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a b s t r a c t

Developing effective individualized treatment rules (ITRs) for diseases is an important
goal of clinical research. Much effort has been devoted to estimating individualized
treatment effects in the recent literature. However, there have not been systematic
studies on the robust inference for individualized treatment effects when there exist
potential outliers. We propose a monotone ITR in the framework of a semiparametric
generalized regression with two treatments and estimate the treatment effects via a
smoothed maximum rank correlation procedure. We provide sufficient conditions under
which the proposed estimator has an asymptotically normal distribution whose variance
can be consistently estimated based on a resampling procedure. We evaluate the finite-
sample properties of our proposed approach via simulation studies. We also illustrate
the proposed method by applying it to a data set from an AIDS clinical trials study.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In clinical studies, treatment effect heterogeneity is often observed. For example, a treatment may be beneficial for
all the patients but with different levels of magnitudes, or may only be effective for a subset of patients with certain
characteristics. Often, the traditional ‘‘one size fits all’’ approach is not effective, due to significant heterogeneity in
response to treatments. Thus, treatments should be tailored to patients according to their own prognostic data. This
research area has received much attention in the literature. For instance, Qian and Murphy (2011) proposed a two-step
procedure that first estimates a conditional mean for the response and then estimates the rule maximizing this conditional
mean. Zhang et al. (2012) proposed inverse propensity score weighted (IPSW) and augmented IPSW (AIPSW) estimators
for optimal treatment regimes in a missing data framework. Based on support vector machine techniques, Zhao et al.
(2012) considered an outcome-weighted learning approach and Zhou et al. (2017) proposed a residual-weighted learning
method, respectively. McKeague and Qian (2014) developed a way of estimating optimal treatment policies based on
functional predictors. Zhao et al. (2015a) and Shi et al. (2017) considered dynamic treatment regimes with sequences of
decision rules. Laber and Zhao (2015) and Cui et al. (2017) presented tree-based methods for individualized treatment
regimes. Zhao et al. (2015b) and Jiang et al. (2017) developed novel methods for estimating an optimal individualized
treatment rule for censored data. Song et al. (2017) proposed a semiparametric additive single-index model for estimating
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individualized treatment effects. Fan et al. (2017) proposed a concordance-assisted learning method to estimate optimal
individualized treatment regimes, among others.

In this article, we propose a rank-based monotone individualized treatment rule in the framework of a generalized
regression model. One main feature of the proposed method is that the optimal treatment regime is derived by a rank-
based procedure, which is robust to potential outliers. Second, we use a generalized regression to model the relationships
between the response and treatment assignments as well as other covariates, which can explicitly describe the effects of
covariates and treatment on response. Third, we establish the n1/2-consistency and asymptotic normality of the proposed
estimator. A resampling method is developed to estimate the asymptotic variance of the proposed estimator, which can
be used to make statistical inference about the optimal treatment rules.

The remainder of the article is organized as follows. In Section 2, we describe some basic notation and concepts,
and propose a monotone individualized treatment rule. In Section 3, we propose a smoothed maximum rank correlation
estimation procedure. In Section 4, the asymptotic properties of the proposed estimator are established. In Section 5,
simulation studies are conducted to evaluate the finite sample performance of our method. In Section 6, an application
to an AIDS clinical trials study is presented. Section 7 contains some concluding remarks. The proofs are relegated to
the Appendix.

2. Monotone individualized treatment rule

Suppose the data of interest are collected from a randomized trial with two-arm treatments denoted by 1 and −1.
Denote the treatment assignment by A ∈ A = {1,−1}. Let X = (X1, . . . , Xp)′ ∈ X be a p-dimensional vector of prognostic
variables or covariates, and let Y be the observed clinical outcome or response. Without loss of generality, we assume that
a larger value of response is preferable. The sample includes independently and identically distributed (i.i.d.) observations
{(Xi, Ai, Yi), i = 1, . . . , n}. The ITR, D(x), is a function from the sample space X to A, which is tailored to each patient
according to his or her prognostic data. An optimal ITR D∗(x) is a rule that maximizes the expected response Y . In other
words, D∗(x) = argmaxD{E(Y |X = x, A = D(x))}.

The outcome variable Y can be affected by the covariate effects and the interaction (treatment benefit) between A and
X. Ideally, larger treatment benefit leads to larger response. To evaluate the treatment effect, we adopt a generalized
regression model (Han, 1987; Sherman, 1993), which relates the response to covariates and interaction effects,

Y = g{h(X ′γ + AX̃ ′β, ϵ)}, (2.1)

where g : R ↦→ R is an unspecified increasing function of its argument, h : R2
↦→ R is an unspecified and strictly increasing

function of each of its arguments; X̃ = (1,X ′)′ ∈ Rp+1, γ = (γ1, . . . , γp)′ is a vector of coefficients for the covariates and
β = (β0, β1, . . . , βp)′ is a vector of parameters for interaction effects; ϵ is a random error term. Note that model (2.1)
includes many interesting regression models as special cases (Han, 1987). For example, if we take h(u, v) = u+ v, model
(2.1) reduces to a standard linear regression model when g(w) = w; a binary choice model when g(w) = I(w ≥ 0); a
censored regression model when g(w) = wI(w ≥ 0).

For given γ and β in model (2.1), it is clear that A = sign(X̃ ′β) leads to a larger response because of the monotonicity
assumption on g and h, where sign(x) = 1 for x ≥ 0, and sign(x) = −1, otherwise. The primary interest is to estimate the
interaction effect β in (2.1), from which the optimal treatment regime is given by D∗(x) = sign(x̃′β). This is also known
as the decision function (Zhao et al., 2012). The generalized regression framework in model (2.1) has some advantages in
developing individualized treatment strategy. First, it provides a more flexible semiparametric modeling of the interaction
between treatment and covariates, while traditional parametric models potentially suffer from model misspecification.
Second, we can easily derive the best treatment strategy with a simple linear decision function, which is interpretable.
Third, the proposed rank-based estimator is robust to potential outliers. Moreover, the asymptotic distribution of the
proposed estimator is available, which can be used to develop valid inference procedures.

