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Artificial Intelligence Enables Real-Time and
Intuitive Control of Prostheses via
Nerve Interface
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Abstract—Objective: The next generation prosthetic
hand that moves and feels like a real hand requires a robust
neural interconnection between the human minds and ma-
chines. Methods: Here we present a neuroprosthetic sys-
tem to demonstrate that principle by employing an artificial
intelligence (Al) agent to translate the amputee’s movement
intent through a peripheral nerve interface. The Al agent
is designed based on the recurrent neural network (RNN)
and could simultaneously decode six degree-of-freedom
(DOF) from multichannel nerve data in real-time. The de-
coder’s performance is characterized in motor decoding
experiments with three human amputees. Results: First, we
show the Al agent enables amputees to intuitively control a
prosthetic hand with individual finger and wrist movements
up to 97-98% accuracy. Second, we demonstrate the Al
agent’s real-time performance by measuring the reaction
time and information throughput in a hand gesture match-
ing task. Third, we investigate the Al agent’s long-term uses
and show the decoder’s robust predictive performance over
a 16-month implant duration. Conclusion & significance:
Our study demonstrates the potential of Al-enabled nerve
technology, underling the next generation of dexterous and
intuitive prosthetic hands.
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[. INTRODUCTION

HE number of upper-limb amputees in the U.S. has been
T escalating during the past few decades. From a popula-
tion of 541,000 in the year 2005, the amputee population is
expected to exceed 1 million by the year 2050 [1]. While many
upper-limb prostheses with individually motorized joints and
fingers have become commercially available, limitations of the
control scheme have not enabled significant improvements of
amputee’s well-being. Numerous advanced motor decoders are
being developed to fulfill this missing link. There are several
approaches that can be generally categorized based on the
inputs signals: myoelectric-based (electromyography, EMG),
brain/cortical recording, and peripheral nerve (electroneurog-
raphy, ENG).

EMG-based system is the most popular approach because it
is noninvasive, relatively easy to obtain, and has been proven
to hold useful information for motor decoding [2]-[4]. EMG
prosthesis control has a long history dated back to the 1960s [5],
[6]. In recent years, advances in machine learning have further
pushed the accuracy boundary of EMG-based motor decoders.
The current state-of-the-art for an offline classification task is
using support-vector machine (SVM) to decode EMG signals,
which yields an accuracy up to 99% for a 4-class problem [7].
However, [8] shows that good offline decoding outcomes do
not necessarily translate to real-time performance. In [9], de-
coding EMG signals with multilayer perceptron (MLP) yields
an accuracy of only 82% for a 12-class problem on transra-
dial amputees. Furthermore, a significant limitation of most
commercial EMG-based control is that amputees must learn to
contract their residual muscles in predefined patterns to map
into different hand or wrist motions. This control scheme is
inherently unnatural and requires much user training. EMG
signals are also susceptible to electrode repositioning and motion
artifacts [10].

A direct neural interface that decodes true movement intents
from the brain or peripheral nerve signals promises an intuitive
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solution for prosthesis control, yet they come with their own
set of challenges. Although a brain implant offers the most
comprehensive human-machine interconnection, it is invasive
and carries significant risks of neural tissue damage in long-
term uses [11]-[13]. On the other hand, a peripheral nerve
interface like one reported in our previous work [14]-[16] and
others [17]-[26] is less invasive while still providing sufficient
motor control signals with simultaneous somatosensory neuro-
feedback. These interfaces aim to enable intuitive prosthesis
control purely by thoughts and achieve a natural user experi-
ence, which is crucial for the amputee to take full advantage
of near-anatomic prosthetic hands like the LUKE Arm [27],
[28] with at least 10 degrees of freedom (DOF) of movement.
Decoding motor intent from the peripheral nerves without input
from the residual muscles also allows the system to be used
by a larger population of amputees with various amputation
levels. Despite the promises, one of the major challenges for
materializing this technology into clinical prostheses is that the
interface generates a large amount of high-dimensional data,
which must be efficiently translated to prosthesis movements in
real-time.

Artificial intelligence (AI) based on deep learning has
emerged as the most prominent approach to leverage this chal-
lenge [15], [29]-[35]. Our previous works [15], [35] demonstrate
that Al neural decoders based on the convolutional neural net-
work (CNN) and recurrent neural network (RNN) architecture
excel over other machine learning techniques, including SVM,
random forest (RF), and MLP in both classification and regres-
sion tasks. Furthermore, we show that a deep learning Al can be
efficiently deployed on a portable, self-contained system thanks
to advances in edge computing [36].

