Briefings in Bioinformatics, 2023, 24(1), 1-12

https://doi.org/10.1093/bib/bbac475 Problem Solving Protocol

OXFORD

Benchmarking cell-type clustering methods for spatially resolved
transcriptomics data

Andrew Cheng, Guanyu Hu and Wei Vivian Li

Corresponding author. Wei Vivian Li, Department of Statistics, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA. Email: weil@ucr.edu

Abstract

Spatially resolved transcriptomics technologies enable the measurement of transcriptome information while retaining the spatial context at the regional,cellular or sub-
cellular level. While previous computational methods have relied on gene expression information alone for clustering single-cell populations, more recent methods have
begun to leverage spatial location and histology information to improve cell clustering and cell-type identification. In this study, using seven semi-synthetic datasets with
real spatial locations, simulated gene expression and histology images as well as ground truth cell-type labels, we evaluate 15 clustering methods based on clustering
accuracy, robustness to data variation and input parameters, computational efficiency, and software usability. Our analysis demonstrates that even though incorporating
the additional spatial and histology information leads to increased accuracy in some datasets, it does not consistently improve clustering compared with using only gene
expression data. Our results indicate that for the clustering of spatial transcriptomics data, there are still opportunities to enhance the overall accuracy and robustness by
improving information extraction and feature selection from spatial and histology data.
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Introduction

Advances in spatially resolved transcriptomics technologies have allowed
researchers to profile transcriptomes in single cells while retaining
information on spatial context, providing new opportunities to elucidate
single-cell heterogeneity and define spatial maps of cell types. This ability to
capture and quantify the messenger RNA (mRNA) molecules in situ is
crucial for understanding cell origins and functions, as well as cell—cell
communications [1, 2]. Such information on spatial context is also essential
for exploring and comparing tissue environment in healthy and diverse
disease states [2, 3].

Currently, two types of spatially resolved techniques can generate
transcriptomics data with a medium to high throughput of single cells or
spatial spots [4]. The first type of technique is imaging-based and uses
fluorescence in situ hybridization (FISH) to label and visualize mRNAs in
individual cells. Example techniques include MERFISH [5], osmFISH [6]
and seqFISH [7]. The second type of technique is sequencing-based and uses
spatial barcoding followed by next-generation sequencing to profile
transcriptomes. Example techniques include Spatial Transcriptomics [8] and
Slide-seq [9]. Unlike
techniques cannot provide cellular resolution and measure spatial spots that

imaging-based techniques, sequencing-based
usually contain multiple cells. Naturally, the resolution of spatial
transcriptomic analysis would depend on the type of technique used to
generate the data.

To annotate the regions in the spatially resolved transcriptomics data, a
common approach is to cluster cells or spots based on their transcriptional
profiles, and then to further characterize them with differential expression
analysis [10—12]. In an unsupervised analysis of single-cell RNA sequencing
data, clustering is performed with gene expression data alone to distinguish
the different cell populations present in biological samples. Since additional
information is available from spatially resolved transcriptomics techniques,
new clustering methods have been proposed for spatial data to account for
spatial locations or histology image information, or both, in an attempt to
improve the accuracy of clustering analysis [13—18]. These new clustering
methods followed from the recognition that cellular organization within
tissues is linked to biological function and therefore should not be random
[19].

Given the essential role of clustering analysis in exploring spatial
transcriptomics and the diverse selection of clustering methods used in data
analysis, it is necessary to systematically evaluate the accuracy and
robustness of methods based on data generated from different techniques.
Since such an evaluation is not yet available, it is difficult to objectively
choose clustering methods in practice, compromising researchers’ abilities to
accurately analyze and interpret spatial transcriptomes. In this study, we have
benchmarked 15 clustering methods for spatially resolved transcriptomics
data based on clustering performance,
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Table 1. Summary of the data characteristics. The last column refers to the number of cell types selected using the RShiny program

(see Supplementary Methods).
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Dataset Technology # of replicates

# of cells

# of genes

# of true cell types

Dataset 1 Spatial Transcriptomics 12
Dataset 2 10X Genomics Visium V1 1
Dataset 3 10X Genomics Visium V1 4
Dataset 4 MERFISH 12
Dataset 5 osmFISH 1
Dataset 6 Stereo-seq 1
Dataset 7 Slide-seq 1

