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Industry 4.0 calls for highly autonomous manufacturing process planning. Significant effort has been devoted
over the years to generative Computer Aided Process Planning (CAPP), which aims to generate process plans for
new designs without human intervention. This goal has not been realized to date due to several reasons, such as
poor scalability and the difficulty in modeling manufacturing process capability, which encapsulates the part
shape, quality, and material property transformation capabilities of the process. In our prior work, the shape

transformation capabilities of lathe-based machining operations were modeled as latent probability distributions
using a data-driven deep learning-based generative machine learning approach, from which visualizations of re-
alistic machinable features could be sampled to assist manual process selection. In this paper, a Siamese Neural
Network (SNN) is integrated with Autoencoder-based deep generative models of machining operations to enable
automated comparison of the query part shapes with sampled outputs. This enables automated manufacturabil-
ity analysis and machining process selection necessary for generative CAPP. The paper also demonstrates that the
proposed Autoencoder and Siamese Neural Network (AE-SNN) achieves a class-average process selection accu-
racy of 89 %, and a manufacturability analysis accuracy of 100 %, which outperforms a discriminative model

trained on the same dataset.

1. Introduction

Process planning is a critical decision-making step in discrete part
manufacturing that results in a detailed plan necessary for producing a
part from a specified design [1]. Industry 4.0 calls for highly automated
process planning to bridge the long-standing gap between Computer-
Aided Design (CAD) and manufacturing [2]. Significant efforts have
been devoted to Computer Aided Process Planning (CAPP) since its in-
ception in the 1960s, but few computerized systems have reached the
level of automation envisioned by researchers [3].

Two predominant approaches to CAPP, variant and generative,
were proposed in the 1980s [4]. Given a new part design, variant CAPP
utilizes Group Technology methods [5] to search for a similar part
shape in its database of previously manufactured parts. The generic
process plan associated with the similar part is then manually edited to
meet the new part design requirements. In contrast, generative CAPP
aims to automatically create process plans for new designs without the
need for human intervention. However, this approach has been hin-
dered by limitations of rule-based expert systems commonly employed
in prior work [6]. Although variant CAPP is still prevalent in practice,
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according to Xu et al. [7], recent advances in modern machine learning
have renewed the interest in solving the challenges of generative CAPP.
Prior works have developed generative CAPP systems for process selec-
tion [8,9], operations sequencing [10,11], and machine setup planning
[12,13]. However, surveys show that most works on CAPP are not eas-
ily scalable to other processes, and no truly generative CAPP system has
been realized to date [3].

A major research area in generative CAPP is focused on feature
recognition (FR) from CAD models. The initial motivation for FR was to
integrate CAPP with CAD for machining [3]. FR techniques such as syn-
tactic pattern recognition [14], graph theory [15], hint-based recogni-
tion [16], expert systems [17], and neural networks [18] have been
proposed and have achieved varying levels of success. However, these
methods have limitations such as failure to recognize interacting fea-
tures, or missing design details. In addition, traditional FR systems, e.g.,
graph-based systems, assume that a recognized feature can always be
manufactured, without explicitly evaluating whether there exists a
manufacturing process capable of producing the query features [19].
While manufacturability of a discrete part depends on many factors
such as shape, workpiece material, geometric dimensioning and toler-

Received 26 September 2022; Received in revised form 15 December 2022; Accepted 9 January 2023

0278-6125/© 20XX

Note: Low-resolution images were used to create this PDF. The original images will be used in the final composition.



https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006
https://www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
mailto:shreyes.melkote@me.gatech.edu
https://doi.org/10.1016/j.jmsy.2023.01.006
https://doi.org/10.1016/j.jmsy.2023.01.006

X. Yan and S. Melkote

Manufacturability
Analysis

Automated
Process Selection

Selected
Manufacturing

Process e.g.
Lathe or Mill

Fig. 1. Envisioned workflow for automated manufacturability analysis and
process selection.

ancing (GD&T), and availability of required manufacturing resources,
the primary attention, especially in the context of FR, has been focused
on shape and geometric attributes of features in determining manufac-
turability of a query part.

