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Abstract
We propose a fast Newton algorithm for �0 regularized high-dimensional generalized
linear models based on support detection and root finding. We refer to the pro-
posed method as GSDAR. GSDAR is developed based on the KKT conditions for
�0-penalized maximum likelihood estimators and generates a sequence of solutions
of the KKT system iteratively. We show that GSDAR can be equivalently formulated
as a generalized Newton algorithm. Under a restricted invertibility condition on the
likelihood function and a sparsity condition on the regression coefficient, we establish
an explicit upper bound on the estimation errors of the solution sequence generated
by GSDAR in supremum norm and show that it achieves the optimal order in finite
iterations with high probability. Moreover, we show that the oracle estimator can be
recovered with high probability if the target signal is above the detectable level. These
results directly concern the solution sequence generated from the GSDAR algorithm,
instead of a theoretically defined global solution. We conduct simulations and real
data analysis to illustrate the effectiveness of the proposed method.
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1 Introduction

Generalized linear models (GLMs) are an important class of statistical models that
have wide applications in practice (Nelder and Wedderburn 1972; McCullagh 2019).
In GLMs, the conditional distribution of the response variable Y ∈ R, given the value
of the vector of the covariates x ∈ R

p, follows an exponential family distribution with
the density function

f (y; θ) = exp[yθ − c(θ) + d(y)],

where c(·) and d(·) are known functions, θ = xTβ∗, β∗ ∈ R
p is the vector of

underlying regression coefficients. Suppose we have a random sample {(xi , yi ) : i =
1, ..., n} that are i.i.d copies of (x,Y ). Let E(yi |xi ) = μi , where μi is related to the
linear function of the predictors θi = xTi β through a monotone and differentiable link
function g = (ċ)−1 such that

g(μi ) = θi .

TheGLMs include several important specialmodels, including linear regression, logis-
tic regression and Poisson regression.

When the number of predictors p exceeds the sample size n, it is often reasonable
to assume that the model is sparse in the sense that the number of predictors that are
truly related to the response is much smaller than n. Many researchers have proposed
penalized methods for variable selection and estimation in high-dimensional GLMs.
Park and Hastie (2007) and Van de Geer et al. (2008) extended the Lasso method (Tib-
shirani 1996) from linear regression to GLMs. Meier et al. (2008) proposed the group
lasso for logistic regression. Friedman et al. (2010) developed coordinate descent to
solve the elastic net (Zou and Hastie 2005) penalized GLMs. Path following proximal
gradient descent (Nesterov 2013) was adopted in Wang et al. (2014) and Loh and
Wainwright (2015) to solve the SCAD (Fan and Li 2001) and MCP (Zhang 2010)
regularized GLMs. Li et al. (2017) proposes a DC proximal Newton (DCPN) method
to solve GLMs with sparsity promoting nonconvex penalties such as SCAD andMCP.
Recently, several authors considered Newton type algorithm for solving sparse GLMs
(Wang et al. 2019; Yuan et al. 2017; Shen and Li 2017).

In addition, there is a large body of work on variable selection using �0 penal-
ties. Many researchers have developed methods that are modifications of the original
Bayes information criterion (BIC) (Schwarz et al. 1978), including mBIC for control-
ling FWER (Bogdan et al. 2004, 2008) and other modifications of BIC for controlling
false discovery rate (Frommlet et al. 2012; Żak-Szatkowska and Bogdan 2011). Vari-
able selection methods based on these criteria have been applied to high-dimensional
problems such as genomewide association studies (GWAS) using heuristic search
methods (Dolejsi et al. 2014; Frommlet et al. 2012). Another interesting algorithmic
approach for selection with �0 penalties is discussed in Frommlet and Nuel (2016).
Furthermore, the extended BIC (EBIC) (Chen and Chen 2008, 2012) is also an impor-
tantmethod formodel selectionwith �0 penalties, and its relevant theoretical properties
have been studied (Abramovich et al. 2006; Birgé and Massart 2001). Finally, in the
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context of genetic association studies, Frommlet et al. (2016) proposed the method
for high-dimensional model selection with �0 penalties.

In this paper, we consider the problem of variable selection and estimation in high-
dimensional GLMs based on the �0-penalized minimization problem

min
β∈Rp

L(β) + λ‖β‖0, (1)

where L(β) = − 1
n

∑n
i=1

[
yixTi β − c(xTi β)

]
is the negative log-likelihood function,

‖β‖0 is the number of nonzero elements of β, and λ ≥ 0 is a tuning parameter.
It is well known that the �0-penalized minimization problem (1) is NP-hard (Chen

et al. 2014; Natarajan 1995). Therefore, it is infeasible or extremely difficult to com-
pute the exact solution to this minimization problem in high-dimensional settings.
We propose a computational approach to approximate the solution to (1) based on a
nontrivial extension of the support detection and rooting finding (SDAR) algorithm
Huang et al. (2018), developed in the context of �0 penalized linear regression mod-
els. GSDAR is a computational algorithm motivated from the KKT conditions. It
generates a sequence of solutions {βk}k iteratively, based on support detection using
primal and dual information. We show that GSDAR can be equivalently formulated
as a generalized Newton algorithm for finding the root of the KKT systems. Under
a restricted invertibility condition on the likelihood function and a sparsity condition
on the regression coefficient β∗, we derive an explicit upper bound on the estimation
errors of the solution sequence in supremum norm and show that it achieves optimal
order in finite iterations. Moreover, we show that the oracle estimator can be recov-
ered with high probability if the target signal is over the detectable level. These results
directly concern the solution sequence generated from the GSDAR algorithm, instead
of a theoretically defined global. Therefore, there is no disconnection between our
theoretical results and computation algorithm.

The rest of this paper is organized as follows. In Sect. 2 we derive the GSDAR
algorithm based on an appropriate formulation of the KKT conditions. We also show
that GSDAR can be equivalently formulated as a semismooth Newton algorithm. In
Sect. 3 we present an upper bound on the estimation error of the solution sequence
generated from GSDAR. In Sect. 4, we extend GSDAR algorithm to AGSDAR, an
adaptive version of GSDAR. In Sect. 5 we evaluate the performance of GSDAR and
AGSDAR on simulated and real data and compare it with several state-of-the-art
methods. We conclude in Sect. 6. Proofs of the theorems are given in the Appendix.

