Computational Statistics (2022) 37:507-533
https://doi.org/10.1007/s00180-021-01098-z

ORIGINAL PAPER

®

Check for
updates

GSDAR: a fast Newton algorithm for £ regularized
generalized linear models with statistical guarantee

Jian Huang'® - Yuling Jiao? - Lican Kang? - Jin Liu? - Yanyan Liu? -
Xiliang Lu?

Received: 8 July 2020 / Accepted: 13 March 2021/ Published online: 29 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

We propose a fast Newton algorithm for £ regularized high-dimensional generalized
linear models based on support detection and root finding. We refer to the pro-
posed method as GSDAR. GSDAR is developed based on the KKT conditions for
£o-penalized maximum likelihood estimators and generates a sequence of solutions
of the KKT system iteratively. We show that GSDAR can be equivalently formulated
as a generalized Newton algorithm. Under a restricted invertibility condition on the
likelihood function and a sparsity condition on the regression coefficient, we establish
an explicit upper bound on the estimation errors of the solution sequence generated
by GSDAR in supremum norm and show that it achieves the optimal order in finite
iterations with high probability. Moreover, we show that the oracle estimator can be
recovered with high probability if the target signal is above the detectable level. These
results directly concern the solution sequence generated from the GSDAR algorithm,
instead of a theoretically defined global solution. We conduct simulations and real
data analysis to illustrate the effectiveness of the proposed method.

Keywords High-dimensional generalized linear models - Sparse learning -
£o-penalty - Support detection - Estimation error

B Jian Huang
jian-huang @uiowa.edu

B Yanyan Liu
liuyy @whu.edu.cn

Department of Statistics and Actuarial Science, University of Iowa, lowa City, lowa 52242, USA
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Center of Quantitative Medicine Duke-NUS Medical School, Singapore, Singapore

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-021-01098-z&domain=pdf
http://orcid.org/0000-0002-5218-9269

508 J.Huang et al.

1 Introduction

Generalized linear models (GLMs) are an important class of statistical models that
have wide applications in practice (Nelder and Wedderburn 1972; McCullagh 2019).
In GLMs, the conditional distribution of the response variable ¥ € R, given the value
of the vector of the covariates x € R”, follows an exponential family distribution with
the density function

f(y; 0) =exp[yd —c(@) +d()],

where ¢(-) and d(-) are known functions, § = x! 8*, B* € RP” is the vector of
underlying regression coefficients. Suppose we have a random sample {(x;, y;) : i =
1, ..., n} that are i.i.d copies of (x, Y). Let E(y;|x;) = u;, where u; is related to the
linear function of the predictors 6; = xiT B through a monotone and differentiable link
function g = (¢)~! such that

g(ui) = 0;.

The GLMs include several important special models, including linear regression, logis-
tic regression and Poisson regression.

When the number of predictors p exceeds the sample size n, it is often reasonable
to assume that the model is sparse in the sense that the number of predictors that are
truly related to the response is much smaller than n. Many researchers have proposed
penalized methods for variable selection and estimation in high-dimensional GLMs.
Park and Hastie (2007) and Van de Geer et al. (2008) extended the Lasso method (Tib-
shirani 1996) from linear regression to GLMs. Meier et al. (2008) proposed the group
lasso for logistic regression. Friedman et al. (2010) developed coordinate descent to
solve the elastic net (Zou and Hastie 2005) penalized GLMs. Path following proximal
gradient descent (Nesterov 2013) was adopted in Wang et al. (2014) and Loh and
Wainwright (2015) to solve the SCAD (Fan and Li 2001) and MCP (Zhang 2010)
regularized GLMs. Li et al. (2017) proposes a DC proximal Newton (DCPN) method
to solve GLMs with sparsity promoting nonconvex penalties such as SCAD and MCP.
Recently, several authors considered Newton type algorithm for solving sparse GLMs
(Wang et al. 2019; Yuan et al. 2017; Shen and Li 2017).

