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Abstract 

Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional,cellular or sub-

cellular level.While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have 

begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with 

real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering 

accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating 

the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene 

expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by 

improving information extraction and feature selection from spatial and histology data. 
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Introduction 
Advances in spatially resolved transcriptomics technologies have allowed 

researchers to profile transcriptomes in single cells while retaining 

information on spatial context, providing new opportunities to elucidate 

single-cell heterogeneity and define spatial maps of cell types. This ability to 

capture and quantify the messenger RNA (mRNA) molecules in situ is 

crucial for understanding cell origins and functions, as well as cell–cell 

communications [1, 2]. Such information on spatial context is also essential 

for exploring and comparing tissue environment in healthy and diverse 

disease states [2, 3]. 

Currently, two types of spatially resolved techniques can generate 

transcriptomics data with a medium to high throughput of single cells or 

spatial spots [4]. The first type of technique is imaging-based and uses 

fluorescence in situ hybridization (FISH) to label and visualize mRNAs in 

individual cells. Example techniques include MERFISH [5], osmFISH [6] 

and seqFISH [7]. The second type of technique is sequencing-based and uses 

spatial barcoding followed by next-generation sequencing to profile 

transcriptomes. Example techniques include Spatial Transcriptomics [8] and 

Slide-seq [9]. Unlike imaging-based techniques, sequencing-based 

techniques cannot provide cellular resolution and measure spatial spots that 

usually contain multiple cells. Naturally, the resolution of spatial 

transcriptomic analysis would depend on the type of technique used to 

generate the data. 

To annotate the regions in the spatially resolved transcriptomics data, a 

common approach is to cluster cells or spots based on their transcriptional 

profiles, and then to further characterize them with differential expression 

analysis [10–12]. In an unsupervised analysis of single-cell RNA sequencing 

data, clustering is performed with gene expression data alone to distinguish 

the different cell populations present in biological samples. Since additional 

information is available from spatially resolved transcriptomics techniques, 

new clustering methods have been proposed for spatial data to account for 

spatial locations or histology image information, or both, in an attempt to 

improve the accuracy of clustering analysis [13–18]. These new clustering 

methods followed from the recognition that cellular organization within 

tissues is linked to biological function and therefore should not be random 

[19]. 

Given the essential role of clustering analysis in exploring spatial 

transcriptomics and the diverse selection of clustering methods used in data 

analysis, it is necessary to systematically evaluate the accuracy and 

robustness of methods based on data generated from different techniques. 

Since such an evaluation is not yet available, it is difficult to objectively 

choose clustering methods in practice, compromising researchers’ abilities to 

accurately analyze and interpret spatial transcriptomes. In this study, we have 

benchmarked 15 clustering methods for spatially resolved transcriptomics 

data based on clustering performance, 
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Table 1. Summary of the data characteristics. The last column refers to the number of cell types selected using the RShiny program 

(see Supplementary Methods). 
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Dataset Technology # of replicates # of cells # of genes # of true cell types 

Dataset 1 Spatial Transcriptomics 12 231-282 15284-16675 4 

Dataset 2 10X Genomics Visium V1 1 1438 31053 5 

Dataset 3 10X Genomics Visium V1 4 2696-3353 31053 7-9 

Dataset 4 MERFISH 12 4786-5926 160 8-9 

Dataset 5 osmFISH 1 5328 33 6 

Dataset 6 Stereo-seq 1 10000 26145 8 

Dataset 7 Slide-seq 1 25551 20141 8 

 
robustness, computational efficiency and software usability. Our evaluation 

is based on seven sets of spatial transcriptomics data corresponding to 

different experimental techniques and tissue regions, with ground truth cell-

type information and corresponding histology images. The rest of the article 

is organized as follows. We first introduce the spatial transcriptomics 

datasets and clusteringmethodsconsideredintheevaluation.Then,wediscuss 

the comparison results based on clustering accuracy, robustness to 

sequencing depth,robustness to clustering parameter (i.e.userspecified 

cluster number) and robustness to variation in histology images. Lastly, we 

discuss the computational efficiency of the methods and other considerations 

in software assessment. 

Datasets 
To comprehensively evaluate the performance of different clustering 

methods, we prepared seven spatial transcriptomics datasets with ground 

truth information, based on seven real datasets from different technologies. 

