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(3) are obtained by substituting z𝑘 in the original Ising Hamiltonian

𝐻𝑍 with +1 and −1, respectively. Table 2 summarizes the notations

used in defining the original Hamiltonian and sub-Hamiltonians.
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As shown in Equations (2) and (3), each sub-problem corresponds

to exactly one half of the state-space of 𝐻𝑍Ðone sub-problem for

substituting z𝑘 with +1 and another sub-problem for substituting z𝑘
with -1. Repeating the substituting process for remaining qubits on

the resulting sub-problems will partition the state-space of 𝐻𝑍 into

much smaller sub-spaces. More specifically, freezing𝑚 qubits will

partition the state-space of 𝐻𝑍 into 2𝑚 sub-spaces, and any of the

resulting sub-problems will have 𝑁 −𝑚 variables and accordingly

their associated sub-circuit will have 𝑁 −𝑚 qubits.

From a graph representation viewpoint, substituting z𝑘 drops all

edges that are connected to z𝑘 . Figure 5(a) illustrates the process

of freezing qubits using the graph representation of an example

problem with four qubits. Substituting z3 with +1 and -1 results in

two sub-problems with three qubits. Figure 5(b) shows the state

space of sub-problems when we substitute z3 with -1 and +1. The

union of all sub-spaces is identical to the state-space of the original

problem of interest.

Table 2: Notations of Ising Hamiltonians for a Given Problem

and Sub-Problems After Freezing

Notation Definition

𝐻𝑍
∑𝑁 −1

𝑖=0 h𝑖z𝑖 +
∑𝑁 −1

𝑖=0

∑𝑁 −1
𝑗=𝑖+1 𝐽𝑖 𝑗 z𝑖z𝑗 + offset,

shows the Ising Hamiltonian of the original problem

z𝑖 Result of measuring qubit 𝑖 in z-basis; z𝑖 ∈ {−1, +1}

𝐽𝑖 𝑗 Coefficient of quadratic term z𝑖z𝑗 in 𝐻𝑧 . In graph

representation, it indicates the weight of the edge

between node 𝑖 and node 𝑗 .

h𝑖 Coefficient of linear term z𝑖 in 𝐻𝑧 . In graph

representation, it indicates the weight of the node 𝑖 .

In Max-Cut problem, the weight of all nodes are zero,

h𝑖 = 0, ∀𝑖 .

𝐻
z𝑘=+1

𝑍
Ising Hamiltonian of a sub-problem for measurement

result +1 after freezing qubit 𝑘

𝐻
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𝑍
Ising Hamiltonian of a sub-problem for measurement

result −1 after freezing qubit 𝑘

h
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Linear coefficient in 𝐻

z𝑘=+1

𝑍
, after freezing qubit 𝑘 ,

for node 𝑖 which is equal to h𝑖 + 𝐽𝑘,𝑖 + 𝐽𝑖,𝑘 .

h
z𝑘=−1

𝑖
Linear coefficient in 𝐻

z𝑘=−1

𝑍
, after freezing qubit 𝑘 ,

for node 𝑖 which is equal to h𝑖 − 𝐽𝑘,𝑖 − 𝐽𝑖,𝑘 .

offsetz𝑘=+1 Offset of 𝐻
z𝑘=+1

𝑍
, after freezing qubit 𝑘 , which is

equal to offset + h𝑘

offsetz𝑘=−1 Offset of 𝐻
z𝑘=−1

𝑍
, after freezing qubit 𝑘 , which is

equal to offset − h𝑘
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Figure 5: Example of freezing a qubit for an Ising Hamilton-

ian with four qubits. Substituting z3 with +1 and -1 results in

two sub-problems with three spin variables in each.

For each sub-Hamiltonian, we need to run the classical optimiza-

tion step on each associated QAOA circuit. All the sub-Hamiltonians

of the original problem have the same quadratic forms. However,

they vary in terms of offsets and linear coefficients. Therefore, the

general structure of the QAOA circuit for all sub-Hamiltonians

is similar and they only differ in terms of angles of the rotation

gates. These angles are trainable parameters learned during the

optimization of QAOA.

Note that unlike the given problem where all linear coefficients

were zero, the resulting sub-problems have non-zero linear coeffi-

cients (i.e., h𝑘 ≠ 0). As shown in Figure 2, every linear term of 𝐻𝑍

(with a linear coefficient of h𝑘 ) corresponds to an 𝑅𝑧 gate in each

layer of the QAOA circuit. However, 𝑅𝑧 gates are software gates

and do not impact the fidelity.