In addition, there is a large body of work on variable selection using £y penal-
ties. Many researchers have developed methods that are modifications of the original
Bayes information criterion (BIC) (Schwarz et al. 1978), including mBIC for control-
ling FWER (Bogdan et al. 2004, 2008) and other modifications of BIC for controlling
false discovery rate (Frommlet et al. 2012; Zak-Szatkowska and Bogdan 2011). Vari-
able selection methods based on these criteria have been applied to high-dimensional
problems such as genomewide association studies (GWAS) using heuristic search
methods (Dolejsi et al. 2014; Frommlet et al. 2012). Another interesting algorithmic
approach for selection with € penalties is discussed in Frommlet and Nuel (2016).
Furthermore, the extended BIC (EBIC) (Chen and Chen 2008, 2012) is also an impor-
tant method for model selection with £(penalties, and its relevant theoretical properties
have been studied (Abramovich et al. 2006; Birgé and Massart 2001). Finally, in the

@ Springer

GSDAR: a fast Newton algorithm... 509

context of genetic association studies, Frommlet et al. (2016) proposed the method
for high-dimensional model selection with £(penalties.

In this paper, we consider the problem of variable selection and estimation in high-
dimensional GLMs based on the £y-penalized minimization problem

ﬂrIEIIiRI}, L(B) + AlIBllo. ey

where L(B) = —% 1 [y,- xiT B — c(xiTﬂ)] is the negative log-likelihood function,
IIB1lo is the number of nonzero elements of B, and A > 0 is a tuning parameter.

It is well known that the £p-penalized minimization problem (1) is NP-hard (Chen
et al. 2014; Natarajan 1995). Therefore, it is infeasible or extremely difficult to com-
pute the exact solution to this minimization problem in high-dimensional settings.
We propose a computational approach to approximate the solution to (1) based on a
nontrivial extension of the support detection and rooting finding (SDAR) algorithm
Huang et al. (2018), developed in the context of £(penalized linear regression mod-
els. GSDAR is a computational algorithm motivated from the KKT conditions. It
generates a sequence of solutions {ﬂk}k iteratively, based on support detection using
primal and dual information. We show that GSDAR can be equivalently formulated
as a generalized Newton algorithm for finding the root of the KKT systems. Under
a restricted invertibility condition on the likelihood function and a sparsity condition
on the regression coefficient B*, we derive an explicit upper bound on the estimation
errors of the solution sequence in supremum norm and show that it achieves optimal
order in finite iterations. Moreover, we show that the oracle estimator can be recov-
ered with high probability if the target signal is over the detectable level. These results
directly concern the solution sequence generated from the GSDAR algorithm, instead
of a theoretically defined global. Therefore, there is no disconnection between our
theoretical results and computation algorithm.

The rest of this paper is organized as follows. In Sect. 2 we derive the GSDAR
algorithm based on an appropriate formulation of the KKT conditions. We also show
that GSDAR can be equivalently formulated as a semismooth Newton algorithm. In
Sect. 3 we present an upper bound on the estimation error of the solution sequence
generated from GSDAR. In Sect. 4, we extend GSDAR algorithm to AGSDAR, an
adaptive version of GSDAR. In Sect. 5 we evaluate the performance of GSDAR and
AGSDAR on simulated and real data and compare it with several state-of-the-art
methods. We conclude in Sect. 6. Proofs of the theorems are given in the Appendix.

