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Abstract

One-Class Support Vector Machines (OCSVMs) are a set of common approaches for novelty
detection due to their flexibility in fitting complex nonlinear boundaries between normal
and novel data. Novelty detection is important in the Internet of Things (“IoT”) due to
the potential threats that IoT devices can present, and OCSVMs often perform well in
these environments due to the variety of devices, traffic patterns, and anomalies that IoT
devices present. Unfortunately, conventional OCSVMs can introduce prohibitive memory
and computational overhead in detection. This work designs, implements, and evaluates an
efficient OCSVM for such practical settings. We extend Nyström and (Gaussian) Sketching
approaches to OCSVM, combining these methods with clustering and Gaussian mixture
models to achieve 15-30x speedup in prediction time and 30-40x reduction in memory
requirements without sacrificing detection accuracy. Here, the very nature of IoT devices is
crucial: they tend to admit few modes of normal operation, allowing for efficient pattern
compression.

1 Introduction

As devices ranging from consumer electronics to building control systems become connected to the Internet
as part of the “Internet of Things” (IoT), both these devices and the network itself are subject to new threats.
Novelty detection, which aims to detect unusual activity based on observable properties of network traffic,
is a common defense. One-Class Support Vector Machines (OCSVMs) are one of the common approaches
for novelty detection1 due to their ability to identify a wide range of nonlinear classification boundaries.
Such flexibility is appropriate for IoT devices and applications, which exhibit complexity due to the vast
heterogeneity of devices and the wide range of traffic patterns under different operating modalities.

The heterogeneity of IoT devices and operating regimes introduces a broad class of activities (and corresponding
network traffic patterns) that could be classified as normal or novel. In contrast to general-purpose computing
devices—where the main novel behavior of interest is typically a security event such as an infection—IoT
devices raise a more diverse set of anomalies, including physical device failures, the introduction of rogue devices
on the network, physical security incidents, and abnormal interactions with control systems. The devices
themselves are also heterogeneous, with the normal operating regime for each device type or manufacturer
exhibiting distinct normal baseline patterns. Given such diversity of anomaly patterns, desired anomaly

∗The work was done at Columbia University.
1In the context of security, novelty detection is often referred to as anomaly detection; we use the term novelty detection to

refer to the same class of algorithms, as the problem is equivalent. We prefer the use of novelty detection in this paper because
the classes of events that we aim to detect include conventional anomalies (in the security sense), as well as a broader class
of novel events, e.g., activities, and devices that might be simply “new”, though these new events may not necessarily have a
negative connotation.
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detection methods ought to be flexible in the generality of anomalies they can fit, but easy to use. OCSVM is
a clear candidate meeting these criteria and has thus been frequently applied to novelty detection problems in
IoT, with demonstrable efficacy in detecting novel traffic patterns corresponding to either unseen modalities
or malicious activities (Shilton et al., 2015; Lee et al., 2016; Mahdavinejad et al., 2018; Al Shorman et al.,
2020; Razzak et al., 2020). We illustrate OCSVM’s detection performance against some other flexible methods
on typical IoT devices in Figure 1, with further discussion in (Related Work) Section 2.

However, many IoT deployments require fast novelty detection in field deployments (e.g., embedded devices
such as home network routers or embedded sensors), where both computational and memory requirements
may be limited. In operational deployments, there may be the need to quickly detect an attack, a rogue device,
or a novel activity (perhaps non-malicious). Unfortunately, OCSVMs can be computationally expensive at
detection time. Given a new observation x to classify as normal or novel, detection consists of evaluating a
scoring function f(x)—of the form

∑n
i=1 αiK(Xi, x), defined with respect to training data {Xi} of size n and

a so-called kernel function K; such evaluation of f(x) takes time and space Ω(n) for typically large training
data size n in the thousands. In the context of IoT, each training data point Xi represents a vectorized
representation of normal traffic data over short time periods. Given an Internet-connected device that is
continuously generating network traffic, detection using OCSVM is currently prohibitive in practice.

Goal and Method. The goal of this work is to speed up detection time and reduce memory requirements of
OCSVM, while maintaining detection performance; we demonstrate these gains in the context of IoT, which
imposes time and memory constraints in practice. Our focus is on detection time and space, rather than
training time and space, and we particularly emphasize that we seek to not tradeoff detection performance, in
contrast to usual expectations for computational speedup.

Although novelty detection is an unsupervised problem—i.e., we only have access to normal data as opposed to
both normal and novel data points—we draw initial inspiration from the related supervised learning methods
of Support-Vector-Machines (SVMs), which, similarly to OCSVMs, uncovers linear relationships between
classes of data. Namely, various speedup approaches such as so-called Nyström and Sketching (Drineas et al.,
2005; Yang et al., 2017) have recently been developed for SVMs, which we aim to build on. However, we
will argue that such speedup approaches cannot be applied as usual in the unsupervised case
considered here: in particular, while it is usually expected that a linear decision boundary is fit after the
Nyström or Sketching (compression) step, we argue that we need to instead fit nonlinear clustering boundaries
in the unsupervised regimes considered here, if we are to maintain detection accuracy.

To better understand relevant distinctions between unsupervised and supervised OCSVMs in the context of
speedup methods, we need to get into a bit more detail. Most significantly, these methods all operate on a so-
called gram matrix K ∈ Rn×n, encoding relations between data points, i.e., inner-products Ki,j

.= ϕ(Xi)·ϕ(Xj)
corresponding to an implicit data transformation x 7→ ϕ(x). Operations on K are often the bottleneck in
training and prediction time, and approaches such as Nyström and Sketching approximate K with a lower-rank
matrix K′ that allows faster operations, while nearly preserving the original relations between transformed
data points ϕ(Xi)’s. In particular, in the case of SVM, the Nyström or Sketching matrix K′ results in a new
transformation x 7→ ϕ(x) 7→ ϕ′(x) where for any two data points Xi, Xj from separate classes, ϕ′(Xi) and
ϕ′(Xj) remain linearly separated if ϕ(Xi) and ϕ(Xj) were linearly separable. In other words, one can simply
proceed similarly with K′ in place of K and train a linear classifier. Unfortunately, as we will see (Section
3.2), in the unsupervised case of OCSVM, such ϕ′(Xi) and ϕ′(Xj) might no longer be linearly separable—an
issue particularly true in IoT—requiring us to develop a different approach on top of Nyström or Sketching.

To address this issue of nonlinearity in the case of OCSVM after applying Nyström or Sketching, we
rely on recent interpretations of these speedup approaches (Yang et al., 2012; Rudi et al., 2015; Kpotufe
& Sriperumbudur, 2020) which show that the resulting transformation ϕ′ preserves distances between
transformed points ϕ(Xi), ϕ(Xj) (i.e., distances in the transformed kernel space {ϕ(x)}), even if linear
separability between classes is not preserved. As such ϕ-distances are preserved, one might then expect that
cluster structures that may be apparent under ϕ-transformation remain apparent under ϕ′. Building on this
intuition, detection will therefore just consist of flagging any future query point x as abnormal if ϕ′(x) falls
far from clusters in the remapped training data {ϕ′(Xi)}n

i=1. To implement this idea, we model clusters
in {ϕ′(Xi)}n

i=1 as components of a Gaussian Mixture Model (GMM), which has the benefit of allowing for
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a simple detection rule based on density levels (see Section 4). Finally, as the GMM model introduces a
new hyperparameter on top of vanilla OCSVM, namely, the number k of Gaussian components (or number
of clusters), we further propose a basic approach to automatically set the parameter k by estimating high
density regions of {ϕ′(Xi)}n

i=1 via existing methods such as QuickShift++ (Jiang et al., 2018).

Results Overview. We implement the above described approach based on mapping the normal training
data as {ϕ′(Xi)}n

i=1 using either Nyström or a simple form of Sketching termed Kernel Johnson-Linderstrauss
(KJL) shown recently to preserve cluster structures w.r.t. the original mapping ϕ induced by kernel methods
such as OCSVM (Kpotufe & Sriperumbudur, 2020). For simplicity, we will henceforth refer to these approaches
respectively as OC-Nyström and OC-KJL, where OC stands for One Class (as in OCSVM) to emphasize
the unsupervised nature of these methods. We evaluate OC-Nyström and OC-KJL, both with and without
automatic GMM parameter selection, on multiple IoT datasets encoding a variety of detection use cases of
interest from detecting benign new devices to malicious activity from infected devices.

To evaluate the effectiveness of our techniques in the context of IoT anomaly detection, we test against both
public network datasets that apply to IoT environments and datasets that we have generated in the lab based
on common interactions with consumer IoT devices. In addition to IoT-specific datasets, we also evaluate
our algorithms on several public datasets involving traffic generated by general-purpose computing devices
that are pertinent to IoT settings, including distributed denial of service (DDoS) attack detection and novel
device activity. The very nature of IoT device’s network behavior facilitates faster detection time and space:
typical IoT devices, e.g., smart appliances and traffic monitors, have few operational modalities, inducing few
clusters of normal traffic; as a result, we can expect a small number k of clusters, i.e., GMM components
needed to faithfully model normal operational traffic, leading to a smaller memory footprint and detection
time complexity. Our results are as follows:

• Significant reduction in detection time and space. We observe typical detection time speedups (w.r.t. the
baseline OCSVM) between 14 to 20 times faster using either OC-Nyström or OC-KJL, and 40+ times for
some datasets. Typical space complexities decrease by a factor of 20 or more w.r.t. OCSVM. In particular,
for computationally-constrained deployment platforms, e.g., a home router, OCSVM detection time2 is
typically in the order of 100 ms per data point (see Table 3), which is now reduced to about 5 ms per data
point; combined with the reduction in space, this opens up processing multiple data points from multiple
IoT devices simultaneously on the same router, while maintaining detection performance, as explained in
the next bullet point.