3. Estimation procedure

In this section, we present a rank-based approach to estimate the parameters of interest in model (2.1). Given that the
response is a stochastically monotone function of the covariate effect and treatment benefit, then the rankings of Yi, and
rankings of X′

iγ+AiX̃′

iβ are expected to be positively correlated. This motivates us to apply the maximum rank correlation
(MRC) estimation method (Han, 1987) to the present problem. The MRC objective function is

Gn(θ) =
1

n(n− 1)

∑
i̸=j

I(Yi > Yj)I(X ′

i γ + AiX̃ ′

i β > X ′

j γ + AjX̃ ′

j β), (3.1)

where θ = (γ ′,β′)′ ∈ R2p+1, and I(·) is the indicator function. For identifiability, we further require ∥γ∥ = 1 and ∥β∥ = 1,
where ∥ · ∥ is the Euclidean norm.

Because the MRC objective function Gn(θ) is a weighted sum of indicator functions, it is difficult to optimize (3.1) when
p is relatively large. To deal with this computational problem, we adopt the sigmoid function sn(u) = 1/{1+ exp(−u/σn)}
to approximate I(u > 0), where σn is a sequence of strictly positive and decreasing numbers with limn→∞ σn = 0 (see
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Fig. 1. Plots of the sigmoid function s(x) = 1/{1+ exp(−x/σ )}.

Fig. 1). As suggested by Song et al. (2007), we can use σn = cn−1/2 with some positive c (e.g. c = 3). The smoothed version
of Gn(θ) is

Sn(θ) =
1

n(n− 1)

∑
i̸=j

I(Yi > Yj)sn(X ′

i γ + AiX̃ ′

i β − X ′

j γ − AjX̃ ′

j β). (3.2)

Theorem 1 shows that Sn(θ) is a consistent approximation to the maximum rank correlation function Gn(θ). A smoothed
maximum rank correlation (SMRC) estimator of θ is defined as

θ̂ = argmax
θ

Sn(θ). (3.3)

Based on (3.3), an estimated optimal individualized treatment rule is D̂∗(x) = sign(x̃′β̂). The optimization of (3.3) can be
done by using a standard optimization algorithm, such as the optim function in R (Nash et al., 2018; R Core Team, 2019).
The criterion function S(θ) depends on the ranks of Yi rather than their numerical values, which implies that the SMRC
estimator θ̂ is more robust than the methods using the numerical values in the presence of outliers in Yi. The robustness
property of θ̂ will be studied via simulation in Section 5.

4. Asymptotic properties

We now investigate the asymptotic properties of the SMRC estimator θ̂. Denote θ0 = (γ ′

0,β
′

0)
′ as the true parameter.

For simplicity of presentation, we first introduce some notation. Let Z = (X, A, Y ) and z = (x, a, y). Define

τn(z, θ) = E[I(y > Y )sn(x′γ + ax̃′β − X′γ − AX̃′β)]
+ E[I(Y > y)sn(X′γ + AX̃′β − x′γ − ax̃′β)],

where the expectation is taken with respect to Z. Let ▽mτn(z, θ) be the mth partial derivative operator with respect to θ.
Define

|▽m|τn(z, θ) =
∑

i1+···+im=m

∂mτn(z, θ)
∂θi1 . . . ∂θim

.

To establish the asymptotic results, we assume the following regularity conditions:
(C.1) The true value θ0 is an interior point of the parameter space Θ , which is a compact subset of R2p+1.
(C.2) The support of X is not contained in any linear subspace of Rp. The dth component of X has an everywhere positive
Lebesgue density, conditional on the other components. The random error term ϵ is independent of X in (2.1).
(C.3) Let N be a neighborhood of θ0. For each possible value z = (x, a, y) of Z,

(i) the second derivatives of τn(z, θ) with respect to θ exist in N .
(ii) there is an integrable function M(z) such that for any z ∈ Z , θ1 and θ2 in Θ ,

∥▽2τn(z, θ1)− ▽2τn(z, θ2)∥ ≤ M(z)∥θ1 − θ2∥.

(iii) E{|▽1τn(z, θ0)|2} < ∞; E{|▽2|τn(z, θ0)} < ∞.
(iv) the matrix E{▽2τn(z, θ0)} is negative definite.
(v) both 2V = limn→∞ E{▽2τn(·, θ0)} and H = limn→∞ E{▽1τn(·, θ0)[▽1τn(·, θ0)]′} exist, and V is negative definite.
Conditions (C.1)–(C.3) were also used to establish the large sample properties of the rank-based estimators in Sherman

(1993).

Theorem 1. Under conditions (C.1)–(C.3), we have supθ∈Θ |Gn(θ)− Sn(θ)|
P

−→ 0 as n → ∞, where
P

−→ 0 denotes convergence
in probability.
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The above result ensures that the approximation in (3.2) is asymptotically accurate. For the SMRC estimator θ̂, its
asymptotic distribution is stated in the following theorem.

Theorem 2. Under conditions (C.1)–(C.3), the SMRC estimator θ̂ satisfies

n1/2(θ̂ − θ0)
D

−→ N(0,V−1HV−1), (4.1)

where 2V = limn→∞ E▽2τn(·, θ0), H = limn→∞ E▽1τn(·, θ0)[▽1τn(·, θ0)]′, and
D

−→ denotes convergence in distribution.

