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Abstract

The shape, material property, and part quality transformation capabilities of a manufacturing process are essential process capability knowledge
that are traditionally acquired by process planners through experience. While efforts have been made over the years to develop automated systems
that utilize known process capabilities for process selection and manufacturability assessment of part designs, such systems are hampered by the
lack of a systematic approach to capture and model the shape, material property, and part quality transformation capabilities from design and
manufacturing data. In this paper, the shape transformation capabilities of representative machining operations are modeled using 3D Variational
Autoencoders and Generative Adversarial Networks (3D-VAE-GANSs.) The proposed approach models the shape transformation capability as a
latent probability distribution from which visualizations of realistic machinable features can be sampled for shape decomposition and
reconstruction, thereby assisting machining process selection by a process planner and manufacturability assessment of part shapes generated by

a designer.
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1. Introduction

In today’s concurrent engineering environment, the
emphasis is on seamless interaction between product designers
and process planners to enable manufacturability assessment of
the design and process/operation selection [1]. Traditionally, a
process planner studies the part drawing and manufacturing
specifications to recall and visualize similar parts or features
from experience to identify the processes that can produce the
desired part. This practice usually requires the process planner
to be knowledgeable about the process capability of a
manufacturing process defined in terms of its shape, material
property, and part quality transformation capabilities [2]. Here,
we define the shape transformation capability of a
manufacturing process as the various shapes and features it can
produce.

Efforts have been made to model the manufacturing process
capability knowledge to assist process planners with key
process related decisions [3]. Prior work on manufacturing
process capability knowledge representation generally falls into
two categories [4]. One, high-level descriptions of
manufacturing resources (e.g. available machines [5] and labor
skills [6]) are used to describe the process capability. Two,
detailed descriptions are used to link manufacturing processes
to part design attributes [7, 8]. A line of work is focused on
shape information representation through Feature Recognition
(FR) [9]. Prior researchers have implemented FR techniques
such as syntactic pattern recognition [10], graph theory [11],
hint-based recognition [12], expert systems [13], and neural
networks [14]. However, traditional FR systems, e.g. graph-
based systems, have limited capability for manufacturability
assessment and process selection [15]. Ip and Regli [16] used a
Support Vector Machine to discriminate between cast and
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Figure 1. Machining process capability modeling for assessing manufacturability assessment of designs and for process/operation selection in process planning.

machined parts based on shape curvature distributions obtained
from 3D CAD models. Hoefer and Frank [17] utilized part
geometry metrics to extract key features that set manufacturing
process constraints and subsequently trained process selection
models using K-nearest-neighbor, decision trees and random
forest classification methods. Zhao et al. [18] utilized decision
trees to discriminate between the process capabilities of three
manufacturing processes (casting, turning, milling) in terms of
their part shape, material property, and quality attributes. These
approaches, however, require selecting and preparing the data
attributes as the first step.

Recent advances in 3-dimensional (3D) machine learning
have rekindled interest in manufacturability assessment of
design and process selection using 3D data-driven methods.
Zhang et al. [19] presented FeatureNet for machining FR based
on a 3D convolutional neural network (3D-CNN). Ghadai et al.
[20] developed a framework for localized feature identification
in manufacturability analysis of drilled holes. Peddireddy et al.
[21] proposed a machining process identification system based
on transfer learning from a trained 3D-CNN FR source model.
While an increasing emphasis has been placed on bridging the
gap between FR and manufacturability analysis and process
selection, current state-of-the-art 3D data-driven methods
suffer from limitations of discriminative neural networks,
which perform classification in an implicit manner [2].
Importantly, a part can have a complex combination of features
that must be machined by multiple processes using a sequence
of operations. This multi-label classification task requires a
large number of training classes consisting of combinations of
machinable and non-machinable features of given
processes/operations.  Although algorithms have been
developed for feature separation, labeling, and segmentation
[19], the computational complexity renders discriminative
classification models impractical for analyzing complex part
designs and identifying sequences of processes.

An alternative 3D machine learning approach has been
employed in design optimization. For instance, in design
topology optimization, the intensive computational cost of
Finite Element Analysis has led to research efforts that utilize
deep generative models such as Variational Auto-Encoder
(VAE) and Generative Adversarial Network (GAN) to generate
near-optimal topological designs [22]. Banga et al. [23]
employed a 3D encoder-decoder pair to optimize the design
structure. Oh et al. [22] proposed a GAN-based topology

optimization framework, which was applied to 2D wheel design
generation. Greminger [24] presented a 3D-GAN that enforces
manufacturing constraints on topology optimization by training
with known shapes manufactured by a 3-axis milling machine.
While the above works have demonstrated the ability to impose
and visualize topology constraints on design, few have
emphasized manufacturability analysis, not to mention process
and operation selection considerations.