• Equivalent or improved detection performance. Given that detection performance of any machine learning
method depends on hyperparameter choices, we consider two situations: (1) a situation where hyperpa-
rameters are adequately calibrated using side data (i.e., a small validation set independent of future test
data), and (2) a situation where such side data might be missing and basic rules-of-thumb are employed
to select hyperparameters. Such a situation might arise in IoT settings where some activities and devices
might be labeled, but the vast majority remain unlabeled due to the dataset scale and heterogeneity.
Upon proper calibration of all three procedures, both OC-Nyström or OC-KJL achieve detection per-
formance on par with the baseline OCSVM as measured by area under the curve (AUC). Both slightly
outperform OCSVM in some cases, which is likely due to the fact that the new mapping ϕ′ acts as a
lower-dimensional projection which at times recovers intrinsic structure not present in abnormal traffic.
In the second situation, i.e., under rule-of-thumb choices of the main hyperparameter shared by all three
procedures (i.e., a so-called kernel bandwidth parameter), OC-Nyström and OC-KJL (with automatic
choices of number of GMM components k) attain at least 0.85% of OCSVM’s AUC on most datasets and
manage improvements in AUC over that of OCSVM on many datasets. Given the lack of proper calibration,
we observe some rare situations where AUC degrades more considerably compared to OCSVM. We include
these results to give a fair and broad sense of the range of performance that one could potentially observe
in practice.

Paper Outline. The rest of the paper is organized as follows. In Section 2 we go over related work on
novelty detection in computer networking and for IoT in particular, and further discuss the appeal of OCSVM

2Such single-board computers have similar specifications as Raspberry PI or Nano devices used in our experiments.
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in this domain. Section 3 gives more detailed background on OCSVM, and relevant intuition on Nyström
and KJL; we then build on this intuition in Section 4 to derive OC-Nyström and OC-KJL approaches in
detail. In Section 5 we describe our experimental setup, including preprocessing choices for encoding network
traffic as vectors, and evaluation metrics in detail. This is followed by experimental results in Section 6.

Figure 1: Detection performance of OCSVM vs. that of GMM and KDE on two IoT datasets (a and b) and on
general-purpose PC (c). OCSVM remains competitive against these other classical and flexible methods (GMM and
KDE). Shown on all datasets, are the best performances obtained across hyperparameter choices (such choices are
described in Section 5.1).

2 Related Work

We survey related work in anomaly detection in networking, both generally and in the context of IoT.

Network Anomaly Detection. Anomaly detection in networks is widely studied. Ahmed et al. provide a
more complete survey of these techniques (Ahmed et al., 2016); we briefly overview some of the general classes
of techniques. Various supervised learning techniques have been applied to the problem of network anomaly
detection, including Support Vector Machines (Eskin et al., 2002), Bayesian networks (Kruegel & Vigna,
2003), sequential hypothesis testing (Jung et al., 2004), and neural networks (Hawkins et al., 2002; Wang
et al., 2017). In many of these cases, supervised learning has been applied in a very specific context when
labeled datasets were available, such as detecting port scans (Jung et al., 2004) or web-based attacks (Kruegel
& Vigna, 2003). OCSVM remains a common technique for performing anomaly detection in IoT, having
been used in a variety of contexts, including sensor networks Rajasegarar et al. (2010), intrusion detection of
system calls Heller et al. (2003), network intrusion detection Zhang et al. (2015), and anomaly detection in
wireless sensor networks Zhang et al. (2009).

Common unsupervised approaches have involved principal component analysis (Shyu et al., 2003; Lakhina
et al., 2004) and generalized likelihood ratio (Thottan & Ji, 2003). Principal component analysis in particular
has proved problematic in the context of network anomaly detection due to the fact that transforming network
traffic into a matrix representing a multidimensional time series involves quantization and discretization that
render the resulting underlying models brittle (Ringberg et al., 2007). Ringberg et al. found that when
applying PCA to network traffic anomaly detection, the false positive rate is sensitive to the selection of the
number of principal components in the normal subspace and the level of traffic aggregation (Ringberg et al.,
2007).

Anomaly Detection in IoT. Unsupervised learning approaches are a popular approach for IoT, where
obtaining detailed labels for a large, heterogenous set of devices is impractical. Over the past several years,
unsupervised learning techniques have been developed for novelty detection specifically for IoT devices
and activities; One-class SVMs (OCSVMs) have been particularly effective for detecting anomalies in IoT
settings (Shilton et al., 2015; Lee et al., 2016; Mahdavinejad et al., 2018; Al Shorman et al., 2020; Razzak
et al., 2020). OCSVMs are appropriate for novelty detection in IoT due to their ability to learn complex,
nonlinear decision boundaries, which can be important in IoT environments where activities are diverse
and heterogeneous. Note that OCSVMs do not always have superior performance, as alternative methods
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can indeed be better on given IoT device’s datasets; however, they’ve received much attention in the IoT
domain as they are simple to operate and compete well across a variety of IoT problems as argued in the
aforementioned works. Such flexibility and competitiveness is illustrated in Figure 1 vs. other classical
(flexible) novelty detection approaches.

Unfortunately, despite its efficacy in these settings, OCSVM can be particularly costly in terms of both
time and memory requirements, rendering the previous work impractical for many deployment settings
where novelty detection algorithms would be deployed in practice. Specifically, IoT deployments involve
the deployment of resource-constrained devices; in the case of consumer IoT deployments, for example,
anomaly detection systems may need to operate on home routers, where processing and memory capacity
is limited. The algorithms we develop in this paper achieve a speedup of up to 40 times as compared to
the best-known implementations of OCSVM, thus making it possible to deploy these anomaly detection
algorithms in practice in IoT settings. To demonstrate this feasibility, we evaluate the real-time performance
and memory requirements of our algorithms on embedded single-board computers that are often deployed in
home network settings.

3 Background on Methods

3.1 (Gaussian Kernel) OCSVM

Basic Background. OCSVM first maps data x ∈ RD as ϕ(x) into an infinite dimensional space H (a
so-called reproducing kernel Hilbert space (RKHS)). As a Hilbert space, H admits basic vector operations as in
Euclidean RD, in that it has a well-defined inner-product ⟨ϕ(x), ϕ(x′)⟩ inducing a norm ∥ϕ(x)∥2 = ⟨ϕ(x), ϕ(x)⟩
and hence a notion of distance between points and space geometry (clusters, linear projections, hyperplanes,
spheres, etc). All that is therefore needed for geometric operations is access to the inner-product operation
⟨·, ·⟩, which is readily provided by RKHS theory: for any data points x, x′ ∈ RD, there exists a so-called
kernel function K satisfying K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩. Therefore, given access to K, the mapping ϕ need
not be explicitly computed, as all geometric operations are implicit through K alone, and in particular, all
geometric operations involved in learning a hyperplane separating classes of points are thus determined by K
alone. The most common kernel function in machine learning, and especially in OCSVM, is the Gaussian
kernel K(x, x′) = C · exp

(
− ∥x − x′∥2

/2h2
)

(for a bandwidth hyperparameter h to be chosen in practice,
and a normalizing constant C = C(h)).

Key Intuition and Operations. A main intuition behind the mapping ϕ, implicit in
both supervised SVM and unsupervised OCSVM, is that it manages to separate classes of
data, i.e., pull corresponding data points far apart in H, even when they are not eas-
ily separable in their original representation in RD. This is illustrated in Figure 2.

Figure 2: OCSVM maps data points x ∈ RD as ϕ(x) onto a ball in
R∞, inducing linear separation between normal points (gray) and yet
unseen novel points (in red). We consider mappings ϕ′, which then
remap down to Rd, d ≪ D, while maintaining separation (into clusters),
but not necessarily linear separability. Given the few modalities of IoT
devices, we can then learn a GMM with few components to model the
remapped normal data.

It follows that, after the mapping ϕ, the
data might become linearly separable in
H, i.e., the two classes of data, normal
and abnormal, fall on different sides of a
hyperplane in H. Therefore, in supervised
learning (e.g., with SVM) where we have
access to both classes of data at training
time, we simply would learn a hyperplane
that most faithfully separates the training
data into the two class labels. However,
in the case of OCSVM, only one class is
available during training, namely, normal
data. It is therefore unclear how to sep-
arate it from unseen anomaly data. The
main insight is that, if the kernel K satisfies K(x, x) = C for some constant C, as with the Gaussian kernel,
then all points x ∈ RD are mapped in H to the surface of a sphere of radius

√
C, since K(x, x) = ∥ϕ(x)∥2 = C.

It follows that if the two classes are linearly separable, then they can be separated by a hyperplane that puts
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a maximal margin between the normal class and the center of the sphere since unseen anomaly data is also
constrained to map to the surface of the sphere. This is illustrated in Figure 2.

OCSVM, thus, using normal data {Xi}n
i=1 alone, returns a hyperplane that isolates normal data from future

anomalous observations. Such a hyperplane can be estimated without actually computing ϕ(Xi) ∈ H, simply
through geometrical operations encoded by all pairwise inner-products ⟨ϕ(Xi), ϕ(Xj)⟩ given by K(Xi, Xj).
These inner products are encoded for convenience in a so-called gram matrix K ∈ Rn×n, Ki,j = K(Xi, Xj)
so the training phase just operates on K to return an implicit representation of the separating hyperplane in
the form of coefficients {αi}n

i=1 and a threshold α0 used as follows:

A future test point x ∈ RD, is deemed anomalous if it maps as ϕ(x) to the wrong side of the
hyperplane, that is, if f(x) .=

∑n
i=1 αiK(Xi, x) < α0.

In other words, as in Euclidean spaces, f(x) can be viewed as the projection of ϕ(x) onto a vector normal to
the separating hyperplane, and the αi’s are coefficients determining this vector.

Detection Time and Space. It should be clear by now that computational complexity is determined by
the number ñ ≤ n of nonzero αi’s. The corresponding data points Xi’s are called the support vectors and
have to be kept in memory to estimate f(x). Thus the OCSVM detector takes space ñ · (D + 1), while the
computation time for f is Ω(ñ × D). Unfortunately, it is often the case that ñ = n or is of the same order,
while the larger n, the more accurate the detector is.