Since the plug-in estimator of the variance matrix V−1HV−1 can be unstable and sensitive to the choice of σn, inspired
by the methods of Jin et al. (2001) and Cai et al. (2005), we use a resampling approach to estimating the variance.
Specifically, consider a stochastically perturbed version of the SMRC objective function

S̃n(θ) =
1

n(n− 1)

∑
i̸=j

ξiξjI(Yi > Yj)sn(X ′

i γ + AiX̃ ′

i β − X ′

j γ − AjX̃ ′

j β),

where ξ1, . . . , ξn are i.i.d. exponential variables with mean 1. Similar to Fan et al. (2017), let θ̃ = argmaxβ S̃n(θ). The
variance of θ̂ is approximated by the empirical variance matrix of θ̃ from repeatedly generating {ξ1, . . . , ξn}. The following
result justifies the use of the above resampling procedure.

Theorem 3. Under conditions (C.1)–(C.3), for the perturbation based estimator θ̃, we have
√
n(θ̃ − θ̂)

D
−→ N(0,V−1HV−1), as n → ∞,

where V and H are defined in (4.1).

5. Numerical simulation

In this section, we conduct simulation studies to assess the finite sample performance of the proposed method. We
consider the following two models:

Model I: Y = 1+ (X′γ0 + AX̃′β0)3 + ϵ,
Model II: Y = 1+ X′γ0 + AX̃′β0 + ϵ,

where X = (X1, . . . , Xp)′ is generated from a normal distribution N(0,Σ) with Σij = 0.5|i−j| and p = 8. The treatment
A is generated from {−1, 1} with P(A = 1) = 1/2, and the random error ϵ follows N(0, 1). Similar to the settings in
Fan et al. (2017), we set γ0 = (0.5,−0.5,−0.5, 0, 0,−0.5, 0, 0)′, and β0 = (0.5,−0.5, 0, 0, 0.5,−0.5, 0, 0, 0)′ with
∥γ0∥ = ∥β0∥ = 1. We consider two situations. Case A: the response Y is generated from Models I and II; Case B: Y
is generated from Case A, except that three outliers are contained, which follow from a Cauchy distribution with location
parameter 0 and scale parameter 500. All the results presented below are based on 200 replications with sample size
n = 300. All the computations are done in the R (R Core Team, 2019).

To assess the performances of our proposed estimator, we report the estimated bias (BIAS) given by the sample mean of
the proposed estimates minus the true value, the sample standard deviation (SSD) of the proposed estimates, the sample
mean of the estimated standard errors (ESE), and the empirical coverage probability of the 95% Wald-type confidence
interval (CP), where the standard errors of the SMRC estimators are estimated by the resampling method in Section 4
with 200 repetitions. First we try to provide some evaluation of the sensitivity of our proposed method for σn = cn−1/2

with different choices of c. We set c = 1/3, 1 and 3, respectively. In Table 1, we only report the results for β̂ in Model
I with Case A (the other cases are similar). From the results, we can see that the choice c = 1/3 has the lowest SSD,
and c = 3 gives much higher SSD values. This indicates that the proposed method is sensitive to c. Hence, we need to
carefully choose the value of c. Based on the overall performance of the three choices in Table 1, we suggest to use c = 3
in the following simulations and real data analysis.

Fan et al. (2017) suggested that the doubly robust concordance-assisted learning (CAL-DR) estimator is more efficient
than the IPSW and AIPSW estimators of Zhang et al. (2012). Moreover, the single-index model in Song et al. (2017) is based
on the least-squares type estimation, which is sensitive to outliers. Thus, we only compare the proposed SMRC estimator
with the CAL-DR estimator of Fan et al. (2017) in the simulations. To assess the performances of the estimators γ̂ and β̂, we
report the BIAS, SSD, ESE, and CP, respectively. Here the standard errors of the SMRC estimators for γ and β are estimated
by the resampling method in Section 4 with 200 repetitions. To evaluate the accuracy of estimated optimal treatment rule
D̂∗(X̃) = sign(X̃ ′β̂), we calculate the sample mean and sample standard deviation of the percentage of making correct
decisions (PCD), defined as 1− (2n)−1 ∑n

i=1 |sign(X̃
′β̂)− sign(X̃ ′β0)|. Let Y ∗(a) denote the potential outcome that would

result if the subject was given treatment a ∈ A, then E[Y ∗
{D(X)}] ∆

= V is called the value function of a given treatment
regime D. This value function is a classical index to assess the treatment regimes (Zhang et al., 2012). Below, we report the
sample mean and standard deviation of the value functions for the estimated optimal treatment regime via the simulation-
based method in Fan et al. (2017). To be specific, we generate data with N = 10 000 subjects from Models I and II, and
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Table 1
Evaluation results with different choices of c in the term σn = cn−1/2 .

Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8

c = 1/3 BIAS 0.0027 0.0043 0.0085 −0.0002 −0.0022 0.0102 0.0091 0.0011 0.0032

SSD 0.0336 0.0351 0.0402 0.0479 0.0346 0.0368 0.0408 0.0443 0.0374

ESE 0.0409 0.0392 0.0462 0.0467 0.0395 0.0386 0.0463 0.0469 0.0448

CP 0.975 0.995 0.970 0.950 0.975 0.970 0.970 0.970 0.985

c = 1 BIAS −0.0004 0.0059 0.0022 0.0045 −0.0117 0.0058 0.0037 −0.0022 0.0064

SSD 0.0494 0.0460 0.0579 0.0595 0.0475 0.0386 0.0535 0.0568 0.0474

ESE 0.0529 0.0524 0.0634 0.0635 0.0524 0.0512 0.0634 0.0645 0.0594

CP 0.970 0.985 0.965 0.970 0.965 1 0.985 0.990 0.975

c = 3 BIAS −0.0001 0.0059 −0.0055 0.0027 −0.0164 0.0188 −0.0095 0.0061 0.0020

SSD 0.0574 0.0606 0.0761 0.0800 0.0551 0.0537 0.0745 0.0742 0.0710

ESE 0.0626 0.0662 0.0804 0.0809 0.0633 0.0644 0.0807 0.0822 0.0724

CP 0.960 0.955 0.950 0.945 0.965 0.960 0.955 0.975 0.940

Table 2
Simulation results of the SMRC estimate for γ .

