l | l ∈ ve (π1)} ∪ {{d.2} ∪ r | r ∈ ve (π2)}

To illustrate the definition of ve, we consider the calculation process for the pattern

A〈�, ⊥〉. ve (A〈�, ⊥〉) = {{A.1} ∪ l | l ∈ ve (�)} ∪ {{A.2} ∪ r | r ∈ ve (⊥)} = {{A.1} ∪ l | l ∈

{∅}} ∪ {{A.2} ∪ r | r ∈∅} = {{A.1}} ∪∅ = {{A.1}}. This means that the set of valid elimi-

nators for A〈�, ⊥〉 contains only one element: {A.1}. Similarly, ve (A〈⊥, �〉) = {{A.2}}. As

another example, ve (πa) yields {δv
o , δv

p}, where δv
o = {A.1, E.1} and δv

p = {A.2, B.1, E.1}.

Finally, we use the following function expand (δ, D) to compute the strictest expression

eliminator from the given pattern eliminator δ and the set D of all choice names in the

expression.

expand (δ, D) = δ ∪ {d.2 | d ∈ D ∧ d.1 /∈ δ}

For example, the set of choice names D for typing rowAtI is {A, B, D, E, F},

and expand (δv
o , D) yields {A.1, E.1, B.2, D.2, F.2} and expand (δv

p , D) yields

{A.2, B.1, E.1, D.2, F.2}.

Each expanded valid eliminator is a best eliminator that specifies how to migrate the

program. For example, the first best eliminator for rowAtI above removes the � annotation

for widthFunc, table, and i, while the other best eliminator removes the � annotation for

fixed, table, and i.

Formally, given an expression e and its MGSM typing π ; � � e : M | �, then for

any expanded valid eliminator δv , we can generate the most static migration using

statifierForDesc (�, δv), defined in Page 23.

Overall, these three steps provide a simple way to extract the most static migration from

an MGSM typing. In Section 10, we show that these steps lead to an efficient implemen-

tation. Usually, the normal form of a typing pattern is small and has only a few valid

eliminators. For example, if the program is still well-typed after removing all � annota-

tions, then the pattern will be �, which has only one valid eliminator (the empty set).

Similarly, if the program is ill-typed if any � annotation is removed, then there is again just

one valid eliminator.

Since normal forms are ideal, we will show in Section 7 how we can efficiently maintain

patterns to be in normal form throughout the type inference process.

6 Constraint generation

The constraint generation rules are presented in Figure 11. The judgment � �C e : M

| C states that under �, the expression e has type M when the constraint C is solved.

Accordingly, e and � are inputs, while M and C are outputs. Note that we now omit the

statifier � in constraint judgments since it is not needed for type inference. We also omit

π since π is an input in the declarative typing but will be computed through solving con-

straints generated here. Constraint solving will be discussed in Section 7. The syntax of

constraints are as follows:

C ::= M1 ≈? M2 | C ∧ C | d〈C, C〉 | ε | Fail
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Fig. 11. Constraint generation rules.

The first form represents type compatibility constraints. Often it is the case that two types

are only partially compatible. Note, when M1 ≈? M2 is solved, it is not necessary that M1

and M2 are compatible everywhere. As a result, constraint solving result includes a typing

pattern, which indicates where M1 and M2 are indeed compatible. The constraint C1 ∧ C2

defines the conjunction of two constraints C1 and C2, while the constraint d〈C1, C2〉 defines

a choice between two constraints. The constraint ε represents an empty constraint. This is

needed to represent a judgment where no constraints are generated.

Finally, the constraint Fail represents a constraint that, when solved, always leads to a

failure. Such a constraint is needed when, for example, dom (Int) is calculated during the

constraint generation process. As Int is not a function type, dom (Int) will always fail. We

generate a Fail to communicate this failure to the constraint solver. The constraint Fail

was absent from the original paper (Campora et al., 2018a). Without it, that work outputs

a typing pattern and returns a ⊥ as the typing pattern to denote that certain constraint will

definitely fail to solve.

A drawback of that approach is that both constraint generation and constraint solving

output typing patterns, and these patterns have to be combined into a single pattern, which

is one part of type inference result. That work used the notion of “pattern placeholders,”

which are introduced during constraint generation and will be plugged in with concrete

patterns during constraint solving. The introduction of Fail simplifies the handling of pat-

terns. Specifically, only constraint solving outputs a pattern, and we do not need the notion

of “pattern placeholders.” Also, the typing pattern has no longer to be part of the con-

straint generation judgment. Moreover, with Fail we have simplified the judgments and

definitions of several auxiliary functions (Figures 11 and 12) in this version.

We now walk through each constraint generation rule. The rule CONC, generating con-

straints for constants, has a very similar form to CON in Figure 10. The rule VARC for

variable references is similar to VAR and, like CONC, generates the empty constraint.

The rule ABSDYNC generates constraints for abstractions with dynamic parameters. It

helps facilitate migration by creating a fresh choice type with a left alternative containing
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Fig. 12. Auxiliary constraint generation functions.

� and a right alternative containing a fresh type variable. The type variable is used to

infer a new static type for the parameter, if possible. The rules APPC and IFC are more

involved because constraints from premises have to be combined. The rules APPC and IFC

use many auxiliary functions to generate constraints. The functions, defined in Figure 12,

take the form: domCst (M1, M2) ↪→ C, codCst (M1) ↪→ (M2, C), and M1 
 M2 ↪→ (M3, C),

where the objects to the left of ↪→ are inputs and those to the right are outputs. Essentially,

they implement the dom, cod, and 
 operations defined for the declarative type system

in Figure 10. Note, in these functions κ denote fresh type variables. We will use such

variables in this and next sections.

We illustrate domCst by considering the example domCst (A〈�, α〉, Int). Since the first

argument is a choice type, domCst proceeds to recursively call on each alternative of A,

leading to two subproblems domCst (�, Int) and domCst (α, Int). The first subproblem

is handled by the case for �, which immediately returns ε, meaning that no further con-

straints need to be solved. The second subproblem is handled by the case of domCst for

type variables. Since dom always expects a function type, the constraint α ≈? Int→ κ2

is generated. The constraints for subproblems are combined together with the choice A,

yielding the final constraint A〈ε, α ≈? Int→ κ2〉.

The following soundness (Theorem 11) and completeness (Theorem 12) theorems

state that the constraint generation rules correspond to the declarative typing rules pre-

sented in Figure 10. In particular, Theorem 12 implies that constraint generation finds the

MGSM typing. Following the spirit of Vytiniotis et al. (2011), we use the idea of sound and

most general solutions (θ ) for constraints (C) in the following theorems (Vytiniotis et al.

(2011) used the term guess-free). (θ , π ) is sound for a constraint of the form M1 ≈? M2 if

θ (M1) ≈π θ (M2), is sound for a constraint C1 ∧ C2 or d〈C1, C2〉 if it is sound for both C1

and C2, is sound for Fail if π is ⊥, and is always sound for ε. In Section 7, we provide a

unification algorithm that generates solutions with these desired properties.

Theorem 11 (Soundness of Constraint Generation). If � �C e : M | C, then

π ; θ (�) � e : θ (M) | � for some �, where (θ , π ) is a sound solution for C.

Theorem 12 (Completeness of Constraint Generation). If π ; θ (�) � e : M | � then

� �C e : M1 | C such that π ≤ π1, ∀δ.�π�δ = � ⇒ �π1�δ = � ∧ �M�δ � �θ1(M1)�δ ∧
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�θ�δ = �θ ′�δ ◦ �θ1�δ for some θ ′, where (θ1,π1) is a sound and most-general solution

for C.

In the theorem, we define �θ�δ as {α �→ �V�δ | α �→ V ∈ θ}.

Two constraint generation examples The following table lists the constraint generation

process for the expression λx : � .succ (x True). In each row, we list the subexpression

visited, the type of that subexpression, and the constraint generated. Assume the fresh

choice and variable generated for the parameter are A and α, respectively.

Subexpression M (Type) C (Constraint)

x A〈�, α〉 ε

True Bool ε

x True A〈�, κ2〉 A〈ε, C1 ∧ C2〉

succ Int→ Int ε

succ (x True) Int A〈ε, C1 ∧ C2 ∧ C4〉

λx : � .succ (x True) A〈�, α〉 → Int A〈ε, C1 ∧ C2 ∧ C4〉

C1 = α ≈? κ1 → κ2 C2 = α ≈? Bool→ κ4 C4 = Int≈? κ2

The constraints C1 and C2 are generated from the third and fourth premises of APPC

for typing x True, respectively. The constraint C4 is generated from the fourth premise of

APPC for handling the application succ (x True).

Continuing from the fifth row of the table above, the following table lists additional

constraints that will be generated from the expression λx : � .x (succ (x True)).

Subexpression M (Type) C (Constraint)

x A〈�, α〉 ε

x (succ (x True)) A〈�, κ6〉 A〈ε, C1 ∧ C2 ∧ C4 ∧ C5 ∧ C6〉

λx : � .x (succ (x True)) A〈�, α〉 → A〈�, κ6〉 A〈ε, C1 ∧ C2 ∧ C4 ∧ C5 ∧ C6〉

C5 = α ≈? κ5 → κ6 C6 = α ≈? Int→ κ8

7 Unification

This section presents a unification algorithm for solving the constraints generated in

Section 6, thus completing the road map presented in Section 3.