Dataset 1 is based on a mouse olfactory bulb dataset obtained using the 

spatial transcriptomics technology [20], which measures read counts for pre-

determined array spots. This dataset contains 12 mouse brain tissue slices, 

and we treat each tissue slice as a separate replicate. Dataset 2 is based on a 

mouse kidney coronal dataset [21] containing a single replicate. Dataset 3 is 

based on a mouse brain sagittal dataset [22]. As there are two sagittal sections, 

with each section composed of two cuts (a sagittal-anterior cut and a sagittal-

posterior cut),we refer to each cut as a separate replicate. Both Datasets 2 and 

3 are based on the 10x Genomics Visium v1 technology [8], which measures 

read counts for array spots. Dataset 4 is based on a mouse hypothalamic 

preoptic dataset [23] obtained using the MERFISH technology [24], and the 

read counts were measured for single cells. We chose animal one for our 

analysis, which contains 12 different bregma levels (i.e. replicates). Dataset 

5 is based on a mouse somatosensory cortex dataset generated using the 

osmFISH technology [25]. Dataset 6 is based on a mouse olfactory bulb 

dataset generated using the Stereo-seq technology [26]. Dataset 7 is based on 

a mouse brain cerebellum dataset obtained from the Slide-seq technology 

[27]. Both Datasets 5 and 7 have a single-cell resolution. The complete 

information on dataset size, technology and cell-type number is summarized 

in Table 1. For Datasets 1–5 and 7, we directly used the spatial locations in 

the real data; for Dataset 6, we first sampled 10,000 spots from the real data 

and used the locations of these spots. Then, we generated corresponding 

simulated read counts and Hematoxylin and Eosin (H&E) stained images as 

described below (Figure 1). 

Read count matrix 
In order to systematically evaluate the performance of different clustering 

methods, ground truth cell-type labels are needed as a basis to compute 

quantitative measures. We designed an RShiny program to assign true cell-

type labels to individual cells (or spots) in the simulated data, using the 

spatial locations provided by the real data and accounting for predetermined 

spatial patterns (see Supplementary FigureS1 and Supplementary Methods). 

Given each true cell type and corresponding read counts from the real data, 

we then used scDesign2 [28, 29], a simulator that can generate high-fidelity 

single-cell gene expression count data and preserve gene–gene correlations, 

to simulate read counts for synthetic cells. Compared with directly using real 

counts and corresponding cell-type annotations, the generative model in 

scDesign2 can help remove noises introduced by mislabeled cells. We 

compared three gene-wise statistics (the count mean, the count variance and 

the gene-wise proportion of zero counts) and two cell-wise statistics (the total 

read count and the cell-wise proportion of zero counts) between simulated 

and corresponding real data for every dataset, and confirmed that the 

simulated gene expression captures real-data characteristics (Supplementary 

Figures S2–S3). We also confirmed that the within-cell-type correlations are 

indeed larger than between-cell-type correlations (Supplementary Figures 

S4–S10). 

H&E-stained image 
H&E is widely used for histology staining and the resulting image 

isusuallycharacterizedbycolorsrangingfromdarkpurpletopink [30]. As most 

studies implement spatial transcriptomics methods with histological staining 

[31], several clustering methods, including SpaCell [17], SpaGCN [16] and 

stLearn [15], also take the stained images as either an optional or required 

input to cluster cells (or spots). Since different cell layers or cell types 

sometimes have distinguishable color patterns, it is valuable to evaluate how 

these methods perform compared with other methods that do not utilize the 

histology information. For these methods, we simulated pixel values for red, 

green and blue (RGB) in a way 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 1. Simulated H&E-stained images and true cell-type assignments of Datasets 1–7. (A, C, E, G, I, K, M): Simulated H&E-stained images of Datasets 1 to 7. (B, D, F, H, J, 

L, N): Cells or spots are shown in actual spatial coordinates and colored by their true labels. Datasets are ordered based on increasing number of cells or spots. 
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Table 2. A summary of the 15 clustering methods based on algorithm input and programming language 

 

 
    

    

 

    

    

    

    

    

    

    

    

    

 

    

    

    

    

    

 
that reflects the realistic H&E color range and true cell-type assignment 

(Supplementary Methods). 

