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Corals  are  critical  in supporting  high  productivity  and  biodiversity  in oligotrophic  seawaters  by  recycling
nutrients.  Here,  we  constructed  a model  of nitrogen  cycling  in coral  endosymbionts,  which  provides  a
mechanism  for  the efficient  nutrient  metabolism  of  corals.  First,  we  conducted  a long-term 15N-labelling
experiment  on  corals  using  flow-through  aquaria,  where 15N-labelled  nitrate  was continuously  supplied
to  the corals  Porites  cylindrica  and Montipora  digitata  for two  months.  After  the  labelling  experiment, 15N
isotope  ratios  were  measured  in  the  algal  endosymbionts  and  their  animal  host  and  the  nitrogen  (N)
dynamics  through  the endosymbiont  cells  were modelled.  The  model  calculations  showed  that  the  algal
endosymbionts  in  P.  cylindrica  and  M. digitata  derived  an  average  of 80%  and  50%  of their  N from  the
animal  host,  respectively.  The  finding  indicates  that  the  large  N pool  in  the  coral  animal  tissue  plays  an

important  role  in  supporting  endosymbiotic  function,  photosynthesis,  and  consequent  coral  reef  growth.
The  species-specific  difference  in  available  internal  N was  attributed  to N biomass  of  the  animal  host
per  unit  coral  surface  area.  Algal  N uptake  from  seawater  was  enhanced  by 20%  with  the  addition  of
phosphate  in  seawater.  Thus,  active  endosymbiotic  algal  photosynthesis  in  oligotrophic  seawater  may
be  related  to  their dependence  on the host-derived  phosphorus  as  well  as N.
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 sea sponges (de Goeij et al., 2013), and (3) the recycling
ervation of nutrients within the coral-algal holobiont (i.e.,
d Douglas, 1998; Tanaka et al., 2006; Reynaud et al., 2009).
ird mechanism has been discussed for half a century.

rals are incubated in prolonged darkness or the photo-
 activity of their algal endosymbionts is inhibited, they
the release rate of ammonium (NH4

+) into the ambi-
ater (Wilkerson and Muscatine, 1984; Rahav et al., 1989;
t al., 1990), suggesting that algal endosymbionts recycle
reted by the animal host (nitrogen recycling hypothe-
ever, such an artificial manipulation distorts the normal
sm of corals: under normal light conditions, endosym-
nslocate most of the C-rich photosynthate to the animal
the organic matter is used for respiration and short-term
c demand of the host (Tanaka et al., 2006; Hughes et al.,
hen the photosynthetic activity of endosymbionts is arti-

hibited in experiments, the animal host cannot acquire

 organic matter, which may  prevent NH4
+ assimilation by

ia glutamine synthetase and/or stimulate it to use amino
alternative respiratory substrate (Wang and Douglas,
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 date, these processes have only been observed when the
biotic photosynthesis was severely limited. It is unknown
etabolic responses occur under natural metabolic condi-

if instead the animal host does not release NH4
+ and the

bionts do not recycle it (nitrogen conservation hypoth-
ng and Douglas, 1998; Piniak and Lipschultz, 2004). To
derstand nitrogen (N) recycling and conservation in corals,
es between the endosymbionts and animal host need to
ted under natural conditions.
ndosymbionts in corals absorb inorganic N from seawa-
esize organic N, and translocate it to the coral animal host
t al., 2003; Tanaka et al., 2006; Pernice et al., 2012; Kopp
13). The acquisition of nutrients from seawater is rela-
y to measure when isotope tracers such as 15N-labelled

 are used in coral cultural experiments (Grover et al.,
naka et al., 2006; Pernice et al., 2012; Kopp et al., 2013).
, it is suspected that the endosymbionts absorb nutrients
from seawater but also from animal host N-excretion

 et al., 2009; Seemann, 2013). Because the endosymbionts
the animal host tissue (Wakefield and Kempf, 2001), it has
nically difficult to quantitatively distinguish between the
-circulating N and externally-acquired N.