Recent developments in 3-dimensional (3D) machine learning have
renewed interest in FR using data-driven methods. Zhang et al. [20]
proposed FeatureNet that utilized a 3D convolutional neural network
(3D-CNN) to automatically identify features present in a voxelized
query part. Ghadai et al. [21] presented an approach to localize and
identify drilled holes and analyze their manufacturability based on
known manufacturability rules. Peddireddy et al. [22] developed a ma-
chining process identification system leveraging transfer learning from
a pre-trained basic feature recognition model. Fu et al. [23] proposed
Improved Dexel Representation (IDR) for CAD models that improved
the classification accuracy of manufacturing processes using CNN.

Generative Model for Machining
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Wang and Rosen [24] developed a manufacturing process classification
method using Heat Kernel Signature and CNN. Ning et al. [25] pro-
posed an improved machining feature recognition approach that com-
bines a graph-based approach and 3D-CNN. It is evident that increasing
emphasis has been placed on bridging the gap between FR and manu-
facturability analysis and process selection, but current state-of-the-art
classification-based methods tend to suffer from the intrinsic limita-
tions of discriminative machine learning techniques, which only per-
form classification in an implicit manner as a “black-box” [3]. Since a
part can often be produced by more than one machining process, the
multi-label classification task requires large numbers of training classes
consisting of both machinable and non-machinable features. Although
efforts to classify the manufacturability of a query part have been re-
ported [22], the need for non-machinable feature data renders this ap-
proach difficult to implement in practice.

An alternative modeling approach is deep generative modeling,
which has been proposed to solve the lack of training data in other dis-
ciplines such as industrial internet of things (IIoT.) Specifically, deep
generative models have demonstrated success in anomaly detection and
trust-boundary protection without a large anomaly dataset [26], which
is analogous to manufacturability analysis in process planning. For in-
stance, Jiang et al. [27] proposed a Generative Adversarial Network
(GAN)-based anomaly detection approach for industrial time-series
data, which aims to detect anomalies without prior knowledge of ab-
normal samples. Belenko et al. [28] presented an anomaly detection ap-
proach that uses GAN for large-scale wireless communication of cyber
physical systems. Hassan et al. [29] proposed an adaptive trust bound-
ary protection layer that utilizes a deep-learning feature-extraction-
based neural network that is resilient to unlabeled modes of cyberat-
tack. Wang et al. [30] developed a Recurrent Neural Network-based En-
coder-Decoder-Attention network for anomaly detection in manufac-
turing time-series data. Yan and Yan [31] presented an Adversarial Au-
toencoder coupled with a Fully Connected Neural Network for manu-
facturing quality fault detection. Benefits of utilizing generative models
have also been demonstrated in design topology optimization, where
the high computational cost of Finite Element Analysis has led to the
use of deep generative models such as Variational Autoencoder (VAE)
and GAN to generate near-optimal topological designs [32]. Banga et
al. [33] employed a 3D Autoencoder (AE) to optimize a structural de-
sign. Greminger [34] presented a 3D-GAN that enforces manufacturing
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Fig. 3. Workflow of AE-SNN with use case examples: (a) the query part shape
and the part shape output by the lathe-based process capability model are simi-
lar (denoted by 1), which implies that the query part is manufacturable by
lathe-based machining operations, and (b) the query part is not similar (de-
noted by 0) to the output of the lathe-based process capability, implying that
the query part cannot be manufactured by lathe-based operations.

constraints on topology optimization by training with known shapes
manufactured by a 3-axis milling machine. Hertlein et al. [35] proposed
a conditional GAN in early stage topology optimization for additive
manufacturing.

In light of the above, in our prior work we employed a generative
model to learn the shape transformation capability of simple lathe-
based machining operations [36]. Deep generative models of machin-
ing operations were used to learn their shape transformation capability
to enable qualitative visualizations that can assist designers in manufac-
turability assessment as well as process planners in process selection. In
this work, we extend our previous generative modeling work beyond
qualitative assessment by proposing a deep metric learning-based quan-
titative method that concurrently enables automated manufacturability
assessment and automated process selection. Here, we limit the scope of
the manufacturability analysis and process selection to only the shape
and geometric attributes of a query part, but the methodology pre-
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sented can be extended to include other factors such as material and
quality attributes. Specifically, we build on our prior work in generative
modeling of the shape transformation capability of machining
processes to answer the following questions: (1) Can the proposed deep
metric learning approach enable automated manufacturability analysis
and process selection? and (2) How well does the quantitative metric
perform in manufacturability assessment and process selection com-
pared to a deep discriminative model? Fig. 1 envisions the workflow of
automated manufacturability analysis and process selection, where the
manufacturability of a query part is first determined before a manufac-
turing process is selected. These questions are answered by developing
and evaluating a combined Autoencoder and Siamese Neural Network
(AE-SNN). The performance of the AE-SNN in manufacturability assess-
ment and process selection is evaluated through a direct comparison
with the performance of a baseline 3D-CNN classification model.