7.1 Solving compatibility constraints

We first motivate the structure and design of the algorithm with the following examples.

(i) α ≈? � → Int

(ii) A〈�, Bool〉 ≈? Int
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Our solver must adhere to certain rules to ensure the correctness of type inference,

including:

(I) � is compatible with any type (Section 2.1).

(II) Type variables are only substituted by static types (Section 4).

(III) The typing pattern produced must be as defined as possible (Section 4).

Problem (i) helps illustrate rule (II). Intuitively, α should be substituted by a function type

whose codomain is Int, but what should the domain be? Essentially, the domain should

be an unconstrained type variable so that it can unify with a static type later, if necessary.

As a result, we generate the substitutions {κ2 �→ Int} ◦ {α �→ κ1 → κ2}. Since κ1 is a fresh

type variable that is not mapped to anything, it is unconstrained. In contrast, κ2 is mapped

to Int. This substitution satisfies both rules (I) and (II).

Problem (ii) demonstrates the need for error tolerance in solving constraints. The natural

way to solve a choice constraint is to decompose it into two constraints. Doing this on

constraint (ii) yields two subconstraints, � ≈? Int and Bool≈? Int, where π = A〈π1, π2〉.

According to rule (I), the first constraint is solved successfully and π1 is updated to �.

The second constraint, however, fails to solve, since Bool cannot be made compatible with

Int, so we update π2 to ⊥. Consequently, we update π to A〈�, ⊥〉 to reflect that constraint

solving fails in A.2. Choosing instead ⊥ for π would yield a consistent result but would

violate rule (III).

7.2 A unification algorithm

Figure 13 presents a unification algorithm U , which takes a constraint and produces a

substitution θ and a pattern π . The algorithm can be understood as extending Robinson’s

unification algorithm (Robinson, 1965) to handle variational types and dynamic types and

to support error tolerance. To support error tolerance, the unification not only returns a

substitution but also a typing pattern. The unification is successful at variants where the

pattern has � and is failed at variants where the pattern has ⊥. In the algorithm, cases (a)

and (a∗) deal with dynamic types, cases (c), (d), and (d∗) deal with variations. Cases (g)

through ( j) deal with non-compatibility constraints. Other cases of the algorithm resemble

their counterparts in Robinson’s algorithm but still need to account for occurrences of �s

and variations.

In the figure, we use the following conventions and helper functions. We use κs to

denote fresh type variables. The function choices(M) returns the set of choice names in

M ; vars(M) returns the set of type variables in V . The predicate hasDyn(M) determines

whether � occurs anywhere in M . The function merge combines the substitutions from

solving the subproblems of a choice constraint. For example, given d, θ1 = {α �→ Int},

and θ2 = {α �→ Bool}, we have merge(d, θ1, θ2)(α) = {α �→ d〈Int, Bool〉}. Formally, the

definition of merge (for each α in θ1 ∪ θ2) is:

merge(d, θ1, θ2)(α) = d〈get(α, θ1), get(α, θ2)〉 where α ∈ dom (θ1) ∪ dom (θ2)

get(α, θ ) =

{

M α �→ M ∈ θ

κ otherwise
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U : C → θ × π

(a) U (� ≈? M) = (∅, �)

(a∗) U (M ≈? �) = U (� ≈? M)

(b) U (α ≈? M)

| α /∈ vars(M) ∧ ¬hasDyn(M) = ({α �→ M}, �)

| d ∈ choices(M) = U (d〈α, α〉 ≈? M)

| α /∈ vars(M) ∧ M is of form M1 → M2 =

let (θ1, π1) = U (α ≈? κ1 → κ2); (θ2, π2) = U (κ1 → κ2 ≈? M1 → M2) in (θ2 ◦ θ1, π2 
 π1)

| otherwise = (∅, ⊥)

(b∗) U (M ≈? α) = U (α ≈? M)

(c) U (d〈M1, M2〉 ≈? d〈M3, M4〉) =

let (θ1, π1) = U (M1 ≈? M3); (θ2, π2) = U (M2 ≈? M4); θ ′ = merge(d, θ1, θ2)

in (θ ′, d〈π1, π2〉)

(d) U (d〈M1, M2〉 ≈? M) =

let (θ1, π1) = U (M1 ≈? �M�d.1); (θ2, π2) = U (M2 ≈? �M�d.2); θ ′ = merge(d, θ1, θ2)

in (θ ′, d〈π1, π2〉)

(d∗) U (M ≈? d〈M1, M2〉) = U (d〈M1, M2〉 ≈? M)

(e) U (T1 ≈? T2) = if robinson(T1, T2) = θ ′ then (θ ′, �) else (∅, ⊥)

(f) U (M11 → M12 ≈? M21 → M22) =

let (θ1, π1) = U (M11 ≈? M21); (θ2, π2) = U (θ1(M12) ≈? θ1(M22)) in (θ2 ◦ θ1, π1 


π2)

(g) U (ε) = (∅, �)

(h) U (d〈C1, C2〉) =

let (θ1, π1) = U (C1); (θ2, π2) = U (C2); θ ′ = merge(d, θ1, θ2)

in (θ ′, d〈π1, π2〉)

(i) U (C1 ∧ C2) = let (θ1, π1) = U (C1); (θ2, π2) = U (θ1(C2)) in (θ2 ◦ θ1, π2 
 π1)

( j) U (Fail) = (∅, ⊥)

Fig. 13. A unification algorithm.

Intuitively, if α ∈ dom (θ ), then get(α, θ ) returns the image of α in θ . Otherwise, get(α, θ )

returns a fresh type variable. Recall that κ denotes a fresh type variable.

We now briefly walk through each case of U . Some cases of U have dual cases, and

names of such cases differ by a �. Essentially, the starred version delegates the real solving

task to the case without a �. Case (a) handles the trivial constraints involving �. Such

constraints are simply discarded without generating any mapping. We return � as the

pattern, since � is compatible with any type. More importantly for α ≈? �, case (a) takes

priority over (b), ensuring that the substitution {α �→ �} is not generated.

Case (b) unifies a type variable α with a migrational type M . This case includes many

subcases. First, if M does not contain � and α does not occur in M , then α is directly

mapped to M . For example, given α ≈? A〈Int, Bool〉, the substitution {α �→ A〈Int, Bool〉}

is returned, and π is updated to �. Second, if M contains variation, the result is com-

puted via case (d). For example, the problem α ≈? A〈�, Int〉 is transformed into A〈α, α〉 ≈?

A〈�, Int〉.

Next, if M is a function type that contains � and α does not occur in M , then we transform

α into a function type by using fresh type variables and delegate the solving to case (f). The
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problem (i) in Section 7.1 falls in this case. This case essentially solves two constraints,

and we will have two typing patterns (π1 and π2 in the algorithm). We need to combine

them into one. The resulting pattern must be restricted enough to create a valid solving

result but well defined enough to give useful information about where constraint solving

succeeds. The operation 
 can be viewed as a meet operation over the less defined partial

order on typing patterns in Figure 10. It creates the greatest lower bound of two patterns,

ensuring that the most defined pattern is used for solving the constraint.

� 
 π = π d〈π1, π2〉 
 d〈π3, π4〉 = d〈π1 
 π3, π2 
 π4〉

⊥ 
 π = ⊥ d〈π1, π2〉 
 π = d〈π1 
 π , π2 
 π〉

Back to case (b), if all previous subcases fail, ⊥ is returned, indicating that the constraint

failed to solve.

Case (c) handles constraints involving two choice types that share an outer choice name.

It decomposes the constraint into two smaller problems and solves them individually. For

instance, consider the constraint A〈�, α〉 ≈? A〈Int, Bool〉. This constraint will be decom-

posed into � ≈? Int and α ≈? Bool, which will be solved by (a) and (b), respectively. Case

(d) unifies a choice type with another type not handled by case (c). This case employs a

similar implementation idea as case (c) does. For example, for A〈�, Int〉 ≈? Int, the two

smaller constraints to be solved are � ≈? Int and Int≈? Int. Case (e) unifies two static

types and is delegated to Robinson’s unification algorithm (Robinson, 1965). Case (f) uni-

fies two function types by unifying their respective argument and return types. Cases (g),

(h), (i), and ( j) deal with non-compatibility constraints.

To keep patterns in normal form, we also perform the following optimizations to prevent

idempotent choices patterns from being created. In cases (c) and (f), when creating the

choice pattern d〈π1, π2〉, we check if π1 and π2 are the same; if so, the choice pattern is

replaced by π1. In the last two cases of 
 in Section 6, we perform the same optimization.

After this, the algorithm maintains patterns in normal forms, since the generated constraints

do not contain dead alternatives and since the case (d) of U prevents dead alternatives from

being introduced.

Unification examples In Section 6, we generated two constraints for the expressions

λx : � .succ (x True) and λx : � .x (succ (x True)). We use these two constraints to illustrate

the unification process.

The first constraint is A〈ε, C1 ∧ C2 ∧ C4〉. For this constraint, case (h) applies, which

breaks the variational constraint into two smaller constraints in each alternative and then

combine the results from alternatives. The left alternative has the constraint ε, which will

be solved by case (g) with the solution (θl, �), where θl =∅. The right alternative has

the constraint C1 ∧ C2 ∧ C4. We will repeatedly use case (i) to handle each subconstraint

C1 through C4. Since there are no �s and variations in these constraints, they degenerate

to conventional type equality constraints. We can use robinson’s unification algorithm to

solve them. The unifier is

θr = {α �→ Bool→ Int, κ1 �→ Bool, κ2 �→ Int, κ4 �→ Int}

The typing pattern for solving them is � as the solving for each constraint returns �.