Clustering methods 
We consider a clustering method as a collection of functions and/or 

algorithms that take the observed spatial transcriptomics data as the input and 

output cluster labels. In this study, we compared 15 clustering methods 

provided by the following seven software tools. A detailed summary of 

required inputs and programming languages of these methods are 

summarized in Table 2. 

Seurat [32] is an R toolkit for single-cell genomic data analysis and 

provides methods for dimensionality reduction and clustering of spatial 

transcriptomics data. This software includes the option to select multiple 

clustering methods that only utilize gene expression information. For our 

analysis, we chose the Louvain (Seurat-LV), Louvain with multi-level 

refinement (Seurat-LM) and the smart local moving (Seurat-SLM) methods. 

The Giotto-Analyzer R toolbox [13] is a specialized package for single-

cell spatial transcriptomics analysis. In our comparison, we considered four 

clustering methods provided by this package: Leiden algorithm (Giotto-

LD),Kmeans clustering (GiottoKM), hierarchical clustering (Giotto-H) and 

a method based on the hidden Markov random field model (Giotto-HM). 

Giotto-LD, Giotto-KM and Giotto-H use only gene expression data to 

perform clustering, while Giotto-HM also uses spatial locations in addition 

to gene expression information. Additionally, Giotto-HM requires users to 

input a beta parameter, which defines the strength of the interaction of cells. 

We set the range of beta parameters as recommended in Giotto’s tutorial (see 

Supplementary Methods) and selected the results corresponding to the 

optimal beta value in that range. 

The BayesSpace R package implements a Bayesian method with the same 

name [14]. Using both gene expression and spatial data, the BayesSpace 

method learns a low-dimensional representation of the gene expression 

matrix and encourages neighboring spots to belong to the same cluster via a 

spatial prior. 

The DR.SC R package implements a dimensionality reduction and spatial 

clustering method based on a hidden Markov random field model [18]. The 

clustering is performed by combining a Gaussian mixture model and a Potts 

model. 

The SpaCell Python package implements a method based on pre-trained 

convolutional neural networks and autoencoders [17]. Since SpaCell has 

different options of input data, we use SpaCell to denote the method taking 

both gene expression and histology data,SpaCell-G to denote the method 

taking gene expression data alone and SpaCell-I to denote the method taking 

histology data alone. 

The SpaGCN Python package implements a graph convolutional network 

method with the same name [16]. Using gene expression, spatial locations 

and histology data (optional), SpaGCN constructs a weighted undirected 

graph of the spots and carries out the clustering analysis on the constructed 

graph. Since the histology data are optional, we use SpaGCN to denote the 

method without using histology information and SpaGCN+ to denote the 

method with histology data as an input. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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The stLearn Python package implements a computational workflow with 

the same name [15]. Using gene expression, spatial locations and histology 

data, stLearn performs spatial normalization followed by clustering in a low-

dimensional space. 

Comparison of clustering accuracy 
We applied the 15 methods described in Table 2 to the seven datasets and 

obtained their inferred cell cluster labels. To quantitatively evaluate and 

compare the clustering performance, we calculated an adjusted Rand index 

(ARI) between every set of true cell-type labels and the labels inferred by the 

clustering methods. For each dataset and method, the performance was 

summarized using the mean and standard deviation of the ARI score across 

replicates (Figure 2A–G). 
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Figure 2. Comparison of clustering accuracy based on seven spatial transcriptomics datasets.(A–G): Mean adjusted Rand index (ARI) scores for Datasets 1–7. The vertical bars 

indicate one standard deviation above or below the average score (when more than one replicate is available). (H): Ranking of methods based on average ARI scores. (I): Ranking 

of methods based on standard deviations of ARIs, for Datasets 1, 3 and 4 which have multiple replicates. Methods with higher average ARI or lower standard deviation are ranked 

better. Methods are ordered by average ranks in the heatmaps, with methods on the top being the best. The entries marked by NA indicate that the method encountered an error for 

that dataset. 