2. Modeling approach

2.1. Generative modeling of the shape transformation capability of
machining processes

In our prior work [36], we trained three 3D-VAE-GAN based genera-
tive models to learn the shape transformation capabilities of representa-
tive lathe-based machining operations, namely turning, grooving, and
chamfering. Using this modeling approach, we demonstrated that the
shape transformation capability of a machining process can be learned
as a latent probability distribution, from which machinable features can
be visualized through sampling. Specifically, while a discriminative
model learns the conditional probability P(y|X) from a training dataset,
where, in the context of machining, X are the data points, such as part
designs, and ¥ are the corresponding labels, such as machining process/
operation labels, a generative model of the shape transformation capa-
bility of the machining process learns the underlying joint probability
P(X,y) from the dataset, or P(X) if labels are not available. As notion-
ally illustrated in Fig. 2, generative modeling learns the underlying
manufacturing process capability, which can be first utilized to analyze
manufacturability of a part by determining if the part requirements
(e.g., shape) can be met by existing process capabilities. Subsequently,
the generative model is used to select a machining process that can pro-
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Fig. 4. AE-SNN architecture and training process. During training, the output of the AE is used in conjunction with the input to the AE as positive pair inputs to the
Siamese Network. The same output of the AE is used in conjunction with another randomly drawn sample from the training dataset, which is not used in the AE, as

negative pair inputs to the Siamese Network.
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Fig. 5. 3D-CNN discriminative model with Sigmoid activation function.

duce the query part. In contrast, discriminative modeling learns the
class boundaries from a training dataset and outputs the class that the
query part belongs to; however, manufacturability analysis using dis-
criminative methods require additional training data representing un-
manufacturable parts (depicted in red in Fig. 2), which are generally
not available in practice.

However, a limitation of our prior 3D-VAE-GAN based generative
approach is that a human must be incorporated into the computational
loop to manually assess manufacturability and perform process selec-
tion through visualization. In contrast, to enable automated manufac-
turability assessment and process selection, a quantitative metric is nec-
essary. A deep generative metric learning approach is presented in this
paper to automatically evaluate the similarity of the part shapes output
by the generative models of machining processes to the query part
shapes.
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2.2. Deep generative metric learning approach

Recall that the part shapes output by a trained generative shape
transformation capability model are sampled from a learned latent
probability embedding of machinable parts. By evaluating the similar-
ity between the input and output shapes, manufacturability of a query
part can be established. Automatic evaluation of 3D shapes generated
by an Autoencoder (AE) in response to an input shape requires the abil-
ity to learn a similarity metric that can distinguish between the output
and input shapes. While numerous voxel-based similarity search meth-
ods using volume, solid angle, eigenvalues, and nearest neighbor clus-
tering have been proposed [37], the desired similarity threshold must
be hard-coded to satisfy a specific application. Alternatively, a data-
driven similarity metric [38] can be trained to judge the similarity be-
tween the input and output of a generative model. In this paper, a
Siamese neural network (SNN) [39] is trained in conjunction with an
AE model to determine the similarity between the input and output of
the AE.

SNNs have been utilized in applications such as one-shot image
recognition, facial recognition, additive manufacturing [40], and learn-
ing from demonstration in robotics [41]. Their twin-network architec-
ture encodes two objects simultaneously and computes their difference
to evaluate similarity. In this work, we employ an AE-SNN framework
to learn the shape transformation capability of typical machining oper-
ations. Specifically, for the purposes of this paper, we consider the
problem of learning the shape transformation capability of lathe-based
machining operations such as turning, grooving, and chamfering and
machining operations carried out on a milling machine (or mill). The
AE-SNN was trained on a dataset consisting of manufacturable parts
only. As shown in Fig. 3, once the AE-SNN model is trained, whether a
query part falls into the general range of process capabilities of the
lathe or the mill is determined by the similarity score between the input
query part and the outputs of the respective process capability models.