2 Derivation of GSDAR

First, we introduce some notation used throughout the paper. We write n � log(p)
to mean that n ≥ c log(p) for some universal constant c ∈ (0,∞), where p diverges

as n goes to infinity. Let ‖β‖q = (
∑p

i=1 |βi |q)
1
q , q ∈ [1,∞], denote the q-norm

of a vector β = (β1, ..., βp)
T ∈ R

p. Denote the support of β by supp(β) = {i :
βi �= 0, i = 1, ..., p} and A∗ = supp(β∗). Let |A| be the size of the set A. Let
β A = (βi , i ∈ A) ∈ R

|A| and let β|A ∈ R
p with its i-th element (β|A)i = βi1(i ∈ A),
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where 1(·) is the indicator function. Denote XA = (x j , j ∈ A) ∈ R
n×|A|, where x j is

j-th column of the covariate matrix X ∈ R
n×p. Let ‖β‖T ,∞ and ‖β‖min be the T -th

largest element (in absolute value) and the minimum absolute value of β, respectively.
Let ∇L and ∇2L be the gradient and Hessian of function L, respectively.

The following lemma gives the KKT conditions for (1).

Lemma 1 If β̂ is a minimizer of (1), then β̂ satisfies:

{
d̂ = −∇L(β̂),

β̂ = Hλ(β̂ + d̂),
(2)

where Hλ(·) is the hard thresholding operator whose i-th element is defined by

(Hλ(β))i =
{
0, |βi |<

√
2λ ,

βi , |βi | ≥ √
2λ .

Conversely, if β̂ and d̂ satisfy (2), then β̂ is a local minimizer of (1).

The proof of Lemma 1 is given in Appendix A.1.
Let Â = supp(β̂) and Î = ( Â)c. By the definition of Hλ(·) and (2), we have

Â = {i : |β̂i + d̂i | ≥ √
2λ}, Î = {i : |β̂i + d̂i | <

√
2λ},

and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β̂ Î = 0

d̂ Â = 0

β̂ Â ∈ argmin
β Â

L̃(β Â)

d̂ Î = [−∇L(β̂)] Î ,

where

L̃(β Â) = L(β| Â) = −1

n

n∑

i=1

[
yixTi( Â)

β Â − c
(
xT
i( Â)

β Â

)]
.

Let {βk,dk} be the output of k-th iteration in GSDAR algorithm. If {βk,dk} approx-
imates {β̂, d̂} well, then {Ak, I k} also approximates { Â, Î } well, where {Ak, I k} is
defined as

Ak = {i : |βk
i + dki | ≥ √

2λ}, I k = {i : |βk
i + dki | <

√
2λ}. (3)
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We obtain a new approximation pair {βk+1,dk+1} as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βk+1
I k

= 0

dk+1
Ak = 0

βk+1
Ak ∈ argmin

β Ak

L̃(β Ak )

dk+1
I k

= [−∇L(βk+1)]I k ,

(4)

where

L̃(β Ak ) = L(β|Ak ) = −1

n

n∑

i=1

[
yixTi(Ak )

β Ak − c
(
xTi(Ak )

β Ak

)]
.

If the minimizer βk+1
Ak of (4) is not unique, we choose the one with the smallest value

in �∞-norm. If we have the prior information that ‖β∗‖0 ≤ T , then we set

√
2λ =‖ βk + dk ‖T ,∞ (5)

in (3). With this choice of λ, we have |Ak | = T in every iteration. Let β0 be an initial
value, then we obtain a sequence of solutions {βk, k ≥ 1} by using (3) and (4) with
the λ in (5).

We give a detailed description of the GSDAR algorithm in Algorithm 1.

Algorithm 1 GSDAR
1: Input: β0, T , d0 = −∇L(β0); k = 0
2: for k = 0, 1, . . . , do
3: Ak = { j : |βk

j + dkj | ≥ ‖βk + dk‖T ,∞
}
, I k = (Ak )c .

4: βk+1
I k

= 0.

5: dk+1
Ak

= 0.

6: βk+1
Ak

= argmin
βAk

L̃(βAk ).

7: dk+1
I k

= [−∇L(βk+1)]I k .
8: if Ak = Ak+1, then
9: Stop and denote the last iteration β Â , β Î , d Â , d Î .
10: else
11: k = k + 1
12: end if
13: end for
14: Output: β̂ = (βT

Â
, βT

Î
)T as the estimates of β∗.

In Algorithm 1, we usually set the initial value β0 = 0. We terminate GSDAR
when Ak = Ak+1 for some k, because the sequences generated by GSDAR will not
change. In Sect. 3, we will prove that under some regularity conditions on X and β∗,
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with high probability A∗ = Ak = Ak+1 in finite steps, i.e., the GSDAR will stop and
the oracle estimator will be recovered.

2.1 GSDAR as a generalized Newton algorithm

The proposedGSDAR is derived in an intuitiveway from the suitably formulatedKKT
conditions for the �0 penalized log-likelihood. We show that the GSDAR Algorithm 1
can be interpreted as a Newton-type method for finding roots of the KKT system (2)
even though the original problem (1) is nonconvex and nonsmooth. Let w = (β;d) ∈
R

p × R
p and

F(w) =
(
F1(w)

F2(w)

)

: Rp × R
p → R

2p,

where F1(w) = β − Hλ(β + d) and F2(w) = nd + n∇L(β).

Proposition 1 The iteration in (4) can be equivalently reformulated as

wk+1 = wk −
(
Hk
)−1

F
(
wk
)

, (6)

where

Hk =
(

Hk
1 Hk

2
n∇2L(βk) nI

)

with

Hk
1 =

(
0Ak Ak 0Ak I k

0I k Ak II k I k

)

and Hk
2 =

(−IAk Ak 0Ak I k

0I k Ak 0I k I k

)

.

The proof of this proposition is given in Appendix A.2. We remark that, although
the iteration (6) has exactly the same format of a Newton type algorithm, it does not
imply the superlinear convergence property from the semismooth Newton method
theory (Qi and Sun (1993); Qi (1993); Chen et al. (2000)). This is because the hard
thresholding operator in (2) is not Newton differentiable. A recent work Wang et al.
(2019) proved GSDAR with an approximate step size achieves fast local convergence
to stationary points for �0 constraint high-dimensional logistic regressionmodel. In the
following section, we establish an error bound of βk as an estimator of the underlying
target β∗.

3 Theoretical properties

In this section, we establish the �∞ error bound for the GSDAR estimator. Under
appropriate conditions, we show that ‖βk − β∗‖∞ achieves sharp estimation error
rate. Furthermore, if the minimum value of target signal is detectable, GSDAR will
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recover the oracle estimator in finite steps if T is greater than the true model size K .
We assume the following conditions.

(C1) There exist constants 0 < L < U < ∞ such that, for all β1 �= β2 with
‖β1 − β2‖0 ≤ 2T ,

0 < L ≤ (β1 − β2)
T · ∇2L(β̃) · (β1 − β2)

‖β1 − β2‖1‖β1 − β2‖∞
≤ U < ∞,

where β̃ = β1 + ν(β2 − β1) for any ν ∈ (0, 1).