dress this issue, we conducted a long-term and contin-
-tracer experiment, using 15N-labelled nitrate (15NO3

−)
tructed a simple mixing model of internally-circulating N
nally-acquired N for endosymbionts. This novel approach
s to quantitatively partition host- and seawater-derived

fluxes to the endosymbionts. Overall, we  show that the
ral endosymbionts can actively perform photosynthesis

ophic seawater is related to their dependence on the host-
.

ials and methods

l preparation

ents of Porites cylindrica and Montipora digitata (2–3 cm
re collected from triplicate colonies at a 1.5-m depth
esoko Island, Okinawa, Japan (26◦37–39′N, 127◦51–52′E)
12, transferred to Sesoko Research Station (University of

yus), attached to plastic bolts (n = 16 from each colony,
48 for each coral species), placed in an outdoor flow-
ank at the research station, and allowed to recover from
entation process (Fig. S1). The tank was  shaded with

 simulate insolation levels at a 1.5-m depth, and the sea-
s freshly pumped without filtration from the natural coral
ont of the research station. On 26 June 2012, the coral
s were transferred to indoor flow-through tanks (5.7 l),
sh seawater was continuously supplied at the approxi-

 of 70 ml  min−1 per tank after filtration (pore size: 1 �m)
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ater temperature in the tanks was maintained at 27 ◦C

to be 0.3
itata (n =
calculate
Endosym

ncentrations and calculated �15N of DIN in the culture tanks. Nutrient concentrations (�M
 DIN was  estimated by calculations (Eq. (3)). Mean ± 1s.d. are shown (n = 16).

Nutrient conditions NO3
− (�M) NO2

− (�M) 

lindrica Original 0.14 ± 0.07 0.09 ± 0.04 

+NP 1.46 ± 0.65 0.12 ± 0.04 

+N 1.73 ± 0.36 0.14 ± 0.03 

 digitata Original 0.13 ± 0.07 0.08 ± 0.02 

+NP 1.37 ± 0.63 0.11 ± 0.03 

+N 1.86 ± 0.66 0.14 ± 0.04 
 (2015) 163–169

ing seawater. An average underwater light intensity was
l  m−2 s−1, which was  provided with metal halide lamps.

labelling experiment

ch species, a mixed solution of potassium nitrate (KNO3:
)  and potassium dihydrogen phosphate (KH2PO4: 76 �M)
plied to two of the four tanks (+NP treatment) at the rate of
in−1 approximately and a solution containing only KNO3
lied to the other two tanks (+N treatment) at the same
3 in the supplied solution was  prepared by mixing nor-

3 and 15N-labelled KNO3, and the final �15N of NO3
− in

ion was 260‰, which was  directly measured by drying up
ion and subsequent mass spectrometer analysis. The con-
ns of NO3

−, nitrite (NO2
−), NH4

+, and PO4
3− in the tanks

sured with a nutrient analyzer (Seal Analytical, QuAAtro)
ut the experimental period (Table 1).

 start and after 2, 4, and 9 weeks of the 15N-labelling
nt, coral fragments were collected from each treatment

 (Fig. S1) and the animal host coral tissue including
bionts was taken off the carbonate skeleton using the
k method. The tissue suspension was centrifuged at
r 5 min  to separate endosymbionts (pellet) from animal
ernatant). The endosymbiont pellet was  suspended with
5-�m-filtered seawater (FSW) and the suspension was
ed again to purify the endosymbiont fraction. The second
ant was  combined with the first one and the mixed solu-
filtered onto a pre-combusted GF/F glass fibre filter (pore
m)  to collect coral animal host. Because all of the animal
e was not retained on GF/F filters, a part of the animal
ension was  stored without filtration at −20 ◦C for total N
analysis. The endosymbiont pellet was  also filtered onto
ter after suspended with FSW. All of the glass fibre filters
d at 50 ◦C and then frozen.