Here we focus on characterizing the motor decoding perfor-
mance of an Al agent based on the RNN architecture. This is
done through multiple motor decoding experiments with three
human amputees who receive microelectrodes implants from 6
to 16 months. First, we show the Al agent can simultaneously
decode the subject’s motor intents with six DOF, including
individual fingers flexing and wrist pronation. The prediction
accuracy ranges from 85-93% with one subject to 97-98% with
another. Second, we design a hand gesture matching task derived
from the mental chronometry test to quantify the Al agent’s
real-time response [37], [38]. The task measures the time taken
for the subject to compose a targeted gesture in random order.
The results show a median reaction time of 0.81 sec, corre-
sponding to an information throughput of 6.09 bps (365.4 bpm)
at 99% accuracy. Third, we study the Al agent’s long-term
use by evaluating the prediction performance at various time
points over a 16-month implantation duration. We show that
the nerve data’s signal-to-noise (SNR), reaction time, and in-
formation throughput remain robust throughout the course of
the experiment, while the Al agent only requires fine-tuning
every few months. In fact, the best motor decoding performance
is observed in the last experiment session before the explant
surgery.

The rest of the manuscript is organized as follows. Sec-
tion II describes the human subjects, the Al neural decoder,
and the experiment setup. Section III presents the experiment

results and findings. Section IV provides discussions about
the results and future directions. Section V concludes the

paper.

Il. METHODS
A. Human Subjects and Experiment Protocol

The human experiment is a part of the clinical trial DExterous
Hand Control Through Fascicular Targeting (DEFT) identifier
No. NCT02994160', which is sponsored by the DARPA Bio-
logical Technologies Office as part of the Hand Proprioception
and Touch Interfaces (HAPTIX) program.

The human experiment protocols are reviewed and approved
by the Institutional Review Board (IRB) at the University of
Minnesota (UMN) and the University of Texas Southwestern
Medical Center (UTSW). The amputees voluntarily participate
in our study and are informed of the methods, aims, benefits, and
potential risks of the experiments before signing the Informed
Consent. Patient safety and data privacy are overseen by the
Data and Safety Monitoring Committee (DSMC) at UTSW.
The implantation, initial testing, and post-operative care are
performed at UTSW by Dr. Cheng and Dr. Keefer, while motor
decoding experiments are performed at UMN by Dr. Yang’s lab.
The clinical team travels with the subject in each experiment
session. The subjects also complete the Publicity Agreements
where they agree to be publicly identified, including showing
their face.

Table I summarizes the three human amputees, who belong to
asubset of a larger study described in [39]-[41], aiming to create
a robust nerve interface with both recording and stimulation
capabilities. Each subject receive 2-4 fascicle-specific targeting
of longitudinal intrafascicular electrodes (FAST-LIFE) micro-
electrode implants targeting individual fascicles in the median
and ulnar nerve for a span of 3 to 16 months. The electrode
configuration and implant duration depend on the current IRB
protocol and the individual subject’s physiology during the
study.

In particular, Subject NB has two implants in the ulnar nerve,
while Subject CS and SF have four implants in both the median
and ulnar nerve. Subject NB’s participation was interrupted due
to an unrelated motorcycle incident, thus the microelectrodes
were explanted early for safety reasons. Subject CS and SF
participated in the full experiment duration. Especially, Subject
SF volunteered for two separate implant courses. After the first
course of 3 months, all four microelectrode arrays were ex-
planted from the Subject SF’s arm according to the existing IRB
protocol. However, Subject SF reported positive experiences
with the clinical study’s outcomes and voluntarily participated
in an additional implant course. About a year later, a subsequent
IRB modification was made, and Subject SF had four new micro-
electrode arrays implanted. His second course ultimately lasted
for 16 months, which allows us to characterize the long-term
performance of the proposed nerve interface and motor decoder.
The results reported in Section III. B, C, including Figs. 6, 7, 8
and Table IV are derived from Subject SF’s second course.

Thttps://clinicaltrials.gov/ct2/show/NCT02994160
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TABLE |
SUMMARY OF HUMAN SUBJECTS
. Age & . Time since No. of implanted Implantation
Subject gender Amputation amputation FAST-LIFE arrays duration
Partial, intact thumb, 2 ulnar,
NB 21M left hand, non-dominant 9 months 30 active sites 172 days
cs 32/M Transradlali right hand, 4 years 2 medlap, 2 glnar, 363 days
dominant 60 active sites
SF 46/M Transradial, left hand, | 14 years (partial) 2 median, 2 ulnar, 1st: 94 days
non-dominant 10 years (trans.) 60 active sites 2nd: 484 days
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Fig. 1.