After we have the solutions for both alternatives, we will now combine them together.

First, the combined typing pattern is A〈�, �〉, which simplifies to �, meaning that the
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type inference succeeds everywhere. Next, we combine unifiers with the function merge

defined earlier in this subsection. Note, since θl is ∅, the second case of merge will handle

each mapping in θr. For example, as α �→ Bool→ Int ∈ θr, then the merged substitution

includes α �→ A〈κ8, Bool→ Int〉, where κ8 is s fresh type variable. Here we use a fresh

type variable in the first alternative to denote that the first alternative for α is not con-

strained yet, allowing future unification with any type, if necessary. Overall, let θm be the

substitution after merging θl and θr, then

θm = {α �→ A〈κ8, Bool→ Int〉, κ1 �→ A〈κ9, Bool〉, κ2 �→ A〈κ10, Int〉, κ4 �→ A〈κ12, Int〉}

Substituting the result type A〈�, κ2〉 → Int with θm yields the type

A〈�, A〈κ8, Bool→ Int〉〉 → Int, which simplifies to the type A〈�, Bool→ Int〉 → Int

after we eliminate the unreachable alternative κ8. Since the combined typing pattern is �

and selecting � with {A.2} yields �, it means that we can migrate x, the parameter asso-

ciated with the choice A. Moreover, based on the result type of A〈�, Bool→ Int〉 → Int,

we know the migrated expression has the type (Bool→ Int) → Int.

Now we solve the constraint A〈ε, C1 ∧ C2 ∧ C4 ∧ C5 ∧ C6〉 generated for the expression

λx : � .x (succ (x True)). We proceed similarly as before. In particular, constraint solving

C1 through C4 yields the unifier θr mentioned above. We then need to solve C5 and C6 from

θr. When solving C6, we need to unify Bool→ Int with Int→ κ8, which fails. The pattern

returned is thus ⊥. Therefore, the pattern for solving the whole constraint is A〈�, ⊥〉. Based

on the pattern, we know that we cannot migrate x.

Note, even though our approach cannot migrate x, types more precise than � could actu-

ally be assigned to x, such as � → Int. The reason we cannot find this migration is that

λx.x (succ (x True)) is not well-typed under type inference by Garcia & Cimini (2015),

and our type inference can be considered as the variational version of theirs. We provide

an extension to the unification algorithm U to infer more precise types in Section 9.2.

7.3 Properties

We now investigate the properties of U . First, U is terminating.

Theorem 13 (Termination). Given C, U (C) terminates.

Next, we show that U is correct by showing that it is both sound and complete. For

simplicity, we state the result for constraints of the form M1 ≈? M2 only. In fact, we

can transform other forms into this form. For example, d〈M11 ≈? M12, M21 ≈? M22〉 can

be transformed into d〈M11, M21〉 ≈? d〈M12, M22〉. Note that π in the constraint is just a

placeholder and will be updated when the constraint solving finishes.

Theorem 14 (Soundness). If U (M1 ≈? M2) = (θ , π ′), then θ (M1) ≈π ′ θ (M2).

Theorem 15 (Completeness). Given M1 ≈? M2, if θ1(M1) ≈π1
θ1(M2), then U (M1 ≈?

M2) = (θ2, π2) such that π1 ≤ π2 and θ1 = θ ◦ θ2 for some θ .
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The idea of the proof is to go through all possible constructs of the type M and show

that U covers all possibilities. To establish that most general unifiers exist, we get the

results directly from the induction hypothesis (and compose the mgus of the subterms) or

use proof by contradiction. As the proof is standard and lengthy, we omit it here.

8 Introducing dynamism for fixing static type errors

Fixing static type errors by introducing �s could be useful under several scenarios. First,

when migrating a program, the user may have added static types that cause type errors.

To pass static type checking of gradual typing, some added type annotations should be

removed. Second, the addition of dynamic types can be used to silence type errors and

defer the reporting of type errors to runtime (Bayne et al., 2011; Vytiniotis et al., 2012).

This idea is particularly intriguing for fixing static type errors as type error messages gen-

erated by compilers are often opaque and difficult to understand (Marceau et al., 2011a,b;

Pavlinovic et al., 2014; Loncaric et al., 2016; Serrano & Hage, 2016; Munson & Schilling,

2016). For example, the work by Bayne et al. (2011) shows that obtaining even partial

result of ill-typed programs helps programmers to understand type errors and acceler-

ate program development. Our recent work indicates that gradual typing leads to more

concrete feedback than deferred type errors for ill-typed programs (Chen & Campora,

2019). In particular, in some situations while deferred type errors dump compile-time error

messages, gradual typing returns values to the programmer.

A simple approach for removing type errors is adding � annotations to all parameters,

which are static by default. However, this approach is undesirable for several reasons. First,

adding a � annotation to every single parameter is laborious to programmers. Second,

adding all �s hurts the efforts of migrating programs to be static. Third, the program is

likely to lose useful type information in many locations.

For this reason, our goal here is to develop a solution to question Q2. Specifically, for a

statically ill-typed program, we aim to find a minimum set of parameters such that replac-

ing them with �s removes the type error. It turns out that introducing as few dynamic types

as possible for answering Q2 is equally tricky as removing as many dynamic types as pos-

sible. To illustrate, consider the following program rowAtISt, which shares the body with

rowAtI but removes �s from all its parameters.

rowAtISt headOrFoot fixed widthFunc table border i =

let widest = maximum (map length table)

row = table !! i

width = if fixed then widthFunc fixed else widthFunc widest

in if headOrFoot

then replicate (width + 2) border

else border ++ take width (row ++ replicate (width-length row) ’ ’)

++ border

This function is ill-typed since, for example, the then branch for computing width requires

widthFunc to have the type Bool → Int and the else branch requires it to have the type

Int → Int.
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The difficulties in adding �s are similar to the ones espoused for removing �s in

Section 1.1. There is an exponential number of ways �s can be added to the program;

adding �s to all parameters introduces more dynamism than desired. Some dynamism can

be avoided by adding � annotations in a left-to-right manner, but this is inefficient and can

still add unnecessary dynamism. For example, following this process on rowAtISt leads

to a migration that add �s from headOrFoot to border, since only then rowAtISt becomes

well-typed. In fact, however, the dynamism on, for example, table is unnecessary. If the

programmer wants to remove such unnecessary dynamism, they encounter the exact same

difficulties detailed in Section 1.1. The similarity in difficulties inspires our solution to

introducing dynamism, which is detailed in the next subsection.

8.1 Duality to removing dynamism

The program rowAtISt can be thought of as one of the programs in the migration space of

rowAtI in Figure 1. In fact, it is the bottom-most program in the figure had we listed out the

full migration space there. Recall that programs 3 and 5 were the most static migrations for

program 1. While introducing �s for rowAtISt, programs 3 and 5 are likewise the programs

we desire since they keep as many static types as possible and are still well-typed.

We can envision organizing the whole migration space into a lattice where more

dynamic programs are in the upper portions of the lattice (Takikawa et al., 2016). The

process of removing dynamism to make the program static keeps going down the lattice

before a type error appears. The process of introducing dynamism to fix type errors keeps

going up the lattice until type errors disappear. Overall, these two processes are dual.

This fact inspires our formal development to realize the process of introducing dynamism,

which we shall see next.

Typing rules. In removing dynamism, we introduce variations for parameters whose type

annotations are �s and not to others. Based on the duality, we should now introduce vari-

ations to parameters without � annotations and not to others. Specifically, we define a

new type system using the judgment form π ; � �D e : M | �. This judgment has the same

meaning as the one in Figure 10 and shares the same rules as that one except for ABS and

ABSDYN, for which typing rules are as follows.

ABS
π ; �, x �→ d〈�, V 〉 �D e : M | � d fresh

π ; � �D λx.e : d〈�, V 〉 → M | � ∪ {x �→ d〈�, V 〉}

ABSDYN
π ; �, x �→ � �D e : M | �

π ; � �D λx : �.e : � → M | �

These two rules are dual to the corresponding ones in Figure 10. For an abstraction

with a static type, the type error may be removed by changing its parameter to have the

dynamic type. We express this by creating a fresh variation with its first alternative being �,

as can be seen in the ABS rule. The rule then records the changes in the variational statifier.

For ABSDYN, no changes will be made for the parameter type, and thus no variations are

created in the rule, since our goal is to fix static type errors and not to migrate programs

towards using more static typing.
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Using the given typing rules, we can derive the following type for rowAtISt, assuming

the variation names for parameters from left to right are A, B, D, E, F, G.

A〈�, Bool〉 → B〈�, Bool〉 → D〈�, (Int→ Int)〉 → E〈�, [[Char]]〉 → F〈�, α〉

→ G〈�, Int〉 →[Char]

The typing pattern for it is:

πd = B〈F〈�, ⊥〉, D〈F〈�, ⊥〉, ⊥〉〉

Connection to ITGL. Each variational statifier (in this context perhaps it should be

renamed to dynamifier) generated by the �D type system now collects parameters for which

� annotations are added (instead of removed as was done previously). From the variational

statifier, we can generate a statifier for each given decision as follows.