2 Derivation of GSDAR

First, we introduce some notation used throughout the paper. We write n 2> log(p)
to mean that n > clog(p) for some universal constant ¢ € (0, 00), where p diverges

as n goes to infinity. Let [|B]l, = (Zle |,3i|q)$» q € [1, o], denote the g-norm
of a vector B = (B, ..., ﬂp)T € RP. Denote the support of B by supp(f) = {i :
Bi #0,i =1,.., p} and A* = supp(B*). Let |A| be the size of the set A. Let
B = (Bi,i € A) e R4 andlet 8|4 € R” withitsi-thelement (8|4); = B;1(i € A),

@ Springer

510 J.Huang et al.

where 1(-) is the indicator function. Denote X4 = (xj, j € A) € R™*IAl where x jis
Jj-th column of the covariate matrix X € R"*?. Let ||B|1.0c0 and || 8|/min be the T-th
largest element (in absolute value) and the minimum absolute value of 8, respectively.
Let VL and V2L be the gradient and Hessian of function L, respectively.

The following lemma gives the KKT conditions for (1).

Lemma 1 Ifﬁ is a minimizer of (1), then ﬁ satisfies:

{Ii: ~VL@), o

B=H.@B+4d),
where H, (-) is the hard thresholding operator whose i-th element is defined by

~fo. 1Bil<v24,
(H*(ﬂ))l_{ﬂi, 1Bi] > V2%

Conversely, lf/ﬁ\ andd satisfy (2), then ﬁ is a local minimizer of (1).

The proof of Lemma 1 is given in Appendix A.1.
Let A = supp(ﬁ) and T = (A)C By the definition of H,(-) and (2), we have

={i:|Bi+di| =21}, T={i:|B+d]| <21}

and
Br=0
d>=0
ﬁg argmin Z(ﬂ;)
Bz
d; = [-VLPB);,
where

n

~ 1
S0 =L@l = 3 [wxla Bz - c(xi583)].

i=1

Let {8*, dk} be the output of k-th iteration in GSDAR algorithm. If { g*, d*} approx-
imates {ﬂ d} well, then {AX, I} also approximates {A 1 } well, where {AX, I} is
defined as

AR = (i 1BE 4 dF| = V2R), TR =i |BE 4 dF| < V22, A3)

@ Springer

GSDAR: a fast Newton algorithm... 511

We obtain a new approximation pair (B¥F!, d*t1} as follows:

Bril=0

di'=0

ﬂ'jjl € argmin E(ﬂAk))
B ak

di = [-vL 1,

where

d I ¢ T T

L(ﬂAk) = L(ﬂlA/\) = _; Z I:yixi(Ak)ﬂAk - c(xi(Ak)ﬂAk):I :
i=1

If the minimizer ﬂlz*k'l of (4) is not unique, we choose the one with the smallest value

in £o-norm. If we have the prior information that ||8*|lo < T, then we set

V2i =] B* +d* 7. 5)

in (3). With this choice of A, we have |AX| = T in every iteration. Let ﬂo be an initial
value, then we obtain a sequence of solutions {ﬂk, k > 1} by using (3) and (4) with
the A in (5).

We give a detailed description of the GSDAR algorithm in Algorithm 1.

Algorithm 1 GSDAR

1: Input: B9, 7,a% = —vLBY:; k=0

2: fork=0,1,..., do

30 A= {j 1By +db| = 1BF + a7 oo}, 1 = (AR

. k+1
4: ﬂ]gkl =0.
. +
5: dAk =0. ~
6: ﬂ/;tl = argmin L(B 4k).
B 4k

7. d = Ve
8 if Ak = AK*1 then

9: Stop and denote the last iteration n ﬂf’ d > dIA.
10: else

11: k=k+1

12: endif

13: end for _

14: Output: g = (ﬂ%, ﬂ};)T as the estimates of B*.

In Algorithm 1, we usually set the initial value B° = 0. We terminate GSDAR
when A% = AK*1 for some k, because the sequences generated by GSDAR will not
change. In Sect. 3, we will prove that under some regularity conditions on X and g%,

@ Springer

512 J.Huang et al.

with high probability A* = A¥ = A%+ in finite steps, i.e., the GSDAR will stop and
the oracle estimator will be recovered.