Model Case Statistic γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8

I A BIAS −0.0091 0.0192 −0.0102 0.0022 0.0022 0.0021 −0.0024 −0.0036

SSD 0.0585 0.0509 0.0597 0.0765 0.0793 0.0796 0.0809 0.0753

ESE 0.0591 0.0559 0.0666 0.0808 0.0806 0.0753 0.0823 0.0722

CP 0.935 0.970 0.960 0.955 0.945 0.935 0.955 0.925

B BIAS −0.0038 0.0237 −0.0063 0.0107 −0.0189 0.0075 −0.0121 0.0036

SSD 0.0542 0.0501 0.0692 0.0779 0.0790 0.0755 0.0844 0.0695

ESE 0.0614 0.0598 0.0687 0.0841 0.0836 0.0786 0.0848 0.0747

CP 0.975 0.980 0.960 0.960 0.950 0.945 0.935 0.950

II A BIAS −0.0279 0.0230 −0.0028 0.0084 −0.0222 0.0135 −0.0026 −0.0103

SSD 0.0761 0.0683 0.0743 0.1113 0.1116 0.0868 0.0990 0.0849

ESE 0.0767 0.0704 0.0794 0.1010 0.1018 0.0907 0.0978 0.0874

CP 0.935 0.955 0.955 0.925 0.930 0.960 0.925 0.945

B BIAS −0.0137 0.0215 −0.0229 0.0166 −0.0071 0.0140 −0.0100 0.0034

SSD 0.0715 0.0624 0.0835 0.1117 0.1147 0.0883 0.1095 0.0962

ESE 0.0755 0.0703 0.0808 0.1011 0.1003 0.0896 0.0964 0.0873

CP 0.955 0.970 0.950 0.915 0.915 0.955 0.915 0.920

obtain the estimated value function V̂ for D̂∗(X) as

V̂ =
1
N

N∑
i=1

[1+ {X′

iγ0 + D̂∗(Xi) · X̃i
′

β0}
3
], (5.1)

and

V̂ =
1
N

N∑
i=1

[1+ X′

iγ0 + D̂∗(Xi) · X̃i
′

β0]. (5.2)

Similarly, we can compute the true value function (V0) for the optimal treatment regime as (5.1) and (5.2), respectively.
From the simulation results in Tables 2–4, we can draw the following conclusions. First, our proposed SMRC estimators

for γ and β are nearly unbiased. Second, the estimated standard errors are close to the standard deviation of the SMRC
estimators, and the empirical coverage probability of 95% confidence interval is close to the nominal level. Third, the PCD
and V̂ of the CAL-DR have slightly better performance than our proposed method in Case A. However, the performance
of the CAL-DR is very poor in Case B when there exist outliers. One possible explanation for this phenomenon is that the
concordance function of CAL-DR method involves the value of Y rather than its ranking. Hence, the CAL-DR estimator is
sensitive to outliers in the responses. In summary, the proposed SMRC method is competitive with the CAL-DR method.
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Table 3
Estimation and classification results for Model I (V0 = 2.9312).

Case Method Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 PCD V̂

A SMRC BIAS −0.0033 0.0106 −0.0133 0.0125 −0.0153 0.0151 −0.0076 −0.0001 −0.0014 0.9402a 2.9033b

SSD 0.0628 0.0604 0.0741 0.0824 0.0573 0.0642 0.0720 0.0792 0.0690 0.0208 0.0480

ESE 0.0625 0.0657 0.0801 0.0819 0.0636 0.0648 0.0812 0.0823 0.0724 − −

CP 0.925 0.965 0.980 0.935 0.975 0.950 0.985 0.950 0.955 − −

CAL-DR BIAS 0.0136 0.0033 0.0144 −0.0188 −0.0162 0.0175 0.0230 0.0049 0.0047 0.9835a 2.9090b

SSD 0.0339 0.0495 0.0540 0.0593 0.0457 0.0463 0.0471 0.0466 0.0542 0.0071 0.0460

ESE 0.0360 0.0409 0.0475 0.0524 0.0430 0.0400 0.0463 0.0455 0.0454 − −

CP 0.945 0.925 0.930 0.945 0.960 0.915 0.965 0.960 0.910 − −

B SMRC BIAS −0.0067 0.0090 −0.0096 0.0139 −0.0186 0.0154 −0.0155 −0.0013 −0.0001 0.9396a 2.8977b

SSD 0.0646 0.0628 0.0819 0.0799 0.0628 0.0594 0.0849 0.0860 0.0735 0.0226 0.0490

ESE 0.0632 0.0669 0.0821 0.0816 0.0649 0.0649 0.0821 0.0829 0.0731 − −

CP 0.955 0.955 0.960 0.955 0.955 0.965 0.965 0.940 0.925 − −

CAL-DR BIAS −0.1434 0.2508 0.0037 −0.0299 −0.2465 0.2272 0.0270 −0.0227 −0.0198 0.6462a 2.0650b

SSD 0.2188 0.2854 0.2638 0.2713 0.3116 0.2803 0.2507 0.2754 0.2933 0.0276 0.7408

ESE 0.1537 0.1609 0.1521 0.1552 0.1659 0.1679 0.1473 0.1562 0.1568 − −

CP 0.840 0.615 0.760 0.775 0.660 0.660 0.770 0.740 0.725 − −

aDenotes the estimate of PCD.
bDenotes the estimate of V0 .

Table 4
Estimation and classification results for Model II (V0 = 1.6862).