231-282 15284-16675 4
1438 31053 5
2696-3353 31053 7-9
4786-5926 160 8-9
5328 33 6
10000 26145 8
25551 20141 8

robustness, computational efficiency and software usability. Our evaluation
is based on seven sets of spatial transcriptomics data corresponding to
different experimental techniques and tissue regions, with ground truth cell-
type information and corresponding histology images. The rest of the article
is organized as follows. We first introduce the spatial transcriptomics
datasets and clusteringmethodsconsideredintheevaluation. Then,wediscuss
the comparison results based on clustering accuracy, robustness to
sequencing depth,robustness to clustering parameter (i.e.userspecified
cluster number) and robustness to variation in histology images. Lastly, we
discuss the computational efficiency of the methods and other considerations

in software assessment.

Datasets

To comprehensively evaluate the performance of different clustering
methods, we prepared seven spatial transcriptomics datasets with ground
truth information, based on seven real datasets from different technologies.
Dataset 1 is based on a mouse olfactory bulb dataset obtained using the
spatial transcriptomics technology [20], which measures read counts for pre-
determined array spots. This dataset contains 12 mouse brain tissue slices,
and we treat each tissue slice as a separate replicate. Dataset 2 is based on a
mouse kidney coronal dataset [21] containing a single replicate. Dataset 3 is
based on a mouse brain sagittal dataset [22]. As there are two sagittal sections,
with each section composed of two cuts (a sagittal-anterior cut and a sagittal-
posterior cut),we refer to each cut as a separate replicate. Both Datasets 2 and
3 are based on the 10x Genomics Visium v1 technology [8], which measures
read counts for array spots. Dataset 4 is based on a mouse hypothalamic
preoptic dataset [23] obtained using the MERFISH technology [24], and the
read counts were measured for single cells. We chose animal one for our
analysis, which contains 12 different bregma levels (i.e. replicates). Dataset
5 is based on a mouse somatosensory cortex dataset generated using the
osmFISH technology [25]. Dataset 6 is based on a mouse olfactory bulb
dataset generated using the Stereo-seq technology [26]. Dataset 7 is based on
a mouse brain cerebellum dataset obtained from the Slide-seq technology
[27]. Both Datasets 5 and 7 have a single-cell resolution. The complete
information on dataset size, technology and cell-type number is summarized
in Table 1. For Datasets 1-5 and 7, we directly used the spatial locations in
the real data; for Dataset 6, we first sampled 10,000 spots from the real data
and used the locations of these spots. Then, we generated corresponding

simulated read counts and Hematoxylin and Eosin (H&E) stained images as
described below (Figure 1).

Read count matrix

In order to systematically evaluate the performance of different clustering
methods, ground truth cell-type labels are needed as a basis to compute
quantitative measures. We designed an RShiny program to assign true cell-
type labels to individual cells (or spots) in the simulated data, using the
spatial locations provided by the real data and accounting for predetermined
spatial patterns (see Supplementary FigureS1 and Supplementary Methods).
Given each true cell type and corresponding read counts from the real data,
we then used scDesign2 [28, 29], a simulator that can generate high-fidelity
single-cell gene expression count data and preserve gene—gene correlations,
to simulate read counts for synthetic cells. Compared with directly using real
counts and corresponding cell-type annotations, the generative model in
scDesign2 can help remove noises introduced by mislabeled cells. We
compared three gene-wise statistics (the count mean, the count variance and
the gene-wise proportion of zero counts) and two cell-wise statistics (the total
read count and the cell-wise proportion of zero counts) between simulated
and corresponding real data for every dataset, and confirmed that the
simulated gene expression captures real-data characteristics (Supplementary
Figures S2-S3). We also confirmed that the within-cell-type correlations are
indeed larger than between-cell-type correlations (Supplementary Figures
S4-S10).

