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Abstract 

The shape, material property, and part quality transformation capabilities of a manufacturing process are essential process capability knowledge 
that are traditionally acquired by process planners through experience. While efforts have been made over the years to develop automated systems 
that utilize known process capabilities for process selection and manufacturability assessment of part designs, such systems are hampered by the 
lack of a systematic approach to capture and model the shape, material property, and part quality transformation capabilities from design and 
manufacturing data. In this paper, the shape transformation capabilities of representative machining operations are modeled using 3D Variational 
Autoencoders and Generative Adversarial Networks (3D-VAE-GANs.) The proposed approach models the shape transformation capability as a 
latent probability distribution from which visualizations of realistic machinable features can be sampled for shape decomposition and 
reconstruction, thereby assisting machining process selection by a process planner and manufacturability assessment of part shapes generated by 
a designer. 

 
© 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME. 

 Keywords: Generative Machine Learning; Machining Process Capability; Computer Aided Process Planning; Machining Feature Recognition 

 
1. Introduction 

In today’s concurrent engineering environment, the 
emphasis is on seamless interaction between product designers 
and process planners to enable manufacturability assessment of 
the design and process/operation selection [1]. Traditionally, a 
process planner studies the part drawing and manufacturing 
specifications to recall and visualize similar parts or features 
from experience to identify the processes that can produce the 
desired part. This practice usually requires the process planner 
to be knowledgeable about the process capability of a 
manufacturing process defined in terms of its shape, material 
property, and part quality transformation capabilities [2]. Here, 
we define the shape transformation capability of a 
manufacturing process as the various shapes and features it can 
produce.  

Efforts have been made to model the manufacturing process 
capability knowledge to assist process planners with key 
process related decisions [3]. Prior work on manufacturing 
process capability knowledge representation generally falls into 
two categories [4]. One, high-level descriptions of 
manufacturing resources (e.g. available machines [5] and labor 
skills [6]) are used to describe the process capability. Two, 
detailed descriptions are used to link manufacturing processes 
to part design attributes [7, 8]. A line of work is focused on 
shape information representation through Feature Recognition 
(FR) [9]. Prior researchers have implemented FR techniques 
such as syntactic pattern recognition [10], graph theory [11], 
hint-based recognition [12], expert systems [13], and neural 
networks [14]. However, traditional FR systems, e.g. graph-
based systems, have limited capability for manufacturability 
assessment and process selection [15]. Ip and Regli [16] used a 
Support Vector Machine to discriminate between cast and 
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machined parts based on shape curvature distributions obtained 
from 3D CAD models. Hoefer and Frank [17] utilized part 
geometry metrics to extract key features that set manufacturing 
process constraints and subsequently trained process selection 
models using K-nearest-neighbor, decision trees and random 
forest classification methods. Zhao et al. [18] utilized decision 
trees to discriminate between the process capabilities of three 
manufacturing processes (casting, turning, milling) in terms of 
their part shape, material property, and quality attributes. These 
approaches, however, require selecting and preparing the data 
attributes as the first step.  

Recent advances in 3-dimensional (3D) machine learning 
have rekindled interest in manufacturability assessment of 
design and process selection using 3D data-driven methods. 
Zhang et al. [19] presented FeatureNet for machining FR based 
on a 3D convolutional neural network (3D-CNN). Ghadai et al. 
[20] developed a framework for localized feature identification 
in manufacturability analysis of drilled holes. Peddireddy et al. 
[21] proposed a machining process identification system based 
on transfer learning from a trained 3D-CNN FR source model. 
While an increasing emphasis has been placed on bridging the 
gap between FR and manufacturability analysis and process 
selection, current state-of-the-art 3D data-driven methods 
suffer from limitations of discriminative neural networks, 
which perform classification in an implicit manner [2]. 
Importantly, a part can have a complex combination of features 
that must be machined by multiple processes using a sequence 
of operations. This multi-label classification task requires a 
large number of training classes consisting of combinations of 
machinable and non-machinable features of given 
processes/operations. Although algorithms have been 
developed for feature separation, labeling, and segmentation 
[19], the computational complexity renders discriminative 
classification models impractical for analyzing complex part 
designs and identifying sequences of processes. 