ratory analyses

ncentration and �15N of organic N collected on GF/F fil-
 analyzed on a Costech Elemental Analyzer (ECS4010)
o a Finnigan Delta IV Plus stable isotope ratio mass spec-

 via a continuous flow (Conflow III) interface at The Ohio
iversity. �15N was  determined as the per mil deviation
N relative to air. The standard deviation of 62 analyses
0 and USGS41 standards (U.S. Geological Survey) was
Total organic N in the unfiltered host tissue suspension
s oxidized into NO3

− with borate-buffered persulfate solu-
utoclaving (121 ◦C, 60 min) (Hansen and Koroleff, 1999)
oncentration of tissue-derived NO3

− was measured from
t absorbance at 220 nm with a spectrophotometer (Shi-
V-1800) (Collos et al., 1999). From the comparison of an
ost tissue suspension between TNh and the N amount
on the filter, the filter retention factor was determined

6 ± 0.01 for P. cylindrica (n = 8) and 0.23 ± 0.00 for M. dig-

 9) (mean ± s.e.). Total amount of animal host N was then
d for all the samples using these average retention factors.
biont and animal host N concentrations were normalized

) were measured for 15N-labelling tanks and original seawater and the

NH4
+ (�M) PO4

3− (�M) �15N of DIN (‰)

0.03 ± 0.03 0.02 ± 0.02 –
0.04 ± 0.04 0.12 ± 0.08 211 ± 23
0.03 ± 0.03 0.03 ± 0.04 221 ± 18
0.03 ± 0.03 0.04 ± 0.04 –
0.02 ± 0.02 0.12 ± 0.06 218 ± 16
0.02 ± 0.02 0.02 ± 0.02 226 ± 15
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Coral animal host

Vh , 15Nh

Endosymbiont

Ve , 15Ne

DIN from seawater

DIN from

host tissue

F1 , 15Nt

F2 , 15Nh

F3 , 15Ne

Extracellular release of 

organic N

Digestion by host

Organic N

Fig. 1. Nitrogen fluxes in a coral-algal symbiosis. Endosymbionts in coral absorb
dissolved inorganic nitrogen (DIN) from seawater and from the host’s internal DIN
pool and synthesize organic N. The organic N is stored in the endosymbionts or
transferred to the animal host. F1,  F2, and F3 show N fluxes normalized to coral
surface area (�mol  cm−2 d−1) from seawater to the endosymbionts, from the animal
host DIN pool to endosymbionts, and from the endosymbionts to the animal host
fraction, respectively. V and 15N indicate average N biomass per unit coral surface
area (�mol  cm−2) and average �15N value (‰) of each fraction, respectively, and the
changes of these values were expressed as a function of time from regression lines
(Table 3). The e, h, and t notations refer to the endosymbionts, animal host, and
treatment seawater in a culture tank, respectively (Table 2).

Table 2
List of symbols used in the model equations.

Symbol Description Unit

F1 DIN uptake from seawater �mol  cm−2 d−1

F2 DIN uptake from animal host excretion �mol  cm−2 d−1

F3 Translocation of organic N to animal host �mol  cm−2 d−1

Ve N biomass of algal endosymbionts �mol  cm−2

Vh N biomass of coral animal host �mol  cm−2

15Ne �15N of algal endosymbionts ‰
15Nh �15N of coral animal host ‰
15Np �15N of nitrate supplied to tanks ‰
15Nq �15N of DIN in natural seawater ‰
15Nt �15N of DIN in treatment seawater ‰
DINq