�[δ] = {x �→ �M�δ | x �→ M ∈ �}

The generated statifier coerces certain parameters to have type �s and leaves others to

their original types. We can define a type system similar to the type system in Figure 4 that

types gradual expressions under updates from statifiers. The new type system is the same

as the one in Figure 4 except for the rules ABS and ABSDYN, which are presented below.

ABS
ω; �, x �→ ω(x) �GCD e : G

ω; � �GCD λx.e : ω(x) → G
ABSDYN

ω; �, x �→ � �GCD e : G

ω; � �GCD λx : �.e : � → G

In ABS, a parameter with a static type is maybe assigned a � if the ω specifies so. For

functions with � parameters, handled by ABSDYN, the typing rule does not update their

types.

Finding error fixes. The �D typing relation indeed finds correct and complete fixes

to type errors, as captured in the following theorems, which serve a similar goal as

Theorems 4 through 6 served in the type system of removing dynamism. The proofs of

these theorems thus follow those closely and are omitted here.

Theorem 16 (Error Fixing Soundness). Given e, and � assume e cannot be typed in ITGL

under �. Let π ; � �D e : M | �. If �π�δ=�, then �[δ]; � �GCD e : G for some type G.

Theorem 17 (Error Fixing Completeness). If ω; � �GCD e : G, then there exists some

typing π ; � �D e : M | � where �M�δ=G and �[δ] for some decision δ.

The previous theorem indicates that we can use migrational typing to fix errors but does

not state that the fixes are minimal. The following theorem states that we can find a most

general, least dynamic fix for a program. We call this the MGDM typing.

Theorem 18 (Existence of the MGDM typing). Given any e and �, there is a MGDM

typing π ; � �D e : M | � such that for any π ; � �D e : M1 | �1 we have ∀δ.�π1�δ = � ⇒

�π�δ = � ∧ �M1�δ � �M�δ .
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From the typing pattern π in MGDM, we can reuse the machinery to find the best migra-

tion in Section 5.2 for finding migrations that fix type errors by introducing fewest �s to

parameters. For example, the π for the MGDM of rowAtISt is πd given earlier. This pat-

tern indicates that either fixed and border should have �s to remove the type error, or

widthFunc and border should have �s.

8.2 Discussion

This section demonstrates that migrational typing is flexible and can be easily adapted

to solve another interesting program migration problem. The fundamental reason is that

migrational typing provides an efficient method to explore the typing of the full migration

space and extract the desired migrations from that space, which naturally lends itself to

solving other migration problems.

It is interesting to see if we can fix type errors and migrate programs to utilizing more

static typing simultaneously. Essentially, such a process first adds � annotations to remove

the type error and then inspects to see if other � annotations can be safely removed after

the error is fixed. Note that typing rules in Figure 10 introduce variations for parameters

with �s and those in this section introduce variations for parameters that have no �s. This

suggests that the type system that simultaneously fixes type errors and migrates programs

should create variations for all parameters. Specifically, the ABSDYN rule should be the

same as the one in Figure 10 while ABS be the same to the one in �D. After that, we can

use the method descried in Section 5.2 to extract the migration that removes type errors as

well as migrate the program to be as static as possible.

The simplicity of the type system for this purpose echoes our early observation about

the flexibility and adaptability of migrational typing.

9 Extensions

In this section, we consider how to support additional language features in our migrational

type system. First, we show that our migrational type system is flexible and can support

extensions that make the source language more expressive for programmers. Then, we

cover other uses of migrational typing, for example allowing programmers to indicate

which regions they want to remain dynamic or static.

9.1 Other language features

Our version of ITGL, given in Figure 10, restricts parameters to be either unannotated

or annotated by �. The formulation of gradual typing by Garcia & Cimini (2015) allows

arbitrary gradual type annotations on parameters and also supports type ascription, that is,

asserting by e :: G that expression e has type G.

We can extend our type system to support arbitrary gradual type annotations as follows.

Given an abstraction λx : G.e, if G = � or G is fully static, type the abstraction as usual; if

G is a complex type containing � types, replace G by a choice whose first alternative is G

and whose second alternative replaces all dynamic parts by arbitrary types. For example,

if G = Int→ � → �, then the type of the parameter is d〈Int→ � → �, Int→ V1 → V2〉,

where d is fresh. To generate the corresponding constraint (Section 6), we replace V1 and
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V2 by fresh type variables. Note that this extension still tries to assigns full static types

for �s. As such, this extension will not be find a migration for λx : � .x (succ (x True)), as

shown in Section 1.3. The extension in Section 9.2 is able to infer partial static types.

We can extend our type system to support type ascription with the following typing rule.

π ; � � e : M | � G ≈π V M ≈π d〈G, V 〉

π ; � � (e :: G) : d〈G, V 〉 | � ∪ {e �→ V}

The second premise ensures that the static parts of the ascribed type G are copied to the

second alternative of the choice. The third premise ensures that the type of the expression

M is compatible with the ascribed type and also a corresponding type V with all � types

removed. We can update the structure of � to accommodate this rule by defining its domain

to be program locations rather than parameter names. We use e here as shorthand for the

location of e.

Finally, we can also add support for let-polymorphism. The approach is straightforward,

but the notations become heavier. We use α to denote a list of type variables and {α �→ V}

to denote a set that includes α1 �→ V1, . . . , αn �→ Vn. The function vars(·) returns the free

type variables in its argument. The typing rules are standard except that when typing vari-

able references (VAR) we can only instantiate type schemas with variational types (V ) and

not migrational types (M).

LET

π ; � � e1 : M1 | �1 α = vars(M1) − vars(�)

π ; �, x �→ ∀α.M � e2 : M2 | �2

π ; � � let x = e1 in e2 : M2 | �1 ∪ �2

VAR
x �→ ∀α.M ∈ �

π ; � � x : {α �→ V}(M) |∅

In support of all of these extensions, the other machinery of our approach, including

constraint generation, unification, and extracting the most static migration, can be reused.

9.2 Inferring more precise types

The example in Section 7.1 shows that our approach fails to find a migration for the

expression λx : � .x (succ (x True)), even though λx : � → Int.x (succ (x True)) can be

a more precise migration. Recall from Section 6 that during constraint generation we

assigned the variational type A〈�, α〉 to the parameter type x and the generated constraint

is A〈ε, C1 ∧ C2 ∧ C4 ∧ C5 ∧ C6〉.

To investigate why our approach cannot find a migration and how we can potentially

improve this situation, we list the constraint solving process for the constraint C1 ∧ C2 ∧

C4 ∧ C5 ∧ C6 below. The first column lists the constraint being solved, and the latter two

columns list the unifier and pattern from solving the constraint.

Constraint Solution Pattern

α ≈? κ1 → κ2 {α �→ κ1 → κ2} �

α ≈? Bool→ κ4 {α �→ Bool→ κ4, κ1 �→ Bool, κ2 �→ κ4} �

Int≈? κ2 {α �→ Bool→ Int, κ1 �→ Bool, κ2 �→ Int} �

α ≈? κ5 → κ6 Ignored, does not affect result

α ≈? Int→ κ8 {α �→ Bool→ Int, κ1 �→ Bool, κ2 �→ Int} ⊥

The constraint solving fails when we need to solve the constraint α ≈? Int→ κ8, since

our solution before that point contains α �→ Bool→ Int. When constraint solving fails, the

https://doi.org/10.1017/S0956796822000089 Published online by Cambridge University Press



42 J. P. Campora et al.

returned pattern is ⊥, and the content of the unifier will no longer be used. As a result, we

leave the content of the unifier as the same after solving α ≈? Int→ κ8.

The main reason our approach fails to find a migration is that, as we were solving the

first constraint α ≈? κ1 → κ2, we made three requirements: (1) the type that α maps to is

constructed by the → type constructor, (2) the parameter type of → be a static type, and (3)

the return type of → be a static type. However, in x (succ (x True)), the body of the func-

tion, x, is used as functions and applied to both Bool and Int values. As a result, no static

type could be assigned to x. We can address this problem by relaxing the three require-

ments for α. To address this problem, we observe that α denotes the type for x when the �

for x is removed, and we are finding a more precise migration than �. Thus, instead of con-

straining α with all the three requirements at once, we can relax the latter two requirements

and require α be unified with a type whose type constructor is → only. From now on, we

call type variables that are introduced to replace �s for dynamic parameters migration type

variables. Migration type variables appear in the right alternatives of choices when choices

are first created. We will use α to range over migration type variables.

Overall, the idea of our solution is that when a migration variable is unified against a

function type, we require only that the migration variable be mapped to a function type

but allow the parameter type and return type to remain a �. The typing that happens later

decides whether the parameter type and/or return type could be made precise than a �. As a

result, a parameter can now be migrated to a function type whose parameter or return type

remains a �.

One technical challenge is that for the parameter type and return type, we need to explore

two possibilities: the � and a more precise type. Our machinery with variational typing pro-

vides a nice solution. Specifically, when a migration variable α is unified with a function

type M1 → M2, we refine α to a function type A1〈�, α1〉 → A2〈�, α2〉 (We refer to this pro-

cess as refinement) and unify this function type against M1 → M2. Here, A1, α1, A2, and α2

are fresh and α1 and α2 are migration variables, which could be further refined to function

types whose parameter and return types are �s. The function type A1〈�, α1〉 → A2〈�, α2〉

encodes four possibilities: both the parameter type and the return type could be � or a more

precise type.