3.2 Nyström and KJL Sketching

A main approach adopted recently to speedup training time, e.g., in the context of SVMs, is to reduce
operations on the gram matrix K ∈ Rn×n by approximating it with a rank d ≪ n matrix K′ ∈ Rn×n that
might induce faster operations, while preserving much of the geometry induced by the kernel K on the
implicit mapping {ϕ(Xi)}n

i=1 ∈ H. These come in different forms under the name of Nyström and Sketching.
In particular, in some implementations, we can view K′ as inducing a new mapping x 7→ ϕ′(x) for ϕ′(x) ∈ Rd,
i.e., a low-dimensional mapping that preserves some geometry in H.

Critically, as explained in the introduction, such ϕ′ often no longer allows for linear separability from 0 – i.e.,
using just one class in the training data – as in the case of the original OCSVM map ϕ, since the remapped
data {ϕ′(Xi)}d

i=1 no longer lies on the surface of a sphere (see Figure 2). However, cluster structures uncovered
by the original ϕ are preserved since ϕ′ preserves interpoint distances (see e.g., Calandriello & Rosasco (2018);
Kpotufe & Sriperumbudur (2020)), which we build on in Section 4 below.

The Embedding ϕ′. Crucially, in order to leverage cluster structures towards efficient outlier detection, we
make the embedding ϕ′ explicit – as opposed to operating on K′ – and work directly in Rd. This is based
on recent reinterpretations of forms of Nyström and Sketching as low-dimensional projections (Yang et al.,
2012; Kpotufe & Sriperumbudur, 2020). In both cases, let Sm denote a random subsample of size m ≪ n of
the training data Sn

.= {Xi}n
i=1 (w.l.o.g., we can let Sm

.= {Xi}m
i=1). Furthermore, for any subset of indices

I, J ⊂ {1, . . . , n}, let KI,J denote the submatrix of K corresponding to rows in I, and columns in J . Then,
for I = {1 : m} and J = {1 : n}, we will consider the submatrices, KI,I ∈ Rm×m – i.e., the gram matrix on
Sm, and KI,J ∈ Rm×n, the gram submatrix of inner-products between Sm and Sn.

• Nyström. Let K−1
I,I denote a rank d pseudo-inverse of KI,I ; then setting K′ = K⊤

I,J ·K−1
I,I ·KI,J , the problem

is to come up with ϕ′ ∈ Rd such that ⟨ϕ′(Xi), ϕ′(Xj)⟩ is exactly K′
i,j . Recalling a bit of linear algebra, we can

see that a suitable ϕ′ can be defined as follows (Yang et al., 2012). Let Λ ∈ Rd×d denote the diagonal matrix
containing the top d eigenvalues λ1, . . . , λd of KI,I , and V = [v1, . . . , vd] ∈ Rm×d contains the corresponding
(column) eigenvectors vi’s. Now, for any x ∈ RD, let K(x) denote [K(x, X1), . . . , K(x, Xm)]⊤, we then
have

ϕ′(x) .= P · K(x), where we let P
.= Λ−1/2 · V ⊤. (1)

We can verify that setting K−1
I,I = V · Λ−1 · V ⊤, indeed recovers K′ as defined above.
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• KJL Sketching. In general, Sketching consists of multiplying a gram matrix K (or KI,I) by a matrix Z with
random entries. It was recently shown (Kpotufe & Sriperumbudur, 2020) that when Z has i.i.d. N (0, 1)
Gaussian entries, sketching can be understood as a random projection operation in H, leading to the
following mapping ϕ′ ∈ Rd. For any x ∈ RD, let K(x) again denote the vector [K(x, X1), . . . , K(x, Xm)]⊤,
and let Z ∈ Rd×m with random N (0, 1) entries. We then have:

ϕ′(x) .= P · K(x) where we let P
.= Z · KI,I . (2)

Embedding Time and Space. Notice that in both cases of Nyström and KJL, we only have to retain
P ∈ Rd×m at testing time, along with the m data points in Sm. Namely, the model ϕ′ requires space
complexity exactly m · (d + D). Similarly, the time complexity for evaluating ϕ′(x) is of order m · (d + D), so
it does not depend on n.

As it turns out m, d can be kept considerably smaller than n, while achieving the benefits of both methods.
This is illustrated in Figure 3, on simulated data of size n = 10000, with two classes that are not easily
clustered in RD, but which are clusterable not only in H, but also after Nyström of KJL. In that simulation,
we used d = 2 and m = 100. Similar small values are used for our experiments on real-world IoT data (see
the experimental setup in Section 5.1).
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Figure 3: Clusters after mapping ϕ′: the simulation data Cluster in Cluster has 5000 points, shown before and
after KJL/Nyström mapping. The KJL/Nyström mapping ϕ′, shown on the right, retains the clusters uncovered by
the initial kernel mapping ϕ.

4 Efficient Detection Procedures

Once the data is mapped to Rd as {ϕ′(Xi)}n
i=1 through Nyström or KJL, our next step is

to learn an efficient model of the normal class embedded in Rd. Recall that cluster struc-
tures are preserved, but not necessarily linear separability from 0 (see e.g., simulation of Fig-
ure 3 where the normal class is not necessarily linearly separable from the origin 0 ∈ R2).

UNB CTU
MAWI

MACCDC
SFRIG

AECHO
DWSHR

0

0.25

0.5

0.75

1.0

AU
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Figure 4: OC-KJL (using a GMM) performs better
than OC-KJL-SVM (using a linear separtor).

Looking somewhat ahead, this intuition is validated with
the results of Figure 4 where we compare fitting a linear
separator after KJL projection (denoted OC-KJL-SVM)
to our proposed method (OC-KJL) soon to be described.
The detection performance metric is the AUC, which is
consistently higher for OC-KJL across datasets. A natural
idea therefore is to flag future points as novelty if they fall
far from clusters in {ϕ′(Xi)}n

i=1. This may be implemented
in a number of ways via existing clustering procedures
such as K-MEANS; however, it is then unclear how to
efficiently and soundly evaluate what we might be how
far a new point is from estimated clusters. We opt for
a simple implementation consisting of fitting a Gaussian
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Mixture Model (GMM) to the normal remapped data {ϕ′(Xi)}n
i=1, with k components that encode clusters;

such a GMM is defined as a probability density of the form

f(z) =
k∑

l=1
πl · N (z; µl, Σl) , for any z ∈ Rd, (3)

where N (z; µl, Σl) denotes a Gaussian density with mean µl and covariance Σl evaluated at z, and πl’s
denote the probability or mass of each cluster l ∈ {1, . . . , k} and sum up to 1. The GMM f would have
modes µl, i.e., local maxima a.k.a. high-density cores, centered on clusters, as illustrated in Figure 2. An
immediate advantage of employing GMM’s as a clustering approach is that, once f is learned, detection
simply consists of flagging x as a novelty if f(ϕ′(x)) is smaller than a threshold t, i.e., if the remapped ϕ′(x)
falls in a low-density region far from cluster means. In practice, such a threshold can be picked depending
on the amount of tolerable false positive; for instance, to get at most 5% false positives, we set t as the
95th quantile of f values (in decreasing f order) on the negative data, i.e., on the embedded normal data
{ϕ′(Xi)}n

i=1. In our experiments below, we report the performance of detectors across all such thresholds
choices, as captured by AUC (Sections 5.1 and 5.2).

Meta Procedures. The resulting OC-Nyström and OC-KJL approaches are summarized below. Given a
Gaussian kernel K with bandwidth h, embedding choices m, d ≪ training size n:

Training: Given normal data {Xi}n
i=1 ∈ RD do:

- Embed Xi’s as ϕ′(Xi) ∈ Rd via Nyström equation 1 or KJL equation 2;
- Parameter k is passed in or is chosen via Quickshift++ (see paragraph below) on embedded data {ϕ′(Xi)}n

i=1 ∈ Rd;
- Estimate a GMM f with k components on {ϕ′(Xi)}n

i=1;
- Return GMM f along with projection ϕ′ (i.e., matrix P and subsample Sm) ;

Detection: Given new x ∈ RD and model (ϕ′, f), do:
- Embed x as ϕ′(x) into Rd;
- Flag x as novelty iff f(ϕ′(x)) ≤ threshold t

Choice of Number of Components k. As discussed earlier, we may automatically choose the number
of components k by first identifying the number of high-density regions in the mapped data {ϕ′(Xi)}. This
might be done in a number of ways, and we propose to use available density-mode estimators such as from the
Meanshift family Comaniciu & Meer (1999); these are procedures that automatically identify the modes, i.e.,
local maxima, of the underlying data density, which in simple terms are just the regions of highest density
in the data. In particular, in this work we employ a recent fast version of these mode estimators denoted
QuickShift++ Jiang et al. (2018), which automatically returns points in locally high-density regions of the
data, with no a priori knowledge of the number of such regions, which we will identify with clusters. However,
if labeled side data is available to cross-validate for the OCSVM or Nyström and KJL bandwidth parameter
h, the same data can be used to choose k (see Section 5.1).

Detection Time and Space. As described in Section 2.2., saving the model ϕ′ takes space m · (d + D),
while f now takes additional space k · (d + d2) for GMM parameters. As m, d can be chosen small, detection
time mostly depends on k; fortunately, as discussed in the introduction, k can be chosen small (between 1
and 20 in our experiments) as clusters naturally correspond to the typically few modes of normal operation
of IoT devices.

OC-Nyström vs. OC-KJL. As we will see in the results of Section 5.2, both procedures achieve our
intended goal of efficiency while maintaining detection performance on par with that of OCSVM; while
advantages vary across datasets, OC-Nyström tends to trade a bit of efficiency for better detection, as its
embedding can require larger k values.
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5 Experimental Setup and Evaluation

5.1 Experimental Setup

Data Sources. We consider both publicly available traffic traces and traces collected on private consumer
IoT devices. We aim to evaluate a representative set of devices, from multi-purpose devices, such as laptop
PCs and Google Home, to less complex electronics and appliances with few modes of operations, such as smart
cameras or smart fridges. Furthermore, we aim at a representative set of novelties, from benign novelties
(new activity or a new device type) to novelties due to malicious activities (DDoS attack). Table 1 describes
the datasets we used in the main paper, along with the associated types of novelty being detected. There are
seven datasets in total, in which three of them are IoT datasets collected from three IoT devices deployed at
the University of Chicago, and the remaining four are public datasets (i.e., CTU IoT, UNB IDS, MAWI, and
MACCDC). Furthermore, the types of novelty vary from benign novelties (new activity or a new device type)
to novelties due to malicious activities (DDoS attack).