Even though the Seurat-based methods (Seurat-LV,Seurat-LVM and 

Seurat-SLM) do not use any spatial or histology information in clustering, 

they are among the most accurate methods on Datasets 1, 3, 4 and 6. In 

addition, differences between Seuratbased methods are negligible across all 

datasets. Three Giottobased methods (Giotto-H, Giotto-KM Giotto-LD), 

and SpaCell-G also only use gene expression for clustering, but consistently 

demonstrate lower accuracy than Seurat-based methods. Since Seurat-based 

and Giotto-based methods have implemented a series of different clustering 

algorithms,these results suggest that data processing procedures used by the 

software may also play an important role in clustering accuracy. 

We also compared the four methods that use both gene expression and 

spatial locations for clustering,including SpaGCN, BayesSpace, Giotto-HM 

and DRSC. We observed that SpaGCN and BayesSpace perform well on 

selected datasets, especially when strong spatial patterns are present. For 

example, BayesSpace is the most accurate on Dataset 2, and SpaGCN is the 

most accurate on Datasets 3, 5 and 7. However, on Dataset 4, whose spatial 

distribution of cell types is less obvious, these two methods have lower 
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accuracy than Seurat-based methods. As for the Giotto-HM method, it does 

not outperform the other Giotto-based methods that do not utilize spatial 

information. We suspect that GiottoHM’s heavy reliance on parameter tuning 

affects its performance on complex data. The DRSC method has an 

intermediate-level performance on most datasets. 

Next, we compared SpaGCN+, stLearn and SpaCell, which incorporate 

both gene expression and histology information for clustering. On most 

datasets, stLearn and SpaGCN+ have better performance than SpaCell. 

stLearn and SpaGCN+ have similar performance on Datasets 5 to 7, but rank 

very differently on Datasets 1 to 4. Interestingly, SpaGCN+ consistently 

performs worse than SpaGCN, suggesting that the default configuration of the 

SpaGCN package does not efficiently leverage histology information to 

improve performance beyond the use of only gene expression and spatial 

locations. In addition, we found that stLearn is among the top methods on five 

datasets, but attains below-average ARIs on Datasets 2 and 3, both of which 

are based on the 10X Visium technology and sequence the largest number of 

genes. 

We summarized the ranking of each method based on the average ARI 

scores (Figure 2H) and the standard deviation of ARI across replicates (Figure 

2I). Seurat-LVM, SpaGCN, Seurat-LV, Seurat-SLM and stLearn are ranked 

in the top five by average ARI, which shows that clustering methods using 

spatial locations and/or histology information did not systematically 

outperform methods only using gene expression levels. We also compared the 

concordance between different software packages, but did not observe 

consistent relationships across datasets (Supplementary Figures S11–S17). In 

terms of performance across replicates, Seurat-based methods, SpaGCN and 

stLearn demonstrate better robustness given variation in the data. In summary, 

Seurat-LVM, SpaGCN and Seurat-LV perform the best and are the most 

stable across replicates, followed by Seurat-SLM and stLearn. 

Comparison of robustness to sequencing depth 
Since real datasets often differ in sequencing depths (Supplementary Figure 

S18), we performed a comparative analysis to evaluate the robustness of 

different clustering methods given varying sequencing depths. For each 

dataset in Table 1, we downsampled the read count matrix to a decreasing 

percentage of the original sequencing depth (from 90% to 10%) 

(Supplementary Figure S19). The clustering methods were then applied to 

these new datasets with reduced sequencing depth, and the average ARI score 

across replicates was used as a summary of performance for every percentage 

(Figures 3–4). 

Among the methods that do not use spatial or histology information, the 

Seurat-based methods have a more stable performance in average ARI score 

than do the Giotto-based methods for Datasets 2 and 3, both of which are 

based on the 10x Genomics Visium technology. However, for all other 

datasets, the Seuratbased methods have a similar trend to the Giotto-based 

methods. Even though the SpaCell-G method overall has a smaller change in 

performance when sequencing depth decreases, its average accuracy is still 

lower than that of Seurat-based or Giotto-based methods. 