H&E-stained image

H&E is widely used for histology staining and the resulting image
isusuallycharacterizedbycolorsrangingfromdarkpurpletopink [30]. As most
studies implement spatial transcriptomics methods with histological staining
[31], several clustering methods, including SpaCell [17], SpaGCN [16] and
stLearn [15], also take the stained images as either an optional or required
input to cluster cells (or spots). Since different cell layers or cell types
sometimes have distinguishable color patterns, it is valuable to evaluate how
these methods perform compared with other methods that do not utilize the
histology information. For these methods, we simulated pixel values for red,
green and blue (RGB) in a way
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Figure 1. Simulated H&E-stained images and true cell-type assignments of Datasets 1-7. (A, C, E, G, I, K, M): Simulated H& E-stained images of Datasets 1 to 7. (B, D, F, H, J,
L, N): Cells or spots are shown in actual spatial coordinates and colored by their true labels. Datasets are ordered based on increasing number of cells or spots.
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Table 2. A summary of the 15 clustering methods based on algorithm input and programming language

Histology

Spatial information

required

Information
required

Cluster number
required

Programming
language

BayesSpace v
DRSC Optional
Giotto-H No
Giotto-HM v
Giotto-KM No
Giotto-LD No
Seurat-LV No
Seurat-LVM No
Seurat-SLM No
SpaCell No
SpaCell-G No
SpaCell-I No
SpaGCN v
SpaGCN+ v
stLearn v

No

No

No

No

No

No

No

No

No

No

No

AN

v
Optional
v
v

v R
No
No
No
No
v
v
v
Optional

Python

Optional

No

that reflects the realistic H&E color range and true cell-type assignment
(Supplementary Methods).

Clustering methods

We consider a clustering method as a collection of functions and/or
algorithms that take the observed spatial transcriptomics data as the input and
output cluster labels. In this study, we compared 15 clustering methods
provided by the following seven software tools. A detailed summary of
required inputs and programming languages of these methods are
summarized in Table 2.

Seurat [32] is an R toolkit for single-cell genomic data analysis and
provides methods for dimensionality reduction and clustering of spatial
transcriptomics data. This software includes the option to select multiple
clustering methods that only utilize gene expression information. For our
analysis, we chose the Louvain (Seurat-LV), Louvain with multi-level
refinement (Seurat-LM) and the smart local moving (Seurat-SLM) methods.

The Giotto-Analyzer R toolbox [13] is a specialized package for single-
cell spatial transcriptomics analysis. In our comparison, we considered four
clustering methods provided by this package: Leiden algorithm (Giotto-
LD),Kmeans clustering (GiottoKM), hierarchical clustering (Giotto-H) and
a method based on the hidden Markov random field model (Giotto-HM).
Giotto-LD, Giotto-KM and Giotto-H use only gene expression data to
perform clustering, while Giotto-HM also uses spatial locations in addition
to gene expression information. Additionally, Giotto-HM requires users to
input a beta parameter, which defines the strength of the interaction of cells.

We set the range of beta parameters as recommended in Giotto’s tutorial (see
Supplementary Methods) and selected the results corresponding to the
optimal beta value in that range.

The BayesSpace R package implements a Bayesian method with the same
name [14]. Using both gene expression and spatial data, the BayesSpace
method learns a low-dimensional representation of the gene expression
matrix and encourages neighboring spots to belong to the same cluster via a
spatial prior.

The DR.SC R package implements a dimensionality reduction and spatial
clustering method based on a hidden Markov random field model [18]. The
clustering is performed by combining a Gaussian mixture model and a Potts
model.

The SpaCell Python package implements a method based on pre-trained
convolutional neural networks and autoencoders [17]. Since SpaCell has
different options of input data, we use SpaCell to denote the method taking
both gene expression and histology data,SpaCell-G to denote the method
taking gene expression data alone and SpaCell-I to denote the method taking
histology data alone.

The SpaGCN Python package implements a graph convolutional network
method with the same name [16]. Using gene expression, spatial locations
and histology data (optional), SpaGCN constructs a weighted undirected
graph of the spots and carries out the clustering analysis on the constructed
graph. Since the histology data are optional, we use SpaGCN to denote the
method without using histology information and SpaGCN+ to denote the
method with histology data as an input.
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The stLearn Python package implements a computational workflow with
the same name [15]. Using gene expression, spatial locations and histology
data, stLearn performs spatial normalization followed by clustering in a low-
dimensional space.