DINt
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Fig. 2. �15N in Porites cylindrica and Montipora digitata. Coral fragments of P. cylin-
drica (a and b) and M.  digitata (c and d) were continuously supplied with 15N-labelled
nitrate and phosphate (a and c) or 15N-labelled nitrate only (b and d), and the �15N
of  the endosymbionts (filled) and coral animal host (open) were measured over two
months. Mean ± 1s.d. (n = 3) at each sampling time. Parameters of the regression
lines are given in Table 3.
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el design and calculations

odel describes the endosymbiont N metabolism of inor-
ptake and organic N release (Fig. 1). The endosymbionts
issolved inorganic N (DIN: NO3

− + NO2
− + NH4

+) from sea-
: �mol  cm−2 d−1) and from the internal host-derived DIN
�mol  cm−2 d−1), and use it to synthesize organic N. The

 is then either stored in the endosymbiont, or lost from
s a transfer product to the host via extracellular release
c N (F3: �mol  cm−2 d−1). N and 15N mass balances of the
bionts were expressed as follows:

+ F2 − F3 (1)

Ve =
(

15Nt × F1
)

+
(

15Nh × F2
)

−
(

15Ne × F3
)

(2)

ls in the equations are explained in Table 2. All the param-
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red over two months. N biomass was normalized to coral surface area.
. (n = 3) at each sampling time. Parameters of the regression lines are
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(�15N and N biomass) when p < 0.05. All the parameters
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e N biomass parameter of endosymbionts because the
s  almost zero. In this case, the average value through-
xperiment (2.8 �mol  cm−2) was used as a constant for
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rom exponential and linear fitting are supplementarily

 Tables S1–S4. A parallel model for the animal host was
ble because N fluxes between the animal host and the
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Table 3
Regression parameters of �15N and N biomass. The observed �15N and N biomass over time (Figs. 2 and3) were fitted with a linear or curved regression model using one
of the following formulae. 1: y = y0 + a (1 – e−bt), 2: y = y0 + at, 3: y = y0 + ae−bt , where t is the time (day) and the formula number (f.n.) is shown in the column “Fraction”. R2:
the coefficient of determination, P: p-value for the regression line. Only one regression line for endosymbiont N biomass (Montipora digitata in +NP) was  not statistically
significant and thus, the average of the observed values (2.8 �mol  cm−2) was used as a constant for the model calculations of Eqs. (1) and (2).

Coral Nutrient
conditions

Parameters Fraction  (f.n.) Regression  results

y0 a b R2 P

Porites cylindrica +NP �15N Symbiont  (1) 2.60 131 0.0207 0.92 <0.001
Host  (2) 4.76 1.06 – 0.92 <0.001

N biomass Symbiont  (2) 6.97 −0.0233 – 0.36 <0.05
Host  (2) 12.1 −0.0601 – 0.46 <0.05

+N �15N Symbiont  (1) 2.69 99.9 0.0302 0.97 <0.001
Host  (1) 5.09 188  0.0063 0.98 <0.001

N  biomass Symbiont  (2) 7.05 −0.0433 –  0.66 <0.01
Host  (2) 12.1  −0.0737 – 0.69 <0.001

Montipora  digitata +NP �15N Symbiont  (1) 3.36 181 0.0372 0.98 <0.001
Host  (1) 3.99 342 0.0069 0.97 <0.001

N biomass Symbiont  (2) 2.99 −0.0074 – 0.27 0.08
Host  (3) 4.70 4.52 0.0430 0.83 <0.001

+N �15N Symbiont  (1) 4.41 144 0.0617 0.97 <0.001
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d in a recent numerical model on corals (Gustafsson et al.,
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56–59% a
species, h
6.09 157 0.0165 0.97 <0.001
2.89 −0.0129 – 0.69 <0.001
4.25 4.72 0.0543  0.91 <0.001

e percent contribution of host-derived internal N rela-
tal N influx to endosymbionts (CIN) was calculated as

 of F2 to F1 + F2. The total amount of N incorporated by
bionts via F1 and F2 during the experiment was  calculated

 F1 and F2 fluxes on each day.