It is evident that state-of-the-art 3D machine learning
methods applied to FR are limited by the computational
bottleneck arising from the multi-label nature of the problem,
and generative design approaches, for the most part, lack
manufacturability — assessment and process selection
considerations. For machining, a significant knowledge gap
still exists between a part design and a process plan capable of
transforming the design into a finished part owing to the lack of
a method for automatically capturing process capability
knowledge that can be utilized to map a part design to a
manufacturing process. Recalling that a human process planner
has implicit understanding of machining process capability that
is usually acquired from experience, we hypothesize that the
required machining process capability knowledge can be
automatically learned through 3D data-driven generative
machine learning methods.

As shown in Figure 1, we envision a “process capability
advisor” powered by generative models of machining process
capabilities that not only assist the designer with
manufacturability assessment of part designs, but also facilitate
process selection, which is a key step in process planning. The
benefit of using the process capability advisor for process
planning is to ensure that there is a scalable Al reference for
validating process selection decisions, which currently rely on
the individual experiential knowledge of process planners. In
this paper, we limit our focus to generative modeling of the
shape transformation capability of a machining process. The
shape transformation capability is characterized by the shapes
and spatial features that a process or an operation can produce.
Specifically, we build on recent advances in generative
machine learning models of 3D objects made by the machine
vision and generative design communities to answer the
following questions: (1) Can we learn the shape transformation
capability of a machining process as a latent probability
distribution using generative machine learning methods? and
(2) How can the learned shape transformation capability be
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Figure 2. Data generation flow.

used for design manufacturability assessment and process
selection? These questions are answered by developing and
evaluating the performance of a combined 3D VAE and GAN
generative modeling approach that can learn the shape
transformation capability of typical shaping operations carried
out on a lathe. The paper also shows how these generative
models can be used for design manufacturability assessment
and process/operation selection by providing automated visual
feedback to designers and process planners, respectively. The
shape transformation capability of a machining operation is
learned as a latent probability distribution by fitting a high-
dimensional multi-modal probability distribution to voxelized
CAD models of part shapes during training of deep neural
networks, from which we can sample easily interpretable 3D
visualizations of shapes the machining operation can produce.

2. Data Generation

While numerous 3D machine learning datasets have been
developed for training convolutional neural networks, curated
3D datasets for manufacturing are scarce. For this work, we
synthesized three datasets consisting of parts machinable by
turning, grooving, and chamfering operations that can be
carried out on a lathe. Figure 2 shows the data generation flow,
which follows the basic feature generation approach described
by Peddireddy et al. [21]. The starting geometry of parts in all
three datasets was a solid cylinder with diameter d. Each part
was parameterized using feature size and feature position
denoted by (C, H, B, A, D). The parameters were varied
according to a uniform distribution and a pre-defined minimum
allowable wall thickness. In this paper we set d to 100 mm and
the minimum allowable wall thickness to 10 mm. One hundred
and fifty models were generated for each machining operation.
The CAD models were generated automatically using a
Solidworks macro. The CAD models were subsequently
converted into a voxelized representation with a resolution of
64 X 64 X 64 using binvox [25], an open-source voxelizer
library.
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Figure 3. Overview of modeling approach.

3. Generative Modeling Approach

A distinction must be made between the discriminative
modeling approach previously utilized in FR and MPI work and
generative modeling. A discriminative model learns a
conditional probability P(y|X) from a training dataset, where,
in the context of machining, X are the data points, such as
voxelized CAD models, and y are the corresponding labels,
such as the machining process/operation label. In contrast, a
generative model learns a joint probability P(X,y) from the
dataset or P(X) if labels are not available. Sampling from the
learned joint probability distribution generates a synthetic
object of the same class as the training dataset. Wu et al. [26]
presented a 3D Generative Adversarial Network (3D GAN) that
learns a latent probability distribution to generate 3D objects.
Shu et al. [27] employed a GAN using point cloud
representations of aircraft to synthesize new designs. Dai et al.
[28] developed a method to complete a partial 3D scan using a
3D Encoder-Predictor network. Li et al. [29] presented a
method for structure-aware shape synthesis by generating parts
using a combination of VAEs and GANs (VAE-GAN5).