(C2) ‖β∗
A∗‖min ≥ 3c1

L

√
log(p)

n , where c1 is a universal numerical constant.

Remark 1 Condition (C1) extends the weak cone invertibility condition in Ye and
Zhang (2010).This kindof restricted strong convexity conditions is needed inbounding
the estimation error in high-dimensional models Zhang et al. (2012). Condition (C2)
is needed to guarantee the target signal to be detectable.

3.1 �∞ Error bounds

Theorem 1 Assume (C1) holds with 0 < U < 1
T . Set K ≤ T and β0 = 0 in

Algorithm 1.

(i) Before Algorithm 1 terminates, we have

‖βk − β∗‖∞ ≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β∗‖∞ + 2

L
‖∇L(β∗)‖∞,

where ξ = 1 − 2L(1−TU )
T (1+K )

∈ (0, 1).
(ii) Assume the rows of X are i.i.d. sub-Gaussian with n � log(p), then there exist

universal constants {c1, c2, c3} with 0 < ci < ∞, i = 1, 2, 3, such that with
probability at least 1 − c2 exp(−c3 log(p)),

‖βk − β∗‖∞ ≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β∗‖∞ + 2c1
L

√
log(p)

n
.

It follows that

‖βk − β∗‖∞ ≤ O

(√
log(p)

n

)

with high probability if k ≥ O
(
log 1

ξ

n
log(p)

)
.

The proof of this theorem is given in Appendix A.4.
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Remark 2 The requirement U < 1
T is not essential since we can always rescale the

loss function L to make it hold. This rescaling is equivalent to multiplying a step size
to the dual variable in the the GSDAR algorithm. Let τ be this step size satisfying
0 < τ < 1

TU . Then, Theorem1 still holds by replacing ξ with 1− 2τ L(1−τTU )
T (1+K )

∈ (0, 1).

3.2 Support recovery

The following theorem establishes the support recovery property of GSDAR.

Theorem 2 Assume (C1) and (C2) hold with 0 < U < 1
T , and the rows of X are i.i.d.

sub-Gaussian with n � log(p). Set K ≤ T in Algorithm 1. Then with probability
at least 1 − c2 exp(−c3 log(p)), A∗ ⊆ Ak if k > log 1

ξ
9(T + K )(1 + U

L )r2, where

r = ‖β∗‖∞
‖β∗

A∗‖min
is the range of β∗.

The proof of this theorem is given in Appendix A.5.

Remark 3 Theorem 2 shows that the estimated support via GSDAR can recover the
true support with the cost at most O(log(T )) number of iteration if the minimum

signal strength of β∗ is above the detectable threshold O(

√
log(p)

n ). Support recovery
for sparse GLMs has also been studied in Li et al. (2017); Yuan et al. (2017) and
Shen and Li (2017). In Li et al. (2017), the authors propose a DC proximal New-
ton (DCPN) method to solve GLMs with nonconvex sparse promoting penalties such

as MCP/SCAD. They derive an estimation error in �2 norm with order O(

√
K log p

n )

under an assumption similar to (C1). They show that the true support can be recon-

verted under the requirement ‖β∗
A∗‖min ≥ O(

√
K log(p)

n ), which is stronger than our
assumption (C2). The computational complexity ofDCPN isworse thanGSDAR since
the DCPN is based on the multistage convex relaxation scheme to transform the origi-
nal nonconvex optimizations into a sequence of LASSO regularized GLMs, therefore,
a Lasso inner solver is called at each stage Ge et al. (2019). In Yuan et al. (2017)
and Shen and Li (2017), Gradient hard thresholding pursuit is shown to recover the

true support under the requirement ‖β∗
A∗‖min ≥ O(

√
K log(p)

n ), which is also stronger
than our assumption (C2). If we set T = K in GSDAR, then the stopping criterion
Ak = Ak+1 holds if k ≥ O(log(K )) since the estimated support coincides with the
true support. As a consequence, the oracle estimator will be recovered in O(log(K ))

steps. However, Yuan et al. (2017) or Shen and Li (2017) did not prove that the stop-
ping condition of gradient hard thresholding pursuit can be satisfied. Meanwhile, the
iteration complexity of Gradient hard thresholding pursuit analyzed by Shen and Li
(2017) is O(K ), which is worse than the complexity bound established here.

4 Adaptive GSDAR

In practice, the sparsity level of the true parameter value β∗ is unknown. So we regard
T as a tuning parameter. Let T increase from 0 to Q, a given positive integer. We

123



GSDAR: a fast Newton algorithm... 515

compute a set of solutions: {β̂(T ) : T = 0, 1, ..., Q}, where β̂(0) = 0. We take
Q = αn/ log(n) as suggested by Fan and Lv (2008), where α is a positive and finite
constant. In our numerical studies, we set α = 1. We can use a data-driven method
such as HBIC (Wang et al. 2013), mBIC (Bogdan et al. 2004, 2008) or mBIC2 (Żak-
Szatkowska and Bogdan 2011) to determine T̂ , the choice of T . Then we take β̂(T̂ )

as the final estimator of β∗.
We summarize the adaptive GSDAR in Algorithm 2.

Algorithm 2 AGSDAR
1: Input: β0, d0=−∇L(β0), an integer ϑ , an integer Q.
2: for k = 1, . . . , do
3: Run Algorithm 1 with T = ϑk and with initial value βk−1, dk−1. Denote the output by βk , dk .
4: if T > Q, then
5: stop
6: else
7: k = k + 1
8: end if
9: end for
10: Output: β̂(T̂ ) as the estimates of β∗.

5 Simulation studies and real data analysis

In this section, we conduct simulation studies to evaluate the performance of the
proposed method in the context of logistic regression with a binary response and use
real data to illustrate its applications. First, we compare AGSDAR with Lasso, MCP
and the stepwise selection method in terms of accuracy, efficiency and classification
accuracy rate. Then, we further compare AGSDAR with these methods on the effects
ofmodel parameters, including sample size n, model dimension p and correlation level
among the predictors. Third, we evaluate the computational efficiency of GSDAR by
examining the average number of iterations needed for GSDAR to converge. Finally,
we illustrate the application of GSDAR/AGSDAR on several real datasets.

Our implementation of Lasso and MCP is according to the R package ncvreg
developed by Breheny and Huang (2011). The stepwise selection method is imple-
mented in the R package bigstep (Bogdan et al. 2004, 2008). In the implementation
of AGSDAR, we set Q = n/ log(n), and use HBIC to choose the value of T . The R
code of GSDAR is available on GitHub at https://github.com/jian94/GSDAR.