2.1 GSDAR as a generalized Newton algorithm

The proposed GSDAR is derived in an intuitive way from the suitably formulated KKT
conditions for the £(penalized log-likelihood. We show that the GSDAR Algorithm 1
can be interpreted as a Newton-type method for finding roots of the KKT system (2)
even though the original problem (1) is nonconvex and nonsmooth. Let w = (8; d) €
R? x R? and

F(w) = <2£z;> :RP x R? — R??,

where Fi(w) = 8 — H, (B +d) and F>(w) = nd +nVL(B).

Proposition 1 The iteration in (4) can be equivalently reformulated as

whtl = wk — (fHk)_l F (wk) , (6)
where
it = <nV292]]((ﬂk) j:f)
with

T YIVE \INIT: T e VYTV NI
g{l_(OIkAk I[k1k> and 3 _(0k 4k 0[k1k>.

The proof of this proposition is given in Appendix A.2. We remark that, although
the iteration (6) has exactly the same format of a Newton type algorithm, it does not
imply the superlinear convergence property from the semismooth Newton method
theory (Qi and Sun (1993); Qi (1993); Chen et al. (2000)). This is because the hard
thresholding operator in (2) is not Newton differentiable. A recent work Wang et al.
(2019) proved GSDAR with an approximate step size achieves fast local convergence
to stationary points for £y constraint high-dimensional logistic regression model. In the
following section, we establish an error bound of B* as an estimator of the underlying
target B*.

3 Theoretical properties
In this section, we establish the £,, error bound for the GSDAR estimator. Under

appropriate conditions, we show that ||ﬂk — B*|lco achieves sharp estimation error
rate. Furthermore, if the minimum value of target signal is detectable, GSDAR will

@ Springer

GSDAR: a fast Newton algorithm... 513

recover the oracle estimator in finite steps if 7 is greater than the true model size K.
We assume the following conditions.

(C1) There exist constants 0 < L < U < oo such that, for all §; # B, with
1By — Ballo = 2T,

By — BT -VELPB) - (B) — B)
0
LS TR S BB Bl

U < oo,

Whereﬁ =B+ v(B,—B;) forany v € (0, 1).

(C2) 1B+ lImin = 3%,/ loiﬁ, where ¢ is a universal numerical constant.

Remark 1 Condition (C1) extends the weak cone invertibility condition in Ye and
Zhang (2010). This kind of restricted strong convexity conditions is needed in bounding
the estimation error in high-dimensional models Zhang et al. (2012). Condition (C2)
is needed to guarantee the target signal to be detectable.

3.1 £ Error bounds

Theorem 1 Assume (C1) holds with 0 < U < % Set K < T and B° = 0 in
Algorithm 1.

(i) Before Algorithm I terminates, we have

U 2
1B* — B*llco < /(K +T)(1 + z)(ﬁ)knﬂ*nm + ZIVEB) o,

where £ = 1 — % € (0, 1).

(ii) Assume the rows of X are i.i.d. sub-Gaussian with n 2 log(p), then there exist
universal constants {c1, ¢, c3} with 0 < ¢; < 0o, i = 1,2,3, such that with
probability at least 1 — c; exp(—c3 log(p)),

4 2¢; 1
18— Bloe = /(K + 1)1+ /O 1B e + 7 Ogn(p)'

It follows that

1
18— B*lle < O (Ogn(”))

with high probability if k > O <logé @) .
The proof of this theorem is given in Appendix A.4.

@ Springer

514 J.Huang et al.

Remark 2 The requirement U < % is not essential since we can always rescale the
loss function £ to make it hold. This rescaling is equivalent to multiplying a step size
to the dual variable in the the GSDAR algorithm. Let t be this step size satisfying

0 < T < 7. Then, Theorem I still holds by replacing £ with 1 - 225=2LE) < (0, 1).

3.2 Support recovery

The following theorem establishes the support recovery property of GSDAR.