Case Method Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 PCD V̂

A SMRC BIAS −0.0061 0.0051 −0.0112 0.0230 −0.0348 0.0233 −0.0144 0.0112 −0.0057 0.9256a 1.6655b

SSD 0.0701 0.0816 0.0975 0.0983 0.0671 0.0776 0.0998 0.0961 0.0802 0.0224 0.0120

ESE 0.0675 0.0804 0.0988 0.0991 0.0756 0.0768 0.0984 0.0966 0.0855 − −

CP 0.925 0.925 0.960 0.970 0.955 0.930 0.935 0.955 0.950 − −

CAL-DR BIAS 0.0167 0.0167 0.0020 0.0035 −0.0127 0.0150 0.0010 −0.0047 0.0032 0.9352a 1.6761b

SSD 0.0415 0.0477 0.0622 0.0643 0.0514 0.0464 0.0591 0.0584 0.0553 0.0134 0.0123

ESE 0.0405 0.0449 0.0533 0.0535 0.0466 0.0446 0.0536 0.0524 0.0519 − −

CP 0.935 0.940 0.950 0.930 0.930 0.945 0.955 0.940 0.960 − −

B SMRC BIAS −0.0187 0.0108 −0.0037 0.0079 −0.0226 0.0223 −0.0115 −0.0021 0.0031 0.9240a 1.6630b

SSD 0.0641 0.0842 0.1060 0.1032 0.0778 0.0774 0.1000 0.1023 0.0865 0.0244 0.0133

ESE 0.0678 0.0816 0.0974 0.0982 0.0754 0.0748 0.0988 0.0939 0.0848 − −

CP 0.955 0.945 0.925 0.925 0.930 0.955 0.940 0.915 0.935 − −

CAL-DR BIAS −0.2468 0.3155 0.0249 −0.0298 −0.2595 0.3181 −0.0011 −0.006 −0.0469 0.6478a 1.2838b

SSD 0.2572 0.2868 0.2963 0.3115 0.3035 0.2976 0.3066 0.2983 0.3381 0.0274 0.2495

ESE 0.1836 0.1784 0.1674 0.1720 0.1890 0.1884 0.1712 0.1822 0.1755 − −

CP 0.760 0.575 0.740 0.715 0.720 0.570 0.740 0.760 0.670 − −

aDenotes the estimate of PCD.
bDenotes the estimate of V0 .

Finally, to further study the robustness of the proposed method against misspecified models, we consider the following
two models:

Model III: Y = 1+ 2(X′γ0)+ 3.5(AX̃′β0)3 + ϵ,
Model IV: Y = 1+ (X′γ0)3 + AX̃′β0 + ϵ,

where the regression parameter’s mechanism is the same as Models I and II. Similarly, we generate data with N = 10 000
subjects from Models III and IV. The estimated value functions for D̂∗(X) are

V̂ =
1
N

N∑
i=1

[1+ 2(X′

iγ0)+ 3.5{D̂∗(Xi) · X̃i
′

β0}
3
],
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Table 5
Simulation results of the SMRC estimate for γ .

Model Case Statistic γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8

III A BIAS −0.0321 0.0241 −0.0091 0.0607 −0.0542 −0.0123 −0.0175 −0.0001

SSD 0.0630 0.0578 0.0604 0.0811 0.0823 0.0780 0.0923 0.0744

ESE 0.0627 0.0565 0.0658 0.0857 0.0856 0.0763 0.0817 0.0717

CP 0.910 0.940 0.975 0.890 0.910 0.930 0.915 0.935

B BIAS −0.0380 0.0212 −0.0019 0.0441 −0.0511 −0.0134 −0.0087 −0.0034

SSD 0.0603 0.0543 0.0642 0.0911 0.0798 0.0746 0.0729 0.0699

ESE 0.0646 0.0575 0.0665 0.0866 0.0868 0.0768 0.0823 0.0732

CP 0.920 0.945 0.955 0.885 0.930 0.940 0.975 0.955

IV A BIAS −0.0224 0.0182 −0.0112 0.0180 −0.0212 0.0131 −0.0131 −0.0002

SSD 0.0706 0.0652 0.0799 0.0987 0.0998 0.0990 0.1007 0.0883

ESE 0.0728 0.0670 0.0774 0.0967 0.0964 0.0869 0.0958 0.0854

CP 0.955 0.940 0.940 0.965 0.940 0.905 0.920 0.945

B BIAS −0.0059 0.0154 −0.0212 0.0314 −0.0276 0.0210 −0.0028 −0.0107

SSD 0.0720 0.0646 0.0788 0.1005 0.1031 0.0869 0.1008 0.0827

ESE 0.0743 0.0688 0.0796 0.0984 0.0989 0.0890 0.0963 0.0861

CP 0.975 0.965 0.965 0.920 0.925 0.955 0.945 0.950

Table 6
Estimation and classification results for Model III (V0 = 4.2944).

Case Method Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 PCD V̂

A SMRC BIAS −0.0342 0.0001 −0.009 0.0029 0.0101 −0.0062 −0.0099 0.0001 −0.0001 0.9575a 4.2862b

SSD 0.0347 0.0405 0.0517 0.0489 0.0373 0.0350 0.0518 0.0463 0.0407 0.0177 0.0736

ESE 0.0359 0.0419 0.0512 0.0512 0.0363 0.0361 0.0518 0.0481 0.0423 − −

CP 0.850 0.940 0.945 0.965 0.930 0.945 0.930 0.960 0.960 − −

CAL-DR BIAS 0.0172 0.0104 0.0057 −0.0003 −0.0077 0.0077 0.0035 0.0035 0.0061 0.961a 4.2922b

SSD 0.0220 0.0281 0.0327 0.0344 0.0275 0.0274 0.0314 0.0312 0.0297 0.0112 0.0654

ESE 0.0255 0.0283 0.0334 0.0343 0.0303 0.0275 0.0336 0.0332 0.0313 − −

CP 0.910 0.945 0.960 0.955 0.975 0.950 0.970 0.985 0.975 − −

B SMRC BIAS −0.0328 −0.0037 −0.0042 0.0076 0.0029 −0.0070 −0.0090 0.0001 0.0024 0.9576a 4.2884b

SSD 0.0351 0.0441 0.0535 0.0521 0.0354 0.0350 0.0519 0.0496 0.0394 0.0169 0.0645

ESE 0.0369 0.0430 0.0527 0.0530 0.0376 0.0370 0.0518 0.0488 0.0431 − −

CP 0.89 0.945 0.955 0.945 0.970 0.965 0.925 0.955 0.940 − −

CAL-DR BIAS −0.1065 0.1834 −0.0016 0.0094 −0.1896 0.1508 −0.0208 −0.0205 0.0257 0.8486a 3.5931b

SSD 0.2071 0.2304 0.2325 0.2617 0.2651 0.2360 0.2391 0.2688 0.2318 0.0210 0.9392

ESE 0.1351 0.1425 0.1332 0.1402 0.1506 0.1434 0.1375 0.1414 0.1326 − −

CP 0.855 0.725 0.785 0.760 0.715 0.740 0.770 0.745 0.735 − −

aDenotes the estimate of PCD.
bDenotes the estimate of V0 .