5.1 Accuracy, efficiency and classification accuracy rate

We generate the design matrix X as follows. First, we generate a n × p random
Gaussian matrix X, whose entries are i.i.d. ∼ N (0, 1), and normalize its columns to
the

√
n length. Then the design matrix X is generated with x1 = x1, xp = xp, and

x j = x j + ρ(x j+1 + x j−1), j = 2, ..., p − 1. The underlying regression coefficient
β∗ with K nonzero coefficients is generated such that the K nonzero coefficients
in β∗ are uniformly distributed in (m1,m2), where m1 = 5

√
2 log p/n and m2 =
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Table 1 Numerical results (the
averaged relative error, CPU
time, the average classification
accuracy rate by prediction) on
data set with n = 300,
p = 5000, K = 10,
ρ = 0.2:0.2:0.8

ρ Method AREE Time(s) ACRP

0.2 Lasso 0.99 6.03 86.68%

MCP 0.95 11.93 93.95%

Stepwise 4.34 120.39 93.81%

AGSDAR 0.95 1.42 91.15%

0.4 Lasso 0.99 6.11 86.62%

MCP 0.95 11.07 94.37%

Stepwise 4.62 111.55 94.03%

AGSDAR 0.97 1.33 88.73%

0.6 Lasso 0.99 6.33 86.55%

MCP 0.96 11.47 93.85%

Stepwise 1.66 111.87 93.46%

AGSDAR 0.98 1.41 89.80%

0.8 Lasso 1.00 6.28 86.43%

MCP 0.97 11.47 93.38%

Stepwise 1.87 109.10 93.40%

AGSDAR 0.98 1.44 89.75%

100 · m1. The K nonzero coefficients are randomly assigned to the K components
of β∗. The response variable is generated according to yi ∼ Binomial(1, pi ), where
pi = exp(xTi β∗)/[1 + exp(xTi β∗)], i = 1, . . . , n.

We randomly choose 80% of the samples as the training set and the remaining
20% as the test set in calculating the classification accuracy rate. We take n = 300,
p = 5000, K = 10 and ρ = 0.2:0.2:0.8.

Table 1 presents the simulation results, including the average of relative estima-
tion error (AREE) of β̂ defined as AREE = 1

100

∑100
j=1 ‖β̂ j − β∗‖/‖β∗‖, CPU time

in seconds (Time) and average classification accuracy rate (ACAR) based on 100
independent replications.

We see that AGSDAR has about the same AREE values as Lasso, MCP, while the
stepwise method has the largest AREE values. In terms of the speed, AGSDAR is
about 5, 8 and 80 times faster than Lasso, MCP and the stepwise method, respectively.
For the average classification accuracy rate, AGSDAR has smaller ACRP values than
MCP and the stepwise method but higher ACRP values than Lasso. The simulation
results reported below demonstrate that AGSDAR tends to perform better than the
other methods in terms of model selection.

5.2 Influence of themodel parameters

We now consider the effects of each of the model parameters on the performance of
AGSDAR, Lasso, MCP and the stepwise method. We generate each row the n × p
design matrix X from N (0, �), where �i j = ρ|i− j |, 1 ≤ i, j ≤ p. The underly-
ing regression coefficient vector β∗ ∈ R

p is generated in such a way that the K
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nonzero coefficients in β∗ are uniformly distributed in (1, R), and the support A∗
is a randomly chosen subset of {1, ..., p} with |A∗| = K < n. Then the response
yi ∼ Binomial(1, pi ), where pi=exp(xTi β∗)/[1 + exp(xTi β∗)], i = 1, ..., n.

We compare the performance of themethods considered in terms of average positive
discovery rate (APDR), average false discovery rate (AFDR) and average combined
discovery rate (ADR) Luo and Chen (2014) defined as follows.

APDR = 1

100

∑ | Â⋂ A∗|
|A∗| ,

AFDR = 1

100

∑ | Â⋂ A∗c|
| Â| ,

ADR = APDR + (1 − AFDR),

where Â denotes the estimated support set. The simulation results are based on 100
independent replications.

5.2.1 Influence of the sample size n

Table 2 shows the influence of the sample size n on APDR, AFDR and ADR. We set
p = 500, K = 6, R = 10, ρ = 0.3 and let n vary from 100 to 400 by step 50.

We see that as the sample size n increases, Lasso always has the highest values of
APDR. However, Lasso also has the largest values of AFDR for each n, which is only a
little smaller than APDR when n > 100. This indicates that Lasso tends to over select
variables that are not in the support of the regression coefficient. AGSDAR always has
the smallest values of AFDR and highest values of ADRwhen n > 100, and its APDR
values are also not small. Therefore, AGSDAR avoids selecting the erroneous variable
while selecting as many relevant variables as possible into the model, especially when
the sample size n increases. MCP and the stepwise method are similar to AGSDAR in
terms of variable selection.However,MCPand the stepwisemethod tend to selectmore
irrelevant variables than AGSDAR. Overall, AGSDAR always selects more relevant
variables and fewer irrelevant variables.

5.2.2 Influence of the variable dimension p

Table 3 shows the influence of the model dimension p on the APDR, AFDR and ADR.
We set n = 100, K = 6, R = 10, ρ = 0.2, and take p = 100 to 700 with a step size
100.

Table 3 shows that Lasso has the largest values on APDR and AFDR, and low-
est values on ADR. Meanwhile, the AFDR values of Lasso are greater than 0.5 and
higher than those of APDR when p > 400 which suggests that Lasso selects more
irrelevant variables than relevant variables. AGSDAR, MCP and the stepwise method
have almost the same APDR values, especially when p < 500, indicating that AGS-
DAR, MCP and the stepwise method have similar ability to select relevant variables.
Besides, AGSDAR has the better AFDR and ADR values than Lasso and MCP, and
is comparable with the stepwise method with respect to AFDR and ADR. Hence,
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Table 2 Numerical results
(APDR, AFDR, ADR) on the
data p = 500, K = 6, R = 10,
ρ = 0.3 and n = 100:50:400

n method APDR AFDR ADR

100 Lasso 0.83 0.84 0.99

MCP 0.79 0.36 1.43

Stepwise 0.75 0.15 1.60

AGSDAR 0.72 0.19 1.53

150 Lasso 0.92 0.87 1.05

MCP 0.90 0.22 1.68

Stepwise 0.86 0.17 1.69

AGSDAR 0.85 0.15 1.70

200 Lasso 0.95 0.88 1.07

MCP 0.93 0.19 1.74

Stepwise 0.91 0.19 1.72

AGSDAR 0.90 0.12 1.78

250 Lasso 0.97 0.89 1.08

MCP 0.93 0.16 1.77

Stepwise 0.95 0.18 1.77

AGSDAR 0.93 0.06 1.87

300 Lasso 0.98 0.89 1.09

MCP 0.95 0.15 1.80

Stepwise 0.95 0.16 1.79

AGSDAR 0.96 0.06 1.90

350 Lasso 0.99 0.89 1.10

MCP 0.95 0.16 1.79

Stepwise 0.97 0.18 1.79

AGSDAR 0.96 0.05 1.91

400 Lasso 0.99 0.89 1.10

MCP 0.97 0.15 1.82

Stepwise 0.98 0.14 1.84

AGSDAR 0.98 0.05 1.93

AGSDAR tends to select fewer irrelevant variables and thus reduce the complexity of
the model.