An alternative 3D machine learning approach has been 
employed in design optimization. For instance, in design 
topology optimization, the intensive computational cost of 
Finite Element Analysis has led to research efforts that utilize 
deep generative models such as Variational Auto-Encoder 
(VAE) and Generative Adversarial Network (GAN) to generate 
near-optimal topological designs [22]. Banga et al. [23] 
employed a 3D encoder-decoder pair to optimize the design 
structure. Oh et al. [22] proposed a GAN-based topology 

optimization framework, which was applied to 2D wheel design 
generation. Greminger [24] presented a 3D-GAN that enforces 
manufacturing constraints on topology optimization by training 
with known shapes manufactured by a 3-axis milling machine. 
While the above works have demonstrated the ability to impose 
and visualize topology constraints on design, few have 
emphasized manufacturability analysis, not to mention process 
and operation selection considerations.  

It is evident that state-of-the-art 3D machine learning 
methods applied to FR are limited by the computational 
bottleneck arising from the multi-label nature of the problem, 
and generative design approaches, for the most part, lack 
manufacturability assessment and process selection 
considerations. For machining, a significant knowledge gap 
still exists between a part design and a process plan capable of 
transforming the design into a finished part owing to the lack of 
a method for automatically capturing process capability 
knowledge that can be utilized to map a part design to a 
manufacturing process. Recalling that a human process planner 
has implicit understanding of machining process capability that 
is usually acquired from experience, we hypothesize that the 
required machining process capability knowledge can be 
automatically learned through 3D data-driven generative 
machine learning methods. 

As shown in Figure 1, we envision a “process capability 
advisor” powered by generative models of machining process 
capabilities that not only assist the designer with 
manufacturability assessment of part designs, but also facilitate 
process selection, which is a key step in process planning. The 
benefit of using the process capability advisor for process 
planning is to ensure that there is a scalable AI reference for 
validating process selection decisions, which currently rely on 
the individual experiential knowledge of process planners. In 
this paper, we limit our focus to generative modeling of the 
shape transformation capability of a machining process. The 
shape transformation capability is characterized by the shapes 
and spatial features that a process or an operation can produce. 
Specifically, we build on recent advances in generative 
machine learning models of 3D objects made by the machine 
vision and generative design communities to answer the 
following questions: (1) Can we learn the shape transformation 
capability of a machining process as a latent probability 
distribution using generative machine learning methods? and 
(2) How can the learned shape transformation capability be 

Figure 1. Machining process capability modeling for assessing manufacturability assessment of designs and for process/operation selection in process planning.  
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used for design manufacturability assessment and process 
selection? These questions are answered by developing and 
evaluating the performance of a combined 3D VAE and GAN 
generative modeling approach that can learn the shape 
transformation capability of typical shaping operations carried 
out on a lathe. The paper also shows how these generative 
models can be used for design manufacturability assessment 
and process/operation selection by providing automated visual 
feedback to designers and process planners, respectively. The 
shape transformation capability of a machining operation is 
learned as a latent probability distribution by fitting a high-
dimensional multi-modal probability distribution to voxelized 
CAD models of part shapes during training of deep neural 
networks, from which we can sample easily interpretable 3D 
visualizations of shapes the machining operation can produce.  

2. Data Generation 

While numerous 3D machine learning datasets have been 
developed for training convolutional neural networks, curated 
3D datasets for manufacturing are scarce. For this work, we 
synthesized three datasets consisting of parts machinable by 
turning, grooving, and chamfering operations that can be 
carried out on a lathe. Figure 2 shows the data generation flow, 
which follows the basic feature generation approach described 
by Peddireddy et al. [21]. The starting geometry of parts in all 
three datasets was a solid cylinder with diameter d. Each part 
was parameterized using feature size and feature position 
denoted by (C, H, B, A, D). The parameters were varied 
according to a uniform distribution and a pre-defined minimum 
allowable wall thickness. In this paper we set d to 100 mm and 
the minimum allowable wall thickness to 10 mm. One hundred 
and fifty models were generated for each machining operation. 
The CAD models were generated automatically using a 
Solidworks macro. The CAD models were subsequently 
converted into a voxelized representation with a resolution of 
64 × 64 × 64  using binvox [25], an open-source voxelizer 
library. 