Comparison of clustering accuracy

We applied the 15 methods described in Table 2 to the seven datasets and
obtained their inferred cell cluster labels. To quantitatively evaluate and
compare the clustering performance, we calculated an adjusted Rand index
(ARI) between every set of true cell-type labels and the labels inferred by the
clustering methods. For each dataset and method, the performance was
summarized using the mean and standard deviation of the ARI score across
replicates (Figure 2A-G).
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Figure 2. Comparison of clustering accuracy based on seven spatial transcriptomics datasets.(A—G): Mean adjusted Rand index (ARI) scores for Datasets 1-7. The vertical bars
indicate one standard deviation above or below the average score (when more than one replicate is available). (H): Ranking of methods based on average ARI scores. (I): Ranking
of methods based on standard deviations of ARIs, for Datasets 1, 3 and 4 which have multiple replicates. Methods with higher average ARI or lower standard deviation are ranked
better. Methods are ordered by average ranks in the heatmaps, with methods on the top being the best. The entries marked by NA indicate that the method encountered an error for

that dataset.

Even though the Seurat-based methods (Seurat-LV,Seurat-LVM and
Seurat-SLM) do not use any spatial or histology information in clustering,
they are among the most accurate methods on Datasets 1, 3, 4 and 6. In
addition, differences between Seuratbased methods are negligible across all
datasets. Three Giottobased methods (Giotto-H, Giotto-KM Giotto-LD),
and SpaCell-G also only use gene expression for clustering, but consistently
demonstrate lower accuracy than Seurat-based methods. Since Seurat-based
and Giotto-based methods have implemented a series of different clustering

algorithms,these results suggest that data processing procedures used by the
software may also play an important role in clustering accuracy.

We also compared the four methods that use both gene expression and
spatial locations for clustering,including SpaGCN, BayesSpace, Giotto-HM
and DRSC. We observed that SpaGCN and BayesSpace perform well on
selected datasets, especially when strong spatial patterns are present. For
example, BayesSpace is the most accurate on Dataset 2, and SpaGCN is the
most accurate on Datasets 3, 5 and 7. However, on Dataset 4, whose spatial
distribution of cell types is less obvious, these two methods have lower
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accuracy than Seurat-based methods. As for the Giotto-HM method, it does
not outperform the other Giotto-based methods that do not utilize spatial
information. We suspect that GiottoHM’s heavy reliance on parameter tuning
affects its performance on complex data. The DRSC method has an
intermediate-level performance on most datasets.

Next, we compared SpaGCN+, stLearn and SpaCell, which incorporate
both gene expression and histology information for clustering. On most
datasets, stLearn and SpaGCN+ have better performance than SpaCell.
stLearn and SpaGCN+ have similar performance on Datasets 5 to 7, but rank
very differently on Datasets 1 to 4. Interestingly, SpaGCN+ consistently
performs worse than SpaGCN, suggesting that the default configuration of the
SpaGCN package does not efficiently leverage histology information to
improve performance beyond the use of only gene expression and spatial
locations. In addition, we found that stLearn is among the top methods on five
datasets, but attains below-average ARIs on Datasets 2 and 3, both of which
are based on the 10X Visium technology and sequence the largest number of
genes.

We summarized the ranking of each method based on the average ARI
scores (Figure 2H) and the standard deviation of ARI across replicates (Figure
21). Seurat-LVM, SpaGCN, Seurat-LV, Seurat-SLM and stLearn are ranked
in the top five by average ARI, which shows that clustering methods using
spatial locations and/or histology information did not systematically
outperform methods only using gene expression levels. We also compared the
concordance between different software packages, but did not observe
consistent relationships across datasets (Supplementary Figures S11-S17). In
terms of performance across replicates, Seurat-based methods, SpaGCN and
stLearn demonstrate better robustness given variation in the data. In summary,
Seurat-LVM, SpaGCN and Seurat-LV perform the best and are the most
stable across replicates, followed by Seurat-SLM and stLearn.

Comparison of robustness to sequencing depth

Since real datasets often differ in sequencing depths (Supplementary Figure
S18), we performed a comparative analysis to evaluate the robustness of
different clustering methods given varying sequencing depths. For each
dataset in Table 1, we downsampled the read count matrix to a decreasing
percentage of the original sequencing depth (from 90% to 10%)
(Supplementary Figure S19). The clustering methods were then applied to
these new datasets with reduced sequencing depth, and the average ARI score
across replicates was used as a summary of performance for every percentage
(Figures 3—4).