Following this idea, the constraint solving process for the constraints C1 through C7

is updated to the following. In the “Solution” column below, we omitted the mappings

α1 �→ κ1 and α2 �→ κ2 to save space.

Constraint Solution Pattern

α ≈? κ1 → κ2 {α �→ A1〈�, κ1〉 → A2〈�, κ2〉} �

α ≈? Bool→ κ4 {α �→ A1〈�, Bool〉 → A2〈�, κ4〉, κ1 �→ Bool, κ2 �→ κ4} �

Int≈? κ2 {α �→ A1〈�, Bool〉 → A2〈�, Int〉, κ1 �→ Bool, κ2 �→ Int} �

α ≈? κ5 → κ6 {α �→ A1〈�, Bool〉 → A2〈�, Int〉, κ1 �→ Bool, κ2 �→ Int,
�

κ5 �→ A1〈κ9, Bool〉, κ6 �→ A2〈κ10, Int〉 }

α ≈? Int→ κ8 Extend above with { κ8 �→ A2〈κ12, Int〉 } A1〈�, ⊥〉

From Section 6 (page 32), we know that the type of λx : � .x (succ (x True)) is

A〈�, α〉 → A〈�, κ6〉. Plugging in the solution for α from the unifier above, the type

for λx : � .x (succ (x True)) is Mdp =A〈�, A1〈�, Bool〉 → A2〈�, Int〉〉 → A〈�, A2〈κ10, Int〉〉.

Moreover, the pattern for the whole function is A〈�, A1〈�, ⊥〉〉. Note, A2 does not appear
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(bR) U (β ≈? M)

| β /∈ vars(M) ∧ ¬hasDyn(M) = ({β �→ M}, �)

| d ∈ choices(M) = U (d〈β, β〉 ≈? M)

| β /∈ vars(M) ∧ M is of form M1 → M2 =

let (θ1, π1) = U (β ≈? κ1 → κ2); (θ2, π2) = U (κ1 → κ2 ≈? M1 → M2) in

(θ2 ◦ θ1, π2 
 π1)

| otherwise = (∅, ⊥)

(bR∗) U (M ≈? β) = U (β ≈? M)

(b1) U (α ≈? α) = (∅, �)

(b2) U (α ≈? γ ) = ({α �→ γ }, �)

(b3) U (α ≈? β) = ({α �→ β}, �)

(b4) U (α ≈? d〈M1, M2〉) = U (d〈α, α〉 ≈? d〈M1, M2〉)

(b5) U (α ≈? M1 → M2)

| AllLvsDynMvs (M1 → M2) ∧ α ∈ vars(M1 → M2) = (∅, ⊥)

| AllLvsDynMvs (M1 → M2) ∧ ¬hasDyn (M1 → M2) = ({α �→ M1 → M2}, �)

| AllLvsDynMvs (M1 → M2) =

let (θ1, π1) = U (β ≈? κ1 → κ2); (θ2, π2) = U (κ1 → κ2 ≈? M1 → M2) in

(θ2 ◦ θ1, π2 
 π1)

| otherwise =

let θ1 = {α �→ A1〈�, α1〉 → A2〈�, α2〉} A1, A2, α1, and α2 fresh

(θ2, π2) = U (A1〈�, α1〉 → A2〈�, α2〉 ≈? θ1(M1 → M2))

in (θ2 ◦ θ1, π2)

(b6) U (M ≈? α) = U (α ≈? M)

Fig. 14. An extension to the unification algorithm in Figure 13.

in the result pattern because whether we choose � or Int for the return type of the

function type for α, the well-typedness of the expression remains the same. Applying

the operations ve and expand, defined in Section 5.2, to the pattern A〈�, A1〈�, ⊥〉〉,

we know that the best migration for this expression corresponds to the valid eliminator

{A.2, A1.1, A2.2}. Selecting Mdp with {A.2, A1.1, A2.2} yields the type (� → Int) → Int,

the type of λx : � .x (succ (x True)) after migrating the parameter x. This means that our

extension could indeed find a more precise migration for λx : � .x (succ (x True)).

An extension to the unification algorithm Figure 14 presents an extension to the unifica-

tion algorithm that implements our idea from above. We briefly go through the cases. First,

the cases (bR) and (bR∗) replace cases (b) and (b∗) in Figure 13, by renaming the type vari-

ables α to β. Note that from now on, we use α to denote migration variables and β to denote

all other variables. The cases (b1) through (b4) handle unification between a migration

variable and itself, a constant type, a non-migration type variable, and a variational type.

Case (b5) handles the unification between a migration variable and a function

type. This case uses an auxiliary function AllLvsDynMvs to determine if the leaves

of a given input type are all �s or migration type variables. For example, all

AllLvsDynMvs (α1 → α), AllLvsDynMvs (α2), and AllLvsDynMvs ((� → α) → α2)

are true, while AllLvsDynMvs (α1 → Int) and AllLvsDynMvs ((α1 → Bool) → α2) are

false. This function helps avoid non-termination in our extension. To illustrate, consider
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the constraint α ≈? α → β. Such a constraint arises when typing a self application, such

as in the expression λx : � .x x. This constraint fails to solve using the constraint solving

algorithm in Figure 13 due to the occurs check.

With the extension in Figure 14, we will turn the constraint α ≈? α → β into

A1〈�, α1〉 → A2〈�, α2〉 ≈? (A1〈�, α1〉 → A2〈�, α2〉) → β. This constraint encodes four con-

straints, and one of them is α1 → α2 ≈? (α1 → α2) → β (if we select the variational

constraint with the decision {A1.2, A2.2}). We observe that this problem is larger than

the original problem α ≈? α → β and the constraint between the parameter types (α1 ≈?

α1 → α2) resembles the original problem. We can envision that the unification will not

terminate if we keep on refining migration variables as we did above.

There are two potential ways to address this problem. The first is that we use a heuristic,

such as allowing a single migration variable be refined by up to a certain number of times

only. Any further refinement attempt on the same migration variable would be rejected

and treated as a unification failure. The second is to detect the unification that unifies a

migration variable (α) against a function type that contains the migration variable (α) and

all other leaves are other migration variables or �s. Such a unification does not reflect

any program structure information but is resulted from refining a unification variable to a

function type, since constraint generation (Figure 11) does not generate such a constraint.

If such a unification problem is detected, we can terminate the unification with a failure.

Note, even though unification will fail for α1 → α2 ≈? (α1 → α2) → β, which means

the typing pattern returned for unifying it will be ⊥, the typing pattern for unifying

A1〈�, α1〉 → A2〈�, α2〉 ≈? (A1〈�, α1〉 → A2〈�, α2〉) → β will not be ⊥. It is A1〈�, ⊥〉. This

means that the pattern for solving α ≈? α → β is not ⊥.

In this extension, we use the second way to address this problem. Concretely, we capture

it in the first subcase of case (b5). In the second subcase, α does not occur in the function

type and all leaves are migration variables, then we directly map α to the function type.

In the third subcase, the function type contains some �s. We need to refine α to a function

type, but without creating new variations. The last subcase implements the idea of refin-

ing a migration variable into a function type whose both parameter and return types are

variations.

With this extension, let’s now turn to finding migrations for the term λx : � .x x. First,

we generate the constraint A〈�, α〉 ≈? A〈�, α〉 → β and the type for the term is A〈�, α〉→β.

This constraint will be solved using case (d) of Figure 13, which will solve two constraints

originated from the two alternatives of A. For the left alternative, the constraint is � ≈?

� → β, which will be solved by case (a) of Figure 13 with the solution (∅,�). For the right

alternative, the constraint is α ≈? α → β. This constraint will be handled by the fourth

subcase of case (b5) in Figure 14, and it will be transformed to A1〈�, α1〉 → A2〈�, α2〉 ≈?

(A1〈�, α1〉 → A2〈�, α2〉) → β.

With a few steps, this problem can be solved and the solution is

{α �→ A1〈�, α1〉 → A2〈�, β〉, α2 �→ β} and the pattern is A1〈�, ⊥〉. Substituting the

type of the term with this solution yields A〈�, A1〈�, α1〉 → A2〈�, β〉〉→β and the overall

pattern is A〈�, A1〈�, ⊥〉〉. From this pattern, we can use ve and expand defined in

Section 5.2 to calculate the strictest valid eliminator {A.2, A1.1, A2.2}. Selecting the type

A〈�, A1〈�, α1〉 → A2〈�, β〉〉→β with this eliminator leads to the type (� → β) → β, which

is a most static migration for λx : � .x x. This shows that with the extended constraint
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solving algorithm, we could find a more precise migration for λx : � .x x that we could not

find earlier.

9.3 Further migration scenarios

Sections 4 and 5 provide a type system and a method for finding all best migrations. In

practice, there may be different migration requirements. In this subsection, we explore a

few of them and show how to support them with machinery developed in earlier sections.

Specifically, we consider the following migration scenarios.

i. Can the programmer control which parameters must or must not be migrated?

ii. If migrating a set of indicated parameters yields a type error, can we still migrate a

subset of these parameters?

iii. Given a set of parameters, can we find which parameters cannot be migrated in

unison?

iv. Can we find the migrations that migrate the greatest number of parameters?

We use the program rowAtI to illustrate these scenarios and the development of cor-

responding machinery. Recall that the variations introduced for the parameters fixed,

widthFunc, table, border, and i are A, B, D, E, and F, respectively. The typing pattern

for this program is shown in Section 4.5 and is reproduced here for readability.