Theorem 2 Assume (C1) and (C2) hold with0 < U < %, and the rows of X are i.i.d.
sub-Gaussian with n 2, log(p). Set K < T in Algorithm 1. Then with probability
at least 1 — ¢y exp(—c3 log(p)), A* € AX ifk > log% T + K)(1 + Y%)r?, where

*
r—m

= b s the range of B*.
HBA* ”mlﬂ

The proof of this theorem is given in Appendix A.5.

Remark 3 Theorem 2 shows that the estimated support via GSDAR can recover the
true support with the cost at most O(log(7)) number of iteration if the minimum

signal strength of B* is above the detectable threshold O(,/ @). Support recovery
for sparse GLMs has also been studied in Li et al. (2017); Yuan et al. (2017) and
Shen and Li (2017). In Li et al. (2017), the authors propose a DC proximal New-
ton (DCPN) method to solve GLMs with nonconvex sparse promoting penalties such
as MCP/SCAD. They derive an estimation error in £ norm with order O(%)
under an assumption similar to (C1). They show that the true support can be recon-

verted under the requirement || 8%« [lmin = O(y/ %), which is stronger than our
assumption (C2). The computational complexity of DCPN is worse than GSDAR since
the DCPN is based on the multistage convex relaxation scheme to transform the origi-
nal nonconvex optimizations into a sequence of LASSO regularized GLMs, therefore,
a Lasso inner solver is called at each stage Ge et al. (2019). In Yuan et al. (2017)

and Shen and Li (2017), Gradient hard thresholding pursuit is shown to recover the

true support under the requirement || 87« |lmin = O(y/ %), which is also stronger
than our assumption (C2). If we set T = K in GSDAR, then the stopping criterion
AF = A1 holds if k > O(log(K)) since the estimated support coincides with the
true support. As a consequence, the oracle estimator will be recovered in O(log(K))
steps. However, Yuan et al. (2017) or Shen and Li (2017) did not prove that the stop-
ping condition of gradient hard thresholding pursuit can be satisfied. Meanwhile, the
iteration complexity of Gradient hard thresholding pursuit analyzed by Shen and Li

(2017) is O(K), which is worse than the complexity bound established here.

4 Adaptive GSDAR

In practice, the sparsity level of the true parameter value B* is unknown. So we regard
T as a tuning parameter. Let T increase from O to Q, a given positive integer. We

@ Springer

GSDAR: a fast Newton algorithm... 515

compute a set of solutions: {ﬁ(T) : T =0,1,..., 0}, where E(O) = 0. We take
0 = an/log(n) as suggested by Fan and Lv (2008), where « is a positive and finite
constant. In our numerical studies, we set « = 1. We can use a data-driven method
such as HBIC (Wang et al. 2013), mBIC (Bogdan et al. 2004, 2008) or mBIC2 (Zak-
Szatkowska and Bogdan 2011) to determine T the choice of T'. Then we take ﬂ(T)
as the final estimator of B*.

We summarize the adaptive GSDAR in Algorithm 2.

Algorithm 2 AGSDAR

1: Input: ﬂo, dO=—vL(BY), an integer ¥, an integer Q.
2:fork=1,..., do
3: Run Algorithm 1 with T = 9 and with initial value B!, @*—1. Denote the output by ¥, a*.

4: if T > Q, then
S: stop

6: else

7: k=k+1

8: endif

9: end for

10: Output: E(f) as the estimates of f*.

5 Simulation studies and real data analysis

In this section, we conduct simulation studies to evaluate the performance of the
proposed method in the context of logistic regression with a binary response and use
real data to illustrate its applications. First, we compare AGSDAR with Lasso, MCP
and the stepwise selection method in terms of accuracy, efficiency and classification
accuracy rate. Then, we further compare AGSDAR with these methods on the effects
of model parameters, including sample size n, model dimension p and correlation level
among the predictors. Third, we evaluate the computational efficiency of GSDAR by
examining the average number of iterations needed for GSDAR to converge. Finally,
we illustrate the application of GSDAR/AGSDAR on several real datasets.