5.2.3 Influence of the correlation�

Table 4 presents the influence of the correlation ρ on APDR, AFDR and ADR. We set
n = 150, p = 500, K = 6, R = 10 and ρ = 0.1 to 0.9 with an increasing step size
0.1.

We see from Table 4 that Lasso has the best APDR values and worst AFDR and
ADR values for every ρ. AGSDAR, MCP and the stepwise method have nearly the
same APDR values for each ρ. AGSDAR always has the best AFDR and ADR values
when ρ < 0.7, and it is still comparable to the stepwise method in terms of AFDR
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Table 3 Numerical results
(APDR, AFDR, ADR) on the
data n = 100, K = 6, R = 10,
ρ = 0.2 and p = 100:100:700

p Method APDR AFDR ADR

100 Lasso 0.92 0.77 1.15

MCP 0.83 0.20 1.63

Stepwise 0.83 0.15 1.68

AGSDAR 0.82 0.16 1.66

200 Lasso 0.88 0.81 1.07

MCP 0.83 0.23 1.60

Stepwise 0.80 0.16 1.64

AGSDAR 0.80 0.17 1.63

300 Lasso 0.89 0.82 1.07

MCP 0.82 0.29 1.53

Stepwise 0.77 0.16 1.61

AGSDAR 0.80 0.21 1.59

400 Lasso 0.84 0.84 1.00

MCP 0.79 0.34 1.45

Stepwise 0.74 0.18 1.56

AGSDAR 0.75 0.20 1.55

500 Lasso 0.83 0.85 0.98

MCP 0.78 0.35 1.43

Stepwise 0.70 0.17 1.53

AGSDAR 0.74 0.20 1.54

600 Lasso 0.79 0.85 0.94

MCP 0.77 0.39 1.38

Stepwise 0.70 0.19 1.51

AGSDAR 0.70 0.22 1.48

700 Lasso 0.80 0.85 0.95

MCP 0.77 0.37 1.40

Stepwise 0.68 0.20 1.48

AGSDAR 0.70 0.25 1.45

and ADR when ρ ≥ 0.7. Therefore AGSDAR can simultaneously select the relevant
variables and avoid the irrelevant variables for a wide spectrum of the values of ρ.

5.3 Number of iterations

To further evaluate the numerical convergence of GSDAR, we conduct simulations to
examine the number of iterations for GSDAR to converge with T = K in Algorithm 1.
We generate data in the same way as described in Sect. 5.2. We look at the influence
of the correlation level ρ. We record the average number of iterations for different
values of ρ. Figure 1 shows the average number of iterations of GSDAR based on
100 independent replications with n = 500, p = 1000, K = 2:2:50, R = 3 and
ρ = 0.1:0.2:0.7.
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Table 4 Numerical results
(APDR, AFDR, ADR) on the
data n = 150, p = 500, K = 6,
R = 10 and ρ = 0.1:0.1:0.9

ρ Method APDR AFDR ADR

0.1 Lasso 0.92 0.87 1.05

MCP 0.87 0.22 1.65

Stepwise 0.86 0.18 1.68

AGSDAR 0.85 0.15 1.70

0.2 Lasso 0.92 0.87 1.05

MCP 0.89 0.21 1.68

Stepwise 0.85 0.18 1.67

AGSDAR 0.85 0.15 1.70

0.3 Lasso 0.92 0.87 1.05

MCP 0.90 0.23 1.67

Stepwise 0.87 0.17 1.70

AGSDAR 0.88 0.13 1.75

0.4 Lasso 0.91 0.87 1.04

MCP 0.87 0.23 1.64

Stepwise 0.84 0.20 1.64

AGSDAR 0.84 0.15 1.69

0.5 Lasso 0.90 0.86 1.04

MCP 0.85 0.26 1.59

Stepwise 0.85 0.18 1.67

AGSDAR 0.83 0.16 1.67

0.6 Lasso 0.90 0.87 1.03

MCP 0.88 0.22 1.66

Stepwise 0.85 0.19 1.66

AGSDAR 0.84 0.16 1.68

0.7 Lasso 0.90 0.86 1.04

MCP 0.83 0.26 1.57

Stepwise 0.81 0.18 1.63

AGSDAR 0.80 0.22 1.58

0.8 Lasso 0.88 0.86 1.02

MCP 0.75 0.31 1.44

Stepwise 0.79 0.22 1.57

AGSDAR 0.75 0.26 1.49

0.9 Lasso 0.82 0.84 0.98

MCP 0.55 0.48 1.07

Stepwise 0.59 0.39 1.20

AGSDAR 0.58 0.44 1.14
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Fig. 1 The average number of iterations of GSDAR as K increases

As shown in Fig. 1, the average number of iterations of GSDAR increases as the
sparsity level increases from 2 to 50 for every ρ. But even when the sparsity level K
is 50, the average number of iterations is only 4 when ρ = 0.1, 0.3, and0.5, and is
about 5.5 when ρ = 0.7. This indicates that GSDAR converges fast.

5.4 Real data examples

We illustrate the application of GSDAR to five data sets: duke breast-cancer, gisette,
leukemia, madelon and splice, which are described in Table 5. These datasets
are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. The duke
breast-cancer and leukemia data sets have been standardized such that the mean of
each predictor is 0 and variance is 1. The response variable takes the value y = 1
if the subject has the disease and y = 0 otherwise. We fit the logistic regression
model to these data sets and compare the classification accuracy rate of the proposed
methods with Lasso, MCP and the stepwise method. Set T = n/ log(n) in GSDAR.
We implement the AGSDAR, Lasso, MCP and the stepwise method as described in
Sect. 5. The results are given in Table 6, which show that the classification accuracy
rates of GSDAR and AGSDAR are comparable with those of Lasso, MCP and the
stepwise method. Moreover, we denote the number of selected variables by T̂ , which
is showed in Table 7.

In summary, our simulation results and application to data examples demonstrated
that the proposed GSDAR algorithm performs better than or comparably with other
penalized methods such as Lasso and MCP and the stepwise selection method.