Considering the above, in this paper we employ a 3D-VAE-
GAN framework to learn the shape transformation capability of
a machining process exemplified by turning, grooving, and
chamfering operations performed on a lathe. As shown in
Figure 3, each 3D-VAE-GAN was trained on a dataset for a
given operation. Neural networks with roles of “encoder,”
“generator,” and “discriminator” were trained simultaneously.
The encoder takes voxelized ground truth shapes from the
dataset as inputs to learn a latent probability distribution of the
shape transformation capability, while the generator generates
realistic features that can be produced by the machining
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Figure 4. 3D-VAE-GAN architecture.

operation, and the discriminator judges the “fakeness” of the
generator outputs.

3.1. Model Architecture

The architecture of the 3D-VAE-GAN used in this paper
follows work reported in the literature on generative modeling
of generic 3D objects [26, 30], and is shown in Figure 4. The
VAE has four 3D-convolutional (Conv3d) layers and two linear
layers. Batch normalization [31] and leaky rectified linear unit
(LReLU) activation function [32] are applied after each Conv3d
layer. LReLU is a non-linear activation function given
by LReLU (x) = max(x, ax), where a in this work is set to 0.2.
The two fully connected linear layers following the Conv3d
layers have dimensions of 800 X 1 with one vector designated
as the mean vector and the other as the standard deviation vector
of the latent probability distribution. Finally, a single 800 x 1
latent vector is obtained by sampling values from the mean and
standard deviation vectors, which assumes the latent vector
elements follow normal distributions. In the generator, a fully
connected layer expands the dimension to 32,768 X 1 and is
followed by four 3D-transpose-convolutional
(ConvTranspose3d) layers. A sigmoid layer, which has the
form of S(x) = (1 + e )71, is applied at the end to enforce a
value between 0 and 1 for each voxel in the 64 X 64 X 64
output. This output, along with the input to the VAE, are input
to the discriminator. The discriminator has a network structure
like that of the VAE, except for the linear layer which has an
output dimension of 1. Again, a sigmoid layer is applied to
output a probability of the input being fake.

3.2. Objective Functions

In a typical VAE encoder and decoder (generator) pair, the
loss function for both networks is defined as follows:

al ||)’e_x||2 +a2KL[N(,u92)||N(091)] (1)

where x is the input to the encoder, X is the output of the
generator, ¢ and X are the means and variances of the outputs
produced by the encoder, and a; and @, are tuning parameters.
The first term in the loss function returns the reconstruction loss
from the encoder-generator pair, whereas the second term
returns the Kullback-Leibler (KL) divergence of the latent
vectors from a unit normal distribution. In this work, a; was set
to 150, and a, was set to 2 to emphasize the reconstruction loss.
In a 3D-VAE-GAN, an additional term based on the
discriminator output is added to the generator loss function
defined in Eq. (1) as follows:

o || £ x|, +o,KL[N(1,Z) | N (0,1 )]+ D(%) @)

where D (%) is the discriminator output that judges the fakeness
of the generator output, X.

Note that the discriminator loss function in the original GAN
[33] is defined as a minimax value function V (D, G):

vvvvv

3)

However, the game-theory based loss function in Eq. (3) can
lead to unstable training and mode collapse. We therefore
employed the discriminator loss function used in the Improved
Wasserstein GAN training system (IWGAN) [34], which has
demonstrated superior results for 3D object reconstruction [30]:

E, [D®)]-E,, [D®)]+aE, , [(IV. D), -1)]
“

where F, and P. are the generator and target distributions,
respectively, P, is the distribution sampled uniformly on a
straight line between F; and P, and the last term of the loss
function is the gradient penalty that penalizes the deviation of
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Figure 5. Training losses of (a) VAE, (b) generator minimax component, and
(c) discriminator.

the discriminator’s gradient from unity. The value of a3 in this
work was set to 10.

3.3. Model Training Approach

In this work, we trained a separate 3D-VAE-GAN model for
each CAD dataset containing the shapes manufacturable by a
given machining operation, which resulted in three 3D-VAE-
GAN models, one for each machining operation. In addition to
training 3D-VAE-GANs for the individual machining
operations, a joint 3D-VAE-GAN was trained on a combined
turning, grooving and chamfering dataset consisting of 450
parts for comparison. The models were constructed and trained
using PyTorch [35], which is a deep learning library for Python.
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Figure 6. Shape generation comparison of the (a) turning model, (b) grooving
model, and (c) chamfering model against the joint model.