Our implementation of Lasso and MCP is according to the R package ncvreg
developed by Breheny and Huang (2011). The stepwise selection method is imple-
mented in the R package bigstep (Bogdan et al. 2004, 2008). In the implementation
of AGSDAR, we set 0 = n/log(n), and use HBIC to choose the value of 7. The R
code of GSDAR is available on GitHub at https://github.com/jian94/GSDAR.

5.1 Accuracy, efficiency and classification accuracy rate

We generate the design matrix X as follows. First, we generate a n x p random
Gaussian matrix X, whose entries are i.i.d. ~ N (0, 1), and normalize its columns to
the \/n length. Then the design matrix X is generated with x; = Xj, X, = X, and
Xj =X; + p(Xjy1 +Xj_1), j = 2, ..., p — 1. The underlying regression coefficient
B* with K nonzero coefficients is generated such that the K nonzero coefficients
in B* are uniformly distributed in (m1, m>), where m; = 5./2log p/n and m, =

@ Springer

https://github.com/jian94/GSDAR

516 J.Huang et al.

Table 1 Numerical results (the

Method AREE Ti ACRP
averaged relative error, CPU P etho ime(s)

time, the average classification 0.2 Lasso 0.99 6.03 86.68%
accuracy rate by prediction) on

data set with n = 300, MCP 095 1193 93.95%

p =5000, K =10, Stepwise 434 120.39 93.81%

p =0.2:0.2:0.8 AGSDAR 0.95 1.42 91.15%

0.4 Lasso 0.99 6.11 86.62%

MCP 0.95 11.07 94.37%

Stepwise 4.62 111.55 94.03%

AGSDAR 0.97 1.33 88.73%

0.6 Lasso 0.99 6.33 86.55%

MCP 0.96 11.47 93.85%

Stepwise 1.66 111.87 93.46%

AGSDAR 0.98 1.41 89.80%

0.8 Lasso 1.00 6.28 86.43%

MCP 0.97 11.47 93.38%

Stepwise 1.87 109.10 93.40%

AGSDAR 0.98 1.44 89.75%

100 - m;. The K nonzero coefficients are randomly assigned to the K components
of B*. The response variable is generated according to y; ~ Binomial(1, p;), where
pi = exp(x! B*)/[1 +exp(x!)], i =1,...,n.

We randomly choose 80% of the samples as the training set and the remaining
20% as the test set in calculating the classification accuracy rate. We take n = 300,
p =5000, K =10 and p = 0.2:0.2:0.8.

Table 1 presents the simulation results, including the average of relative estima-
tion error (AREE) of B defined as AREE = 115 > 1% |B; — B*/[*.. CPU time
in seconds (Time) and average classification accuracy rate (ACAR) based on 100
independent replications.

We see that AGSDAR has about the same AREE values as Lasso, MCP, while the
stepwise method has the largest AREE values. In terms of the speed, AGSDAR is
about 5, 8 and 80 times faster than Lasso, MCP and the stepwise method, respectively.
For the average classification accuracy rate, AGSDAR has smaller ACRP values than
MCP and the stepwise method but higher ACRP values than Lasso. The simulation
results reported below demonstrate that AGSDAR tends to perform better than the
other methods in terms of model selection.

5.2 Influence of the model parameters

We now consider the effects of each of the model parameters on the performance of
AGSDAR, Lasso, MCP and the stepwise method. We generate each row the n x p
design matrix X from N (0, X), where Z;; = p=il 1 < i, j < p. The underly-
ing regression coefficient vector B* € R” is generated in such a way that the K

@ Springer

GSDAR: a fast Newton algorithm... 517

nonzero coefficients in B* are uniformly distributed in (1, R), and the support A*
is a randomly chosen subset of {1, ..., p} with |[A*| = K < n. Then the response
yi ~ Binomial(1, p;), where p;=exp(x! *)/[1 + exp(x! B*)],i =1, ..., n.