3. Generative Modeling Approach 

A distinction must be made between the discriminative 
modeling approach previously utilized in FR and MPI work and 
generative modeling. A discriminative model learns a 
conditional probability 𝑃(𝑦|𝑋) from a training dataset, where, 
in the context of machining, 𝑋  are the data points, such as 
voxelized CAD models, and 𝑦  are the corresponding labels, 
such as the machining process/operation label. In contrast, a 
generative model learns a joint probability 𝑃(𝑋, 𝑦)  from the 
dataset or 𝑃(𝑋) if labels are not available. Sampling from the 
learned joint probability distribution generates a synthetic 
object of the same class as the training dataset. Wu et al. [26] 
presented a 3D Generative Adversarial Network (3D GAN) that 
learns a latent probability distribution to generate 3D objects. 
Shu et al. [27] employed a GAN using point cloud 
representations of aircraft to synthesize new designs. Dai et al. 
[28] developed a method to complete a partial 3D scan using a 
3D Encoder-Predictor network. Li et al. [29] presented a 
method for structure-aware shape synthesis by generating parts 
using a combination of VAEs and GANs (VAE-GANs).  

Considering the above, in this paper we employ a 3D-VAE-
GAN framework to learn the shape transformation capability of 
a machining process exemplified by turning, grooving, and 
chamfering operations performed on a lathe. As shown in 
Figure 3, each 3D-VAE-GAN was trained on a dataset for a 
given operation. Neural networks with roles of “encoder,” 
“generator,” and “discriminator” were trained simultaneously. 
The encoder takes voxelized ground truth shapes from the 
dataset as inputs to learn a latent probability distribution of the 
shape transformation capability, while the generator generates 
realistic features that can be produced by the machining 

Figure 2. Data generation flow. 

Figure 3. Overview of modeling approach. 
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operation, and the discriminator judges the “fakeness” of the 
generator outputs. 

3.1. Model Architecture 

The architecture of the 3D-VAE-GAN used in this paper 
follows work reported in the literature on generative modeling 
of generic 3D objects [26, 30], and is shown in Figure 4. The 
VAE has four 3D-convolutional (Conv3d) layers and two linear 
layers. Batch normalization [31] and leaky rectified linear unit 
(LReLU) activation function [32] are applied after each Conv3d 
layer. LReLU is a non-linear activation function given 
by 𝐿𝑅𝑒𝐿𝑈(𝑥) = max(𝑥, 𝛼𝑥), where 𝛼 in this work is set to 0.2. 
The two fully connected linear layers following the Conv3d 
layers have dimensions of 800 × 1 with one vector designated 
as the mean vector and the other as the standard deviation vector 
of the latent probability distribution. Finally, a single 800 × 1 
latent vector is obtained by sampling values from the mean and 
standard deviation vectors, which assumes the latent vector 
elements follow normal distributions. In the generator, a fully 
connected layer expands the dimension to 32,768 × 1 and is 
followed by four 3D-transpose-convolutional 
(ConvTranspose3d) layers. A sigmoid layer, which has the 
form of 𝑆(𝑥) = (1 + 𝑒−𝑥)−1, is applied at the end to enforce a 
value between 0 and 1 for each voxel in the 64 × 64  × 64 
output. This output, along with the input to the VAE, are input 
to the discriminator. The discriminator has a network structure 
like that of the VAE, except for the linear layer which has an 
output dimension of 1. Again, a sigmoid layer is applied to 
output a probability of the input being fake.  