Among the methods that do not use spatial or histology information, the
Seurat-based methods have a more stable performance in average ARI score
than do the Giotto-based methods for Datasets 2 and 3, both of which are
based on the 10x Genomics Visium technology. However, for all other
datasets, the Seuratbased methods have a similar trend to the Giotto-based
methods. Even though the SpaCell-G method overall has a smaller change in
performance when sequencing depth decreases, its average accuracy is still
lower than that of Seurat-based or Giotto-based methods.

We also compared the robustness of methods that use both gene expression
and spatial information, namely BayesSpace, Giotto-HM, SpaGCN and
DRSC. When the sequencing depth reduces to 50% (Figure 4A), the most
robust method among the four is DRSC, followed by Giotto-H, SpaGCN and
BayesSpace. However, we observed a reverse order when the sequencing
depth reduces to 10% (Figure 4B). In addition, we found that the average ARI
SpaCell-based
sometimesincreasewhensequencingdepthreduces,forexample, in Datasets 2

scores of BayesSpace and methods
and 5 (Figure 3B,E). This unexpected performance suggests that these

methods may not be efficient enough in distinguishing biological signals and

c

a
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noises. For these methods, the downsampling process helps remove some

medium to lowly expressed genes and sometimes improves the signal-to-
noise ratio.

Lastly, we compared SpaGCN+, stLearn and SpaCell, which incorporate
both gene expression and histology information for clustering. SpaGCN+
and SpaCell have a similar overall performance in robustness to sequencing

depth, and both are generally more robust than stLearn.

Comparison of robustness to clustering parameter
The number of true cell types is often unknown to users in practical
applications of clustering,but it may have a significant impact on the quality
of clustering results. Therefore, we evaluated seven methods for which users
are required to input a parameter of cluster number, and three methods for
which the parameter is optional (Table 2). For each dataset, we evaluated
these methods withdifferentclusternumberparametersuptotwointegervalues
aboveorbelowthegroundtruth. TheaverageARlacrossreplicates (Table 1)
was then computed to measure clustering performance.

The ARI scores resulting from different cluster number parameters
suggest that SpaGCN, SpaGCN+ and BayesSpace generally have more
accurate clustering results when the specified cluster number is closer to the
true cell-type number (Figure 5SA-G). For Datasets 1-3,a sharper decrease
in performance is observed when the cluster number parameter is lower than
the true cell-type number, compared with cluster parameter being greater
than the cell-type number. However, for Dataset 4, which presents a more
challenging clustering problem than the other datasets (Figure 2), most
methods have improved clustering performance when the cluster number
parameter decreases (Figure 5D).

Unlike the methods that utilize spatial information, the Giotto-based
methods and SpaCell-based methods do not have a consistent dependence
on the cluster number parameter. Moreover, setting the parameter to true
cell-type number usually does not lead to the best clustering accuracy of
these two types of clustering methods, suggesting the existence of
systematic bias. Since the cluster number is often determined based on an
estimation of the true cell-type number, we also compared the mean ARI of
each method across different parameter values, which suggest SpaGCN,
SpaGCN+ and Giotto-H as the best three methods in terms of robustness to
the clustering parameter
(Figure SH).

Comparison of robustness to variation in histology
images

Histology images often provide useful information to distinguish between
different cell populations, so some clustering methods take the histology
image as an additional input and attempt to extract distinguishing features
for use in the clustering process. In this section, we compare the robustness
of SpaGCNH+, stLearn, SpaCell and SpaCell-I given histology images with
different levels of variation. For each dataset, we simulated five histology
images by varying the standard deviations of the pixel colors
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Figure 3. Comparison of average clustering accuracy across replicates given a decreasing percentage of original sequencing depth. (A, C, D): Replicates are directly available based
on data presented in Table 1. (B, E, F, G): Since the original dataset only has one replicate, for each percentage, five technical

replicates were generated in the downsampling process.