ts

h species of coral and under both nutrient supply con-
he average �15N of the endosymbionts (�15Ne) and the
st (�15Nh) dramatically increased and �15Ne consistently

 �15Nh values (Fig. 2). For P. cylindrica, �15Ne had values of
 87‰ in the +NP and +N treatment, respectively, at the end
periment (Fig. 2a and b). �15Nh of P. cylindrica almost lin-
eased and the final values were 71‰ and 66‰ in the +NP
eatment, respectively (Fig. 2a and b). For M.  digitata, �15Ne

h were distinctly higher than those of P. cylindrica. �15Ne

itata had the final values of 167‰ and 149‰ in the +NP
eatment, respectively, and the corresponding �15Nh were
d 107‰ (Fig. 2c and d). Organic N biomass of animal hosts
symbionts per unit coral surface area linearly or exponen-
reased over the experiment, except endosymbionts in the
ment for M.  digitata (Fig. 3 and Table 3).
odel calculations for P. cylindrica showed that the contri-

 N from the animal host (i.e., F2) was much higher than
 the ambient seawater (i.e., F1) (Fig. 4a and b). CIN was
t the beginning of the study in both +NP and +N treat-
g. 4c). During the course of the experiment, the CIN slowly
d to about 70% due to the reduction of F2. Overall, the total
f N incorporated by endosymbionts via the host (i.e., F2)
ut the experiment was approximately three times higher

 via seawater (i.e., F1) (Table 4).
. digitata, the contribution of N from seawater to the
bionts (F1) increased slightly in the +NP treatment, while
d slightly in the +N only treatment and the final flux of F1
er in the +NP treatment (0.12–0.15 �mol  cm−2 d−1) than

 only treatment (0.069–0.087 �mol cm−2 d−1) (Fig. 4d and
4). The total amount of N incorporated by endosymbionts
s also higher in the +NP treatment than in the +N only

t (Table 4). CIN decreased from 61–70% to 46–48% in the
ment but was  almost constant in the +N treatment and at
t the end of the study (Fig. 4f). In comparing the two coral
ost-derived N to the endosymbionts (F2) and CIN were
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Table  4
N  fluxes from seawater and from animal host (F1 and F2, respectively) to endosymbionts. The fluxes at the end of the experiment (Day 62), the integrated fluxes over the
experimental period, and the proportion of each flux to the total flux (F1 + F2) was calculated. The highest and lowest range shown in parentheses indicates the results when
the  maximum and minimum values of F3: Ve ratio, which was fixed in each model run, respectively, are used (Tables S1–S4). The range of F3: Ve ratio is indicated in Section 2.

Coral Nutrient
conditions

Flux Day 62 Integrated from Day 0 to day 62

N flux (�mol  cm−2) % Of total N flux (�mol  cm−2) % Of  total

Porites cylindrica +NP F1 0.13 (0.10–0.15) 29 8.0 (6.9–9.2) 25
F2 0.31 (0.21–0.41) 71 24 (15–31) 75

+N F1 0.084 (0.071–0.098) 25 6.7 (5.8–7.5) 23
F2 0.26 (0.17–0.34) 75 22 (15–29) 77

Montipora digitata +NP F1 0.14 (0.12–0.15) 53 8.2 (7.4–8.9) 51
F2 0.12 (0.10–0.14)

+N F1 0.078 (0.069–0.087)
F2 0.11 (0.086–0.13) 
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Fig. 4. Nitrogen fluxes calculated from the nitrogen mixing model. N fluxes from
seawater to endosymbionts (F1, blue), from coral animal host to endosymbionts (F2,
red), and the ratio of F2 to F1 + F2 (CIN) are shown as the function of time (day) for
P.  cylindrica (a: +NP, b: +N, c: CIN) and M.  digitata (d: +NP, e: +N, f: CIN). In panels c
and f, both the +NP (purple) and +N (green) model results are shown. The highest
and  lowest values at each time point correspond to the results when the maximum
and  minimum values of F3: Ve ratio, which were fixed in each model run, were used
(Tables S1–
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 higher in P. cylindrica than in M.  digitata, while F1 was
tween them (Fig. 4 and Table 4).
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h species of corals, �15Ne consistently exceeded �15Nh
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 that endosymbionts were labelled much faster than the
ost (Grover et al., 2003; Tanaka et al., 2006; Kopp et al.,
cause only the endosymbionts can directly incorporate
O3