Table 1: Datasets’ details.
Datasets Description Devices Novelty

Type of

SFRIG
Lab IoT

Data traces are generated by a Samsung Fridge (SCam) with IP ‘192.168.202.43’
in a private lab environment. It has two types of traffic traces labeled as normal
when there is no human interaction and, novel when being operated by a human
(such as opening the fridge).

One fridge activity
Novel

AECHO
Lab IoT

Data traces are generated by an Amazon ECHO (AECHO) with IP
‘192.168.202.74’ in a private lab environment. It has two types of traffic traces
labeled as normal when there is no human interaction, and novel when being
operated by a human (such as buying food by the ECHO).

One Amazon
ECHO activity

Novel

DWSHR
Lab IoT

Data traces are generated by a dishwasher (DWSHR) with IP ‘192.168.202.76’
in a private lab environment. It has two types of traffic traces labeled as nor-
mal when there is no human interaction, and novel when being operated by
a human (such as opening the dishwasher). We also add another novel traffic
(such as buying food by an AECHO) collected from an Amazon ECHO (with IP
‘192.168.202.174’) into novel to get a bigger testing set.

One dishwasher
and one

Amazon ECHO activity
Novel

CTU IoT
(García, 2019)

Bitcoin-Mining and Botnet traffic traces generated by two Raspberries; we use
Botnet traffic (with IP ‘192.168.1.196’) as normal and Bitcoin-Mining traffic
(with IP ‘192.168.1.195’) as novel. Raspberry Pis

infected
Two

device
(infected)

Novel

UNB IDS
(Sharafaldin
et al., 2018)

Normal traces are generated by one personal computer (PC) with IP address
is ‘192.168.10.9’. Attack traces are generated by three PCs with IP addresses:
‘192.168.10.9’, ‘192.168.10.14’, and ‘192.168.10.15’.

Four PCs DDoS attack

MAWI (Naga &
Kaizaki, 2020)

Normal traffic are collected on July 01, 2020; we choose one kind of traffic gen-
erated by a PC with IP ‘203.78.7.165’ as normal, and another kind of traffic
generated by a PC with IP address ‘185.8.54.240’ as novel.

Two PCs
device

(normal)
Novel

MACCDC
(O’Brien

et al., 2012)

Data traces are collected in 2012; we choose one kind of traffic generated by a
PC with IP ‘192.168.202.79’ as normal and one kind of traffic generated by a
PC with IP ‘192.168.202.76’ from another pcap as novel.

Two PCs
device

(normal)
Novel

Although some of the devices that we test are multipurpose (as such might display more modalities than a
special-purpose IoT device), including them allows us to test how well our approach scales. In particular, we
will see that efficient detection is possible even in such cases, as even then k ≤ 20 clusters suffice to maintain
detection performance over these datasets, keeping d = 5 and m = 100.

Representation: Flows. Our unit of measurement consists of traffic flows, described below, i.e., as we aim
to flag flows as normal or novel. We parse bidirectional flows from datasets in Table 1 using Scapy (Biondi,
2021) and extract interarrival times and packet sizes. Because certain devices can have arbitrarily long flows,
we truncate each flow from a given dataset to have duration at most that of the 90th upper-percentile of
flow durations in the dataset. Henceforth, a flow refers to these choices of flows involving truncation. We
randomly split the obtained data into training, validation, and test sets of sizes detailed in Table B.1 in
Appendix.

Representation: Features. Every flow is represented as a vector of the interarrival times between packets,
i.e., in microseconds elapsed between consecutive packets, along with the size in bytes of each packet in the
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flow (IAT+SIZE). We select these features as it results in competitive detection accuracy for OCSVM. This is
illustrated, e.g., against 2 common alternative feature choices, namely, STATS and SAMP_SIZE, as shown in
Table 2. A different choice, STATS+HEADER, corresponds to common statistics on flows, e.g., flow duration,
mean, standard deviation and quantiles of packet sizes, in addition to packet header information (Yang et al.,
2020) as explained in detail in Appendix E.2.

Results for the alternative features set STATS+HEADER are given in Appendix E.3, further demonstrating
that our speedups generally hold over choices of data representation, as significant savings in time and space
over baseline OCSVM remain. Such generality is expected because the main source of savings in both time
and space stands, namely, the succinct finite-dimensional modeling of the infinite-dimensional representation
inherent in OCSVM, made possible by the few modalities displayed by typical IoT devices.

Table 2: Average AUCs for alternative features.
Dataset MAWI SFRIG DWSHR

IAT+SIZE 0.99 ± 0.00 0.93 ± 0.00 0.93 ± 0.00

STATS 1.00 ± 0.00 0.86 ± 0.00 0.65 ± 0.00

SAMP_SIZE 0.99 ± 0.00 0.93 ± 0.00 0.92 ± 0.00

Implementation and Hyperparameters. All
detection procedures are implemented in Python,
calling on the scikit-learn package for existing pro-
cedures such as OCSVM and GMM. While OCSVM
training uses the standard libsvm package, we re-
implemented its detection routines (as described in
Section 3.1) using Numpy to ensure fair, apples-to-apples execution time comparison with OC-Nyström and
OC-KJL, which are implemented in Numpy, a Python library that calls on fast algebraic operations and
parallel processing on multicore machines (Harris et al., 2020). The Nyström and KJL projections are
implemented as described above; All the source codes can be seen at KJL

Training Scenarios. We consider two practical scenarios: one where some small amount of labeled novelty
data is available to validate hyperparameter choice in a controlled lab environment, and one with no such
labeled validation data, where we have to result in default choices of hyperparameters. Although each
detection procedure may have many internal parameters, this distinction in scenarios only applies to two key
choices of hyperparameters:

• Kernel Bandwidth h. For all methods, i.e., OCSVM, OC-Nyström, and OC-KJL, we use a Gaussian kernel of
the form K(x, x′) ∝ exp(−∥x−x′∥2/h2), where the bandwidth h is to be picked as a quantile of

(
n
2
)

distances
between the n training data points. In all our results, we consider 10 quantiles [0.1, 0.2, . . . , 0.9] ∪ {0.95}
of increasing interpoint distances.

• Number of GMM components k. As explained above, OC-Nyström and OC-KJL also require a choice of
the number of GMM components to fit. We consider choices in the range [1, 4, 6, 8, 10, 12, 14, 16, 18, 20].
Thus the number of components or clusters k is capped at 20, as IoT devices are expected to display
relatively few modes of operations, i.e., clusters of normal network activity.

For the results presented in the main text, the choice of k is made by QuickShift++, and the resulting
procedures are denoted OC-Nyström-QS and OC-KJL-QS: these versions of our fast methods therefore
only leave the choice of bandwidth h and will be our main focus.

Next, we discuss how the above parameters are picked in each of the use cases or scenarios discussed above.

- Minimal Tuning. To simulate the first training scenario where some small amount of labeled novelty data
is available, we subsample a small amount of the novelty data, which paired with equal amount of normal
data is used to form a validation set to be used in hyperparameter choice. We then proceed to choose h
or k (when Quickshift++ is not used) to minimize AUC over the validation data, so that these choices are
independent of the random test set on which final results are reported.

- No Tuning. In this case, we choose the bandwidth h by a common rule-of-thumb as the 0.3 quantile of
increasing interpoint distances on the training data. The choice of the number of components k is then always
made by Quickshift++. We observed the same speedups under these settings, although these results are
related to Appendix D for space.
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All Other Algorithmic Parameter Choices are Fixed. We now describe all other choices inherent in
our procedures, OC-Nyström and OC-KJL, and their variants OC-Nyström-QS and OC-KJL-QS.

- Projection Parameters. As discussed in Section 4, subsamples size m and projection dimension d are fixed
to m = 100 and d = 5, choices which remarkably preserve detection performance across datasets and types of
novelty, despite the considerable amount of compression they entail.

- Quickshift++ Parameters. We use the implementation of (Jiang et al., 2018; Jiang et al.), which requires
internal parameters β set to 0.9 (this performs density smoothing) and the number of neighbors set to n2/3

(to build a dense neighborhood graph whose connectivity encodes high-density regions), two choices that
work well across device datasets and types of novelty.

Here, due to variability in the data, Quickshift++ can often return too many outlier clusters (despite the
conservative setting of its internal parameters). To remove those, we only retain large clusters, namely, the
smallest number of clusters that account for at least 95% of the data if this number is less than 20; otherwise,
we retain the 20 largest clusters discovered by Quickshift++.

Gaussian Mixture Models Parameters. We have the choice of using either full Gaussian covariances in fitting a
GMM model to the projected data after KJL or Nyström or using only diagonal covariances for faster fitting –
especially when operating in high dimensional settings – but at the usual cost of some loss in accuracy. Since
GMMs are fit after projection to low dimension d = 5, it turns out that full Gaussian covariances are in fact
efficient to fit in our case, so we only report results for full covariances.

When using Quickshift++, we initialize GMM with the clusters returned, i.e., local means and covariances of
these clusters, and train till convergence.

Computing Platforms. We perform our experiments on two computing platforms: (1) a well-provisioned
server, for the use case where all training and detection might occur offline; and (2) resource-constrained
devices, specifically a Raspberry Pi and an NVidia Jetson Nano, corresponding to the use case where detection
is to be real-time, local to the IoT device. Table A.1 in Appendix provides details.