(A) Overview of the Al neural decoder and signal processing paradigm. Nerve data are acquired from the subject's amputated arm by

Neuronix neural interface chips, followed by feature extraction. The deep learning Al then uses feature data to predict the subject’s intent of moving
several DOF simultaneously. The predictions are mapped to movements of a virtual hand or a prosthetic hand in real-time. (B) Design of the deep

learning Al based on the recurrent neural network (RNN) architecture.

TABLE I
SUMMARY OF MOTOR DECODING DATASETS

Subject No. of Training | Testing | No. of No. of
channels | samples | samples DOF gestures*
NB 8 174,782 19,419 5 10
CS 16 112,667 17,525 6 8
SF 16 241,511 20,087 6 11

+Gestures include resting

B. Deep Learning-Based Al Neural Decoder

Fig. 1(A) shows the overview of the Al and signal processing
paradigm. Nerve data are acquired with our Scorpius neuromod-
ulation system powered by high-performance Neuronix neural
interface chips with both neural recorders and stimulators. The

Scorpius device and Neuronix chips specifications are detailed
in [15]. Up to 16 channels are recorded, which belong to a subset
of the active sites. Most channels are from the nerve fascicle
with the majority of motor fibers. We select sites that have high
SNR and strong voluntary compound action potentials (VCAP)
activities during finger flexing. The signal’s strength FPyp and
SNR are estimated as follow:

Py = 101log,o(1/nX"_, V]i]*)
[SNR] - PdB, ﬂex/PdB, rest

ey
@

Raw nerve signals are acquired at 10 kHz sampling rate, down-
sampled to 5 kHz, and then filtered in the bandwidth of 25-
600 Hz. The chosen bandwidth contains most of the motor
control signal’s power, comprising primarily of vCAP.
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Fig. 2. (A) Overview of the experiment setup with both neural recording and stimulation capabilities. (Blue path) The motor decoding dataset is
obtained via a mirrored bilateral paradigm. Nerve data and ground-truth movements are simultaneously acquired from the injured and able hand,
respectively. All signal processing, neural decoding, and real-time displaying are done on a desktop PC. Movement predictions can be mapped to a
prosthetic hand or a virtual hand. (Orange path) The setup also includes components like touch sensors and neurostimulators for somatosensory
restoration as detailed in [40], [41]. (B) Photos of three subjects in an experiment session.

TABLE Il
SUMMARY OF THE CLASSIFICATION PERFORMANCE METRICS
Subject NB Subject CS Subject SF

DOFfoint ia::_"(coz;’ TPR (%) | TNR (%) Ba‘::':_"(‘f,/‘:;’ TPR (%) | TNR (%) 21':_"(?,2)" TPR (%) | TNR (%)
Thumb (F1) 85.2 80.4 90.0 97.2 94.6 99.9 96.0 94.5 97.5
Index (F2) 85.7 771 94.2 98.1 96.5 99.6 97.7 96.1 99.4
Middle (F3) 84.8 75.3 94.2 98.4 96.9 99.9 95.8 92.5 99.1
Ring (F4) 93.0 87.6 98.5 98.0 96.3 99.7 97.3 95.0 99.5
Little (F5) 92.0 86.0 98.1 97.6 95.3 99.8 95.2 91.5 99.0
Wrist (F6) - - - 98.2 96.4 99.9 95.9 91.9 99.8

We then perform feature extraction on the filtered signals waveform length (WL), Wilson amplitude (WA), mean absolute
with a 100 msec sliding window and 20 msec step. 14 fea- (MAB), mean square (MSQ), root mean square (RMS), V-order
tures are extracted from each channel as detailed in [35], [36]. 3 (V3),logdetector (LD), difference absolute standard deviation
They include zero crossing (ZC), slope sign changes (SSC), (DABS), maximum fractal length (MFL), myopulse percentage
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(A) Schematic of the hand gesture matching task to measure the end-to-end reaction time (mental chronometry) and the information

throughput of the entire nerve interface and motor decoding. In each trial, the subject is shown a random hand gesture, which he attempts to match
with the Al neural decoder running in real-time. (B) Photo of Subject SF performing the task. Real-time nerve data and current Al's prediction can

be seen on the monitor.

rate (MPR), mean absolute value slope (MAVS), and weighted
mean absolute (WMA).

At any given time, the past 1 sec of nerve data is used by
the Al agent to predict the current motor intents. A 2D data
representation with dimensions [16 channels] x [14 features] x
[50 time-series] = [224 x 50] is compiled as the input to the
deep learning Al agent. The Al agent simultaneously classifies
the movement of 6 DOF: 5 for individual finger flexing and 1
for wrist pronation. Each DOF is assigned class-0 for “resting”
or class-1 for “flexing”. Depending on the hardware capability,
the prediction rate (frame per second) can be set from 5-50 Hz.