−) through their enzymatic activity (Crossland and
977; Leggat et al., 2007), the experimentally supplied
ould first have to have been absorbed by the endosym-

d then translocated to the coral animal host as organic
r et al., 2003; Tanaka et al., 2006; Pernice et al., 2012;
al., 2013). Kopp et al. (2013) recently reported that N
ted by endosymbionts of the coral Pocillopora damicor-
rst stored as uric acids in the algal cells, translocated to
al host, and utilized in specific cellular compartments of
Since endosymbionts in corals generally have a turnover
0–50 days (Wilkerson et al., 1983; Hoegh-Guldberg and
89; Rahav et al., 1989; Szmant et al., 1990; Tanaka et al.,

 the present experimental period was 62 days, a complete
 of all endosymbiont cells should have taken place during
, the endosymbiont cells should have been fully labelled,
n average �15Ne value equivalent to that of the seawater
–226‰). Given that the average �15Ne was  much lower
ected from the �15N of seawater DIN, the endosymbionts
s incorporating both external labelled seawater DIN and
-circulating DIN excreted by the animal host most likely
m of NH4

+ (Rahav et al., 1989; Szmant et al., 1990).
ovel approach of long-term stable-isotope labelling and
nt model calculation has succeeded in partitioning these

 for coral endosymbionts. Algal endosymbionts in P. cylin-
 M. digitata derive 78–88% and 47–70% of their N from
al host N pool, respectively, at the start of the experi-
. 4). This is consistent with a recent numerical model of

ypothetical scenarios of seawater nutrient concentrations
 feeding rates showing that algal endosymbionts must be
>50% of their N from the animal host (Gustafsson et al.,

 addition, the CIN range for P. cylindrica (78–88%) was
ble with the previously estimated value of 90% for Sty-
istillata, which was calculated from the excretion rate of
m the animal host under the suspension of endosymbi-
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oral animal host was  not enriched compared to the prey
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odel results showed that F2 and CIN were higher in P.
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r host N biomass of the former (Fig. 3). A larger N biomass
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+ excretion (Szmant et al.,
larger stable internal N pool for the endosymbionts, and
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xplain why bleached Porites compressa corals continue
d on photoautotrophically acquired energy, but bleached
a capitata corals shift from endosymbiont autotrophy to
st heterotrophy (Grottoli et al., 2006). The gradual decline

 the course of the study was most likely due to the grad-
ase in N biomass over that time (Fig. 3), which could
n driven by the absence of zooplankton in the seawater
e filtration system (Houlbrèque and Ferrier-Pagès, 2009).
cient heterotrophic activity, N biomass and F2 might have

t at the initial levels throughout the experimental period.
 the present experimental design did not quantify the
heterotrophic feeding, the time-course change of F1 and
implies that the absence of heterotrophy might gradually
the uptake of host-derived N by the endosymbionts but
atically affect CIN (Fig. 4).
pecies-specific difference in host N biomass further
the proportionate contribution of each nutrient source
ymbionts. Compared with P. cylindrica, CIN of M. digitata
ecreased in the +NP treatment (Fig. 4), indicating that a
ved N in M.  digitata was not sufficient for the endosym-

 absorb phosphorus available in the seawater and animal
e. Thus, we hypothesize that endosymbionts in lower host
s species such as M.  digitata shift their N source from

nal host N pool to the external seawater DIN, depend-
e seawater nutrient condition. In fact, at the end of the
nt, M.  digitata in the +NP treatment absorbed more nutri-

 seawater than those in the +N only treatment (Fig. 4d
d Table 4). Overall, endosymbionts of both coral species
to NO3