6 Conclusion

GSDAR is a generalizedNewton algorithm for fitting sparse, high-dimensionalGLMs.
It iteratively solves the KKT system for the �0-penalized likelihood for the GLMs.
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Table 5 Description of four real data sets

Data name n Samples p Features Training size n1 Testing set n2

Duke breast-cancer 42 7129 38 4

Gisette 7000 5000 6000 1000

Leukemia 72 7129 38 34

Madelon 2600 500 2000 600

Splice 3175 60 1000 2175

Table 6 Classification accuracy rate

Data name GSDAR AGSDAR Lasso MCP Stepwise

Duke breast-cancer 1 1 1 25% 1

Gisette 54.10% 56.30% 51.30% 59.90% 49.40%

Leukemia 91.18% 94.12% 91.17% 94.11% 44.12%

Madelon 57.83% 59.83% 61.50% 61.50% 49.00%

Splice 84.23% 85.05% 85.70% 84.91% 51.63%

Table 7 The number of selected variables(T̂ )

Data name GSDAR AGSDAR Lasso MCP Stepwise

Duke breast-cancer 10 5 23 5 2

Gisette 344 60 507 49 48

Leukemia 5 14 13 4 1

Madelon 6 3 4 2 2

Splice 30 25 40 26 14

We establish an optimal �∞ error bound for the sequence generated by GSDAR algo-
rithm under appropriate regularity and sparsity conditions. Furthermore, we show
that the oracle estimator can be recovered with high probability if the target signal is
detectable. We also propose the AGSDAR algorithm, an adaptive version of GSDAR,
to handle the problem of unknown sparsity level. Numerical results on simulated and
real data demonstrate that GSDAR/AGSDAR algorithm is fast, stable and accurate.
Therefore, the proposed GSDAR algorithm is a useful addition to the literature on
variable selection in high-dimensional GLMs.

For the future research, it would be interesting to generalize GSDAR to solve
structured sparsity learning problems (Breheny and Huang 2015; Jiao et al. 2017) with
general convex losses or to problems related to deep neural networks (Scardapane et al.
2017; Louizos et al. 2018; Ma et al. 2019).
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A Appendix

In the appendix, we prove Lemma 1, Proposition 1 and Theorems 1 and 2.

A.1 Proof of Lemma 1

Proof Let Lλ(β) = L(β) + λ‖β‖0. Assume β̂ is a global minimizer of Lλ(β). Then
by Theorem 10.1 in Rockafellar and Wets (2009), we have

0 ∈ ∇L(β̂) + λ∂‖β̂‖0, (7)

where ∂‖β̂‖0 denotes the limiting subdifferential (see Definition 8.3 in Rockafellar
and Wets (2009)) of ‖ · ‖0 at β̂. Let d̂ = −∇L(β̂) and define G(β) = 1

2‖β − (β̂ +
d̂)‖2 + λ‖β‖0. We recall that, from the definition of the limiting subdifferential of
Definition 8.3 in Rockafellar and Wets (2009)), ∂‖β̂‖0 satisfies that ‖β‖0 ≥ ‖β̂‖0 +
〈∂‖β̂‖0,β − β̂〉 + o(‖β − β̂‖) for any β ∈ R

p. (7) is equivalent to

0 ∈ β̂ − (β̂ + d̂) + λ∂‖β̂‖0.

Moreover, β̃ being the minimizer of G(β) is equivalent to 0 ∈ ∂G(β̃). Obviously,
β̂ satisfies 0 ∈ ∂G(β̂). Thus we deduce that β̂ is a KKT point of G(β). Then β̂ =
Hλ(β̂+d̂) follows from the result that theKKTpoints ofG coincidewith its coordinate-
wise minimizer (Huang et al. 2021). Conversely, suppose β̂ and d̂ satisfy (2), then β̂ is
a local minimizer of Lλ(β). To show β̂ is a local minimizer of Lλ(β), we can assume
h is small enough and ‖h‖∞ <

√
2λ. Then we will show Lλ(β̂ + h) ≥ Lλ(β̂) in two

cases respectively.
First, we denote

Â = {i : |β̂i + d̂i | ≥ √
2λ}, Î = {i : |β̂i + d̂i | <

√
2λ}.

By the definition of Hλ(·) and (2), we can conclude that |β̂i | ≥ √
2λ when i ∈

Â and β̂ Î = 0. Thus it yields that supp(β̂) = Â. Moreover, we also have d̂ Â =
[−∇L(β̂)] Â = 0, which is equivalent to β̂ Â ∈ argmin

β Â

L̃(β Â).

Case 1: h Î �= 0.

‖β̂ + h‖0 = ‖β̂ Â + h Â‖0 + ‖h Î‖0,
λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖β̂ Â + h Â‖0 + λ‖h Î ‖0 − λ‖β̂ Â‖0.
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Because |β̂i | ≥ √
2λ for i ∈ Â and ‖h‖∞ <

√
2λ, we have

λ‖β̂ Â + h Â‖0 − λ‖β̂ Â‖0 = 0,

λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖h Î‖0 > λ.

Therefore, we get

Lλ(β̂ + h) − Lλ(β̂)

=
n∑

i=1

[c(xTi (β̂ + h)) − c(xTi β̂)] − yTXh + λ‖h Î ‖0

>

n∑

i=1

[c(xTi (β̂ + h)) − c(xTi β̂)] − yTXh + λ

> 0.

Letm(h) =∑n
i=1[c(xTi (β̂ +h))−c(xTi β̂)]−yTXh, som(h) is a continuous function

about h. As h is small enough and ‖h‖∞ <
√
2λ, then m(h) + λ > 0. Thus the last

inequality holds.

Case 2: h Î = 0.

λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖β̂ Â + h Â‖0 − λ‖β̂ Â‖0.