2.3. Model architecture

Fig. 4 depicts the model architecture of the AE-SNN and the training
process. Specifically, convolutional neural networks with roles of “en-
coder,” “decoder,” and “Siamese network” were trained. The encoder
takes the voxelized ground truth shapes from the training dataset
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consisting of 3D CAD models of parts manufacturable on a lathe (or
mill) as input to learn the corresponding latent probability distribu-
tion of the shape transformation capability of the process/operation,
while the decoder generates realistic features that can be produced
on a lathe (or a mill), and the SNN judges the “similarity” between
the input and output. Each voxelized input object drawn from the
training dataset has dimensions of 128 x 128 x128. The encoder has
four 3D-convolutional (Conv3d) layers and one linear layer. Batch nor-
malization [42] and the leaky rectified linear unit (LReLU) activation
function [43] are applied after each Conv3d layer. LReLU is a non-
linear activation function given by LReLU (x) = max (x, yx), where 7 in
this work is set to 0.2. The fully connected linear layer following the
four Conv3d layers has dimensions of 128 X 1. In the decoder, a fully
connected layer expands the dimensions to 262, 144 x 1 and is followed
by four 3D-transpose-convolutional (ConvTranspose3d) layers. A Sig-
moid layer, which has the form ¢ (x) = (1 + ¢)~, is applied at the end
to enforce a value between 0 and 1 for each voxel in the 128 x 128 x128
output. The SNN has a network structure like the AE, followed by a co-
sine similarity layer and the Tanh layer, which has the form
of T (x) = (¢ — e™)(¢* + ¢)~ L. The output is then linearly transformed
by S = (T'(x) + 1)/2 to ensure that the output falls between 0 and 1. Both
similar and dissimilar pairs of samples are used to train the SNN. In the
training dataset, a similar pair is composed of the voxelized part shape
input to the AE and the corresponding output generated by the decoder.
A dissimilar pair is composed of the same decoder output as in the simi-
lar pair and a randomly drawn sample from the training dataset, which
must be different from the encoder training input.
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2.4. Objective functions

In a typical encoder and decoder (generator) pair, the loss function
for both networks is defined as follows:

ay|[% = xll ®

where x is the encoder input, % is the generator output, and 1 is a
tuning parameter. This loss function returns the reconstruction loss be-
tween the input and output. In this work, @ is set to 150.

The SNN employs a triplet loss function. A training triplet comprises
an anchor, a positive that is considered “similar” to the anchor (similar
pair), and a negative that is dissimilar to the anchor (dissimilar pair).
The objective function is given by:

@y log (1 -8 (x,.x,)) +1logS (x,.x,) )

where *a>Xp, and¥» are the anchor, positive, and negative in a triplet,
respectively. In this work, ¥, are the generated decoder outputs, ¥ are
the training inputs to the AE, and ¥, are the randomly drawn samples
from the training dataset that are not used as inputs in the training
phase. The value of @2 in this work is set to 2.

2.5. Baseline model for comparative study

A discriminative model was constructed to serve as baseline for
manufacturability analysis and process selection. The model architec-
ture generally follows that described by Peddireddy et al. [22] for ma-
chining process and manufacturability classification, and is shown in
Fig. 5. The Sigmoid activation function was implemented for multi-
label classification. Since we limit the number of candidate machining
processes to two (lathe- and mill-based), the output is then a vector of
size 2 X 1 with each element of the output vector representing either a
lathe-based or a mill-based manufacturing process/operation. The out-
put vector indicates whether the query part can be manufactured by
one process ((1, 0) or (0, 1)), two processes (1, 1), or if the query part is
unmanufacturable (0, 0).

3. Model training and evaluation
3.1. Data curation and processing

Despite recent advances in 3D machine learning, 3D datasets for
manufacturing are scarce. As mentioned earlier, in this work we limit
our focus to machining processes/operations that can be performed on
a lathe or a mill.

To evaluate manufacturability analysis and to subsequently enable
automated process selection, a training dataset consisting of manufac-
turable parts with manufacturing process labels must be created. To
this end, we curated and processed publicly available 3D data from the
FabWave CAD repository [44], which was categorized by researchers at
North Carolina State University based on functional classes (e.g. bear-
ing, bushing, gears, etc.). As shown in Fig. 6(a), six functional classes
are selected as parts that can be produced on a lathe, and three func-
tional classes are selected as parts that can be produced on a milling
machine. In all, 1235 parts machined on a lathe and 112 parts ma-
chined on a mill are collected in two corresponding datasets. While
these parts can potentially be made using other manufacturing
processes, we limit the scope of process selection in this work to opera-
tions that can be performed either on a lathe or a mill. The methodol-
ogy, however, can be generalized to other discrete manufacturing
processes.