We also compared the robustness of methods that use both gene expression 

and spatial information, namely BayesSpace, Giotto-HM, SpaGCN and 

DRSC. When the sequencing depth reduces to 50% (Figure 4A), the most 

robust method among the four is DRSC, followed by Giotto-H, SpaGCN and 

BayesSpace. However, we observed a reverse order when the sequencing 

depth reduces to 10% (Figure 4B). In addition, we found that the average ARI 

scores of BayesSpace and SpaCell-based methods 

sometimesincreasewhensequencingdepthreduces,forexample, in Datasets 2 

and 5 (Figure 3B,E). This unexpected performance suggests that these 

methods may not be efficient enough in distinguishing biological signals and 

noises. For these methods, the downsampling process helps remove some 

medium to lowly expressed genes and sometimes improves the signal-to-

noise ratio. 

Lastly, we compared SpaGCN+, stLearn and SpaCell, which incorporate 

both gene expression and histology information for clustering. SpaGCN+ 

and SpaCell have a similar overall performance in robustness to sequencing 

depth, and both are generally more robust than stLearn. 

Comparison of robustness to clustering parameter 
The number of true cell types is often unknown to users in practical 

applications of clustering,but it may have a significant impact on the quality 

of clustering results.Therefore, we evaluated seven methods for which users 

are required to input a parameter of cluster number, and three methods for 

which the parameter is optional (Table 2). For each dataset, we evaluated 

these methods withdifferentclusternumberparametersuptotwointegervalues 

aboveorbelowthegroundtruth.TheaverageARIacrossreplicates (Table 1) 

was then computed to measure clustering performance. 

The ARI scores resulting from different cluster number parameters 

suggest that SpaGCN, SpaGCN+ and BayesSpace generally have more 

accurate clustering results when the specified cluster number is closer to the 

true cell-type number (Figure 5A–G). For Datasets 1–3,a sharper decrease 

in performance is observed when the cluster number parameter is lower than 

the true cell-type number, compared with cluster parameter being greater 

than the cell-type number. However, for Dataset 4, which presents a more 

challenging clustering problem than the other datasets (Figure 2), most 

methods have improved clustering performance when the cluster number 

parameter decreases (Figure 5D). 

Unlike the methods that utilize spatial information, the Giotto-based 

methods and SpaCell-based methods do not have a consistent dependence 

on the cluster number parameter. Moreover, setting the parameter to true 

cell-type number usually does not lead to the best clustering accuracy of 

these two types of clustering methods, suggesting the existence of 

systematic bias. Since the cluster number is often determined based on an 

estimation of the true cell-type number, we also compared the mean ARI of 

each method across different parameter values, which suggest SpaGCN, 

SpaGCN+ and Giotto-H as the best three methods in terms of robustness to 

the clustering parameter 

(Figure 5H). 

Comparison of robustness to variation in histology 

images 
Histology images often provide useful information to distinguish between 

different cell populations, so some clustering methods take the histology 

image as an additional input and attempt to extract distinguishing features 

for use in the clustering process. In this section, we compare the robustness 

of SpaGCN+, stLearn, SpaCell and SpaCell-I given histology images with 

different levels of variation. For each dataset, we simulated five histology 

images by varying the standard deviations of the pixel colors 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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replicates were generated in the downsampling process. 

(Supplementary Methods). A larger standard deviation led to less distinct 

information about different cell types (Figure 6A and Supplementary Figure 

S20). Then, we applied the four methods to the same spatial transcriptomics 

datasets combined with different histology images and compared their 

clustering accuracy (Figure 6B–H). 

ForSpaCellandSpaCell-I,weobservedaslightdecreasingtrend of 

clustering accuracy when the images have greater variation. In addition, the 

SpaCell method which uses both gene expression data and histology images 

consistently has better performance than SpaCell-I, which only uses the 

images. However, the clustering accuracy of stLearn and SpaGCN+ has a 

little change on most datasets. Moreover, when these two methods 

demonstrate obvious changes, they are not guaranteed to have higher 

accuracy when histology images have a larger signal-tonoise ratio. Since 

the synthetic histology images were generated with different mean RGB 

values for different cell types, clustering based on low-variation images 

supposedly should have better performance than that based on high-

variation images, provided that a clustering method can effectively extract 

and utilize the histology information. However, based on these results, 

current methods leave room for improvement in their joint analysis of gene 

expression, spatial and histology information to identify cell populations. 