(Supplementary Methods). A larger standard deviation led to less distinct
information about different cell types (Figure 6A and Supplementary Figure
S20). Then, we applied the four methods to the same spatial transcriptomics
datasets combined with different histology images and compared their
clustering accuracy (Figure 6B—H).
ForSpaCellandSpaCell-I,weobservedaslightdecreasingtrend of
clustering accuracy when the images have greater variation. In addition, the
SpaCell method which uses both gene expression data and histology images
consistently has better performance than SpaCell-I, which only uses the
images. However, the clustering accuracy of stLearn and SpaGCN+ has a
little change on most datasets. Moreover, when these two methods
demonstrate obvious changes, they are not guaranteed to have higher

accuracy when histology images have a larger signal-tonoise ratio. Since
the synthetic histology images were generated with different mean RGB
values for different cell types, clustering based on low-variation images
supposedly should have better performance than that based on high-
variation images, provided that a clustering method can effectively extract
and utilize the histology information. However, based on these results,
current methods leave room for improvement in their joint analysis of gene
expression, spatial and histology information to identify cell populations.
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Figure 4. Ranking of methods based on robustness to decreased sequencing depth. Robustness is compared based on the absolute value difference in mean ARI scores when the
sequencing depth is reduced to 50% (A) or 10% (B) of the original depth. In both heatmaps, a smaller difference is ranked higher. Entries marked with NA indicate that the

corresponding method encountered errors on that dataset.

Table 3. Comparison of software packages based on installation, documentation and usability

BayesSpace | DR.SC Mm SpaCell | SpaGCN

Software provides Docker support for

installation
No No
Function inputs and outputs are defined in
the documentation v v
Tutorials are available for clustering
procedures \/ \/
Number of spatial transcriptomics
technologies included in the tutorial example
datasets
2 2
Functions are independent of the type of
spatial transcriptomics technology
No No
Functions can be run automatically without
user interaction v v
Software displays progress bars to monitor
clustering progress \/
No

No No

No

< < X
< < X
<
< < X

No No

Comparison of software usage

To compare the computational efficiency of different clustering algorithms,
we recorded the maximum memory usage and runtime of the methods on
Datasets 1-7.

Formemoryusage,SpaCell-basedmethodsoverallusetheleast memory,
followed by SpaGCN-based methods and Seurat-based methods (Figure
7A).The two
BayesSpaceandstLearn,bothaccountforspatiallocationsintheir models. As for
runtime, Seurat-based methods, SpaGCN-based methods and Giotto-LD have
comparable efficiency (Figure 7B). Most methods have a roughly linear trend

most memory-demanding methods,

when dataset size increases from Dataset 1 to Dataset 7. The exception to this
trend is Giotto-KM, whose runtime increases significantly.

We then compared the software packages for each method based on
installation,documentation and usability.The strengths and weaknesses of

each software package with respect to these criteria were then summarized in
Table 3. Taking all the criteria into consideration, the Seurat, SpaCell and
stLearn packages provide better support than the other packages.

Comparison based on real data

We performed the majority of comparisons based on the seven semi-
synthetic datasets, since gold standard cell-type labels are not yet available
for existing spatial transcriptomic datasets. To shed light on method
performance on real data,we also compared the clustering accuracy of the
15 methods on fivereal spatial transcriptomics datasets (Supplementary
Table S1), treating cell-type labels reported from the original publications
as a reference to evaluate the clustering results. From these results, we found
that Seurat-SLM, BayesSpace, Giotto-LD, Giotto-H and SpaGCN have the
best clustering accuracy on real datasets 1 to 5, respectively (Supplementary
Figure S21). When comparing the relative performance of different methods
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across datasets,we found that among methods not requiring histology

images, Seurat-based methods, BayesSpace and SpaGCN have the best
accuracy (Supplementary Figure S22). Furthermore, among methods that
depend on histology images as input, SpaGCN+ and stLearn have similar
rankings and both outperform the SpaCell-based methods. These results

coincide with our observations on the simulated data.
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method encountered errors on that dataset.

Discussions and Conclusions

In this article, we have benchmarked 15 clustering methods for spatially
resolved transcriptomics data based on clustering accuracy, clustering
robustness to various sources of variation, computational efficiency and
software usability. Our results on seven semi-synthetic datasets highlight
the following key findings. First, in terms of clustering accuracy, Seurat-

LVM, SpaGCN and Seurat-LV are overall the most accurate clustering

=

| Cheng et al.
A

Again, incorporating spatial or histology information does not guarantee to
improve clustering robustness in existing methods. Third, among methods
that require users to specify the number of clusters, SpaGCN, SpaGCN+ and
Giotto-H maintain the highest average clustering accuracy when given mis-
specified parameter values. Fourth, for clustering methods that take histology
images as input (stLearn, SpaGCN+, SpaCell and SpaCell-I), they do not

demonstrate obvious improvement when images of better quality are supplied.