πa = A〈E〈�, ⊥〉, B〈E〈�, ⊥〉, ⊥〉〉

We next go through each scenario.

Scenario i: We begin with a concrete case. Assume that the programmer requires that

table must be migrated and widthFunc must not be migrated. We can build a decision

δr for refining the pattern πa based on this requirement. To express that table must be

migrated, we extend δr with D.2, as D is the variation introduced for table. For widthFunc

to be not migrated, we extend δr with B.1, making δr = {B.1, D.2}. After that, we refine

πa with δr, yielding the new pattern A〈E〈�, ⊥〉, E〈�, ⊥〉〉, which could be simplified to

E〈�, ⊥〉. We can now apply the method developed in Section 5 to the pattern E〈�, ⊥〉 to

find the best migrations for rowAtI while honoring the requirements. Based on the pattern

E〈�, ⊥〉, the migration result is that border, the parameter corresponds to E, cannot be

migrated, and all other parameters can be migrated. Overall, the migration is that we can

migrate fixed, i, and table.

In general, for a program and its typing pattern π generated from MGSM, we follow the

following steps to handle this scenario.

1. For each parameter that must be migrated, we extend δr with d.2, where d is the

variation introduced for the parameter.

2. For each parameter that must not be migrated, we extend δr with d.1, where d is the

variation introduced for the parameter.

3. We refine the pattern π with δr.

4. With the resulting pattern from the last step, we use the method for finding most

static migrations outlined in Section 5.2 to find desired migrations.
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Scenario ii: Assume that the programmer requires to migrate all fixed, widthFunc, and

table. According to the process of calculating δr given earlier, δr = {A.2, B.2, D.2}. We

observe that �πa�δr = ⊥, indicating that not all these parameters can be migrated at the

same time. However, the ⊥ does not indicate that none of the parameters can be migrated.

To figure out if a parameter within the specified set could be migrated, we could list all

decisions yielding best migrations and check if the parameter appears in any set. For exam-

ple, based on Section 5.2, the decisions corresponding to best migrations for rowAtI are

{A.2, B.1, D.2, E.1, F.2} and {A.1, B.2, D.2, E.1, F.2}. From the first set, we could decide

that fixed (since fixed corresponds to A and A.2 belongs to the set) and table of the

desired set could be migrated. From the second set, we could decide that widthFunc and

table could be migrated. In this case, we have two different such sets. In other cases, we

may have only one such set. For example, if the programmer indicated that they wanted

to migrate fixed and border, then the unique migration corresponds to the decision is

{A.2, B.1, D.2, E.1, F.2}, indicating that only fixed within the two parameters could be

migrated.

Scenario iii: During program migration, it is quite common that migrating one param-

eter may preclude the migration of others. For example, in rowAtI, we could not migrate

widthFunc if we have migrated fixed and vice versa. Therefore, presenting the unison

parameters that could no longer be migrated can be useful to programmers.

Assume that the programmer has migrated fixed and that we want to calculate the

impact it has on other parameters. We must now consider two cases. The first case migrates

fixed, and the decision is δr = {A.2}. The second case does not migrate fixed, and the deci-

sion is δ¬r = {A.1}. Let πr and π¬r denote the typing patterns resulted from selecting πa

with δr and δ¬r, respectively, we have

πr = B〈E〈�, ⊥〉, ⊥〉 π¬r = E〈�, ⊥〉

In the first case, from πr, we have two decisions that lead to ⊥: {B.1, E.2} and {B.2}. In

the second case, from π¬r, only one decision leads to ⊥: {E.2}. By comparing the decisions

in these two cases, we observe that both cases contain E.2. This implies that migrating

border, the parameter corresponding to E, always causes an error, meaning that fixed

being migrated was irrelevant to the reason border cannot be migrated. On the other hand,

only a decision in the first case contains B.2 while none in the second case contains it.

This implies that the reason widthFunc cannot be migrated is because fixed was migrated.

Consequently, the parameter that cannot be migrated in unison with fixed is widthFunc.

Given an expression e and π for its MGSM typing, and assume the parameter x is

migrated and the introduced variation for x is d, the following steps list the process of

finding parameters that cannot be migrated due to the migration of x.

1. Let πr = �π�d.1 and π¬r = �π�d.2.

2. Collect the decisions that produce ⊥ when selecting π with πr.

3. Collect the decisions that produce ⊥ when selecting π with π¬r.

4. For any d′, if d′.2 appears in some decisions from step (3) but not from any of

decision in step (2), then the parameter that corresponds to d′ cannot be migrated in

unison with x.
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Scenario iv: This scenario aims to find out the migrations that migrate the greatest num-

ber of parameters, which we refer to as maximal migrations. For example, if one most

static migration migrates two parameters while another migrates four, then the latter is a

maximal migration if no other migrations migrate more than four parameters. In some sit-

uation, maximal migrations are not unique. For example, two most static migrations for

rowAtI migrate three parameters and both are maximal.

Given an expression and its typing pattern π for its MGSM, a simple process to find

maximal migrations is generate all best migrations from π and filter out the migrations

that migrate the greatest number of parameters.

This process is straightforward and necessitates no changes to our existing machinery,

but is computationally expensive. We can improve the efficiency by slightly adapting the

ve function for collecting best migrations from Section 5.2. Specifically, for each internal

node of the typing pattern, we compare the cardinality of the decisions from the left and

right subtrees and discard the decisions that have more left selectors, which are selectors

of the form d.1 for some d (see Section 2.2). We express this idea in the following function

mve.

mve (�) = {∅}

mve (⊥) =∅

mve (d〈π1, π2〉) =

⎧

⎪

⎪

«

⎪

⎪

¬

lmve rmve =∅ or |D | − |lmve[0]|1| > |D | − |rmve[0]|1|

rmve |D | − |lmve[0]|1| < |D | − |rmve[0]|1|

lmve ∪ rmve otherwise

where lmve = {{d.1} ∪ l | l ∈ mve (π1)}

rmve = {{d.2} ∪ r | r ∈ mve (π2)}

In the definition, δ|1 (introduced in Section 4.5) returns all left selectors in δ. The

notation lmve[0] returns any member from the set lmve. This is valid because all of the

members in lmve include the same number of left selectors, and so do those in rmve. The set

D (introduced in Section 5.2) contains all variations introduced in typing e. Note, given a

decision δ, if d.1 /∈ δ then the parameter corresponding to d cannot be migrated. Therefore,

|D | − |lmve[0]|1| gives the number of parameters that can be migrated in lmve[0].

mve is always more efficient than ve since the former keeps the set of decisions that

yield maximal migrations only while the latter keeps all best migrations. In particular, if

there is a unique maximal migration, then mve returns only one decision.

Discussion. Supporting these scenarios by reusing or slightly adapting existing machinery

demonstrates the generality of our approach. We can also support variations or combina-

tions of scenarios we looked at with ease. For example, a combination of scenarios i and iv

could be supported by following the first three steps outlined in Scenario i and then apply-

ing the mve function to the resulting pattern. As another example, we may be interested in

the scenario of finding the maximal migration within a given set of parameters. To support

this scenario, we first select the typing pattern of the MGSM typing with selectors of the

form d.1, where d corresponds to a parameter that does not belong to the given set. The

selection result is a pattern, to which we apply mve to find the maximal migration within

that parameter set.
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Name Size # Func. # Para. # Chg. # Best Gradual Brute Migrational

array 31 5 6 2 1 8.7e−3 0.45 1.9e−2

blackscholes 125 8 17 10 23 2.1e−2 – 6.7e−2

fft 93 5 19 2 2 1.9e−2 – 4.4e−2

matmult 29 3 8 2 1 3.5e−3 0.82 1.1e−2

nbody 187 21 44 20 31 6.4e−2 – 0.25

quicksort 44 3 9 2 2 7.8e−3 3.37 2.4e−2

raytrace 207 20 45 25 46 0.11 – 0.36

Fig. 15. Running time (in seconds) of migrational typing on programs converted from

Grift (Kuhlenschmidt et al., 2019). For each row, columns 2 through 4 give the metric of the pro-

gram, including the number of lines of non-blank code, the number of functions, the number of

dynamic parameters, and the number of changes we made to the program. Times are measured

on a ThinkPad with 2.4GHz i7-5500U 4-core processor and 8GB memory running GHC 8.0.2 on

Ubuntu 16.04. Each time is an average of 10 runs. The symbol – indicates that typing timed out after

1,000 s.

Overall, the generality of our approach demonstrates that it could be a useful foundation

for developing more complex and significant migration supports in practice.

10 Evaluation

This section evaluates the performance of migrational typing. For this purpose, we have

implemented a prototype in Haskell. The prototype implements the techniques developed

in this paper. Besides the features presented in Sections 4.1 and 9.1, the prototype also

supports recursive functions, a built-in list type, a built-in Vector type, and a tuple type,

which are needed to encode the examples described below.

To evaluate the performance of our idea in practice, we have converted programs in Grift

to the language supported by our prototype. We used all the programs from Kuhlenschmidt

et al. (2019) except the program sieve, which uses recursive types that are not supported

in our prototype. Since these converted programs are all well-typed, we seed errors in the

programs by randomly applying between 2 and 25 changes in each. Each change replaces

one leaf of the AST (a variable reference or constant) with another leaf. These programs

are summarized in columns 2–5 of Figure 15, showing size in lines of non-blank code,

number of functions, number of dynamic parameters, and the number of leaves that were

changed.