3.4 Optimizing Number of Qubits to Freeze: A
Fidelity-Cost Trade-Off

The performance of FrozenQubits depends on the number of qubits

frozen. However, there exists a trade-off between the fidelity im-

provement and the quantum cost of freezing qubits. While freezing

an increased number of qubits allow us to drop a larger number

of CNOT operations and design smaller sub-circuits that execute

with greater fidelity, the quantum cost of executing the sub-circuits

grow exponentially. More specifically, the quantum cost of freezing

𝑚 qubits is 𝑂 (2𝑚).

Finding the optimum number of qubits to freeze is non-trivial.

To overcome this challenge, FrozenQubits leverages the insight that
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for most real-world applications that follow Power-law distribu-

tion, the number of dropped edges per qubit decreases quickly for

the hotspots (due to higher connectivity) but the pace of CNOT

reduction decreases for additional nodes beyond the hotspots. Thus,

freezing only a limited number of nodes is sufficient. We confirm

our insights using experiments on real systems and observe that

freezing additional nodes beyond a certain point has diminishing re-

turns (we defer the discussion to Section 5.1.3). Thus, FrozenQubits

can leverage circuit properties such as CNOT counts and depth to

determine the number of qubits to freeze for a given application. As

FrozenQubits is a scalable framework, we leave it up to the user to

select the number of qubits to freeze. Our default design considers

dropping up to two qubits.

3.5 Which Qubits to Freeze?

For a given QAOA problem, FrozenQubits can choose 𝑚 qubits

to freeze from 𝑁𝐶𝑚 possibilities. However, instead of randomly

selecting qubits from all possibilities, FrozenQubits selects the𝑚

qubits corresponding to the hotspots in the problem graph. The in-

sight is that freezing hotspots in real-world problem graphs allows

FrozenQubits to drop the maximum number of CNOT operations

in the QAOA circuit. Moreover, hotspots also contribute to a signifi-

cantly larger number of SWAP operations compared to other nodes.

Therefore, freezing hotspots allow FrozenQubits to also reduce the

SWAP overheads to a much larger extent compared to other nodes.

3.6 Decoding Outcomes

After finding the optimum value of each sub-problem, we need to

find the final solution of the original problem of interest. Frozen-

Qubits partitions the state-space of the input problem into smaller

sub-spaces and explores them independently via running multiple

smaller QAOA programs. Every sub-problem corresponds to one

of the sub-spaces while each includes 𝑁 − 𝑚 qubits. Therefore,

we can find the solutions with the best objective value, the lowest

cost value, by just calculating the minimum of the solutions of the

sub-problems. FrozenQubits, in contrast to previous works, has

no postprocessing and no cost for finding the final solution after

solving the sub-problems, except finding the minimum over the

solutions of the sub-problems.

3.7 Tackling the Overheads of FrozenQubits

When we freeze𝑚 qubits, we will have 2𝑚 smaller quantum cir-

cuits to train. This growth in the number of circuits increases the

overheads because 1) we need to compile these circuits for exe-

cution on a quantum computer and 2) we need to run all circuits

independently and infer their outputs to find the solution for the

primary problem of interest. Here, we discuss how we tackle these

overheads using the characteristics of sub-problem Hamiltonians.

3.7.1 Reducing the Compilation Overhead. Freezing𝑚 qubits re-

sults in 2𝑚 separate QAOA sub-problems. To find the solution

of each sub-problems, we run optimization steps on their associ-

ated QAOA circuits. However, these circuits only vary in terms of

angles of rotation gates. This is because all the Hamiltonians of

sub-problems have the same terms, and they only differ in terms

of different coefficients and offset values. Therefore, we only com-

pile one template circuit, and edit the resulting compiled circuit

for generating executable circuits for all sub-problems. Editing the

compiled circuit means embedding h𝑖 and 𝐽𝑖 𝑗 into the angles of the

corresponding 𝑅𝑧 rotations. This approach significantly reduces

the compilation overhead of FrozenQubits.