The prediction output is mapped to the movement of either a
virtual hand (MuJoCo, mujoco.org) or a physical prosthetic hand
with individually actuated fingers. The prosthetic hand typically
has a slower response than the virtual hand due to mechanical
constraints.

Fig. 1(B) shows deep learning AI’s design based on the RNN
architecture. The model is implemented in the PyTorch frame-
work (pytorch.org) and utilizes standard layers, including con-
volution, gated recurrent units (GRU), linear/fully-connected,
rectified linear unit (ReLU), batch normalization, 50% dropout,
and sigmoid. In total, the model consists of 1.6 million trainable

Authorized licensed use limited to: University of Minnesota. Downloaded on February 08,2023 at 16:21:13 UTC from IEEE Xplore. Restrictions apply.
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(A) Impact of input data length on the prediction accuracy. The results suggest that decoding 1 sec of past nerve data optimally balances

accuracy, complexity, and practicality. (B) Real-time prediction outcomes with different input data lengths. The results indicate that there is no
significant time latency when using a longer segment of past data to decode hand movements.

TABLE IV
SUMMARY OF PERFORMANCE METRICS OF THE MATCHING TASK

Gesture Number of | Success rate | Median reaction | Mean reaction | Info. throughput
trials @3 sec (%) time (sec) Time (sec) (bps [bpm])
Thumb flex 38 100.0 0.75 0.77 6.67 [400.2]
Index flex 51 100.0 0.77 0.80 6.48 [388.8]
Middle flex 45 100.0 0.76 0.84 6.61 [396.6]
Ring flex 47 100.0 0.92 1.14 5.41[324.6]
Little flex 42 929 0.79 1.00 5.88 [352.8]
Index pinch 37 100.0 1.04 1.05 4.80 [288.0]
Fist/grip 49 100.0 0.83 0.92 6.03 [361.8]
Wrist pronation 48 98.1 0.74 0.84 6.71 [402.6]
All gestures 357 99.2 0.81 0.92 6.09 [365.4]

parameters. This design is relatively shallow because the model
must be able to be deployed in a portable edge computing device
like the NVIDIA Jetson Nano [36].

We use the Adam optimizer [43] for training the model with
the default parameters 5; = 0.99, B2 = 0.999, weight decay
regularization Ly = 1075, mini-batch of 64, initial learning rate
of 10~%, and maximum number of epoch of 5. The learning rate is
reduced by a factor of 10 when the training loss stops improving
for two consecutive epochs. The final activation function is the
sigmoid function. Therefore, the predicted probabilities for each
DOF fall in the range [0, 1]. We choose a threshold of 0.5 for
all DOFs to classity whether a DOF is flexing. Throughout the
course of the experiment, the model could be fine-tuned by
adding new data for training without altering its architecture
regarding the hidden layers’ types, numbers, sequences, and
activation functions. Model training, validation, fine-tuning and

online motor decoding experiments are performed on a desktop
PC with an Intel Core i7-8086 K CPU and an NVIDIA GTX
1080Ti GPU.

In addition, we also utilize a stochastic approach to further
optimize the Al agent’s performance. Because the neural de-
coding problem is not convex, every time the model is trained
with a random initial seed, it would converge to a different
local minimum. By retraining it numerous times with different
random seeds and only keeping the solution with the best overall
accuracy across all DOF, we increase the chance to obtain the
global minimum. Each training iteration takes about 30-60 sec
to complete depending on the dataset’s size. Our experiments are
several months apart. Before any experiment, we first train the
Al agent with old data for a few hours and evaluate the model’s
persistence in real-time motor decoding experiments. We then
record new nerve data, retrain the model for a few minutes,

Authorized licensed use limited to: University of Minnesota. Downloaded on February 08,2023 at 16:21:13 UTC from IEEE Xplore. Restrictions apply.
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Fig. 5.

(A, B, C) Classification results from motor decoding experiments with three subjects. The subjects repeat a hand gesture 10 times in each

data segment. The Al neural decoder produces a prediction for 6 DOF every 20 msec using the past 1 sec of nerve data.

and repeat the real-time experiments to measure the up-to-date
performances.