5.2 Evaluation Metrics

Detection Performance. In novelty detection, there is a well-known tension between false detection a.k.a.
false positive rates (FDR, i.e., the proportion of normal data wrongly flagged as novel) – and true detection
a.k.a. true positive rates (TDR, i.e., the percentage of abnormal data rightly flagged as novel). Such tradeoffs
are well captured by a Receiver Operating Characteristic (ROC) curve, which plots the detection rate TDR
against the false alarm rate FDR as the detection threshold t is varied from small to large; thus, the area
under the ROC curve (Area Under the Curve (AUC)) when it is large, i.e., close to 1, indicates that good
tradeoffs are achieved by the given detection approach. In contrast, AUC below 0.5 signals poor tradeoffs.
AUC is therefore commonly adopted as a sensible measure of detection performance, as it captures tradeoffs
under the complete range of detection choices.

In practice, a single threshold is chosen, driven by application-specific constraints, as one might prefer high
TDR over low FDR, or vice versa (think of an infected medical device, e.g., a pacemaker, where high TDR
would be preferred, vs. an infected smart home appliance, e.g., a toaster, where low FDR might be preferred).
Large AUC, thus, indicates that the detector allows for good choices in any of these situations. For our
proposed fast detectors, we will be interested in the fraction of AUC retained over OCSVM, i.e., the AUC of
our detector divided by that of OCSVM.

Training and Detection (or Testing) Time. We will measure time as the wall-clock time taken by
any of the methods for training (not-including data preprocessing into feature vectors, but inclusive of all
actual training, i.e., modeling fitting) and testing, i.e., actual detection computations, on given machine
environments (see Section 5.1 below) after a model is obtained. We report the speedup, the ratio of wall-clock
time for OCSVM over that of our detector, separately for training and testing.
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Detection (or Testing) Space. We report the space taken by the model returned by the detection
procedure in kiloBytes. Namely, we report the minimal amount of information on the learned model to be
saved towards future detection. That is, (1) support vectors and coefficients for OCSVM, and (2) projection
parameters and GMM components for OC-Nyström and OC-KJL (with or without Quickshift++), all
as described in Section 3.1 and 4. While memory usage depends on the programming language, under
Python 3.7.3, memory usage is machine-independent, as Python enables porting across 64 or 32-bit machine
architectures via its pickling process. All of our models are first trained on a 64-bit machine (Section 5.1).

Averaging and Data Splitting. To reduce uncertainty in reported results, we introduce repetitions in
various stages of our experiments and report averages and standard deviations on performance metrics. For
each dataset, first all flows (normal and abnormal) are preprocessed into the IAT+SIZE features, which
creates at set of normal and novel data, from which we draw random subsamples. Experiments on each
dataset follow the steps outlined below.

(i) Draw a subsample of size 600 to 2500 from normal data and a subsample of size 600 to 2500 from novelty data
to form a test dataset of size 1200 to 5000. Exact sizes are given in Appendix Table B.1.

(ii) Repeat 5 times for accurate AUC:
• Draw a subsample of size n = 10K from normal data to form the training data, except for MAWI (n = 5.7K).
• If tuning: draw a validation sample (1/4 test set size).
• Choose parameters h, k as described in Section 5.1.
• Train with the choice of h, k and save model on disk.
• Load and test model on Test data: repeat 100 times for accurate timing on machine (retain aggregate time).

For the baseline OCSVM, we report the average and standard deviation of performance metrics over the 5
repetitions. When reporting speedups for OC-Nyström and OC-KJL over OCSVM, we use the corresponding
average performance of OCSVM, say µ. In other words, if we observe AUCs a1, . . . , a5 for OC-KJL, we report
the mean of a1/µ, . . . a5/µ ± the std of these ratios. We proceed similarly for time ratios.

6 Results

We focus in the main body on the first situation where some validation is available to tune model hyperparam-
eters as described in Section 5.1. Results for the case of no tuning (as described in Section 5.1) reveal similar
speedups in time and space as shown here and are given in detail in Appendix D. We further focus here
on the OC-Nyström-QS and OC-KJL-QS—for fair comparison as OCSVM comes with a single parameter
h—while results for OC-Nyström and OC-KJL (which require h, k to be tuned) are given in Appendix C. As
previously discussed in Section 5.1, all testing procedures are implemented in Numpy with parallelism turned
on to take advantage of multicores.

OCSVM Baseline Performance. Table 3 shows OCSVM baseline performance. All training is performed
on the server; testing is performed on all platforms. The table reports (1) AUC, same for all machines, since
the same models and test data are used; (2) training time on the server; (3) test time for all three machines;
and (4) test space, which is the same across all machines.

Table 3: OCSVM baseline performance. Time is in milliseconds per 100 data points and space is in kiloBytes.
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC 0.67 ± 0.01 0.66 ± 0.02 0.99 ± 0.00 0.85 ± 0.00 0.93 ± 0.00 0.90 ± 0.00 0.93 ± 0.00

Time (ms)
Server Train 93.93 ± 4.75 77.87 ± 1.72 82.59 ± 1.53 84.19 ± 1.93 80.83 ± 7.72 111.26 ± 6.59 110.53 ± 5.77

(ms)
Test Time

RSPI 125.86 ± 0.08 118.19 ± 4.54 74.53 ± 0.05 124.58 ± 0.22 120.12 ± 0.22 125.43 ± 0.22 124.54 ± 0.28

NANO 83.87 ± 0.18 86.71 ± 0.82 58.57 ± 0.05 86.89 ± 0.80 69.62 ± 0.09 88.80 ± 0.08 84.07 ± 0.04

Server 19.84 ± 0.16 19.97 ± 1.36 11.22 ± 0.14 19.99 ± 0.23 16.15 ± 0.20 19.98 ± 0.03 19.81 ± 0.01

Space (kB) 1763.53 ± 0.45 961.52 ± 0.75 2792.46 ± 0.48 1042.92 ± 0.45 641.58 ± 0.10 1441.75 ± 0.14 1202.39 ± 0.30

AUC Retained. As stated earlier, we now verify that our proposed methods manage to retain the accuracy
of the baseline OCSVM and also do not sacrifice training efficiency. These are the results of Table 4. We
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Table 4: Retained AUC (method over OCSVM) and server train time speedup (OCSVM over method).

Method
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC Retained
OC-KJL-QS: 1.33 ± 0.02 1.05 ± 0.03 0.95 ± 0.03 1.03 ± 0.01 0.97 ± 0.02 1.07 ± 0.00 0.99 ± 0.00

Train Speedup 1.36 ± 0.07 1.10 ± 0.02 1.65 ± 0.03 1.14 ± 0.03 0.97 ± 0.09 1.18 ± 0.07 1.19 ± 0.06

AUC Retained
OC-Nyström-QS: 1.37 ± 0.02 1.13 ± 0.04 0.90 ± 0.03 1.06 ± 0.02 0.96 ± 0.01 1.09 ± 0.01 0.98 ± 0.01

Train Speedup 1.32 ± 0.07 1.12 ± 0.02 1.74 ± 0.03 1.16 ± 0.03 0.93 ± 0.09 1.26 ± 0.07 1.17 ± 0.06

see that our detection methods largely retain the detection performance of OCSVM, often within a ratio
of 1 or more, except in the case of MAWI, SFRFIG, and DWSHR – which are still high AUCs considering
OCSVM’s very good performance on these datasets. Moreover, for some datasets, such as UNB and CTU, all
procedures manage to actually outperform OCSVM. It is likely that such higher performance is due to the
additional regularization inherent in the dimension reduction performed by our methods. In particular, it is
well known that dimension reduction approaches such as PCA have the added benefit of making clusters
more salient by keeping cluster centers apart while reducing cluster diameters (see e.g., Sanjeev & Kannan
(2001); Vempala & Wang (2004)). Here, we also re-emphasize that all methods presented are tuned fairly
against the baseline OCSVM over the same bandwidth parameter h as detailed in Section 5.1. Versions with
Quickshift++, namely, OC-Nyström-QS and OC-KJL-QS, tend to achieve slightly smaller AUC compared to
the non-Quickshift++ counterparts where the number of components k is tuned by validation (see Table
C.1), yet they also manage to maintain or sometimes outperform the baseline AUC of OCSVM.

Training Time. Our main goal is to maintain the training efficiency of OCSVM, and we see in Table 4
that our methods using Quickshift++ achieve this goal and even manage some minor speedup over OCSVM.
We will see in Appendix C.1 that our methods without Quikshift++ achieve significantly faster training time,
although with the added complexity of an additional tuning parameter k. OC-Nyström-QS’s performance is
similar to its non Quickshift++ counterpart, while at the same time it is more applicable in all scenarios,
including when no validation data is available for tuning (results of Section D).

Significant Savings in Detection Time and Space. We report significant savings on detection time
and space for all proposed variants of our approaches, which is the main motivation of this work. Table 5
and Table 6 present results for OC-KJL-QS and OC-Nyström-QS, while similar time and space savings under
OC-KJL and OC-Nyström are presented in Appendix Tables C.2 and C.3.