 

Figure 3. Comparison of average clustering accuracy across replicates given a decreasing percentage of original sequencing depth. (A, C, D): Replicates are directly available based 

on data presented in Table 1. (B, E, F, G): Since the original dataset only has one replicate, for each percentage, five technical 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 4. Ranking of methods based on robustness to decreased sequencing depth. Robustness is compared based on the absolute value difference in mean ARI scores when the 

sequencing depth is reduced to 50% (A) or 10% (B) of the original depth. In both heatmaps, a smaller difference is ranked higher. Entries marked with NA indicate that the 

corresponding method encountered errors on that dataset. 

Table 3. Comparison of software packages based on installation, documentation and usability 

 

        

 
  

   
  

      
 

 

        

 
       

 
  

     

   
 

    

 
 

 
 

  
 

 

 

Comparison of software usage 

To compare the computational efficiency of different clustering algorithms, 

we recorded the maximum memory usage and runtime of the methods on 

Datasets 1–7. 

Formemoryusage,SpaCell-basedmethodsoverallusetheleast memory, 

followed by SpaGCN-based methods and Seurat-based methods (Figure 

7A).The two most memory-demanding methods, 

BayesSpaceandstLearn,bothaccountforspatiallocationsintheir models. As for 

runtime, Seurat-based methods, SpaGCN-based methods and Giotto-LD have 

comparable efficiency (Figure 7B). Most methods have a roughly linear trend 

when dataset size increases from Dataset 1 to Dataset 7. The exception to this 

trend is Giotto-KM, whose runtime increases significantly. 

We then compared the software packages for each method based on 

installation,documentation and usability.The strengths and weaknesses of 

each software package with respect to these criteria were then summarized in 

Table 3. Taking all the criteria into consideration, the Seurat, SpaCell and 

stLearn packages provide better support than the other packages. 

Comparison based on real data 
We performed the majority of comparisons based on the seven semi-

synthetic datasets, since gold standard cell-type labels are not yet available 

for existing spatial transcriptomic datasets. To shed light on method 

performance on real data,we also compared the clustering accuracy of the 

15 methods on fivereal spatial transcriptomics datasets (Supplementary 

Table S1), treating cell-type labels reported from the original publications 

as a reference to evaluate the clustering results. From these results, we found 

that Seurat-SLM, BayesSpace, Giotto-LD, Giotto-H and SpaGCN have the 

best clustering accuracy on real datasets 1 to 5, respectively (Supplementary 

Figure S21). When comparing the relative performance of different methods 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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across datasets,we found that among methods not requiring histology 

images, Seurat-based methods, BayesSpace and SpaGCN have the best 

accuracy (Supplementary Figure S22). Furthermore, among methods that 

depend on histology images as input, SpaGCN+ and stLearn have similar 

rankings and both outperform the SpaCell-based methods. These results 

coincide with our observations on the simulated data. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac475#supplementary-data
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Figure 5. 

Comparison of clustering methods based on robustness to clustering parameter. (A–G): Mean ARI of clustering methods given different parameters of cluster number. Change in parameter 
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method encountered errors on that dataset. 

Discussions and Conclusions 

In this article, we have benchmarked 15 clustering methods for spatially 

resolved transcriptomics data based on clustering accuracy, clustering 

robustness to various sources of variation, computational efficiency and 

software usability. Our results on seven semi-synthetic datasets highlight 

the following key findings. First, in terms of clustering accuracy, Seurat-

LVM, SpaGCN and Seurat-LV are overall the most accurate clustering 

for Datasets 1–7. 

methods.However,methods that use additional information from spatial 

coordinates and histology images do not systematically outperform methods 

that only use gene expression information. Second, given decreased 

sequencing depth to 50%, Seurat-based methods are the most robust methods. 

Again, incorporating spatial or histology information does not guarantee to 

improve clustering robustness in existing methods. Third, among methods 

that require users to specify the number of clusters, SpaGCN, SpaGCN+ and 

Giotto-H maintain the highest average clustering accuracy when given mis-

specified parameter values. Fourth, for clustering methods that take histology 

images as input (stLearn, SpaGCN+, SpaCell and SpaCell-I), they do not 

demonstrate obvious improvement when images of better quality are supplied. 