C. Motor Decoding Experiment Setup

Fig. 2(A, B) show an overview of the experiment setup and
photos of three subjects in a session. The system has both neural
recording and stimulation capabilities for motor decoding and
somatosensation feedback. Data acquisition, real-time process-
ing, decoding, display, and storage are made with a desktop PC.
The dataset is obtained via a mirrored bilateral paradigm. In each
experiment session, the subject repeatedly makes a hand gesture

Authorized licensed use limited to: University of Minnesota. Downloaded on

10 times with both hands. Nerve data are acquired from the
injured/phantom hand with the Scorpius nerve interface, while
ground-truth labels are simultaneously captured from the able
hand with a data glove. The same setup without the data glove
is used for real-time motor decoding. The Al agent’s prediction
can be both mapped to the virtual hand and sent to the prosthetic
hand by Bluetooth. The setup also includes components like
touch sensors and neurostimulators for somatosensory restora-
tion experiments as detailed in [16], [41].

Table IT summarizes typical motor decoding datasets collected
in one day. They are the particular sets that would be used
for evaluating classification performance in Section III-A. We
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Fig. 6. Prediction probability of individual DOF and hand gesture in the matching task. In most of the trials, the Al neural decoder produces an

accurate prediction in the subject’s first attempt with a median reaction time of approximately 0.7-0.8 sec.

collect similar datasets on different days a few months apart to
characterize the nerve interface’s long-term persistence. Each
nerve dataset is specific to each subject. The list of gestures
includes resting (000000), individual fingers flexing (10000,
010000,...) and various combinations like fist/grip (111110),
pinch (110000), etc. that are repeated in an alternate order. We
record as many sessions as time permits. The last recording
session, which contains the most up-to-date nerve data, is always
used for validation while the remaining are used for training.
The data collection requires approximately 1-2 h but could take
longer with intermittent breaks.

The classification performance is evaluated using standard
metrics including sensitivity/true positive rate (TPR), speci-
ficity/true negative rate (TNR), and balanced accuracy derived
from true-positive (TP), true-negative (TN), false-positive (FP),
and false-negative (FN) as follows:

[TPR/sensitivity] = TP/(TP + FN) 3)
[TNR/specificity] = TN/(TN + FP) (€))]
[Balanced accuracy] = (TPR + TNR) /2 (5)
[Prediction error] = 1 — [Balanced accuracy] (6)
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i Median reaction time = 0.81 sec

' —— Thumb flex
Index flex
Middle flex
Ring flex
Little flex
Pinch
Fist/grip
Pronation

= All gestures

>
<.
%
2
2

Normalized distribution

2nd attompy

0 1 2 3

Reaction time (sec)

Fig. 7. Distribution of the reaction time across different gestures.

D. Hand Gesture Matching Task

Fig. 3(A) shows a schematic of the hand gesture matching
task derived from the mental chronometry test. It is designed to
measure the end-to-end reaction time and information through-
put of the entire nerve interface and motor decoding. Fig. 3(B)
shows a photo of Subject SF performing the matching task with
the nerve data and virtual hands visible on the monitor. The left
virtual hand is the real-time Al agent’s prediction that is always
running. The right hand is the targeted gesture that needs to be
matched.

In each trial, the subject is shown a random hand gesture
with an audio cue. The subject attempts to compose the desired
gesture from the resting position with the Al decoder running
in real-time, producing a movement prediction every 100 msec
(10 Hz). The subject is allowed to repeat the movement multiple
times until the target is matched. A success is registered at the
first occurrence of the prediction outcome, where all 6 DOF
must match the target. The reaction time is calculated from
the moment a new target is shown till a successful match is
achieved. We choose a cut-off of 3 sec, where a trial is considered
unsuccessful if it fails to reach the target. The resulted reaction
time and success rate reflect the end-to-end responsiveness of the
entire nerve interface and Al decoder from the amputee’s point
of view in real-world uses. It includes information processing
time of both the human mind and machine:

[Reaction time] = [Sensory acquisition (human)]
+ [Cortical processing (human)]
+ [Nerve data processing (machine)]
+ [Motor decoding (machine)) (7

Furthermore, the experiment allows calculating the informa-
tion throughput, also known as the information transfer rate
(ITR), of the nerve decoding system as follows:

[Info. per trial]

[Info. thoughput] = [Success rate] x (8)

[Reaction time]

The amount of information per trial is computed using Shan-
non’s entropy formula [42]. Subject SF is asked to match 9
targeted hand gestures, including resting, individual finger flex,
fist, index pinch, and wrist pronation that are randomly assigned
in each trial. The calculation includes the resting gesture even
though no finger is moving because resting is a conscious
selection by the user and must be accurately decoded by the
Al agent. Resting accounts for 50% of the Al agent prediction
outcomes in the dataset. The remaining outcomes are randomly
distributed among the other eight different hand gestures in a
fair chance. Each trial in the matching task always includes two
conscious gestures: resting at the beginning and one of the other
gestures at the end. Subsequently, the information per trial in a
matching task with resting and eight other gestures is:

[Info. per trial]

=2 [_prest 1Og2 (prest) —8- Pother 10g2 (pother)]
= 2. [0.5-log,(0.5) — 8 - (0.5/8) - log,(0.5/8)]
= 5 bits )

[ll. RESULTS
A. Dexterous and Intuitive Decoding of Motor Intents

The input data segment’s length should be long enough to
provide adequate information for accurate decoding outcomes
while maintaining the motor decoder’s low complexity and high
practicality. The deep learning AI motor decoder takes the 1 sec
segment of the past data to predict motor intention at any point in
time. Fig. 4(A) shows analysis on the impact of input data length
on the prediction accuracy, which is done with a subset of Subject
CS’s dataset. The results confirm a negative nonlinear correlation
between the input data length and the prediction errors. The
motor decoder reaches its optimal accuracy at 1 sec input data
length. Doubling the input length to 2 sec does not necessarily
improve the prediction errors, yet it requires much more compu-
tational power from the decoder. Interestingly, Fig. 4(A) shows
that wrist prediction is highly accurate regardless of the data
length. It is consistent with our observation that nerve activities
during the wrist pronation have exceptionally high SNR and
distinctly appear on specific channels of the median nerve. Thus,
the data pattern of the wrist pronation is very different from those
of the finger flexes.

To help amputees achieve dexterous and intuitive control of
prosthetic arms, besides high accuracy, the Al neural decoder
must ensure low prediction latency while performing real-time
decoding of motor intent. In contrast to the strong correlation
between the input data length and the prediction error, there is no
association between the former and the time latency. Fig. 4(B)
shows that the increase of the input data length from 0.2 sec to
2 sec causes no significant time latency on the hand movement
decoding. Therefore, it justifies the use of 1 sec past data input
trials.

Fig. 5 shows the motor intent classification outcomes of all
three subjects. The subjects undergo several experiment ses-
sions, each last a few days. The outcomes in Table III and
Fig. 5 are from the last experiment session, in which training
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and information throughput tested at different points over the implantation duration. (F) Evaluation of Al model persistence by training the network
with the dataset from one experiment and validating with the dataset from another experiment a few months later.

data are from the first day, and validation data are from the
last day of the session. The subjects repeat a hand gesture 10
times in each data segment. However, each subject performs a
slightly different set of hand gestures. They are individual finger
flexing, fist, index pinch, middle pinch, and tripod pinch for
Subject NB; individual finger flexing, fist, and wrist pronation
for Subject CS; and lastly, individual finger flexing, fist, index
pinch, pointing, horn, and wrist pronation, respectively in the
orderillustrated in Fig. 5(A, B, C). Nevertheless, for comparison,
they can be broken down into the individual performance of the
6 DOF.

Each of Fig. 5(A, B, C) is equally divided into three parts.
The top one-third of the rows are the ground truth of all DOF;

the middle rows are the binary classification outcomes of each
DOF after applying a threshold to the predicted probabilities in
the last one-third rows. Subject NB was the first participant in
this research and was not asked to perform the wrist pronation
task. Data from Subject NB are recorded from only eight chan-
nels on the ulnar nerve. In addition, because Subject NB was
explanted earlier than planned, we have less data for training
and fine-tuning the deep learning architectures. This explains
the classification outcomes of Table III.

The hand gesture classification outcomes from Subject NB
are distinctly different for the first three and the last 2 DOF. The
outcomes are significantly better for the ring and little fingers,
which is consistent with the fact that his data are from the ulnar
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nerve only. However, the outcomes of the other three fingers
are still good; the balanced accuracy, TPR, and TNR are up to
86.3%, 78.7%, and 94.2%, respectively. Data from Subject CS
and SF are recorded from 16 channels on both the median and
ulnar nerve, resulting in more equivalent and accurate outcomes
across all DOF. They are consistently above 90% for all metrics.
Specifically, the balanced accuracy, TPR, and TNR of Subject
CS range from 97.2% to 98.4%, 94.6% to 96.9% and 99.6% to
99.9% in that order; those of Subject SF are 93.4% to 97.9%,
86.8% to 96.1%, and 97.3% to 100%. Although Subject CS
shows slightly better decoding outcomes than Subject SF in
terms of the three metrics above, Subject SF performs more hand
gestures, including tricky ones such as index pinch, pointing, and
horn.