Fig. 6(b) shows five types of unmanufacturable parts consisting
of prismatic and axis-symmetric features, which were generated us-
ing the non-machinable feature generation approach described by
Peddireddy et al. [22]. Specifically, 200 part models were generated
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for each type of non-machinable parts. Data generation was auto- 3.2. Model training approach
mated using a Solidworks macro. The CAD models obtained were
subsequently voxelized with a resolution of 128 x 128 x 128 using bin- In this work, 800 lathe-based parts and 80 milled parts were used

vox [45], an open-source voxelizer library.

for training, and 435 lathe-based parts and 32 milled parts were used
for testing. For manufacturability analysis, we trained a joint AE-SNN
model on the manufacturable parts CAD dataset consisting of lathe and
milled parts. For process selection, two additional AE-only models were
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trained, one for each process class, and the SNN from the joint AE-SNN
model was reused to provide a similarity score for the input-output
pairs for the two AE-only models. The models were constructed and
trained using PyTorch [46], which is a deep learning library for Python.
Model training was performed on a high-performance computing node
at the Georgia Institute of Technology (PACE Phoenix Cluster with 2
parallel NVIDIA Tesla V100 16 GB GPUs). Due to data imbalance be-
tween the two process classes, the models were trained for a fixed num-
ber of batches, instead of epochs. The batch size in this work is one, and
each model was trained for 16,000 batches. For AE-SNN, the encoder
and decoder were trained simultaneously during the first 8000 training
batches while keeping the Siamese network constant. All three con-
stituents of the AE-SNN were trained simultaneously for the remaining
8000 batches. For AE-only models, the encoder and decoder were
trained simultaneously for 16,000 batches. Adaptive moment estima-
tion (Adam) [47] was used as the optimizer with initial exponential de-
cay rates of the first and second moments of gradient, #; and >, set to
0.8 and 0.99, respectively. The encoder and decoder learning rates
were set to 4 X 107, and the Siamese network learning rate was set to
2 x 1076,

For comparison with a discriminative model, the Sigmoid classifier
was trained on a combined lathe and milled parts dataset consisting of
880 parts. The learning rate of the discriminative model was set to
4 x 1076, while the other hyperparameters were kept the same as in
the AE-SNN case.
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3.3. Model training evaluation

The trained AE-SNN and AE-only models were evaluated by observ-
ing the training losses and the shape transformation (i.e., object genera-
tion) results. Fig. 7 shows the AE reconstruction loss given by Eq. (1),
and the SNN triplet loss given by Eq. (2), of the joint AE-SNN model
that was trained on both lathe and milled parts. In addition, the recon-
struction losses of the mill and lathe AE-only models are shown in Fig. 7
(a). As training progresses, the reconstruction losses of all three models
decrease and converge to a level close to zero after 6000 training
batches. However, high volatility in the training losses can be observed,
with higher volatility observed in the lathe AE-only and the joint AE-
SNN models. This volatility is attributed to the small batch size, which
in the present case is one. A higher batch size will lead to lower volatil-
ity in training losses but will also require a longer training time to con-
verge to the desired loss level. Nevertheless, all three models reached
low loss levels after 16,000 training batches, which suggests that the
batch size of one is sufficient for training the AE-SNN and AE-only mod-
els over the given dataset. As discussed in the model training approach
section, training of the SNN started after 8000 training batches after
which the triplet loss quickly converged to a low level for the remaining
training batches, indicating that the SNN model was able to distinguish
between positive and negative pairs of training samples. In addition to
the training loss, training data reconstructions were visualized, as
shown in Fig. 8, to evaluate the learned shape transformation capabil-
ity. The outputs of the SNN are shown as similarity scores next to the
corresponding input-output pairs. A similarity score ranges between 0
and 1, with 0 indicating a dissimilar input-output pair, and 1 indicating
a similar input-output pair. The high similarity scores further demon-
strate that the Autoencoders have learned the shape transformation ca-
pability of the corresponding machining process.