As |β̂i | ≥ √
2λ for i ∈ Â and ‖h Â‖∞ <

√
2λ, then we have

λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖β̂ Â + h Â‖0 − λ‖β̂ Â‖0 = 0,

and

Lλ(β̂ + h) − Lλ(β̂)

=
n∑

i=1

[c(xTi (β̂ + h)) − c(xTi β̂)] − yTXh

=
n∑

i=1

[c(xT
i( Â)

(β̂ Â + h Â)) − c(xT
i( Â)

β̂ Â)] − yTX Âh Â

=
n∑

i=1

[c(xT
i( Â)

(β̂ Â + h Â))] − yTX Â(β̂ Â + h Â)

−
n∑

i=1

[c(xT
i( Â)

β̂ Â)] + yTX Âβ̂ Â

≥ 0.
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As known that β̂ Â ∈ argmin
β Â

L̃(β Â), so the last inequality holds. In summary, β̂ is a

local minimizer of Lλ(β̂). ��

A.2 Proof of Proposition 1

Proof Denote Dk = − (Hk
)−1

F
(
wk
)
. Then

wk+1 = wk −
(
Hk
)−1

F
(
wk
)

can be recast as

Hk Dk = −F
(
wk
)

, (8)

wk+1 = wk + Dk . (9)

Partition wk, Dk and F
(
wk
)
according to Ak and I k such that

wk =

⎛

⎜
⎜
⎜
⎝

βk
Ak

βk
I k

dk
Ak

dk
I k

⎞

⎟
⎟
⎟
⎠

, Dk =

⎛

⎜
⎜
⎜
⎝

Dβ

Ak

Dβ

I k

Dd
Ak

Dd
I k

⎞

⎟
⎟
⎟
⎠

, (10)

F
(
wk
)

=

⎡

⎢
⎢
⎢
⎣

−dk
Ak

βk
I k

n[∇L(βk)]Ak + ndk
Ak

n[∇L(βk)]I k + ndk
I k

⎤

⎥
⎥
⎥
⎦

. (11)

Substituting (10), (11) and Hk into (8), we have

(
dkAk + Dd

Ak

)
= 0Ak , (12)

βk
I k + Dβ

I k
= 0I k , (13)

n∇2L(βk)

(
Dβ

Ak

Dβ

I k

)

+ n

(
Dd

Ak

Dd
I k

)

= n[∇L(βk)] + ndk . (14)

It follows from (9) that

⎛

⎜
⎜
⎜
⎝

βk+1
Ak

βk+1
I k

dk+1
Ak

dk+1
I k

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

βk
Ak + Dβ

Ak

βk
I k + Dβ

I k

dk
Ak + Dd

Ak

dk
I k

+ Dd
I k

⎞

⎟
⎟
⎟
⎠

. (15)
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Substituting (15) into (12)–(14), we get (4) of Algorithm 1. This completes the proof.
��

A.3 Preparatory lemmas

The proofs of Theorems 1 and 2 are built on the following lemmas.

Lemma 2 Assume (C1) holds and ‖β∗‖0 = K ≤ T . Denote Bk = Ak\Ak−1. Then,

‖∇BkL(βk)‖1‖∇BkL(βk)‖∞ ≥ 2Lζ [L(βk) − L(β∗)],

where ζ = |Bk |
|Bk |+|A∗\Ak−1| .

Proof Obviously, this lemma holds if Ak = Ak−1 or L(βk) ≤ L(β∗). So we only
prove the lemma by assuming Ak �= Ak−1 and L(βk) > L(β∗). The condition (C1)
indicates

L(β∗) − L(βk) − 〈∇L(βk),β∗ − βk〉
≥ L

2

∥
∥β∗ − βk

∥
∥
1

∥
∥β∗ − βk

∥
∥∞.

Hence,

〈−∇L(βk),β∗ − βk〉
= 〈∇L(βk),−β∗〉
≥ L

2

∥
∥β∗ − βk

∥
∥
1

∥
∥β∗ − βk

∥
∥∞ + L(βk) − L(β∗)

≥ √
2L
√∥
∥β∗ − βk

∥
∥
1

∥
∥β∗ − βk

∥
∥∞
√

L(βk) − L(β∗).

From the definition of Ak and A∗, it is known that Bk contains the first |Bk |-largest
elements (in absolute value) of∇L(βk), and supp(∇L(βk))

⋂
supp(β∗) = A∗\Ak−1.

Thus, we have

〈∇L(βk),−β∗〉 ≤ 1√
ζ

‖∇BkL(βk)‖2‖β∗
A∗\Ak−1‖2

= 1√
ζ

‖∇BkL(βk)‖2‖(β∗ − βk)A∗\Ak−1‖2

≤ 1√
ζ

‖∇BkL(βk)‖2‖β∗ − βk‖2

≤ 1√
ζ

√

‖∇BkL(βk)‖1‖∇BkL(βk)‖∞

×
√

‖β∗ − βk‖1‖β∗ − βk‖∞.
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Therefore,

√
2L
√

L(βk) − L(β∗)

≤ 1√
ζ

√

‖∇BkL(βk)‖1‖∇BkL(βk)‖∞.

In summary,

‖∇BkL(βk)‖1‖∇BkL(βk)‖∞ ≥ 2Lζ [L(βk) − L(β∗)].

��
Lemma 3 Assume (C1) holds with 0 < U < 1

T , and K ≤ T in Algorithm 1. Then
before Algorithm 1 terminates,

L(βk+1) − L(β∗) ≤ ξ [L(βk) − L(β∗)],

where ξ = 1 − 2L(1−TU )
T (1+K )

∈ (0, 1).

Proof Let �k = βk − ∇L(βk). The condition of (C1) indicates

L(�k+1|Ak+1) − L(βk+1) ≤ 〈∇L(βk+1),�k+1|Ak+1 − βk+1〉
+ U

2

∥
∥�k+1|Ak+1 − βk+1

∥
∥
1

∥
∥�k+1|Ak+1 − βk+1

∥
∥∞.

On the one hand, by the definition of βk+1 and ∇L(βk+1), we have

〈∇L(βk+1),�k+1|Ak+1 − βk+1〉
= 〈∇L(βk+1),�k+1|Ak+1〉
= 〈∇Ak+1L(βk+1),�k+1

Ak+1〉
= 〈∇Ak+1\AkL(βk+1),�k+1

Ak+1\Ak 〉.

Further, we also have

∥
∥�k+1|Ak+1 − βk+1

∥
∥
1

= ∥∥�k+1|Ak+1\Ak + �k+1|Ak+1
⋂

Ak

− βk+1|Ak+1
⋂

Ak − βk+1|Ak\Ak+1

∥
∥
1

= ∥∥�k+1
Ak+1\Ak

∥
∥
1 + ∥∥�k+1

Ak+1
⋂

Ak − βk+1
Ak+1

⋂
Ak

∥
∥
1

+ ∥∥βk+1
Ak\Ak+1

∥
∥
1

= ∥∥�k+1
Ak+1\Ak

∥
∥
1 + ∥∥βk+1

Ak\Ak+1

∥
∥
1,
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and

∥
∥�k+1|Ak+1 − βk+1

∥
∥∞

= ∥∥�k+1|Ak+1\Ak + �k+1|Ak+1
⋂

Ak

− βk+1|Ak+1
⋂

Ak − βk+1|Ak\Ak+1

∥
∥∞

= ∥∥�k+1
Ak+1\Ak

∥
∥∞
∨∥
∥βk+1

Ak\Ak+1

∥
∥∞,

where a
∨

b = max{a, b}. By the definition of Ak , Ak+1 and βk+1, we know that

|Ak\Ak+1| = |Ak+1\Ak |, �k+1
Ak\Ak+1 = βk+1

Ak\Ak+1 .