− and PO4
3− absorbed 20% more NO3

− from sea-
n when only NO3

− was supplied (Table 4). This suggests
ptake of NO3

− by endosymbionts is enhanced by phos-
nd that N uptake by endosymbionts in the +N treatment
ewhat limited by the absence of phosphorus. Similarly,
et al. (2011) reported that the saturated uptake rate of
reased with the addition of PO4

3− to seawater, demon-
hat the endosymbionts uptake of DIN from seawater was
y intracellular PO4

3−.
vious studies, the release of NH4

+ from the animal host
 observed only when the endosymbiotic photosynthesis
cially inhibited (Wilkerson and Muscatine, 1984; Rahav
9; Szmant et al., 1990). The present findings are the first

tatively demonstrate that N is recycled in coral-algal sym-
a normal diel cycle and that the coral animal host is an
t N source for the endosymbionts (recycling hypothesis).
, this conclusion does not necessarily exclude the property
ervation by the animal host: endosymbiotic photosynthe-
es the animal host with C-rich organic matter, which can
ost to assimilate NH4

+ in the host tissue and/or to utilize
osynthetic product for the host respiration. These effects
mbiotic photosynthesis might have more or less reduced
retion from the animal host as proposed in the N conser-
pothesis (Wang and Douglas, 1998; Piniak and Lipschultz,
ditional study is needed to more definitively determine
t to which this N conservation functions in animal hosts.
ata, in combination with published work, indicate that

ater derived and heterotrophically derived N are criti-
s of N for coral endosymbionts. The animal host acquires
phic N by capturing zooplankton and absorbing dissolved

matter (Piniak et al., 2003; Houlbrèque and Ferrier-
09), stores the acquired N with a long turnover time
t al., 2006), and excretes very little of it slowly (Szmant
90; Seemann, 2013). Our findings further reveal that
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ton  via the coral animal host. Given a larger-scale per-
 the high primary production of coral reefs is maintained
norganic and organic nutrients. This helps to explain the
paradox of coral reefs–nutrient recycling within corals

aintain reef production in an oligotrophic environment.
rmore, the negative effect of ocean acidification on coral

ion (Hoegh-Guldberg et al., 2007; Pandolfi et al., 2011) has
erved to be partially or totally offset by an elevated supply
nic nutrients to seawater (Holcomb et al., 2010; Chauvin
11; Tanaka et al., 2014). Nutrients basically enhance the
thesis of endosymbionts, which consequently help the
st to perform calcification (Holcomb et al., 2010; Chauvin
1; Tanaka et al., 2014). In theory, endosymbionts in corals
ger pool of animal host N such as Porites should be likely

e more nutrients from the host and to more steadily per-
tosynthesis and thus calcification at low pH. This concept
rted by previous findings showing that massive Porites
minate reefs in naturally low pH areas due to volcanic
ioxide seeps (Fabricius et al., 2011). In addition, other
era that are tolerant of acidified seawater may also be
nutrient recyclers within their symbiosis (Schoepf et al.,
us, the degree of dependence on internally-circulating
nally-acquired N for corals may  be an axis of bifurcation
urvival in the near future. In the present study, a paral-
l for the animal host was  not possible because dissolved

 fluxes between the animal host and the ambient sweater
t al., 2008; Tanaka et al., 2009), zooplankton feeding rates
que and Ferrier-Pagès, 2009), and N2 fixation by bacte-
iated with corals (Lesser et al., 2004) were not possible
fy with the current experimental design. Future research
ded these additional measurements would be needed to
pletely model the N metabolic pathways. At the end, the

pproach of using a blend of stable-isotope labelling and
g calculations could also be applied to the other organisms
stems to determine other nutrient cycling systems.
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