Similarly, the baseline discriminative Sigmoid classifier model was
trained and the corresponding training loss and validation accuracy
evaluated as shown in Fig. 9(a) and in Fig. 9(b). It is evident that the
differences in the training and validation accuracies are small, which
indicates that overfitting is insignificant. Note that the accuracy shown
is calculated with a class probability threshold of 0.5 to illustrate the
training and validation processes. A more detailed receiver operating
characteristic plot (ROC) and area under the curve (AUC) are shown in
the manufacturability analysis section.

4. Comparative analysis

Comparative analysis comprises manufacturability analysis and au-
tomated process selection. An AE-SNN and a baseline sigmoid classifier
are trained as described in Section 3.3 and compared. For manufactura-
bility analysis validation, both machinable testing dataset and non-
machinable dataset were used. For process selection, only the machin-
able testing dataset was divided into process-specific datasets and used
for validation.

4.1. Manufacturability analysis

Manufacturability analysis is the first task that is possible with the
AE-SNN model. Prior literature has demonstrated high accuracy of the
baseline Sigmoid Classifier to determine manufacturability of a query
part when an extensive unmanufacturable parts dataset is used in train-
ing [22]. In an example case where the part cannot be made by either a
mill or a lathe, the model returned a tuple of (0, 0). The goal of manu-
facturability analysis presented in this work, however, requires deep
learning models to determine the manufacturability of query parts
without training on unmanufacturable parts data. This task is relevant
in an industry setting where unmanufacturable parts data are not read-
ily available. Therefore, in this work, the AE-SNN and the baseline Sig-
moid Classifier were not trained on unmanufacturable parts dataset. Us-
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Fig. 10. Manufacturability accuracy comparison of the AE-SNN and Sigmoid Classifier models, (a) confusion matrix for the AE-SNN model, (b) AE-SNN ROC plot,
(c) confusion matrix for the Sigmoid Classifier, and (d) Sigmoid Classifier ROC plot.
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Fig. 11. Example of automated process selection using the AE and SNN models.

ing the workflow introduced in Fig. 2, the query part was input to the
AE-SNN to generate the closest matching manufacturable part, and a
corresponding similarity score was output to determine manufactura-
bility of the query part. When the query part failed to achieve a certain
level of similarity to the output, it was deemed unmanufacturable. In
the validation experiment, the AE-SNN was tested using both manufac-
turable and unmanufacturable parts. The model should accurately clas-
sify the manufacturable parts testing data shown in Fig. 6(a) as manu-
facturable, and the unmanufacturable parts testing data shown in Fig. 6
(b) as unmanufacturable. The ROC curve and the confusion matrix for
manufacturability analysis using the AE-SNN and Sigmoid classifier
models are shown in Fig. 10. The AE-SNN model trained in this work
was able to accurately determine manufacturability of the query part
drawn from the testing datasets with an accuracy of 100 % and an AUC
of 1. On the other hand, the baseline Sigmoid Classifier model under-

performed due to lack of knowledge of unmanufacturable parts data
and resulted in an AUC of only 0.25. Furthermore, the Sigmoid classi-
fier requires a 100 % false positive rate to achieve 100 % true positive,
indicating that it is unable to analyze the manufacturability of a query
part.

It is clear from these results that the baseline discriminative model is
not suitable for identifying unmanufacturable parts, since the model is
not trained on unmanufacturable parts. This limitation is not applicable
to the AE-SNN modeling approach presented in this work. The results
indicate a clear advantage of the AE-SNN model over the discriminative
model in conducting automated manufacturability analysis in the ab-
sence of unmanufacturable parts training data — a situation that is quite
common in practice.

4.2. Automated process selection

The second validation experiment aims to evaluate automated
process selection capability of the proposed models. In our prior work
[36], we have demonstrated that generative 3D-VAE-GAN based mod-
els of the shape transformation capability of machining processes can
enable a process planner to select a suitable process capable of generat-
ing the query part shape. This was enabled through manual (i.e., visual)
evaluation of the similarity between the input part shape and the out-
put shape obtained from the generative model.