and

V̂ =
1
N

N∑
i=1

[1+ (X′

iγ0)
3
+ {D̂∗(Xi) · X̃i

′

β0}],

respectively. In Table 5, we report the BIAS, SSD, ESE and CP for the estimate of γ . The results for the treatment rules are
presented in Tables 6 and 7. It can be seen that our proposed method is robust to misspecification of models. Hence, our
rank-based approach is acceptable to developing personalized treatment rules in practice.

6. Application to AIDS clinical trials study

We illustrate the application of the proposed method by analyzing the AIDS Clinical Trials Group Protocol 175 study
(ACTG175), which consists of 2139 subjects infected with the human immunodeficiency virus (Lu et al., 2011; Fan et al.,
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Table 7
Estimation and classification results for Model IV (V0 = 1.6823).

Case Method Statistic β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 PCD V̂

A SMRC BIAS 0.0011 0.0285 −0.0368 0.0275 −0.0315 0.0324 −0.0247 −0.0178 0.0133 0.9149a 1.6553b

SSD 0.0772 0.0910 0.1026 0.1097 0.0790 0.0854 0.1189 0.1101 0.0946 0.0245 0.0229

ESE 0.0736 0.0899 0.1064 0.1083 0.0831 0.0821 0.1075 0.1032 0.0925 − −

CP 0.945 0.905 0.935 0.935 0.950 0.935 0.905 0.920 0.935 − −

CAL-DR BIAS 0.0061 0.0386 −0.0001 0.0060 −0.0146 0.0258 −0.0206 0.0092 −0.0026 0.9088a 1.6632b

SSD 0.0544 0.0856 0.0979 0.1044 0.0767 0.0781 0.1129 0.0839 0.0875 0.0151 0.0239

ESE 0.0583 0.0698 0.0788 0.0808 0.0646 0.0638 0.0877 0.0706 0.0708 − −

CP 0.950 0.890 0.935 0.905 0.940 0.915 0.905 0.925 0.910 − −

B SMRC BIAS 0.0043 0.0270 −0.0264 0.0385 −0.0459 0.0365 −0.0297 −0.0033 0.0074 0.9126a 1.6588b

SSD 0.0789 0.0887 0.1253 0.1182 0.0873 0.0848 0.1162 0.1206 0.1078 0.0287 0.0221

ESE 0.0745 0.0908 0.1061 0.1082 0.0852 0.0846 0.1092 0.1023 0.0926 − −

CP 0.910 0.945 0.870 0.900 0.915 0.920 0.930 0.885 0.900 − −

CAL-DR BIAS −0.2048 0.2793 0.0117 −0.0181 −0.3123 0.2951 −0.0016 −0.0152 0.0057 0.4605a 1.3134b

SSD 0.2529 0.3068 0.3058 0.2803 0.2921 0.3024 0.3035 0.3056 0.3125 0.0297 0.2258

ESE 0.1801 0.1822 0.1752 0.1760 0.2000 0.1877 0.1774 0.1764 0.1773 − −

CP 0.780 0.570 0.730 0.765 0.675 0.580 0.750 0.720 0.705 − −

aDenotes the estimate of PCD.
bDenotes the estimate of V0 .

2017). In the study, the patients were randomized to four different treatment groups: zidovudine (ZDV) monotherapy, ZDV
+ didanosine (ddI), ZDV + zalcitabine and ddI monotherapy. We consider the subset of patients receiving the treatment
ZDV + ddI or ZDV + zalcitabine, with the goal to find their individualized optimal treatment rules. We use A = −1 to denote
the treatment ZDV + zalcitabine (524 subjects), and A = 1 to denote the treatment ZDV + ddI (522 subjects). Let Y be the
CD4 cell count (cells per cubic millimeter) at 20±5 weeks post-baseline. We use 12 covariates, including five continuous
variables, age (years), weight (kilograms), Karnofsky score (a scale of 0–100), CD4 cell count at baseline and CD8 cell count
(cells per cubic millimeter) at baseline, and seven binary variables, haemophilia (0 = no; 1 = yes), homosexual activity
(0 = no; 1 = yes), history of intravenous drug use (0 = no; 1 = yes), race (0 = white; 1 = non-white), gender (0 =

female; 1 = male), antiretroviral history (0 = naive; 1 = experienced) and symptomatic status (0 = asymptomatic; 1 =

symptomatic), where the five continuous covariates are normalized with mean 0 and variance 1 (Fan et al., 2017).
We apply the proposed method to estimate the optimal treatment strategy and conduct statistical inference for the

corresponding parameters. The estimates for the coefficients (Est), standard errors (SE), 95% confidence intervals (CI)
and P-values are reported in Table 8, respectively. It can be seen that age, haemophilia, homosexual activity, history of
intravenous drug use and race are significant covariates at the level of 0.05, where age was also selected as significant
covariate by Fan et al. (2017). We refit the proposed estimator with the above three significant covariates, which yields
the estimated optimal treatment regime as sign(0.6957+0.4621 ·X1−0.0214 ·X6−0.3652 ·X7−0.0308 ·X8−0.4094 ·X9).
In other words, if 0.6957 + 0.4621 · age − 0.0214 · haemophilia − 0.3652 · homosexual activity − 0.0308 · history of
intravenous drug use − 0.4094 · race > 0, the optimal treatment for this patient is ZDV + ddI, otherwise, the optimal
treatment rule is ZDV + zalcitabine. According to the estimated optimal decision rule, 759 out of 1046 patients (72.6%)
should be assigned to treatment ZDV + ddI.