Model training was performed on a high-performance
computing node at the Georgia Institute of Technology (PACE
Phoenix Cluster with 2 parallel NVIDIA Tesla V100 32GB
GPUs). All three components of the 3D-VAE-GAN, namely the
VAE, generator, and discriminator, were trained
simultaneously on the training dataset for a given machining
operation. For training all 3D-VAE-GANS, the batch size was
set to 30. Adaptive moment estimation (Adam) [36] was used
as the optimizer with initial exponential decay rates of the first
and second moments of gradient, 8; and f3,, set to 0.8 and 0.99,
respectively. The VAE and generator learning rates were set to
4x107, and the discriminator learning rate was set to 2x107,
Note that these hyperparameters were manually tuned based on
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the training losses and visualization results of the 3D-VAE-
GAN:S. It is expected that the hyperparameters will need to be
re-tuned to optimize the performance for different training
datasets. All 3D-VAE-GANs were trained for 2000 epochs.

4. Model Evaluation

As noted above, three models were trained, one for each
machining operation, using their respective training datasets,
and a joint model was trained using the combined dataset for all
three operations. The purpose of training the joint model was to
determine if training jointly is as effective as training separately
on an individual operation dataset for learning the shape
transformation capability of the operations.

The trained models were evaluated by observing the training
losses and the shape transformation (3D object generation)
results. Figure 5 shows the VAE loss given by Eq. (1), the
minimax component of the generator loss D(X), and the
discriminator loss given by Eq. (4). Both the generator minimax
loss and the discriminator loss demonstrated higher volatility as
training progressed, which is expected as both the generator and
the discriminator gradually improve through the adversarial
training process, and the output probability of the discriminator
approaches either 0 or 1. Although theoretical convergence
does not exist in adversarial training, it can be seen from Figure
5 that the mean generator loss decreased, whereas the mean
discriminator loss increased in the long run. The
hyperparameters were purposely tuned to allow the generator to
learn faster and eventually defeat the discriminator. It is also
evident that the VAE losses decreased steadily for the turning,
grooving and chamfering models before converging. However,
the joint training model suffered from an instability in the VAE
loss as the training epochs increased. Upon further
investigation, the instability of the VAE loss for the joint model
was attributed to a significant KL divergence, which indicates
that the structure of the latent probability distribution was not
effectively embedded through learning from the combined
dataset using the same hyperparameters used for the
individually trained models.

In addition to the training losses, training data
reconstructions were visualized as shown in Figure 6 to

evaluate the effectiveness of the learned shape transformation
capability. The inputs to the trained models were randomly
selected from the training dataset. It is evident from the three
sub-figures that the outputs of the separately trained models and
the joint model capture the shapes of the corresponding input
objects, confirming that the generative modeling approach used
in this paper is able to capture the shape transformation
capability as a latent probability distribution. However, the joint
model is unable to generate objects with the same details and
clarity as the individual operation models. This observation
reflects the significantly higher VAE loss of the joint model in
Figure 5, as the difficulty in simultaneously learning the latent
probability distribution of all three operations was higher than
training individual models for each operation.

Based on the training loss and visualization comparisons, it
is evident that models for the individual operations outperform
the joint model in capturing the shape transformation capability
of the machining operations considered. Note that this result
aligns with the reported precision score for a non-
manufacturing dataset (IKEA 2D image to 3D object dataset)
[30, 37], where separately trained models consistently
outperformed jointly trained models. This suggests that instead
of treating a deep generative model such as a 3D-VAE-GAN as
a “black box,” an emphasis must be placed on creating training
datasets with intrinsic characteristics based on machining
domain knowledge to reduce learning difficulty. For example,
a machining dataset can be organized as a hierarchy of starting
geometries, machining processes, and operations, from which
the hierarchical level of training data determines the learning
difficulty.