3.2. Objective Functions 

In a typical VAE encoder and decoder (generator) pair, the 
loss function for both networks is defined as follows:  

   21 2 [ , Σ || 0,  ]ˆ|| ||x x KL N N I      (1) 

where 𝑥  is the input to the encoder, 𝑥̂  is the output of the 
generator, 𝜇 and Σ are the means and variances of the outputs 
produced by the encoder, and 𝛼1 and 𝛼2 are tuning parameters. 
The first term in the loss function returns the reconstruction loss 
from the encoder-generator pair, whereas the second term 
returns the Kullback-Leibler (KL) divergence of the latent 
vectors from a unit normal distribution. In this work, 𝛼1 was set 
to 150, and 𝛼2 was set to 2 to emphasize the reconstruction loss. 
In a 3D-VAE-GAN, an additional term based on the 
discriminator output is added to the generator loss function 
defined in Eq. (1) as follows: 

   21 2 ˆ[ , Σ || 0,  ] ( )ˆ|| ||x x KL N N I D x       (2) 

where 𝐷(𝑥̂) is the discriminator output that judges the fakeness 
of the generator output, 𝑥̂.  

Note that the discriminator loss function in the original GAN 
[33] is defined as a minimax value function 𝑉(𝐷, 𝐺): 

   ~ ~min max ( , ) log ( ) log(1 ( ( )))
data noisex P x PG D

V D G D x D G z   

  (3) 

However, the game-theory based loss function in Eq. (3) can 
lead to unstable training and mode collapse. We therefore 
employed the discriminator loss function used in the Improved 
Wasserstein GAN training system (IWGAN) [34], which has 
demonstrated superior results for 3D object reconstruction [30]: 

    2
ˆ ˆ ˆ~ ~ 3 ~ 2ˆ ˆ( ) ( ) [(|| ( ) || 1) ]

g r xx P x P x P xD x D x D x     

  (4) 

where 𝑃𝑔  and 𝑃𝑟  are the generator and target distributions, 
respectively, 𝑃𝑥  is the distribution sampled uniformly on a 
straight line between 𝑃𝑔  and 𝑃𝑟 , and the last term of the loss 
function is the gradient penalty that penalizes the deviation of 

Figure 4. 3D-VAE-GAN architecture. 
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the discriminator’s gradient from unity. The value of 𝛼3 in this 
work was set to 10.  

3.3. Model Training Approach 

In this work, we trained a separate 3D-VAE-GAN model for 
each CAD dataset containing the shapes manufacturable by a 
given machining operation, which resulted in three 3D-VAE-
GAN models, one for each machining operation. In addition to 
training 3D-VAE-GANs for the individual machining 
operations, a joint 3D-VAE-GAN was trained on a combined 
turning, grooving and chamfering dataset consisting of 450 
parts for comparison. The models were constructed and trained 
using PyTorch [35], which is a deep learning library for Python. 

Model training was performed on a high-performance 
computing node at the Georgia Institute of Technology (PACE 
Phoenix Cluster with 2 parallel NVIDIA Tesla V100 32GB 
GPUs). All three components of the 3D-VAE-GAN, namely the 
VAE, generator, and discriminator, were trained 
simultaneously on the training dataset for a given machining 
operation. For training all 3D-VAE-GANs, the batch size was 
set to 30. Adaptive moment estimation (Adam) [36] was used 
as the optimizer with initial exponential decay rates of the first 
and second moments of gradient, 𝛽1 and 𝛽2, set to 0.8 and 0.99, 
respectively. The VAE and generator learning rates were set to 
4×10-6, and the discriminator learning rate was set to 2×10-6. 
Note that these hyperparameters were manually tuned based on 

Figure 6. Shape generation comparison of the (a) turning model, (b) grooving 
model, and (c) chamfering model against the joint model. 

Figure 5. Training losses of (a) VAE, (b) generator minimax component, and 
(c) discriminator. 
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the training losses and visualization results of the 3D-VAE-
GANs. It is expected that the hyperparameters will need to be 
re-tuned to optimize the performance for different training 
datasets. All 3D-VAE-GANs were trained for 2000 epochs. 

4. Model Evaluation 

As noted above, three models were trained, one for each 
machining operation, using their respective training datasets, 
and a joint model was trained using the combined dataset for all 
three operations. The purpose of training the joint model was to 
determine if training jointly is as effective as training separately 
on an individual operation dataset for learning the shape 
transformation capability of the operations.  