Table 5: OC-KJL-QS: Test time speedup (OCSVM over method) and space reduction (OCSVM over method).
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 24.68 ± 0.02 24.22 ± 0.93 15.61 ± 0.01 27.56 ± 0.05 26.77 ± 0.05 26.38 ± 0.05 25.19 ± 0.06

NANO 27.18 ± 0.06 31.67 ± 0.30 21.29 ± 0.02 33.95 ± 0.31 27.20 ± 0.04 30.44 ± 0.03 28.78 ± 0.01

Server 26.33 ± 0.21 28.10 ± 1.92 17.17 ± 0.21 29.72 ± 0.34 24.15 ± 0.30 32.32 ± 0.05 30.94 ± 0.01

Space Reduction 41.36 ± 0.01 36.30 ± 0.03 27.18 ± 0.00 38.21 ± 0.02 32.83 ± 0.00 40.73 ± 0.00 37.42 ± 0.01

Table 6: OC-Nyström-QS: Test time speedup (OCSVM over method) and space reduction (OCSVM over method).
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 22.86 ± 0.02 22.63 ± 0.87 15.54 ± 0.01 27.08 ± 0.05 26.48 ± 0.05 26.24 ± 0.05 25.56 ± 0.06

NANO 24.73 ± 0.05 29.63 ± 0.28 21.53 ± 0.02 33.56 ± 0.31 27.39 ± 0.04 30.07 ± 0.03 29.14 ± 0.01

Server 24.16 ± 0.20 25.90 ± 1.77 17.31 ± 0.21 29.44 ± 0.33 24.36 ± 0.30 31.73 ± 0.05 31.23 ± 0.01

Space Reduction 39.99 ± 0.01 35.09 ± 0.03 27.21 ± 0.00 37.98 ± 0.02 32.97 ± 0.00 40.66 ± 0.00 37.63 ± 0.01

Our approaches are at least 15 times faster than OCSVM on every machine we considered: Nvidia Nano,
Raspberry Pi, and the server. Speedups on Raspberry Pi and the server are most considerable, up to 20+
times faster than OCSVM on many datasets. The smaller amount of speedup that we observe on the Nano
can be attributed to the relatively smaller amount of memory that this device has compared to the Raspberry
Pi, which likely forces more memory swap operations as all test data is loaded at once. We also note that
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unlike the Nano and Raspberry Pi, the server may have had more competing processes, yet even on the server,
the trend of large speedups is observed across datasets. We see a small distinction between OC-KJL-QS and
OC-Nyström-QS, whereby the former tends to achieve higher speedups on all machines for most datasets. As
such both approaches seem to offer a tradeoff where, as per Table 4, the Nyström based approaches tend to
achieve slightly higher AUC on most datasets.

In all cases, we observe significant space reductions, as our models can be stored upwards of 27 times less space
and up to 41 times less than the baseline OCSVM model. This smaller memory footprint implies the possibility
for a wider deployment than a conventional OCSVM, especially on memory-restricted devices such as on the
embedded devices we evaluated. Although we focused much of our evaluation on memory-constrained devices,
which is a common deployment scenario for IoT, the space efficiency of these models is important even in
server settings, where a server might host large numbers of detection tools each dedicated to monitoring a
given machine on client networks.

7 Conclusion

Because many IoT devices have a few well-defined operating regimes, it is possible to model their network
flows in terms of relatively few clusters of activity under appropriate representations of the data. In this
paper, we have extended the OCSVM approach, which has received much attention in IoT, to more efficient
representations using projection and clustering. We have demonstrated that these procedures result in 15-40x
improvements in both time and space without sacrificing detection accuracy across a wide range of novelty
detection problems in IoT. These approaches, OC-Nyström-QS and OC-KJL-QS, are more widely applicable
under practical use cases of novelty detection in IoT and in particular deployable not only on powerful
servers but also on single-board computing devices with more limited memory and computing resources. Our
evaluation of these techniques have also exposed some clear tradeoffs: when minimally tuned with a few
labeled data, OC-Nyström-QS tends to achieve higher detection performance than OC-KJL-QS at the cost of
some increase in computation time. As explained earlier in Section 6, additional results for other variants
and use cases with no tuning shown in Appendix show similar significant speedups.
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A Computing Platforms

Table. A.1 shows all three machines’ information (i.e., Large server, Raspberry Pi, and Nvidia Nano), which
includes operating system, CPU, memory, storage, programming language, and a scientific computing package
(Numpy). Note that ‘lscpu’ command is used to get CPU and CPU cache information. In addition, for
Raspberry Pi, we get the cache information from the ARM official document of the Cortex-72 processor
(ARM, 2016).

Table A.1: We train on server and test on all 3 machines.
Machine Description

Large
Server

64-bit, running Debian GNU/Linux 9 (stretch) with Intel(R) Xeon(R) processor (32 CPU Cores, 1200-3400 MHz
each), 100GB memory, and 2TB disk.

Caches: 3 layers of CPU caches (i.e., 32KiB L1d and L1i, 256KiB L2, and 20MB L3).

Programming language: Python 3.7.9.

Numpy 1.19.2 (install from the numpy wheel that includes an OpenBLAS implementation of the BLAS and LA-
PACK linear algebra APIs (Oliphant, 2005)).

Raspberry
Pi

32-bit, running Raspbian GNU/Linux 10 (buster) with Cortex-A72 processor (4 CPU cores, 600-1500 MHz each),
8GB memory, and 27GB disk.

Caches: 2 layers of CPU caches (i.e., 32KiB L1d, 48KiB L1i, and 1MiB L2 (ARM, 2016)).

Programming language: Python 3.7.3 with ’–enable-optimizations’ option.

Numpy 1.18.2 (install from the numpy source codes that searches for BLAS and LAPACK dynamic link libraries at
build time as influenced by the system environment variables (Oliphant, 2005)).

Nvidia
Nano

64-bit, running Ubuntu 18.04.5 LTS (Bionic Beaver) with Cortex-A57 processor (4 CPU cores, 102-1479 MHz each),
4GB memory, and 30GB disk.

Caches: 2 layers of CPU caches (i.e., 32KiB L1d, 48KiB L1i, and 2MiB L2)

Programming language: Python 3.7.3 with ’–enable-optimizations’ option.

Numpy 1.18.2 (install from the source codes (Oliphant, 2005)).

B Dataset Sizes and Dimensions

Table B.1 shows Train set, Validation (Val.) set, Test set, and feature dimensions. The size of validation
sets is always 1/4 of the corresponding test set sizes. In Validation set and Test set, the number of normal
and abnormal data is equal. Moreover, the IAT+SIZE dimension of each dataset is less than 50, except for
MAWI (its dimension is 121).

Table B.1: Dataset sizes (# of data points) and dimensions.
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Train Set 10,000 10,000 5,720 10,000 10,000 10,000 10,000

Val. Set 462 1,250 1,040 1,250 1,250 280 508

Test Set 1,854 5,000 4,160 5,000 5,000 1,120 2,032

Dimensions 43 23 121 25 15 35 29

C OC-Nyström and OC-KJL Results (no Quickshift++)

In the main paper body, we left out some of the detection time and space savings results for the OC-KJL and
OC-Nyström variants (which do not use Quickshift++ for automatic cluster-number identification). Here
we consider the effect of additionally tuning the number of GMM components rather than selecting them
automatically via Quickshift++. The main message here is that not much is lost in AUC by automatically
choosing k via Quickshift++.

C.1 Retained AUC and Training Efficiency

Table C.1 compares AUC and training times of OC-KJL and OC-Nyström to that of the baseline OCSVM.

18



Published in Transactions on Machine Learning Research (11/2022)

Table C.1: Retained AUC (method over OCSVM) and server train time speedup (OCSVM over method).

Method
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC Retained
OC-KJL: 1.36 ± 0.04 1.13 ± 0.04 0.99 ± 0.01 1.08 ± 0.01 0.99 ± 0.01 1.08 ± 0.00 0.99 ± 0.00

Train Speedup 2.75 ± 0.14 2.44 ± 0.05 4.13 ± 0.08 2.47 ± 0.06 2.22 ± 0.21 2.84 ± 0.17 2.75 ± 0.14

AUC Retained
OC-Nyström: 1.41 ± 0.02 1.19 ± 0.03 0.99 ± 0.01 1.07 ± 0.03 0.97 ± 0.01 1.09 ± 0.00 0.99 ± 0.01

Train Speedup 3.14 ± 0.16 2.59 ± 0.06 3.68 ± 0.07 2.60 ± 0.06 2.17 ± 0.21 2.94 ± 0.17 2.72 ± 0.14

AUC Retained. We see that our detection methods, OC-Nyström and OC-KJL, retain the detection
performance of OCSVM, all within a ratio of 1 or more, except in the case of MAWI, SFRFIG, and DWSHR
– which are still high AUCs considering OCSVM’s high accuracy on MAWI, SFRIG, and DWSHR (Table 3).
Moreover, for some datasets, such as UNB and CTU, all procedures manage to actually outperform OCSVM.
It is likely that such higher performance is due to the additional regularization inherent in the dimension
reduction performed by our methods.

Training Time. Although our original goal was just to maintain the training efficiency of OCSVM, especially
considering the various additional steps inherent in our methods, our methods without Quickshift++ in fact
achieve speedup – factors of 2-4 in some cases – over OCSVM training time which involves more expensive
model fitting steps.

C.2 Significant Savings in Detection Time and Space

Tables C.2 and C.3 presents results on detection time and space savings for both OC-KJL and OC-Nyström.

Table C.2: OC-KJL: Test time speedup (OCSVM over method) and space reduction (OCSVM over method).
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 26.66 ± 0.02 22.81 ± 0.88 13.25 ± 0.01 25.91 ± 0.05 26.20 ± 0.05 24.52 ± 0.04 25.07 ± 0.06

NANO 29.66 ± 0.06 29.90 ± 0.28 18.24 ± 0.02 31.45 ± 0.29 27.13 ± 0.04 27.36 ± 0.02 28.38 ± 0.01

Server 28.80 ± 0.23 26.41 ± 1.80 14.73 ± 0.18 28.19 ± 0.32 23.63 ± 0.29 29.11 ± 0.05 30.48 ± 0.01

Space Reduction 42.55 ± 0.01 35.12 ± 0.03 26.52 ± 0.00 36.74 ± 0.02 32.58 ± 0.00 39.20 ± 0.00 37.13 ± 0.01

Table C.3: OC-Nyström: Test time speedup (OCSVM over method) and space reduction (OCSVM over method).
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 27.17 ± 0.02 24.30 ± 0.93 12.59 ± 0.01 27.02 ± 0.05 24.87 ± 0.05 25.33 ± 0.04 24.49 ± 0.06

NANO 29.98 ± 0.07 31.92 ± 0.30 17.14 ± 0.02 33.62 ± 0.31 25.88 ± 0.03 28.24 ± 0.02 27.94 ± 0.01

Server 28.31 ± 0.23 27.60 ± 1.88 13.95 ± 0.17 29.71 ± 0.34 23.22 ± 0.29 30.24 ± 0.05 29.91 ± 0.01

Space Reduction 42.79 ± 0.01 36.55 ± 0.03 26.25 ± 0.00 37.98 ± 0.02 31.60 ± 0.00 39.82 ± 0.00 36.89 ± 0.01

Testing Time Speedup. We observe speedups of at least 13 times over the baseline OCSVM detection
times across all machines and datasets.