In the current paper, the similarity score produced by the AE-SNN
model is used as the metric for automated process selection. As shown in
Fig. 11, when a query part is presented, the AE-only models output the
closest matching parts from their respective latent probability distribu-
tions, and the SNN component of the joint AE-SNN model outputs simi-
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Fig. 12. Example validation outputs from the AE-SNN model for selecting be-
tween lathe and milled parts.

larity scores corresponding to known manufacturing processes and au-
tomatically selects the process with the highest similarity score. The au-
tomated process selection was iterated over the testing dataset, which
consisted of 435 lathe-based parts and 32 milled parts. Fig. 12 shows
examples of the outputs and the similarity scores obtained from the AE-
SNN model. The confusion matrices for the AE-SNN model and the
baseline Sigmoid classifier are shown in Fig. 13. The proposed AE-SNN
model for automated process selection achieved 87 % accuracy for
lathe-based parts, and 91 % accuracy for milled parts, with a class-
average accuracy of 89 %, which is comparable to the 94 % class-
average accuracy of the baseline Sigmoid classifier model. However, it
is important to note that the classification result obtained from the
baseline Sigmoid classifier model disregards manufacturability of the
query part, which is a clear disadvantage of the discriminative model in
an actual manufacturing setting. The proposed generative model, how-
ever, ensures that the query part is first manufacturable before auto-
matically selecting a manufacturing process/operation capable of pro-
ducing the query part.

It is noted that purely associating the shape transformation capabil-
ity of a manufacturing process with the shape information of a query
part is not generally sufficient to determine whether an existing manu-
facturing resource is available to achieve the desired specification and
produce the query part. However, as key elements in manufacturing
specification are numerical in nature, factors such as dimensional toler-
ance can be adopted as constraints after a process is selected based on
the shape transformation capabilities of machining processes. For ex-
ample, if the available milling machine and cutting tool combination is
unable to produce parts with tolerance below the maximum value spec-

Journal of Manufacturing Systems xxx (xxxx) 1-11

()

0.8
o
£ 0.13
—
‘E 0.6
=
=
=
)
&) -0.4
%_"
-0.2
Lathe Mill
Prediction
b
( ) 1.0
o 0.8
E‘ 0
E 0.6
[—
E |
é’ -0.4
= 0.12 s
-0.0

Lathe Mill

Prediction

Fig. 13. Confusion matrix for automated process selection for lathe and mill
parts (a) AE-SNN, and (b) Sigmoid classifier.
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Fig. 14. Envisioned workflow for machine tool, cutting tool, and process para-
meter selections using query part specification after process selection using
methods proposed in this work.

ified a miter gear’s shaft deviation tolerance, then the existing milling
machine and cutting tool should not be selected to produce the miter
gear; conversely, if some milling machine and cutting tool combina-
tions can achieve the desired tolerance, such combinations should be
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selected. An envisioned workflow for micro-process planning as possi-
ble extension to the work presented in this paper is shown in Fig. 14.

5. Conclusion

In this paper we proposed an AE-SNN deep generative metric learn-
ing approach to quantify the shape transformation capabilities of repre-
sentative machining processes/operations. By modeling the shape
transformation capabilities of lathe-based and milled parts using AE-
SNN models, we demonstrated that (1) the proposed deep metric learn-
ing approach enables both automated manufacturability analysis and
automated process selection, (2) the AE-SNN model outperforms the
baseline discriminative model in manufacturability analysis with an ac-
curacy of 100 % and a AUC of 1, and (3) the AE-SNN model enables au-
tomated process selection with class-average accuracy of 89 %, which is
comparable to the baseline discriminative (Sigmoid classifier) model.

There are of course limitations of the models presented here, which
will be addressed in future work. One challenge with machine learning-
based models in general is the limitation induced by the finite number
of training data, which makes it difficult to identify the correct process
capability boundary. We acknowledge that the performance of the
method proposed here is largely dependent on the quality of the train-
ing dataset. With increasing number and diversity of training data,
however, the process capability boundary should approach the ground
truth. Generalization of the proposed method to out-of-distribution
datasets is also not trivial. Since industrial parts typically include many
geometric features, a complex part must first be segmented to enable
the implementation of the process capability models. Our ongoing ef-
forts are focused on developing and demonstrating this capability. Note
that while the proposed AE-SNN model is a multi-tasking deep learning
model, a longer training time is required compared to the baseline dis-
criminative model. Optimization of the training process and the model
architecture can potentially reduce the training time and improve us-
ability of the trained models in an industrial setting. In addition, the
proposed approach should also incorporate material and part quality
data, among other data relevant to decision-making, which are critical
for manufacturability analysis and process selection. This is also an area
of on-going research, which we will report in future work.
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