The trained models were evaluated by observing the training 
losses and the shape transformation (3D object generation) 
results. Figure 5 shows the VAE loss given by Eq. (1), the 
minimax component of the generator loss  𝐷(𝑥̂) , and the 
discriminator loss given by Eq. (4). Both the generator minimax 
loss and the discriminator loss demonstrated higher volatility as 
training progressed, which is expected as both the generator and 
the discriminator gradually improve through the adversarial 
training process, and the output probability of the discriminator 
approaches either 0 or 1. Although theoretical convergence 
does not exist in adversarial training, it can be seen from Figure 
5 that the mean generator loss decreased, whereas the mean 
discriminator loss increased in the long run. The 
hyperparameters were purposely tuned to allow the generator to 
learn faster and eventually defeat the discriminator. It is also 
evident that the VAE losses decreased steadily for the turning, 
grooving and chamfering models before converging. However, 
the joint training model suffered from an instability in the VAE 
loss as the training epochs increased. Upon further 
investigation, the instability of the VAE loss for the joint model 
was attributed to a significant KL divergence, which indicates 
that the structure of the latent probability distribution was not 
effectively embedded through learning from the combined 
dataset using the same hyperparameters used for the 
individually trained models.  

In addition to the training losses, training data 
reconstructions were visualized as shown in Figure 6 to 

evaluate the effectiveness of the learned shape transformation 
capability. The inputs to the trained models were randomly 
selected from the training dataset. It is evident from the three 
sub-figures that the outputs of the separately trained models and 
the joint model capture the shapes of the corresponding input 
objects, confirming that the generative modeling approach used 
in this paper is able to capture the shape transformation 
capability as a latent probability distribution. However, the joint 
model is unable to generate objects with the same details and 
clarity as the individual operation models. This observation 
reflects the significantly higher VAE loss of the joint model in 
Figure 5, as the difficulty in simultaneously learning the latent 
probability distribution of all three operations was higher than 
training individual models for each operation.  

Based on the training loss and visualization comparisons, it 
is evident that models for the individual operations outperform 
the joint model in capturing the shape transformation capability 
of the machining operations considered. Note that this result 
aligns with the reported precision score for a non-
manufacturing dataset (IKEA 2D image to 3D object dataset) 
[30, 37], where separately trained models consistently 
outperformed jointly trained models. This suggests that instead 
of treating a deep generative model such as a 3D-VAE-GAN as 
a “black box,” an emphasis must be placed on creating training 
datasets with intrinsic characteristics based on machining 
domain knowledge to reduce learning difficulty. For example, 
a machining dataset can be organized as a hierarchy of starting 
geometries, machining processes, and operations, from which 
the hierarchical level of training data determines the learning 
difficulty.  

To illustrate the superior performance of the 3D-VAE-GAN 
architecture for modeling the shape transformation capability, 
two additional deep generative modeling architectures, namely 
VAE-only and GAN-only models, were constructed and trained 
using the same hyperparameters listed above. Figure 7 shows 
the shape generation results of the three deep generative 
architectures for the same inputs. The GAN-only architecture 
produced the worst results due to mode-collapse i.e. generating 
only a handful of shapes without learning an accurate latent 
probability distribution. The VAE-only approach resulted in 
shapes like those produced by the 3D-VAE-GAN, which 
indicates that a more accurate latent probability distribution is 
learned. However, rounded edges are more prevalent due to the 
lack of a discriminator. Similar results have been reported in the 
computer vision literature [38], where blurry images are 
observed. It is evident that the VAE-GAN architecture 
combines the benefits of both VAE and GAN architectures to 
produce the best overall results. 

The foregoing results suggest that, with an optimized 
dataset, model architecture and training hyperparameters, the 
shape transformation capability of a machining process can be 
captured sufficiently well for shape decomposition and 
reconstruction. 