Space Reduction. As before, space reductions are significant w.r.t. the baseline OCSVM from 26 to 42+
times less space than required by the baseline.

D Results under No Tuning

We now consider the scenario where no validation data is available to tune any of the procedures, i.e., in
choosing the bandwidth parameter h. While in general it is preferable to perform some minimal tuning before
deployment, in practice, it may be difficult to obtain labeled data for the types of novel activities of interest
that commonly arise in actual deployment environments.
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In the practice of novelty detection with OCSVM, when no labeled data is available, various rule-of-thumbs
are used, a popular one being to pick h as a quantile of inter-point distances. For uniformity, as explained in
Section 5.1, here we pick h for all methods, as the 30th percentile of increasing inter-point distances in the
training data.

Naturally, detection performance suffers w.r.t. that of a tuned procedure for any of the methods. Furthermore,
since the choice of bandwidth affects the learned model, it is to be expected that time and space comparisons
would also differ from that under minimal tuning as in the previous Section 6.

D.1 Baseline OCSVM Performance

Table D.1 shows the performance of the baseline OCSVM. We observe a decrease in AUC for most datasets,
most considerably for UNB and CTU, which already were hard datasets even under tuning (Table 3).
Interestingly, MAWI, MACCDC, SFRIG, and DWSHR still admit high AUCs even without tuning, attesting
to the general appeal of OCSVM as an adaptable and robust novelty detection approach. Although AECHO
and MACCDC dropped in accuracy (from 0.85+), they still retain reasonable accuracies with AUC’s at 0.78.

Table D.1: OCSVM baseline performance, no tuning. Time is in ms per 100 datapoints and space is in kB.
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC 0.60 ± 0.01 0.57 ± 0.01 0.98 ± 0.00 0.78 ± 0.00 0.85 ± 0.00 0.78 ± 0.00 0.87 ± 0.01

Time (ms)
Server Train 94.23 ± 1.66 81.47 ± 2.39 78.48 ± 0.93 84.72 ± 1.01 85.15 ± 2.99 117.65 ± 6.46 117.29 ± 8.81

(ms)
Test Time

RSPI 124.54 ± 0.12 124.12 ± 0.35 74.48 ± 0.64 124.17 ± 0.59 123.70 ± 0.36 126.31 ± 0.95 125.46 ± 0.72

NANO 89.30 ± 0.11 86.32 ± 0.17 50.71 ± 0.05 86.70 ± 0.21 83.50 ± 0.17 88.85 ± 0.02 88.00 ± 0.09

Server 19.20 ± 0.13 19.42 ± 0.22 9.76 ± 0.13 19.10 ± 0.27 18.62 ± 0.15 19.95 ± 0.02 19.72 ± 0.09

Space (kB) 1761.21 ± 0.17 961.40 ± 0.23 2798.32 ± 0.78 1041.34 ± 0.13 641.07 ± 0.05 1441.75 ± 0.14 1201.38 ± 0.32

D.2 Retained AUC and Training Efficiency

Table D.2 compares AUC and training times of OC-KJL-QS and OC-Nyström-QS to that of the baseline
OCSVM, using the exact same default choice of bandwidth h as OCSVM.

Table D.2: No tuning. Retained AUC (method over OCSVM) and train time speedup (OCSVM over method).

Method
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC Retained
OC-KJL-QS: 1.49 ± 0.02 1.20 ± 0.05 0.14 ± 0.00 0.90 ± 0.14 0.98 ± 0.03 1.20 ± 0.03 0.95 ± 0.02

Train Speedup 1.32 ± 0.02 1.14 ± 0.03 1.37 ± 0.02 1.16 ± 0.01 0.98 ± 0.03 1.29 ± 0.07 1.26 ± 0.09

AUC Retained
OC-Nyström-QS: 1.54 ± 0.03 1.19 ± 0.10 0.17 ± 0.00 0.88 ± 0.17 0.77 ± 0.11 1.18 ± 0.00 0.90 ± 0.05

Train Speedup 1.32 ± 0.02 1.14 ± 0.03 1.47 ± 0.02 1.14 ± 0.01 0.97 ± 0.03 1.26 ± 0.07 1.22 ± 0.09

AUC Retained. OC-KJL-QS and OC-Nyström-QS manage to retain the AUC of OCSVM on most datasets.
However, on MAWI, neither OC-Nyström-QS nor OC-KJL-QS does well, arriving at just a fraction of the
baseline AUC. MACCDC and SFRIG appear to cause problems for OC-Nyström-QS under the default h
setting.

Training Time. As before, training time remains competitive with that of OCSVM with some significant
reduction in time for instance in the case of UNB, AECHO, and DWSHR.

D.3 Significant Savings in Detection Time and Space

Tables D.3 and D.4 present results on detection time and space savings for both OC-KJL-QS and OC-
Nyström-QS, again with the same default choice of bandwidth h as OCSVM. The trends on savings are
similar, but in fact even better than those under minimal tuning of these 3 methods.
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Table D.3: OC-KJL-QS, no tuning. Test time speedup (OCSVM over method) and space reduction (OCSVM
over method).

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 24.30 ± 0.02 25.81 ± 0.07 12.39 ± 0.11 27.07 ± 0.13 27.37 ± 0.08 25.66 ± 0.19 25.40 ± 0.15

NANO 28.94 ± 0.04 32.18 ± 0.07 15.99 ± 0.02 34.43 ± 0.08 34.21 ± 0.07 29.97 ± 0.01 30.88 ± 0.03

Server 25.80 ± 0.18 28.28 ± 0.33 13.38 ± 0.18 28.85 ± 0.41 28.30 ± 0.23 32.34 ± 0.03 31.49 ± 0.15

Space Reduction 41.30 ± 0.00 36.50 ± 0.01 26.28 ± 0.01 38.43 ± 0.00 33.57 ± 0.00 40.67 ± 0.00 37.80 ± 0.01

Table D.4: OC-Nyström-QS, no tuning. Test time speedup (OCSVM over method) and space reduction (OCSVM
over method).

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 22.70 ± 0.02 24.50 ± 0.07 12.38 ± 0.11 26.31 ± 0.13 26.79 ± 0.08 23.75 ± 0.18 24.79 ± 0.14

NANO 26.36 ± 0.03 30.28 ± 0.06 15.97 ± 0.02 33.22 ± 0.08 33.29 ± 0.07 27.37 ± 0.01 29.92 ± 0.03

Server 23.06 ± 0.16 26.89 ± 0.31 13.38 ± 0.18 28.06 ± 0.40 28.37 ± 0.23 29.33 ± 0.03 30.60 ± 0.15

Space Reduction 39.94 ± 0.00 35.34 ± 0.01 26.28 ± 0.01 37.78 ± 0.00 33.02 ± 0.00 39.28 ± 0.00 37.31 ± 0.01

Testing Time Speedup. We observe speedups of at least 12 times over the baseline OCSVM detection
times across all machines and datasets.

Finally, we again observe the trend where OC-KJL-QS manages faster times than OC-Nyström-QS in most
cases, especially on Raspberry Pi and the server.

Space Reduction. As before, space reductions are significant w.r.t. the baseline OCSVM from 26 to 41+
times less space than required by the baseline.

E Alternative Features

E.1 SAMP-SIZE Features Description

SAMP-SIZE: a flow is partitioned into small time intervals of equal length, and the total packet size (i.e.,
byte count) in each interval is recorded; thus, a flow is represented as a time series of byte counts in small
time intervals. Here, we obtain time intervals according to different quantiles (i.e., [0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 0.95]) of flow durations. To ensure that each sample has the same dimension D, we select D for
all flows as the 90th percentile of all flow lengths in the dataset (here, flow length stands for the number of
packets a flow – not its duration).

Now for any given flow, if the number of fixed time intervals in the flow is less than D, we append 0’s to
arrive at a vector of dimension D. If instead the number of fixed time intervals is greater than D, we truncate
the resulting vector representation down to dimension D.

E.2 STATS+HEADER Features Description

STATS+HEADER: a set of statistical quantities compiled from a flow. In particular, we choose 10 of the
most common such statistics in the literature (see e.g., Moore et al. (2013)), namely, flow duration, number
of packets sent per second, number of bytes per second, and the following statistics on packet sizes (in bytes)
in a flow: mean, standard deviation, the first to third quantiles, the minimum, and maximum. Also, We
incorporate packet header information (i.e., Time to Live (TTL) and TCP flags (FIN, SYN, RST, PSH, ACK,
URG, ECE, and CWR) into the STATS to form the STATS+HEADER feature.
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Table E.1: OCSVM performance with STATS+HEADER. Time is in ms per 100 datapoints and space is in KB.
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC 0.60 ± 0.01 0.61 ± 0.00 1.00 ± 0.00 0.76 ± 0.00 0.86 ± 0.00 0.98 ± 0.00 0.65 ± 0.00

Time (ms)
Server Train 77.20 ± 1.75 94.54 ± 2.73 64.63 ± 0.82 92.23 ± 2.25 88.69 ± 0.90 100.58 ± 2.78 92.59 ± 2.93

(ms)
Test Time

RSPI 123.90 ± 0.39 119.29 ± 3.31 72.39 ± 0.08 114.20 ± 0.33 124.53 ± 0.57 123.42 ± 0.34 125.70 ± 0.22

NANO 76.86 ± 0.26 87.13 ± 0.31 54.33 ± 0.01 87.22 ± 0.06 82.89 ± 0.05 78.33 ± 0.04 83.53 ± 0.06

Server 17.60 ± 0.38 19.08 ± 0.36 11.17 ± 0.16 19.21 ± 0.18 19.09 ± 0.23 19.45 ± 0.02 19.83 ± 0.02

Space (kB) 1655.41 ± 2.72 1240.96 ± 0.16 1831.75 ± 0.00 1280.82 ± 0.13 1084.04 ± 0.22 1482.07 ± 0.30 1363.32 ± 0.28

E.3 Results under STATS+HEADER

E.3.1 Results Under Minimal Tuning

Table. E.1 shows the baseline results obtained by OCSVM under minimal turning. Accuracies of the
baseline OCSVM are similar to those using the features of IAT+SIZE in the main paper and are reported for
completion.