3.7.2 Pruning Sub-Problems. When we freeze a qubit and create

two sub-problems by substituting the frozen qubit z value in the

Hamiltonian with −1 and +1, the state-space of these two sub-

problems can be symmetric. For example in Figure 5(b) and Fig-

ure 5(c), values of 𝐶 (𝑧) is symmetric with respect to z. This means

flipping all z values of any row from Figure 5(b)Ði.e., +1 → −1 and

−1 → +1Ðcorresponds to a row in Figure 5(c), and vice versa. Here

we demonstrate that this symmetricity appears in all Hamiltonians

with all zero linear coefficients.

When all linear coefficients of an Ising Hamiltonian, shown in

Eq. (1), is set to zero (h𝑖 = 0 for 𝑖 = 0, 1, . . . , 𝑛 − 1) we have

𝐶 (z) =

𝑛−1
∑︁

𝑖=0

𝑛−1
∑︁

𝑗=𝑖+1

𝐽𝑖 𝑗 z𝑖z𝑗 .

Note that we have omitted the łoffsetł term since (as a constant) it

does not have any impact on the shape or structure of the problem

landscape. Since z𝑖 ∈ {−1, +1}, 𝐶 (z) can be re-written as

𝐶 (z) =

𝑛−1
∑︁

𝑖=0

𝑛−1
∑︁

𝑗=𝑖+1

±𝐽𝑖 𝑗

where the sign of 𝐽𝑖 𝑗 only depends on values of z𝑖 and z𝑗 . In other

words, when both z𝑖 and z𝑗 have the same value, their product

will be +1. Otherwise, their product will be -1. While flipping all

variables will change values of z𝑖 and z𝑗 individually, their product

value will remain unchanged. Thus,

𝐶 (z) = 𝐶 (−z).

If z∗ is a global minimum of an Ising model with zero linear coeffi-

cients, −z∗ is also a global minimum of the same Ising Hamiltonian.

Moreover, we can conclude that the number of global minimums

in an Ising model with zero linear coefficients is even.

FrozenQubits leverages this symmetricity to mitigate the quan-

tum cost. When a qubit is frozen and all linear coefficients of the

parent problem are zero, FrozenQubits executes QAOA steps on

just one of the sub-problems. After training circuit parameters for

this sub-problem, one flips the z values of the solution to construct

the output distribution of the other sub-problem. This pruning

significantly mitigates the quantum cost of FrozenQubits.

3.8 Scalability of FrozenQubits

Let𝑚 be the number of qubits to freeze, 𝑁 be the number of qubits,

𝑠 be the number of distinct outcomes in an output distribution, and

|𝐽 | be the number of quadratic terms in 𝐻𝑧 .

Quantum complexity The quantum resource utilization in Frozen-

Qubits scales exponentially with the number of skipping qubits,

O (2m). However, we can eliminate a significant number of sub-

problems and substantially subside the quantumoverhead of Frozen-

Qubits, without compromising the performance of the primary

QAOA application (we discussed it in Section 3.7.2). Note that𝑚

does not scale with 𝑁 and for power-law graphs𝑚 ≪ 𝑁 .
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Circuit compilation complexity:Assuming that all sub-problems

are run on the same quantum computer, FrozenQubits only compiles

one template circuit; accordingly, the compilation complexity of

FrozenQubits is O (1). This takes significantly less time compared

to compiling the QAOA circuit for the baseline.

Time complexity: The complexity of required tasks to be per-

formed on a classical computer depends on the complexity of differ-

ent components. The complexity for identifying the top𝑚 hotspot

nodes is 𝑂 (𝑁 +𝑚 log𝑚) , assuming that the adjacency list of the

graph representing𝐻𝑍 is available. The complexity order of forming

the adjacency list in the worst case (i.e., fully connected graphs) is

𝑂 (𝑁 2). A node is connected to at most 𝑁 −1 other nodes; therefore,

freezing𝑚 nodes scales with 𝑂 (𝑚𝑁 ), and forming sub-problems

scales with𝑂 (𝑚𝑠2𝑚) . Decoding every outcome (whith 𝑁 −𝑚 bits)

to the state-space of the original problem Hamiltonian is 𝑂 (𝑚) .

Hence, inferring the final solution is 𝑂 (𝑠2𝑚 (𝑚 + 𝑁 + |𝐽 |)) . For

problems at a practical scale,𝑚 ≪ 𝑁 ≪ 𝑠 . Therefore, classical time

complexity scales with the order of O
(

sN
2
)

, excluding the circuit

compilation time that is reduced significantly with increasing𝑚.