Figure 7. Shape generation comparison of VAE-GAN, VAE-Only, and GAN-
Only models. 
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5. Shape Decomposition and Reconstruction 

In the previous section, we demonstrated the ability to learn 
the shape transformation capability of a machining process 
using a generative machine learning approach. The next 
question is: how can the learned shape transformation 
capability be utilized for design manufacturability assessment 
and process/operation selection? An example use case is shape 
decomposition and reconstruction. Contrary to discriminative 
models that yield a probability as output, our shape 
transformation capability models are capable of decomposing 
and visualizing a part design as machinable features, which 
enable the part designer to evaluate manufacturability of the 
design using the selected process/operation.  

A unique property of VAE-based generative models is their 
ability to compensate for missing information in the input, 
which has been demonstrated for 3D scan shape completion 
[28], and 3D shape generation from 2D images [26]. 
Considering that machining is a material removal process, our 
shape transformation capability models were trained such that 
only features that are machinable by the selected operation are 
output. When the output sampled from the latent probability 
distribution of a 3D-VAE-GAN matches the input shape, it 
implies that the input is drawn from the latent probability 
distribution and can therefore be produced by the 

process/operation. Conversely, if the output sampled from the 
latent probability distribution does not match the input, the 
implication is that the input shape cannot be produced by the 
process/operation. Therefore, by comparing the reconstructed 
input shape to the output shape, the manufacturability of the 
input shape by the machining operation can be determined. In 
Figure 8 and Figure 9, the query 3D objects are input to all 
VAE-GAN models, which return outputs sampled from the 
generative capability models of the respective machining 
operations. The combined outputs are obtained from an 
intersection Boolean operation (in the voxel space) of the 
generative model outputs. Figure 8 shows an example of a 
successful decomposition of an unseen input part shape into 
features that can be machined by the different operations. In this 
case, the inputs contain both a groove and a chamfer. The shape 
transformation capability models did not observe such feature 
combinations during training, but the grooving model returned 
a shape with a groove, which closely resembles the input, while 
the chamfering model only returned a chamfer. By 
reconstructing a combined object from the outputs of the 
grooving and chamfering models through an intersection 
Boolean operation, the result yields a visualization of a part 
closely matching the input shape. Figure 9 shows examples of 
unsuccessful decompositions and reconstructions. While the 
grooving model returned a decomposed groove feature, the 
turning model could only return the closest matching turning 
feature and not a chamfer. As a result, the reconstructed objects 
in Figure 9 do not resemble the inputs. By visually comparing 
the reconstructed output with the input, a designer can 
determine the manufacturability of the design by the available 
process/process combination while a process planner can 
identify a viable process/process combination to produce the 
shapes contained in the design.  

6. Conclusion 

In this paper we proposed a deep generative machine 
learning approach to learn the shape transformation capability 
of representative machining operations. By modeling the shape 
transformation capabilities of turning, grooving and chamfering 
operations using 3D-VAE-GANs, we demonstrated that (1) the 
shape transformation capability of a machining process can be 
learned as a latent probability distribution, (2) visualization of 
machinable features can be obtained by sampling from the 
shape transformation capability model, (3) separately trained 
models can capture the shape transformation capability of a 
machining operation better than a jointly trained model, which 
indicates that domain knowledge should be used to create 
datasets that minimize learning difficulty, and (4) the learned 
shape transformation capability can be used for shape 
decomposition and reconstruction, through which 
manufacturability of the part design can be visualized and a 
suitable machining process/operation can be selected. By 
enabling explainable process decisions through visualization, 
the generative modeling of machining process capability can 
enable design for manufacturing and accelerated process 
planning.  

There are of course limitations to the models presented 
herein, which will be addressed in future work. Specifically, the 

Figure 9. Unsuccessful design decomposition and reconstruction. 

Figure 8. Successful design decomposition and reconstruction. 
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robustness of the models can be improved by considering the 
dimensions, positions, and tolerances of a feature. Another 
extension is to include other machining processes/operations in 
the model. Finally, material and part quality transformation 
capabilities need to be integrated with shape transformation for 
more accurate representation of the machining process 
capability.  
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