B. Real-Time and High-Bandwidth Transfer of Motor
Information

After demonstrating that the trained Al agent can achieve
high validation accuracy with low time latency on data recorded
several days apart, we further test the Al agent’s efficiency on the
real-time hand matching task described in Section II-D to mea-
sure the end-to-end reaction time and information throughput of
the nerve interface and motor decoder.

Fig. 6 represents the predicted probability of each DOF
gesture-wise in the time domain. The red line is the median
predicted probability of each DOF across all trials at every
specific amount of time since a targeted gesture is shown. As
mentioned, a gesture is matched when all 6 DOF are correctly
predicted. Therefore, the reaction time of every gesture is the
maximum reaction time of all DOF. For example, after 1.04 sec,
the majority of the pinch trials reach the target in which the
thumb and index fingers already flex, and the others stay resting.

Table IV presents the success rate and the reaction time of
all hand gestures, the two key factors to infer the information
throughput given the information per trial is calculated above.
The success rate, reaction time, and information throughput of
all hand gestures are 99.2%, 0.81 sec, and 6.09 bps (365.4 bpm),
respectively.

Fig. 7 shows the reaction time distribution across each hand
gesture; the red line is a pooled distribution of all gestures. It
is obtained by feeding the predicted probability of all DOF in
all trials to the kernel density estimator. The results show that
the Al agent accurately predicts Subject SF’s first attempt in the
majority of trials, represented by the distribution’s primary peak
at 0.7-0.8 sec. The secondary peak at 1.4-1.6 sec of the ring
flex and the little flex represents the subject’s second attempt.
As shown in Fig. 6, there are several false-positive predictions
of the DOF F3, which is supposed to stay resting in both
gestures. Furthermore, our analysis suggests that most of the
time latency is from the human side of (7) because for every
real-time prediction outcome, the nerve data processing step
takes less than 1 msec, and the motor decoding step requires
only 10-20 msec. Nevertheless, this time latency is subject to
the computer’s CPU and GPU processing power. Running the
decoder on an edge-computing device like the Jetson Nano as
shown in [36] could have significantly higher time latency.

C. Long-Term Deployment of a Neuroprosthetic System

For it to be suitable for practical applications, the Al agent
should maintain robust performance over time. Therefore, we
evaluate the agent stability by measuring its performance on
Subject SF who has the longest implantation course of 16
months, in terms of signal strength, signal-to-noise ratio, re-
action time, success rate, information throughput, and model
persistence.

Fig. 8(A, B) shows no trend of deterioration in the signal
strength and SNR on 16 electrodes over the implantation dura-
tion. Moreover, thanks to the long implantation course of Subject
SF, the authors have more time to fine-tune and retrain the Al
model, and the subject has time to practice with the agent. Hence,
there is a significant reduction in the reaction time from 1.23 sec
to 0.81 sec and an improvement in the success rate from 86% to
99.1% for all gestures over time (Fig. 8(C, D)). In addition, the
success rate converges, which leads to the more consistent and
accurate performance of all fingers. This outcome is consistent
with that of able people who also achieve a shorter reaction
time with practice [38]. Consequently, it causes an increase in
the information throughput, which reaches 6.09 bps on the last
experiment session before the explant surgery (Fig. 8(E)).

In addition, although the prediction error of the Al agent tends
to go up, it is not an ever-increasing trend. As shown in Fig. 8(F),
the prediction errors rise from 3.1% to 7.2% on day 152 to 4.6%
to 20.2% on day 222 for 6 DOF, in which DOF F2 performs
even better on day 222. Hence, the accuracy reduction is 13% at
most over 70 days. However, after the decoder is retrained, the
prediction errors go down to 3.0% to 7.8%, equivalent to those of
day 152. Furthermore, the reduction of the prediction accuracy
onday 222 today459is 13.1% top, comparable to that of day 152
to day 222, considering the time gap is three times longer, which
is 237 days. Retraining the Al model on the last experiment
session brings the prediction errors down to 2.3% to 4.8%; those
are even lower than the prediction errors of the first session.
Thus, it reaffirms that there is no deterioration in the Al agent’s
long-term performance. In addition, if we set a threshold of 90%
accuracy, there are only DOF F4 and F5 underperforming after
70 days from day 152 to 222, which means the Al agent only
needs to be fine-tuned every few months to maintain satisfying
decoding outcomes.