Memory complexity:To identify and freeze hotspot qubits, Frozen-

Qubits use the adjacency list representation of the input prob-

lem graph which has the space complexity of 𝑂
(

𝑁 2
)

. Since sub-

problems are independent, decoding the output distribution has the

space complexity of 𝑂 (𝑠𝑁 ) . For QAOA applications at a practical

scale, we expect that 𝑁 ≪ 𝑠; thus, the overall space complexity of

FrozenQubits is O (sN).

3.9 Comparison with Prior Works That Use
Sub-Circuits

CutQC is a prior studies that divides a quantum circuit into smaller

sub-circuits [29, 91, 107].While CutQC is applicable to any quantum

circuit, it works best when there are limited connections between

qubits in the input quantum circuit. However, this is not true for

QAOA and other variational quantum algorithms. Moreover, CutQC

is bottle-necked by exponentially complex post-processing that

scales with the number of qubits. On the other hand, FrozenQubits

freezes only some of the hotspots (up to two in our default design)

to create a limited number of circuits and does not incur such

post-processing costs. Table 3 compares FrozenQubits with CutQC.

Table 3: Comparison of FrozenQubits and CutQC.

Design Application
Overheads

Compile Quantum Post-process

CutQC Generic Linear Linear
Exponential

(in qubits)

FrozenQubits QAOA 𝑂 (1)
Exponential∗ Polynomial

(in𝑚)

∗Our default FrozenQubits design only freezes up-to 𝑚 = 2 qubits. For real-world
applications, freezing a few hotspots is sufficient for FrozenQubits to be effective. Please
see Section 5.1.3 for an analysis on this.

4 METHODOLOGY

4.1 Benchmarks

We study FrozenQubits on three types of graphs: (1) Power-law,

(2) 3-regular, and (3) fully-connected or SK-model graphs. While

most real-world problems follow Power-law distribution, existing

quantum computers cannot run problems at such scale as they in-

volve hundreds of qubits. So instead, we generate smaller Power-law

graphs that mimic the characteristics of real-world problems but

can be run on real systems available today. To generate Power-law

graphs, we use the widely accepted BarabasiÐAlbert (BA) algo-

rithm [9, 20, 21, 56, 66, 75, 112, 115, 116]. BA graphs are associated

with a preferential attachment factor 𝑑BA that controls the the den-

sity of the graphs. We generate Power-law graphs using the BA

algorithm for 𝑑BA = 1 as prior studies show that 𝑑BA = 1 can

capture the dynamics of most real-world systems [34]. To study

FrozenQubits on denser graphs, we use BA graphs corresponding

to 𝑑BA = 2 and 3. For all the graphs, the edge weights are ran-

domly drawn from {−1, +1}, and all node coefficients (h𝑖 ) are set to

zero [39, 59]. Figure 6 shows five samples of the benchmark graphs

used in this study.

(d) (e)(a) (b) (c)

Figure 6: Random graphs: (a) 3-regular, (b) SK model, (c) BA

(𝑑BA = 1), (d) BA (𝑑BA = 2), and (e) BA (𝑑BA = 3).

4.2 Baseline and Experimental Platform

Baseline: We run the QAOA circuits with the optimal circuit pa-

rameters (determined from simulations) on the NISQ hardware for

100K trials. This approach is consistent with prior works on com-

pilers for QAOA [8]. Note that prior works show that additional

trials do not improve application fidelity once the distribution sat-

urates after a certain point [43]. To compile each circuit, we use

IBM’s Qiskit tool-chain with noise-adaptive routing and the highest

optimization level 3.

Quantum hardware.: We use eight IBMQ systems with 27Ð127

qubits: Washington, Brooklyn, Montreal, Auckland, Toronto, Mum-

bai, Hanoi, and Cairo.

4.3 Figure of Merit

We evaluate the application fidelity of QAOA circuits using Approx-

imation Ratio Gap (ARG) from prior works [8, 41, 60], as defined in

Equation (4).

ARG = 100 ×

�

�

�

�

𝐸𝑉𝑖𝑑𝑒𝑎𝑙 − 𝐸𝑉𝑟𝑒𝑎𝑙

𝐸𝑉𝑖𝑑𝑒𝑎𝑙

�

�

�

�

(4)

where 𝐸𝑉𝑖𝑑𝑒𝑎𝑙 and 𝐸𝑉𝑟𝑒𝑎𝑙 denote the expected values of the QAOA

circuit on an ideal simulator and the real quantum machine, re-

spectfully. ARG ∈ [0, +∞]), and lower is better.
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