Fifth, Seurat-based and SpaGCN-based methods have the best computational
efficiency, and Seurat, SpaCell and stLearn have the best software support. In
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Figure 6. Comparison of clusteringmethods based on robustness tovariation inhistology images.(A): Histology images for Dataset 5 that weresimulated with an increasing standard
deviation.(B—H): Mean ARI of SpaGCN+,SpaCell,SpaCell-I and stLearn given histology images of different levels of variation

for Datasets 1-7.

methods.However,methods that use additional information from spatial
coordinates and histology images do not systematically outperform methods
that only use gene expression information. Second, given decreased
sequencing depth to 50%, Seurat-based methods are the most robust methods.

summary, the additional spatial and histology information provided by spatial
transcriptomics data opens new avenues for the development of clustering
methods, and we have indeed observed increased accuracy in cell population
identification in selected datasets. However, there remain important subjects
of future research, including how to more effectively incorporate spatial and
histology information in the presence of noises and how to alleviate the
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dependence of clustering on user-specified cluster numbers or other clustering
parameters.

In addition,we would like to discuss two future directions.First, in this
study, we utilized semi-synthetic datasets with real spatial locations and
synthetic ~gene expression data generated by the scRNA-
seqsimulatorscDesign2,sincerealspatialtranscriptomics datasets with high-
quality cell-type labels are very rare.We anticipate that the comparison can
be extended to spatial data with real gene expression levels after curated
spatial transcriptomics atlas becomes available. Second, this is a fast
evolving field, and we have noticed several new clustering methods during
the preparationofthismanuscript,includingSTAGATE[33],SEDR[34],
ClusterMap [35] and SC-MEB [36]. To support further comparison
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Figure 7. Comparison of clustering methods based on maximum memory usage and runtime. (A): Logio of maximum memory measured in megabytes and used by the entire clustering

pipeline for each method, including pre-processing. (B): Logio of runtime measured in minutes. Datasets are ordered based on cell number x gene number. In each panel, methods

marked on the right are ordered based on results on Dataset 7. Since Giotto-HM encountered errors on Datasets 2, 5 and 7, its memory usage and runtime are not displayed for these

three datasets.

of new methods,we have uploaded the data analyzed in this study to a
publicly  available repository at  Github  (https://github.com/

acheng416/Benchmark-CTCM-ST).

Key Points

+ Spatially resolved transcriptomics data provide spatial locations
and sometimes histology information in addition to gene
expression levels. These additional sources of information are
being explored to further improve identification of cell
populations.

» Among the 15 clustering methods, we have summarizedthebest-
performingmethodsintermsofclustering clustering
robustness to various sources of variation, computational

accuracy,

efficiency and software usability.

* Current clustering methods that use spatial location and/or
histology information show promising results in selected
datasets,but do not consistently perform better and are not more
robust to variations in the data than methods that only use gene
expression.

* Our comparison indicates that for the clustering of spatial
transcriptomics data, there are still opportunities to enhance the
overall accuracy and robustness by improving information
extraction and feature selection from spatial and histology data.

Data availability

The mouse olfactory bulb dataset (for Dataset 1 and Real dataset 1
inTableS1)isavailablefromfromDOI:10.1126/SCIENCE.AAF2403.  The
(Dataset 2) is
https://www.10xgenomics.com/resources/datasets. The mouse brain serial

coronal mouse kidney section available from
sections corresponding to Dataset 3 were obtained from the mouse brain

serial section 1 and section 2 datasets at

https://www.10xgenomics.com/resources/datasets. The mouse
hypothalamic preoptic dataset (for Dataset 4 and Real dataset 4 in Table S1)
can be obtained from DOI: 10.5061/dryad.8t8s248. The mouse
somatosensory cortex dataset (for Dataset 5 and Real dataset 3 in Table S1)
is available from http:/linnarssonlab.org/ osmFISH/availability/. The

Stereo-seq dataset (for Dataset 6 and Real dataset 5 in Table S1) is available

from https://db.cngb.org/ stomics/mosta/. The mouse brain cerebellum
(Dataset 7) is
https://singlecell.broadinstitute.org/single cell/

available from
study/SCP354.  The
simulated data generated in this study are available at
https://github.com/acheng416/Benchmark-CTCMST. Real dataset 2 (Table
S1) is available from http://research.libd. org/spatialLIBD/ [37].
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