Fifth, Seurat-based and SpaGCN-based methods have the best computational 

efficiency, and Seurat, SpaCell and stLearn have the best software support. In 

summary, the additional spatial and histology information provided by spatial 

transcriptomics data opens new avenues for the development of clustering 

methods, and we have indeed observed increased accuracy in cell population 

identification in selected datasets. However, there remain important subjects 

of future research, including how to more effectively incorporate spatial and 

histology information in the presence of noises and how to alleviate the 

| Cheng et al. 

 

Figure 6. Comparison of clusteringmethods based on robustness tovariation inhistology images.(A): Histology images for Dataset 5 that weresimulated with an increasing standard 

deviation.(B–H): Mean ARI of SpaGCN+,SpaCell,SpaCell-I and stLearn given histology images of different levels of variation 
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dependence of clustering on user-specified cluster numbers or other clustering 

parameters. 

In addition,we would like to discuss two future directions.First, in this 

study, we utilized semi-synthetic datasets with real spatial locations and 

synthetic gene expression data generated by the scRNA-

seqsimulatorscDesign2,sincerealspatialtranscriptomics datasets with high-

quality cell-type labels are very rare.We anticipate that the comparison can 

be extended to spatial data with real gene expression levels after curated 

spatial transcriptomics atlas becomes available. Second, this is a fast 

evolving field, and we have noticed several new clustering methods during 

the preparationofthismanuscript,includingSTAGATE[33],SEDR[34], 

ClusterMap [35] and SC-MEB [36]. To support further comparison 
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Figure 7. Comparison of clustering methods based on maximum memory usage and runtime. (A): Log10 of maximum memory measured in megabytes and used by the entire clustering 

pipeline for each method, including pre-processing. (B): Log10 of runtime measured in minutes. Datasets are ordered based on cell number × gene number. In each panel, methods 

marked on the right are ordered based on results on Dataset 7. Since Giotto-HM encountered errors on Datasets 2, 5 and 7, its memory usage and runtime are not displayed for these 

three datasets. 

of new methods,we have uploaded the data analyzed in this study to a 

publicly available repository at Github (https://github.com/ 

acheng416/Benchmark-CTCM-ST). 

Key Points 

• Spatially resolved transcriptomics data provide spatial locations 

and sometimes histology information in addition to gene 

expression levels. These additional sources of information are 

being explored to further improve identification of cell 

populations. 

• Among the 15 clustering methods, we have summarizedthebest-

performingmethodsintermsofclustering accuracy, clustering 

robustness to various sources of variation, computational 

efficiency and software usability. 

• Current clustering methods that use spatial location and/or 

histology information show promising results in selected 

datasets,but do not consistently perform better and are not more 

robust to variations in the data than methods that only use gene 

expression. 

• Our comparison indicates that for the clustering of spatial 

transcriptomics data, there are still opportunities to enhance the 

overall accuracy and robustness by improving information 

extraction and feature selection from spatial and histology data. 

Data availability 
The mouse olfactory bulb dataset (for Dataset 1 and Real dataset 1 

inTableS1)isavailablefromfromDOI:10.1126/SCIENCE.AAF2403. The 

coronal mouse kidney section (Dataset 2) is available from 

https://www.10xgenomics.com/resources/datasets. The mouse brain serial 

sections corresponding to Dataset 3 were obtained from the mouse brain 

serial section 1 and section 2 datasets at 

https://www.10xgenomics.com/resources/datasets. The mouse 

hypothalamic preoptic dataset (for Dataset 4 and Real dataset 4 in Table S1) 

can be obtained from DOI: 10.5061/dryad.8t8s248. The mouse 

somatosensory cortex dataset (for Dataset 5 and Real dataset 3 in Table S1) 

is available from http://linnarssonlab.org/ osmFISH/availability/. The 

Stereo-seq dataset (for Dataset 6 and Real dataset 5 in Table S1) is available 

from https://db.cngb.org/ stomics/mosta/. The mouse brain cerebellum 

dataset (Dataset 7) is available from 

https://singlecell.broadinstitute.org/single_cell/ study/SCP354. The 

simulated data generated in this study are available at 

https://github.com/acheng416/Benchmark-CTCMST. Real dataset 2 (Table 

S1) is available from http://research.libd. org/spatialLIBD/ [37]. 
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