I\V. DISCUSSION
A. Hallmarks of Robust Prosthetic Control

The results demonstrate that employing an Al neural decoder
through a nerve interface has hallmarks of robust prosthetic con-
trol. Numerous commercial prostheses use alternative muscle
flexes as command inputs. However, such prostheses require
more intensive user training and do not yield a natural user
experience. The Al agent allows amputees to control prosthetic
upper limbs with their thoughts by decoding true motor intent.
Moreover, the agent can result in dexterous hand gestures by
simultaneously decoding multiple DOF. Thus, with enough
training data, the agent can take full advantage of near-anatomic
prostheses like the LUKE Arm, opening the amputees up to
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Fig. 9. We bind the hand gesture predictions to individual keystrokes on the computer, allowing Subject CS to play video games with only his
thoughts. A similar setup can be used to control various devices and gadgets in a real or virtual environment.

a future of various hand movements, which is the necessary
conditions for natural hand control. In addition, it needs to
produce the desired movements with minimal reaction lag and
high accuracy. The hand matching task proves that this agent can
deliver satisfying real-time performance by producing highly
accurate predicting outcomes of over 99% for all gestures and
low latency of about 0.81 sec, leading to a substantial amount
of information throughput (365.4 bpm).

B. Toward Bidirectional Nerve Interface

We aim to establish a neural interface that supports bidirec-
tional communication between the human mind and computer.
The Al neural decoder reported in this manuscript complements
our previous works [16], [40], [41], in which we develop a neural
stimulator and create distinct and reliable sensory feedback for
amputees by neural stimulators. In particular, [40] shows a prior
part of this clinical trial where the four amputees (three partial
and one transradial) reported tactile and cutaneous sensations
during stimulation of sensory fascicles and deeper propriocep-
tive sensations during stimulation of motor fascicles. These
subjects experience different amputation lengths, ranging from
9 months to over 20 years. Nevertheless, the neural stimulators
successfully enable sensory restoration from all subjects, includ-
ing those with over 20 years of amputation. Putting together, this
manuscript and our previous works form the foundation to ma-
terialize a complete closed-loop human-machine bidirectional
communication.

However, many other factors need to be considered to achieve
natural and accurate motor control of a prosthetic hand, in-
cluding finger extension, wrist extension, wrist supination, hand
movement directional prediction, and applied force estimation.
By establishing a highly accurate Al neural decoder, some of
these factors, such as finger and wrist extension, can be ac-
counted for by extending the recorded datasets without needing
a significant modification in the current motor decoding sys-
tem architecture. However, tackling the other factors requires
much change from our current system. Specifically, the wrist
supination prediction task involves data recorded from the ra-
dial nerve, which requires additional microelectrode implants.

In addition, to address the regression prediction of hand move-
ments, including force and velocity estimation, we must redesign
the experimental paradigm and use a different method to collect
input data and the ground truth. These could be the new goal
and addressed in our future works.

C. Mind Control Beyond Prostheses

A highly accurate Al neural decoder enables a future of
various exciting applications. In addition to assisting amputees
in their daily basic needs, such as intuitive control of prosthetic
limbs, the Al agent can help with entertainment. In the experi-
ment shown in Fig. 9, we bind the hand gesture predictions to
individual keystrokes on the computer, allowing Subject CS to
play video games with his thoughts. A similar setup can be used
to control various devices and gadgets in a real or virtual envi-
ronment. Instead of sending the predicted movement intent to
actuate the prosthetic hand, the Al engine can wirelessly transmit
the results to aremote controller to use a computer, virtual reality,
fly a drone, control a robot, and so on. Furthermore, the users
are not limited to amputees but anyone who receives the nerve
interface implant. Hence, the proposed nerve interface with an
Al neural decoder allows people to manipulate remote objects
using only their thoughts in an actual “telekinesis” manner.

V. CONCLUSION

The purpose of this research is to prove the possibility of
achieving intuitive real-time control and robust long-term per-
formance of a prosthetic hand via a neuroprosthetic system using
an Al agent to decode motor intent from the residual peripheral
nerves. The Al neural decoder results in highly accurate out-
comes in balanced accuracy, TPR, TNR from all three subjects
in all 6 DOF, enabling the subjects to freely control their fingers
and wrists by thoughts rather than via alternate muscle flexes. In
addition, the hand matching test shows that the Al agent yields
satisfying performance in real-time with a very high success
rate and short reaction time, which leads to high information
throughput across different gestures. Moreover, the neuropros-
thetic system shows no sign of deterioration. Over 16 months, the
signal strength and SNR from Subject SF are stable. The long
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implantation course and good signal quality allow the subject
time to get used to the system. Hence, the reaction time gradually
goes down, causing an increase in the information throughput.
Furthermore, the decoding model performance is persistent over
time. Without being retrained, the model prediction accuracy is
still above 90% for most DOF after 2 months and can go beyond
95% if retrained even after 7 months. These results promise a
future generation of prosthetic hands that can provide a natural
user experience just like real hands.
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