For each evaluated program, we compared the runtime of migrational typing with stan-

dard gradual typing and with a brute-force strategy for most static migration for the

program, shown in columns 7 through 9 of the table. In standard gradual typing, we run

our implementation without creating any variations. We also report the number of most

static migrations in column “# Best,” computed using the method in Section 5.2. The time

for gradual typing can be considered a baseline—this is the time to simply type the given

program. The time for the brute-force strategy represents a naive approach to migrational

typing, generating 2n variants of a program with n dynamic parameters, and gradually typ-

ing all of them. In Section 1.1, we discussed that an exploration of all programs are needed
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Fig. 16. Relations between ratios of typed parameters and migrational typing times for the nbody

benchmark.

to find best migrations. We omit the time for computing the most static migrations from

the figure because the time is always within 0.04 s.

We observe that the brute-force approach, as expected, is exponentially slower than

gradual typing, and it successfully types only the programs that have fewer than 10

parameters. On the other hand, migrational typing scales linearly with the size of the

program and exhibits only a 2–3.5 times overhead over gradual typing.

We have also investigated the impact of the ratio of typed parameters on migrational

typing time, and we presented the results in Figure 16. Note that the x-axis cuts off at 93%

because, as we made random changes to the program, not all parameters can be given static

types. In general, a higher ratio of typed parameters leads to fewer variations being created

and thus takes shorter time for migrational typing to finish.

11 Related work

11.1 Annotation upgrading and migratory typing

Tansey & Tilevich (2008) studied the problem of automatically upgrading annotations

(such as types and access modifiers in Java) in legacy applications in response to the

upgrading of, for example, testing frameworks and libraries. This is similar to our work in

that it tackles the problem of migrating programs to a new version by changing annotations

in the program. Their methodology is quite different; however, in that it needs two example

programs illustrating how annotations change between framework versions, so that their

inference rules can learn the changes made in the examples. In contrast, our approach only

needs to reason about how type annotations affect the typing of the program, so migrat-

ing annotations requires only information attainable through the type system. Moreover,

the kind of migrations are orthogonal. Their goal is to upgrade an entire codebase auto-

matically to use a new framework, which means that they have one endpoint. Migrational

https://doi.org/10.1017/S0956796822000089 Published online by Cambridge University Press



50 J. P. Campora et al.

typing presents all of the ways a programmer might want to change the types of their

program by adjusting � annotations, meaning that there are multiple endpoints.

Migratory typing (Tobin-Hochstadt et al., 2017) provides another approach to migrat-

ing dynamically typed code to statically typed code by creating a statically typed sister

language that interfaces seamlessly with the dynamically typed language. In general the

focus of this work is about designing such a sister language such that types can be assigned

to existing programs in the dynamic language with minimal refactoring. While program-

mers have to manually add type annotations to make programs more static in migratory

typing, migrational typing supports systematically typing the whole migration space and

automatically finding the best migrations.

This means that a large focus of migratory typing is orthogonal to our work in that we

assume we are working within a given gradual language and that we do not have to design

a static sister language to a dynamic language. On the other hand, if we were given a static

language and gradualized it via the idea of Garcia et al. (2016), Cimini & Siek (2016, 2017)

we conjecture we could design a migration tool for gradualized languages that supported

unification based type inference.

11.2 Gradual typing migration

As discussed in Section 1.3, this work is closely related to the work by Migeed & Palsberg

(2019) on finding maximal migrations for gradual programs. There are several similari-

ties in their work and ours. For example, they consider a set of possible migrations for a

gradually typed programs and try to find all of the maximal migrations. These maximal

migrations are migrations that cannot add any more type information to the program with-

out causing a static type error, which are similar to our most static migrations. They show

that the process of finding maximal migrations is NP hard.

Their work has some notable differences with our work, however. Mainly, the language

they consider is a version of GTLC (Siek et al., 2015) with the ability to add Bool and

Int annotations. In contrast, we start with ITGL, a gradualized version of the Hindley-

Milner language, which has a principal type inference that works on unannotated terms.

Essentially, while both work aims to find maximal migrations, they use different tech-

niques and criteria. In their work, they continuously generate more precise programs by

replacing a � with a more precise type and tests the well-typedness of the generated pro-

gram. They find a maximal migration if no more �s exist or no more � could be replaced

with any more precise type. A migration in our work is maximal if no further � can be

eliminated with respect to ITGL Garcia & Cimini (2015) constraint solving. As a result,

their approach may find types that are rejected by the ITGL inference that we adapt. For

example, for λx : �.x (succ (x True)), their approach infers that x can be given the type

� → Int, whereas our approach respects ITGL, which considers the use of x to be ill-typed

(Our extension in Section 9.2 does infer that x may be migrated to the type � → Int).

Finally, we have evaluated the efficiency of our approach on large programs, and we

observed that finding all best migrations in our approach is usually within a factor of 2

of typing each possible migration. The efficiency in their approach is unclear. It would

be interesting as future work to see if our machinery could be exploited to improve the

efficiency of their work.
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Phipps-Costin et al. (2021) developed a framework named TypeWhich for migrating

gradual types. While both our work and the work by Migeed & Palsberg (2019) aim at

maximizing type precision during migration, TypeWhich allows users to consider not

only type precision, but also type safety (such that migration does not introduce run-

time errors) and type compatibility (such that migration does not break the interoperability

between migrated and un-migrated code). As such, some migrations in our work and that

by Migeed & Palsberg (2019) may introduce dynamic runtime errors, but not in the safety

or compatibility mode of TypeWhich. The latter two modes are particularly useful because

migrations are often not done for the whole project and the migration process should not

break code interactions.

In addition, our work and TypeWhich differ in many aspects. First, our work can find

all best migrations for a given program whereas TypeWhich finds just one best migration

by default. Further migrations may be returned by TypeWhich through model extraction

by the underlying SMT solver. While returning the first model is efficient, the complexity

of extracting all migrations is unclear.

Consider, for example, the following expression.

width fixed widthFunc = 2 + (if fixed then widthFunc fixed else widthFunc 33)

TypeWhich displays the following migration first for this function when prioritizing type

precision.

width (fixed:Int) (widthFunc:Int -> Int)

= 2 + (if (fixed:�) then widthFunc fixed else widthFunc 33)

Our work finds two best migrations for the function width, and neither is more precise than

the other. In the first migration, the type for fixed remains to be � whereas the type for

widthFunc is Int-> Int, as shown below.

width (fixed:�) (widthFunc:Int -> Int)

= 2 + (if fixed then widthFunc fixed else widthFunc 33)

In the second migration, the type for fixed is migrated to Bool and the type for widthFunc

is migrated to �-> Int (without the extension in Section 9.2 the type for widthFunc will

remain �). The migrated program is shown below.

width (fixed:Bool) (widthFunc:� -> Int)

= 2 + (if fixed then widthFunc fixed else widthFunc 33)

For programs that cannot be fully statically typed, it is likely that hundreds of best migra-

tions exist. Our approach finds all of them in time linear to the size of the program. Since

our approach may find a large number of best migrations simultaneously, it is helpful to

allow users to specify preferences about where migrations are desired. We support them

through extensions in Section 9.3. Since TypeWhich finds best migrations sequentially,

developing such supports could be harder.
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Second, by design, TypeWhich may ascribe a � type to a subexpression even though

the subexpression has a static type during static type checking. This design allows more

parameters to be migrated when precision is maximized. For example, in the migration for

width above, TypeWhich ascribed � to fixed that has the type Int for the condition so that

fixed can be used where a Bool is needed. Without the ascription, the migrated program

is statically ill-typed. Our approach does not use ascription for maximizing migrations.

Third, our approach supports polymorphism through let (Section 9.1) while TypeWhich

does not.

Henglein & Rehof (1995) developed an approach for embedding Scheme programs in

ML by inserting coercions into subexpressions whose type correctness cannot be stati-

cally verified. Their approach uses type inference to reduce coercions that will be inserted,

making it behave similarly to TypeWhich that prioritizes type safety. Technically, their

approach is more involved. Given a program, it collects typing constraints, builds a simple

value flow graph, and decides where coercions are needed.

11.3 Relation to gradual typing

Work on gradual typing can be broadly defined along three dimensions. The first

investigates the integration of gradual typing with advanced typing features, such as

objects (Siek & Taha, 2007), ownership types (Sergey & Clarke, 2012), refinement

types (Wadler & Findler, 2009; Lehmann & Tanter, 2017; Jafery & Dunfield, 2017;

Williams et al., 2018), session types (Igarashi et al., 2017), and union and intersection

types (Siek & Tobin-Hochstadt, 2016; Castagna & Lanvin, 2017; Toro & Tanter, 2017;

Castagna et al., 2019). From this perspective, our type system studies the combination

of variational types with gradual types. Gradual languages with type inference (Siek &

Vachharajani, 2008; Rastogi et al., 2012; Garcia & Cimini, 2015) were a large influence

on migrational typing. While ITGL was used as the basis for formalizing our type system,

we expect that our approach can be extended to handle other features in this line of work.

The reason is that the idea and manipulation of variations is orthogonal to other type sys-

tem features. In particular, the idea of type compatibility in Section 4.2 and the handling

of type errors in Section 4.3 can be easily extended.