7. Concluding remarks

In this article, we propose a robust approach to estimate optimal individualized treatment rules based on the smoothed
maximum rank correlation method under a semiparametric generalized regression model. The asymptotic properties of
the proposed estimator are established under reasonable conditions. The performance of our method is evaluated via
simulation studies. An application to an AIDS Clinical Trials Group Protocol 175 study is provided.

Note that we use σn = cn−1/2 in the sigmoid function, and the simulation results imply that the choice of c matters.
Ideally, c would be treated as a tuning parameter to be estimated somehow, and this issue requires further investigation.
Moreover, the proposed method can be generalized to the case of censored survival data. Specifically, let Y denote
the survival time in model (2.1), and C denote the censoring time. The observed data consists of (Ỹi,∆i,Xi), where
Ỹi = min(Yi, Ci), and ∆i = I(Yi ≤ Ci), i = 1, . . . , n. Similar to (3.2), we construct a smoothed rank correlation function

S∗n (θ) =
1

n(n− 1)

∑
i̸=j

∆jI(Ỹi > Ỹj)sn(X ′

i γ + AiX̃ ′

i β − X ′

j γ − AjX̃ ′

j β).
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Table 8
Estimated optimal treatment regimes for the ACTG175 data.

Est SE CI P-value

β̂0 0.5258 0.1093 [0.3114, 0.7402] < 10−5

β̂1 0.1519 0.0612 [0.0319, 0.2719] 0.0130

β̂2 −0.0635 0.0670 [−0.1950, 0.0679] 0.3433

β̂3 −0.0017 0.0456 [−0.0912, 0.0876] 0.9685

β̂4 0.1331 0.0895 [−0.0423, 0.3086] 0.1370

β̂5 −0.0794 0.0523 [−0.1820, 0.0230] 0.1287

β̂6 −0.4021 0.1424 [−0.6814, −0.1229] 0.0047

β̂7 −0.4561 0.0885 [−0.6297, −0.2825] < 10−5

β̂8 −0.3302 0.1451 [−0.6147, −0.0456] 0.0229

β̂9 −0.3624 0.1043 [−0.5669, −0.1579] 0.0005

β̂10 0.2413 0.1283 [−0.0101, 0.4928] 0.0600

β̂11 −0.0605 0.1098 [−0.2757, 0.1547] 0.5817

β̂12 0.0131 0.1269 [−0.2356, 0.2619] 0.9174

γ̂1 −0.0455 0.0328 [−0.1100, 0.0189] 0.1662

γ̂2 0.0160 0.0408 [−0.0641, 0.0961] 0.6949

γ̂3 0.0555 0.0271 [0.0023, 0.1087] 0.0405

γ̂4 0.8068 0.0384 [0.7314, 0.8822] < 10−5

γ̂5 −0.1090 0.0277 [−0.1635, −0.0546] 8× 10−5

γ̂6 −0.1322 0.1037 [−0.3356, 0.0711] 0.2025

γ̂7 −0.0581 0.0690 [−0.1934, 0.0770] 0.39931

γ̂8 0.2099 0.0795 [0.0539, 0.3659] 0.0083

γ̂9 −0.2698 0.0650 [−0.3973, −0.1423] 3× 10−5

γ̂10 −0.0277 0.0934 [−0.2109, 0.1555] 0.7668

γ̂11 −0.4367 0.0650 [−0.5641, −0.3092] < 10−5

γ̂12 −0.0493 0.0659 [−0.1785, 0.0799] 0.4546

The resulting SMRC estimator θ̂
∗

, as the maximizer of S∗n (θ), is consistent and asymptotically normal, which can be derived
by the proof techniques in the Appendix. As pointed out by one reviewer, the topics on optimal treatment rules with
three or more treatments are of great practical importance (Lou et al., 2018; Qi et al., 2018). It is still unclear how to
extend our rank-based method to the setting with multiple treatments, which requires further research efforts.
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Appendix

Proof of Theorem 1. For convenience, denote uij = γ ′(Xi − Xj) + β′(AiX̃i − AjX̃j). From the definition of Gn(·) and Sn(·),
we can derive that

|Gn(θ)− Sn(θ)| ≤
1

n(n− 1)

∑
i̸=j

|I(uij > 0)− sn(uij)|.

For any v > 0,

|Gn(θ)− Sn(θ)| ≤ Tn1 + Tn2, (A.1)

where

Tn1 =
1

n(n− 1)

∑
i̸=j

|I(uij > 0)− sn(uij)| · I(|uij| ≥ v),
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Tn2 =
1

n(n− 1)

∑
i̸=j

|I(uij > 0)− sn(uij)| · I(|uij| < v).

Since |I(uij > 0)− sn(uij)| ≤ exp(−|uij|/σn) < exp(−|v|/σn) on the set {|uij| ≥ v}, then σn → 0 implies that sn(w) →

I(uij > 0) uniformly. Thus, Tn1 converges to 0 uniformly over Θ as n → ∞.
Because sn(·) is bounded by 1, the second term T2n ≤

1
n(n−1)

∑
i̸=j I(|uij| < v). By the uniform convergence theorem

of U-processes (Nolan and Pollard, 1987), the right-hand side converges almost surely to P(|uij| < v). Under condition
(C.2), we can prove in a similar way as Lemma 4 of Horowitz (1992) that limv→0 P(|uij| < v) = 0, and Tn2 converges to 0.
Therefore, the right-hand side of (A.1) converges to 0 uniformly over θ ∈ Θ . This completes the proof. □

Proof of Theorem 2. For each θ ∈ Θ , write Γn(θ) = Sn(θ)−Sn(θ0), then θ̂ maximizes Γn(θ) overΘ . For each (z1, z2) ∈ Z⊗Z
and θ ∈ Θ , define

fn(z1, z2, θ) = I(y1 > y2)[sn(x′1γ − x′2γ + a1x̃′1β − a2x̃′2β)
− sn(x′1γ0 − x′2γ0 + a1x̃′1β0 − a2x̃′2β0)].