Similar to the case of IAT+SIZE features, both OC-KJL and OC-Nyström with or without Quickshift++
retain the AUC of the baseline OCSVM (on UNB and DWSHR, our procedures even get higher AUCs than
OCSVM). Moreover, these procedures have 2-4 times train time speedup. More details are shown in Table
E.2.

Table E.2: Retained AUC (method over OCSVM) and server train time speedup (OCSVM over method) with
STATS+HEADER.

Method
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC Retained
OC-KJL: 1.33 ± 0.07 0.94 ± 0.08 1.00 ± 0.00 0.94 ± 0.01 1.01 ± 0.01 1.00 ± 0.01 1.18 ± 0.03

Train Speedup 2.63 ± 0.06 3.11 ± 0.09 3.02 ± 0.04 2.98 ± 0.07 2.63 ± 0.03 3.33 ± 0.09 2.52 ± 0.08

AUC Retained
OC-KJL-QS: 1.13 ± 0.05 0.87 ± 0.04 0.98 ± 0.01 0.89 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 1.05 ± 0.08

Train Speedup 1.02 ± 0.02 1.34 ± 0.04 1.40 ± 0.02 1.39 ± 0.03 1.31 ± 0.01 1.34 ± 0.04 1.18 ± 0.04

AUC Retained
OC-Nyström: 1.45 ± 0.02 1.02 ± 0.05 0.99 ± 0.00 0.94 ± 0.05 0.96 ± 0.02 0.99 ± 0.01 1.18 ± 0.04

Train Speedup 2.45 ± 0.06 3.19 ± 0.09 3.24 ± 0.04 3.15 ± 0.08 3.15 ± 0.03 3.17 ± 0.09 2.60 ± 0.08

AUC Retained
OC-Nyström-QS: 1.42 ± 0.03 0.94 ± 0.04 0.96 ± 0.03 0.84 ± 0.04 0.94 ± 0.01 1.00 ± 0.01 1.06 ± 0.03

Train Speedup 1.03 ± 0.02 1.29 ± 0.04 1.46 ± 0.02 1.48 ± 0.04 1.31 ± 0.01 1.39 ± 0.04 1.19 ± 0.04

We also see that these methods under the alternative features attain significant detection time speedups over
OCSVSM, which are shown in Tables E.3 and E.4.

Testing Time Speedup. We observe speedups of at least 16 times over the baseline OCSVM detection
times across all machines and datasets.

Space Reduction. As before, space reductions are significant w.r.t. the baseline OCSVM from 26 to 41+
times less space than required by the baseline.

E.3.2 Results Under No Tuning

OCSVM results under no tuning for STATS+HEADER features are presented in Table E.5. As with the case
of our preferred features of IAT+SIZE, we observe a significant decrease in AUC w.r.t. the tuned OCSVM
case.

We also get similar significant test time speedup and space reduction results for both methods as shown in
Tables E.7 and E.8. This goes to show that the reductions inherent in our approach are likely not tied to
feature representations of the networking data.
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Table E.3: OC-KJL-QS: Test time speedup (OCSVM over method) and space reduction (OCSVM over method)
with STATS+HEADER.

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 23.81 ± 0.07 28.17 ± 0.78 16.45 ± 0.02 27.00 ± 0.08 29.66 ± 0.14 24.92 ± 0.07 26.83 ± 0.05

NANO 25.74 ± 0.09 36.96 ± 0.13 21.17 ± 0.01 35.58 ± 0.02 35.52 ± 0.02 25.93 ± 0.01 33.73 ± 0.02

Server 27.23 ± 0.59 30.73 ± 0.58 17.37 ± 0.25 29.35 ± 0.27 30.53 ± 0.37 29.77 ± 0.03 36.73 ± 0.03

Space Reduction 39.72 ± 0.07 40.88 ± 0.01 26.49 ± 0.00 40.72 ± 0.00 40.07 ± 0.01 40.39 ± 0.01 40.82 ± 0.01

Table E.4: OC-Nyström-QS: Test time speedup (OCSVM over method) and space reduction (OCSVM over
method) with STATS+HEADER.

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 23.79 ± 0.07 27.04 ± 0.75 16.43 ± 0.02 27.22 ± 0.08 29.88 ± 0.14 25.11 ± 0.07 28.03 ± 0.05

NANO 25.66 ± 0.09 35.34 ± 0.13 21.14 ± 0.01 35.17 ± 0.02 35.65 ± 0.02 25.24 ± 0.01 34.63 ± 0.02

Server 27.08 ± 0.59 29.11 ± 0.55 17.34 ± 0.25 29.16 ± 0.27 30.67 ± 0.37 28.76 ± 0.03 37.39 ± 0.03

Space Reduction 39.70 ± 0.07 40.33 ± 0.01 26.48 ± 0.00 40.64 ± 0.00 40.12 ± 0.01 39.94 ± 0.01 41.48 ± 0.01

Table E.5: OCSVM performance with STATS+HEADER, no tuning. Time is in ms per 100 datapoints and
space is in kB.

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC 0.15 ± 0.00 0.41 ± 0.00 0.99 ± 0.00 0.50 ± 0.00 0.79 ± 0.00 0.96 ± 0.00 0.38 ± 0.01

Time (ms)
Server Train 92.28 ± 2.55 89.55 ± 2.28 62.00 ± 2.11 96.15 ± 1.96 89.70 ± 1.70 95.50 ± 2.22 97.06 ± 2.16

(ms)
Test Time

RSPI 124.86 ± 0.96 123.78 ± 0.82 70.74 ± 0.36 124.65 ± 0.10 123.51 ± 0.23 127.09 ± 1.05 124.99 ± 0.49

NANO 89.86 ± 0.90 87.65 ± 0.31 46.35 ± 0.04 86.49 ± 0.14 84.04 ± 0.19 88.14 ± 0.07 85.96 ± 0.08

Server 19.91 ± 0.65 19.32 ± 0.36 10.00 ± 0.05 19.61 ± 0.20 18.91 ± 0.23 20.82 ± 0.01 19.91 ± 0.02

Space (kB) 1641.24 ± 0.26 1241.11 ± 0.12 1832.14 ± 0.31 1282.76 ± 0.54 1081.45 ± 0.22 1481.54 ± 0.12 1361.80 ± 0.24

Testing Time Speedup. We observe speedups of at least 12 times over the baseline OCSVM detection
times across all machines and datasets.

Space Reduction. As before, space reductions are significant w.r.t. the baseline OCSVM from 25 to 43+
times less space than required by the baseline.

Table E.6 shows that OC-KJL-QS and OC-Nyström-QS retain the AUC and train time of the baseline
OCSVM using the STATS+HEADER features.

Table E.6: no tuning. Retained AUC (method over OCSVM) and train time speedup (OCSVM over method) with
STATS+HEADER.

Method
Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

AUC Retained
OC-KJL-QS: 2.29 ± 0.50 1.02 ± 0.06 0.22 ± 0.23 0.93 ± 0.09 1.00 ± 0.02 0.52 ± 0.28 1.60 ± 0.09

Train Speedup 1.41 ± 0.04 1.24 ± 0.03 1.19 ± 0.04 1.38 ± 0.03 1.22 ± 0.02 1.28 ± 0.03 1.27 ± 0.03

AUC Retained
OC-Nyström-QS: 2.32 ± 0.05 1.20 ± 0.11 0.13 ± 0.01 1.11 ± 0.06 0.57 ± 0.20 0.49 ± 0.20 1.70 ± 0.10

Train Speedup 1.40 ± 0.04 1.22 ± 0.03 1.31 ± 0.04 1.43 ± 0.03 1.24 ± 0.02 1.31 ± 0.03 1.24 ± 0.03
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Table E.7: OC-KJL-QS with STATS+HEADER, no tuning: Test time speedup (OCSVM over method) and space
reduction (OCSVM over method).

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 28.50 ± 0.22 28.91 ± 0.19 12.99 ± 0.07 28.50 ± 0.02 28.83 ± 0.05 25.42 ± 0.21 28.04 ± 0.11

NANO 38.34 ± 0.39 36.42 ± 0.13 15.53 ± 0.01 35.37 ± 0.06 36.16 ± 0.08 29.71 ± 0.03 36.86 ± 0.03

Server 38.39 ± 1.25 30.22 ± 0.56 14.20 ± 0.07 29.82 ± 0.30 30.26 ± 0.37 32.25 ± 0.01 39.59 ± 0.04

Space Reduction 43.53 ± 0.01 40.89 ± 0.00 25.14 ± 0.00 40.85 ± 0.02 39.83 ± 0.01 40.65 ± 0.00 41.90 ± 0.01

Table E.8: OC-Nyström-QS with STATS+HEADER, no tuning: Test time speedup (OCSVM over method) and
space reduction (OCSVM over method).

Dataset UNB CTU MAWI MACCDC SFRIG AECHO DWSHR

Speedup
Test Time

RSPI 28.16 ± 0.22 28.70 ± 0.19 12.98 ± 0.07 27.15 ± 0.02 28.74 ± 0.05 24.38 ± 0.20 28.08 ± 0.11

NANO 37.42 ± 0.38 36.29 ± 0.13 15.51 ± 0.01 33.71 ± 0.06 36.28 ± 0.08 27.86 ± 0.02 35.73 ± 0.03

Server 37.60 ± 1.23 30.18 ± 0.55 14.01 ± 0.07 28.55 ± 0.28 30.39 ± 0.37 29.88 ± 0.01 37.92 ± 0.04

Space Reduction 43.22 ± 0.01 40.87 ± 0.00 25.13 ± 0.00 39.94 ± 0.02 39.88 ± 0.01 39.61 ± 0.00 41.37 ± 0.01
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