By the definition of Ak+1, we can conclude that

‖�k+1
Ak\Ak+1‖1 = ‖βk+1

Ak\Ak+1‖1 ≤ ‖�k+1
Ak+1\Ak‖1,

‖�k+1
Ak+1\Ak‖∞

∨
‖βk+1

Ak\Ak+1‖∞ = ‖�k+1
Ak+1\Ak‖∞.

Due to −∇Ak+1\AkL(βk+1) = �k+1
Ak+1\Ak and U < 1

T , hence we can deduce that

L(�k+1|Ak+1) − L(βk+1)

≤ 〈∇Ak+1\AkL(βk+1),�k+1
Ak+1\Ak 〉 +U

∥
∥�k+1

Ak+1\Ak

∥
∥
1

∥
∥�k+1

Ak+1\Ak

∥
∥∞

≤ −(1/T −U )
∥
∥∇Ak+1\AkL(βk+1)

∥
∥
1 × ∥∥∇Ak+1\AkL(βk+1)

∥
∥∞.

By the definition of βk+1, we have

L(βk+1) − L(βk) ≤ L(�k |Ak ) − L(βk)

≤ −(1/T −U )
∥
∥∇Ak+1\AkL(βk+1)

∥
∥
1 × ∥∥∇Ak+1\AkL(βk+1)

∥
∥∞.

Moreover, |A∗\Ak−1|
|Bk | ≤ K . By Lemma 2, we have

L(βk+1) − L(βk) ≤ −2L(1 − TU )

T (1 + K )
[L(βk) − L(β∗)].

Therefore, we have

L(βk+1) − L(β∗) ≤ ξ [L(βk) − L(β∗)],

where ξ = 1 − 2L(1−TU )
T (1+K )

∈ (0, 1). ��
Lemma 4 Assume L satisfies (C1) and

L(βk+1) − L(β∗) ≤ ξ [L(βk) − L(β∗)]
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for all k ≥ 0. Then,

‖βk − β∗‖∞ ≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β0 − β∗‖∞

+ 2

L
‖∇L(β∗)‖∞.

(16)

Proof If ‖βk − β∗‖∞ <
2‖∇L(β∗)‖∞

L , then (16) holds, so we only consider the case

that ‖βk − β∗‖∞ ≥ 2‖∇L(β∗)‖∞
L . On the one hand, L satisfies (C1), then

L(βk) − L(β∗)

≥ 〈∇L(β∗),βk − β∗〉 + L

2

∥
∥βk − β∗∥∥

1

∥
∥βk − β∗∥∥∞

≥ −‖∇L(β∗)‖∞‖βk − β∗‖1 + L

2

∥
∥βk − β∗∥∥

1

∥
∥βk − β∗∥∥∞.

Due to ‖βk − β∗‖∞ ≥ 2‖∇L(β∗)‖∞
L , then

(‖βk − β∗‖1 − ‖βk − β∗‖∞)

(
L

2
‖βk − β∗‖∞ − ‖∇L(β∗)‖∞

)

≥ 0.

Further, we can get

L

2
‖βk − β∗‖2∞ − ‖∇L(β∗)‖∞‖βk − β∗‖∞ − [L(βk) − L(β∗)] ≤ 0,

which is univariate quadratic inequality about ‖βk − β∗‖∞. Thus, by simple compu-
tation, we can get

‖βk − β∗‖∞ ≤
√

2max{L(βk) − L(β∗), 0}
L

+ 2‖∇L(β∗)‖∞
L

. (17)

On the other hand, because L satisfies (C1), then

L(β0) − L(β∗)

≤ 〈∇L(β∗),β0 − β∗〉 + U

2

∥
∥β0 − β∗∥∥

1

∥
∥β0 − β∗∥∥∞

≤ ∥∥∇L(β∗)
∥
∥∞
∥
∥β0 − β∗∥∥

1 + U

2

∥
∥β0 − β∗∥∥

1

∥
∥β0 − β∗∥∥∞

≤ (K + T )
∥
∥β0 − β∗∥∥∞(‖∇L(β∗)

∥
∥∞ + U

2

∥
∥β0 − β∗∥∥∞).

Then, we can get

L(βk) − L(β∗) ≤ ξ [L(βk−1) − L(β∗)]
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≤ ξ k[L(β0) − L(β∗)]
≤ ξ k(K + T )

∥
∥β0 − β∗∥∥∞

× (‖∇L(β∗)
∥
∥∞ + U

2

∥
∥β0 − β∗∥∥∞)

≤ ξ k(L +U )(K + T )

2

∥
∥β0 − β∗∥∥2∞.

Hence, by (17), we have

‖βk − β∗‖∞ ≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β0 − β∗‖∞

+ 2

L
‖∇L(β∗)‖∞.

��
Lemma 5 (Proof of Corollary 2 in Loh and Wainwright (2015)). Assume x ,

i j s are
sub-Gaussian and n � log(p), then there exists universal constants (c1, c2, c3) with
0 < ci < ∞, i = 1, 2, 3 such that

P

(

‖∇L(β∗)‖∞ ≥ c1

√
log(p)

n

)

≤ c2 exp(−c3 log(p)).

A.4 Proof of Theorem 1

Proof By Lemma 3, we have

L(βk+1) − L(β∗) ≤ ξ [L(βk) − L(β∗)],

where

ξ = 1 − 2L(1 − TU )

T (1 + K )
∈ (0, 1).

So the conditions of Lemma 4 are satisfied. Taking β0 = 0, we can get

‖βk − β∗‖∞

≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β∗‖∞ + 2

L
‖∇L(β∗)‖∞.

By Lemma 5, then there exists universal constants (c1, c2, c3) defined in Lemma 5,
with at least probability 1 − c2 exp(−c3 log(p)), we have

‖βk − β∗‖∞
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≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β∗‖∞ + 2c1
L

√
log(p)

n
. (18)

Some algebra shows that

‖βk − β∗‖∞ ≤ O(

√
log(p)

n
)

by taking k ≥ O(log 1
ξ

n
log(p) ) in (18). Then, the proof is complete. ��

A.5 Proof of Theorem 2

Proof (18) and assumption (C2) and some algebra shows that that

‖βk − β∗‖∞

≤
√

(K + T )(1 + U

L
)(
√

ξ)k‖β∗‖∞ + 2

3
‖β∗

A∗‖min

< ‖β∗
A∗‖min,

if k > log 1
ξ
9(T + K )(1 + U

L )r2. This implies that A∗ ⊆ Ak . ��
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