The second dimension studies runtime error localization and performance issues with

sound gradual typing. The blame calculus (Tobin-Hochstadt & Felleisen, 2006; Wadler &

Findler, 2007, 2009) adapts the contract system notion of blame so that less precise parts

of a program are blamed when cast errors occur. Ahmed et al. (2011, 2017) extended that

work to further handle polymorphic types. Since those works, there has been a number of

papers involving parametricity in the gradually typed setting (Toro et al., 2019; New et al.,

2019). Takikawa et al. (2016) showed that sound gradually typed languages suffer from

performance issues as more interactions between static code and dynamic code leads to

frequent value casts. Confined Gradual Typing (Allende et al., 2014) provides constructs

to control the flow of values between static and dynamic code, mitigating performance

issues and making gradual typing more predictable.

The final dimension studies the production of gradual type systems from specifica-

tions of static type systems. For example, Garcia et al. (2016) presented a way to create

gradual type systems from static ones using techniques from abstract interpretation. The
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Gradualizer (Cimini & Siek, 2016, 2017) can produce a gradual type system and dynamic

semantics for a statically typed language given its formal semantics. It is thus interesting

to investigate how these approaches interact with variations in the future. Siek et al. (2015)

discussed the criteria for gradual typing. We employed the criteria of the underlying ITGL

to prove Theorem 7.

11.4 Type inference

The goal of gradual typing is to find out what parameters can be given static types. As

such, gradual typing is closely related to the idea of type inference.

Gradual type inference with flow-based typing (Rastogi et al., 2012) has been explored

to make programs in dynamic object-oriented languages more performant. Since our work

is formalized on ITGL, our work inherits the relations between ITGL and flow-based

inference (Garcia & Cimini, 2015). Additionally, while flow-based inference ensures that

inferred type annotations do not cause runtime errors, our current formalization does not

have this property as our approach is not flow-directed.

The inference in flow (Chaudhuri et al., 2017) is also flow-based and was specifically

designed to not produce false positives for idioms that are commonly used in JavaScript.

It is possible that migrational typing can help the inference process for languages like

JavaScript by using variations to reason about idioms in messy scenarios. A flow-based

inference was also employed over Reticulated Python’s cast inserted transient translation.

The inference was used to optimize program performance, removing unnecessary casts

where the inference indicated that it was safe.

A few type systems, such as Guha et al. (2011), Chugh et al. (2012), Pearce (2013),

support flow-based reasoning but do not perform type inference.

SimTyper, developed by Kazerounian et al. (2021), aims to infer usable types for Ruby.

Unlike most type inference algorithms, the goal of SimTyper is not to infer most gen-

eral (precise) types, which could be verbose and hard to use in presence of subtyping,

structural types, overloading, and other dynamic language features. Instead. the goal of

SimTyper is to infer usable types that programmers often write. SimTyper is built on

InferDL Kazerounian et al. (2020), a heuristics-based type inference algorithm, and a type

equality prediction method based on machine learning. Essentially, when SimTyper dis-

covers an overly general, complicated type, it uses the type equality predictor to find a type

that is more concise and is equal. SimTyper then uses that more concise type to replace the

complicated one and check if that replacement violates any typing constraint. It accepts

the concise type if no violations detected and rejects the type and look for another concise

type otherwise.

Wei et al. (2020) developed LambdaNet for inferring types for TypeScript. Given a pro-

gram, LambdaNet first transforms it to a type dependency graph, where nodes are type

variables for subexpressions in the programs and hyperedges express constraints (such as

the subtyping relation or type equality). Hyperedges may also provide hints to type infer-

ence, such as variables giving rise to the connected type variables have similar names. All

type variables are then converted to vectors of numbers (known as embedding in machine

learning) and, LambdaNet uses a set of rules to propagate type information across the

dependency graphs. These rules manipulate the embedding in each node. As with deep
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learning (Neocleous & Schizas, 2002), the intuitions behind such rules are unclear. Finally,

after propagation completes, inferred types are readout from embeddings.

11.5 Variational typing and others

This work reuses much machinery from variational typing (Chen et al., 2012, 2014) to sup-

port reuse when typing the whole migration space. Thus, migrational typing can be viewed

as an application of variational typing. Variational typing has been employed to improve

type inference of generalized algebraic data types (Chen & Erwig, 2016), which uses vari-

ation types to represent potentially many types for a single expression. Variational typing

has also been used to improve error locating in functional programs using counter-factual

typing (CFT) (Chen & Erwig, 2014a,b). Both migrational typing and CFT use variational

types to efficiently explore a large number of hypothetical situations. A technical difference

between CFT and migrational typing is that CFT tries to find a minimal change that would

make an ill-typed program type correct. In contrast, migrational typing tries to remove �

annotations from as many parameters as possible. The process of extracting the maximum

change for migrational typing (as described in Section 5.2) is well defined while finding the

minimum change in CFT has to rely on heuristics due to the nature of type error debugging.

Another difference is that migrational typing considers the interaction between variational

types and gradual types. The idea of using pattern-constrained judgments in Section 4.3

yields a declarative specification for handling type errors, while previous applications of

variational typing have had to explicitly track the introduction and propagation of type

errors.

The variational cost analysis by Campora et al. (2018b) provided an approach that har-

monizes type safety and gradual typing performance. The motivation of that work was

that migrating programs will likely slowdown program performance. The solution in that

work was constructing a “cost lattice” that estimates the runtime overhead induced by type

annotations and comparing costs of different migrations. The solution supports different

migration scenarios while adding type annotations, for example finding the migrations that

yield the best performance. Technically, that work adapted cost analysis for functional

programs (Danner et al., 2015) to a gradually typed language. That work also used the

machinery of variational typing to reusing typing and cost analysis to efficiently build the

cost lattice.

It is possible that type annotations added by programmers during migrations may cause

runtime type errors. Campora & Chen (2020) presented a static type system for detecting

runtime type errors, finding out the �s that prevent the runtime type errors from being

detected by the static type system, and suggesting fixes to remove dynamic runtime type

errors.

Variational typing is defined in terms of the choice calculus (Erwig & Walkingshaw,

2011). Other applications of the choice calculus include the development of variational

data structures (Walkingshaw et al., 2014; Meng et al., 2017; Smeltzer & Erwig, 2017)

to support variational program execution (Erwig & Walkingshaw, 2013; Nguyen et al.,

2014; Chen et al., 2016), and view-based editing of variational programs (Walkingshaw &

Ostermann, 2014; Stănciulescu et al., 2016).
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Typing patterns in our work have a close resemblance to BDD (Binary Decision

Diagrams) of Boolean formulas (Akers, 1978; Bryant, 1992). For example, choices in

patterns correspond to internal nodes in BDD, ⊥ and � correspond to leaves 0 and 1

in BDDs, respectively, and selecting the right alternative of a choice corresponds to fol-

lowing the high edge of an internal node. Moreover, the idea of pattern normal forms,

introduced before Theorem 9, are similar to reduced BDDs. Variable ordering has a sig-

nificant impact on the size of a BDD. The number of nodes of a BDD may be linear to

the number of variables under one ordering but it could be exponential under another.

Similarly, the ordering of choice names impact the size of a typing pattern. For exam-

ple, the pattern A〈⊥, B〈�, C〈⊥, �〉〉〉 has three internal nodes and four leaves, while an

equivalent pattern C〈A〈⊥, B〈�, ⊥〉〉, A〈⊥, �〉〉 has four internal nodes and five leaves.

Due to the reasons below, we conjecture that the ordering problem in our work is

not as critical as in BDDs. First, the ordering problem becomes more conspicuous when

the leaves mix ⊥s and �s. Instead, due to the fact that left alternatives of choices have

�s when they are created and �s unify with any types, left subtrees of patterns tend to

have �s. Section 5.1 gives a formal account of this. For such patterns, the impact of

ordering on sizes decreases. For example, A〈�, B〈�, C〈�, ⊥〉〉〉 has seven nodes, and

C〈�, A〈�, B〈�, ⊥〉〉〉, an equivalent pattern but with different ordering, also has seven

nodes. Second, as explained in Section 5.2 (the last second paragraph), typing patterns are

usually small, this makes the ordering less important, as even a suboptimal ordering will

not cause the pattern to have too many nodes.

12 Conclusion

We have presented migrational typing, a type system that allows programs in an implicitly

typed gradual language to be assigned a new type based on the possible removals of

dynamic type annotations in the original program. Migrational typing solves an important

unaddressed problem in gradual typing, namely having a safe and efficient way to move

around in the possible dynamic-static typing space for a program. It achieves this by

conceptually typing the whole migration space, marking where type errors occur so that it

can safely present the possible migrations for the program. We have shown that the system

can infer the most static possible types that can be assigned to a program and that this

process can be constrained according to user-defined criteria. Moreover, the migrational

type system is sound and complete with respect to removing dynamic annotations in

ITGL, and its constraint generation and unification algorithms are sound and complete.

We have also shown that this approach is scalable, performing nearly exponentially

better than the brute-force approach of generating and typing the migration space sepa-

rately. Later, we showed that migrational typing can be adapted to statically reason about

the number of dynamic casts that will be generated by different points in the migration

space so that we can support migration scenarios that consider programmers’ typing goals

and performance goals (Campora et al., 2018b). In future work, we plan to see if we can

adapt migrational typing to work with a non-unification based inference. This will allow

it to analyze gradual languages with object-oriented features like Reticulated Python or

TypeScript with greater ease. We also plan to explore whether migrational typing can be

adapted to provided an analysis of the runtime safety of casts in gradual programs.
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