Because Γn(·) is a U-statistics of order 2, we have the Hoeffding decomposition:

Γn(θ) = EΓn(θ)+ Png(·, θ)+ Unh(·, ·, θ),

where

g(Z, θ) = Ef (Z, ·, θ)+ Ef (·, Z, θ)− 2EΓn(θ),
h(Z1, Z2, θ) = f (Z1, Z2, θ)− Ef (Z1, ·, θ)− Ef (·, Z2, θ)+ EΓn(θ),

Pn is the empirical measure that places mass 1/n on each observation Zi = (Xi, Ai, Yi) (i = 1, . . . , n), and Un is the
U-process operator given as Unh(·, ·, θ) = 1/[n(n− 1)]

∑
i̸=j h(Zi, Zj, θ).

First, we prove that as θ → θ0,

Γn(θ) =
1
2
(θ − θ0)′V(θ − θ0)+ o(∥θ − θ0∥

2)+ op(1). (A.2)

By the Taylor expansion of τn(Z, θ) about θ,

τn(Z, θ) = τn(Z, θ0)+ (θ − θ0)′▽1(Z, θ0)+
1
2
(θ − θ0)′▽2(Z, θ∗)(θ − θ0), (A.3)

where θ∗ is between θ and θ0. By conditions (C.1)–(C.3), for each θ in Θ and Z ∈ Z ,

∥(θ − θ0)′[▽2τn(Z, θ)− ▽2τn(Z, θ0)](θ − θ0)∥ ≤ M(Z)∥θ − θ0∥
3. (A.4)

Taking expectations in (A.3), together with (A.4) and the integrability of M(·),

2Γn(θ) = (θ − θ0)′E▽1τn(·, θ)+ (θ − θ0)′V(θ − θ0)+ o(∥θ − θ0∥
2)+ op(1). (A.5)

It follows that Γn(θ) is maximized at θ0, and the coefficients of linear term in (A.5) must be zeros. Hence it can be concluded
that E▽1τn(·, θ) = 0, and (A.2) holds.

Next, we need to show that

Png(·, θ) =
1
√
n
(θ − θ0)′Wn + o(∥θ − θ0∥

2), (A.6)

where Wn
D

−→ N(0,H) as n → ∞. Using g(Z, θ) = τn(Z, θ)− τn(Z, θ0)− 2EΓn(θ), together with (A.2)–(A.4), we have

Png(·, θ) =
1
√
n
(θ − θ0)′Wn +

1
2
(θ − θ0)′Bn(θ − θ0)+ o(∥θ − θ0∥

2)+ Tn(θ) (A.7)

uniformly over op(1) neighborhoods of θ0, where

Wn =
√
nPn▽1τn(·, θ0) =

1
√
n

n∑
i=1

▽1τn(zi, θ0),

Bn = Pn▽2τn(·, θ0)− 2V,

and |Tn(θ)| ≤ ∥θ − θ0∥
3PnM(·). By E▽1τn(·, θ) = 0 and the Slutsky’s theorem, Wn converges in distribution to N(0,H).

The law of large numbers implies that Bn
p

−→ 0 as n → ∞. Moreover, by the integrability of M(·), we have Tn(θ) =

op(∥θ − θ0∥
2).

Finally, by Theorem 4 of Sherman (1993), we can prove

Unh(·, ·, θ) = op(n−1) (A.8)



H. Zhang, J. Huang and L. Sun / Computational Statistics and Data Analysis 151 (2020) 107015 11

uniformly over op(1) neighborhoods of θ0. Thus, (A.2), (A.6) and (A.8) indicate that

Γn(θ) =
1
2
(θ − θ0)′V(θ − θ0)+

1
√
n
(θ − θ0)′Wn + o(∥θ − θ0∥

2)+ op(n−1)+ op(1). (A.9)

Since V is a negative definite matrix, it follows from Theorem 2 of Sherman (1993) that

√
n(θ̂ − θ0) = −V−1 1

√
n

n∑
i=1

▽1τn(zi, θ0)+ oP (1). (A.10)

Hence the central limit theorem and the Slutsky’s theorem show that
√
n(θ̂ − θ0)

D
−→ N(0,V−1HV−1) as n → ∞.

This ends the proof. □

Proof of Theorem 3. Note that

S̃n(θ) =
1

n(n− 1)

∑
i̸=j

ξiξjI(Yi > Yj)sn(X ′

i γ + AiX̃ ′

i β − X ′

j γ − AjX̃ ′

j β).

Due to ξiξj are independent of the term I(Yi > Yj)sn(X ′

i γ + AiX̃ ′

i β − X ′

j γ − AjX̃ ′

j β), following similar arguments as in the
proofs of (A.10), we have

√
n(θ̃ − θ0) = −V−1 1

√
n

n∑
i=1

ξi▽1τn(zi, θ0)+ oP (1). (A.11)

In view of (A.10) and (A.11), some straightforward calculations show that

√
n(θ̃ − θ̂) = −V−1 1

√
n

n∑
i=1

(ξi − 1)▽1τn(zi, θ0)+ oP (1).

Because ξi are i.i.d. random variables with E(ξi) = 1 and Var(ξi) = 1, it follows from the central limit theorem and the
Slutsky’s theorem that

√
n(θ̃ − θ̂)

D
−→ N(0,V−1HV−1).

This ends the proof. □
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