To illustrate the superior performance of the 3D-VAE-GAN
architecture for modeling the shape transformation capability,
two additional deep generative modeling architectures, namely
VAE-only and GAN-only models, were constructed and trained
using the same hyperparameters listed above. Figure 7 shows
the shape generation results of the three deep generative
architectures for the same inputs. The GAN-only architecture
produced the worst results due to mode-collapse i.e. generating
only a handful of shapes without learning an accurate latent
probability distribution. The VAE-only approach resulted in
shapes like those produced by the 3D-VAE-GAN, which
indicates that a more accurate latent probability distribution is
learned. However, rounded edges are more prevalent due to the
lack of a discriminator. Similar results have been reported in the
computer vision literature [38], where blurry images are
observed. It is evident that the VAE-GAN architecture
combines the benefits of both VAE and GAN architectures to
produce the best overall results.

The foregoing results suggest that, with an optimized
dataset, model architecture and training hyperparameters, the
shape transformation capability of a machining process can be
captured sufficiently well for shape decomposition and
reconstruction.
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5. Shape Decomposition and Reconstruction

In the previous section, we demonstrated the ability to learn
the shape transformation capability of a machining process
using a generative machine learning approach. The next
question is: how can the learned shape transformation
capability be utilized for design manufacturability assessment
and process/operation selection? An example use case is shape
decomposition and reconstruction. Contrary to discriminative
models that yield a probability as output, our shape
transformation capability models are capable of decomposing
and visualizing a part design as machinable features, which
enable the part designer to evaluate manufacturability of the
design using the selected process/operation.

A unique property of VAE-based generative models is their
ability to compensate for missing information in the input,
which has been demonstrated for 3D scan shape completion
[28], and 3D shape generation from 2D images [26].
Considering that machining is a material removal process, our
shape transformation capability models were trained such that
only features that are machinable by the selected operation are
output. When the output sampled from the latent probability
distribution of a 3D-VAE-GAN matches the input shape, it
implies that the input is drawn from the latent probability
distribution and can therefore be produced by the

process/operation. Conversely, if the output sampled from the
latent probability distribution does not match the input, the
implication is that the input shape cannot be produced by the
process/operation. Therefore, by comparing the reconstructed
input shape to the output shape, the manufacturability of the
input shape by the machining operation can be determined. In
Figure 8 and Figure 9, the query 3D objects are input to all
VAE-GAN models, which return outputs sampled from the
generative capability models of the respective machining
operations. The combined outputs are obtained from an
intersection Boolean operation (in the voxel space) of the
generative model outputs. Figure 8 shows an example of a
successful decomposition of an unseen input part shape into
features that can be machined by the different operations. In this
case, the inputs contain both a groove and a chamfer. The shape
transformation capability models did not observe such feature
combinations during training, but the grooving model returned
a shape with a groove, which closely resembles the input, while
the chamfering model only returned a chamfer. By
reconstructing a combined object from the outputs of the
grooving and chamfering models through an intersection
Boolean operation, the result yields a visualization of a part
closely matching the input shape. Figure 9 shows examples of
unsuccessful decompositions and reconstructions. While the
grooving model returned a decomposed groove feature, the
turning model could only return the closest matching turning
feature and not a chamfer. As a result, the reconstructed objects
in Figure 9 do not resemble the inputs. By visually comparing
the reconstructed output with the input, a designer can
determine the manufacturability of the design by the available
process/process combination while a process planner can
identify a viable process/process combination to produce the
shapes contained in the design.

6. Conclusion

In this paper we proposed a deep generative machine
learning approach to learn the shape transformation capability
of representative machining operations. By modeling the shape
transformation capabilities of turning, grooving and chamfering
operations using 3D-VAE-GANs, we demonstrated that (1) the
shape transformation capability of a machining process can be
learned as a latent probability distribution, (2) visualization of
machinable features can be obtained by sampling from the
shape transformation capability model, (3) separately trained
models can capture the shape transformation capability of a
machining operation better than a jointly trained model, which
indicates that domain knowledge should be used to create
datasets that minimize learning difficulty, and (4) the learned
shape transformation capability can be used for shape
decomposition and  reconstruction, through  which
manufacturability of the part design can be visualized and a
suitable machining process/operation can be selected. By
enabling explainable process decisions through visualization,
the generative modeling of machining process capability can
enable design for manufacturing and accelerated process
planning.

There are of course limitations to the models presented
herein, which will be addressed in future work. Specifically, the
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robustness of the models can be improved by considering the
dimensions, positions, and tolerances of a feature. Another
extension is to include other machining processes/operations in
the model. Finally, material and part quality transformation
capabilities need to be integrated with shape transformation for
more accurate representation of the machining process
capability.
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