We compare the performance of the methods considered in terms of average positive
discovery rate (APDR), average false discovery rate (AFDR) and average combined
discovery rate (ADR) Luo and Chen (2014) defined as follows.

1 AN A*
APDR = —— w,
100 |A%|
1 AN A*
AFDR = — LA'
100 |A|

ADR = APDR + (1 — AFDR),

where A denotes the estimated support set. The simulation results are based on 100
independent replications.

5.2.1 Influence of the sample size n

Table 2 shows the influence of the sample size n on APDR, AFDR and ADR. We set
p =500, K =6, R =10, p = 0.3 and let n vary from 100 to 400 by step 50.

We see that as the sample size n increases, Lasso always has the highest values of
APDR. However, Lasso also has the largest values of AFDR for each n, which is only a
little smaller than APDR when n > 100. This indicates that Lasso tends to over select
variables that are not in the support of the regression coefficient. AGSDAR always has
the smallest values of AFDR and highest values of ADR whenn > 100, and its APDR
values are also not small. Therefore, AGSDAR avoids selecting the erroneous variable
while selecting as many relevant variables as possible into the model, especially when
the sample size n increases. MCP and the stepwise method are similar to AGSDAR in
terms of variable selection. However, MCP and the stepwise method tend to select more
irrelevant variables than AGSDAR. Overall, AGSDAR always selects more relevant
variables and fewer irrelevant variables.

5.2.2 Influence of the variable dimension p

Table 3 shows the influence of the model dimension p on the APDR, AFDR and ADR.
Wesetn = 100, K = 6, R = 10, p = 0.2, and take p = 100 to 700 with a step size
100.

Table 3 shows that Lasso has the largest values on APDR and AFDR, and low-
est values on ADR. Meanwhile, the AFDR values of Lasso are greater than 0.5 and
higher than those of APDR when p > 400 which suggests that Lasso selects more
irrelevant variables than relevant variables. AGSDAR, MCP and the stepwise method
have almost the same APDR values, especially when p < 500, indicating that AGS-
DAR, MCP and the stepwise method have similar ability to select relevant variables.
Besides, AGSDAR has the better AFDR and ADR values than Lasso and MCP, and
is comparable with the stepwise method with respect to AFDR and ADR. Hence,

@ Springer

518 J.Huang et al.
(T;Z'glﬁ, i;‘g‘f{i‘fggf:me n method APDR AFDR ADR
data p =500, K =6,R=10, 99 Lasso 0.83 0.84 0.99
p = 0.3 and n = 100:50:400
MCP 0.79 0.36 1.43
Stepwise 0.75 0.15 1.60
AGSDAR 0.72 0.19 1.53
150 Lasso 0.92 0.87 1.05
MCP 0.90 0.22 1.68
Stepwise 0.86 0.17 1.69
AGSDAR 0.85 0.15 1.70
200 Lasso 0.95 0.88 1.07
MCP 0.93 0.19 1.74
Stepwise 0.91 0.19 1.72
AGSDAR 0.90 0.12 1.78
250 Lasso 0.97 0.89 1.08
MCP 0.93 0.16 1.77
Stepwise 0.95 0.18 1.77
AGSDAR 0.93 0.06 1.87
300 Lasso 0.98 0.89 1.09
MCP 0.95 0.15 1.80
Stepwise 0.95 0.16 1.79
AGSDAR 0.96 0.06 1.90
350 Lasso 0.99 0.89 1.10
MCP 0.95 0.16 1.79
Stepwise 0.97 0.18 1.79
AGSDAR 0.96 0.05 1.91
400 Lasso 0.99 0.89 1.10
MCP 0.97 0.15 1.82
Stepwise 0.98 0.14 1.84
AGSDAR 0.98 0.05 1.93

AGSDAR tends to select fewer irrelevant variables and thus reduce the complexity of

the model.

5.2.3 Influence of the correlation p

Table 4 presents the influence of the correlation p on APDR, AFDR and ADR. We set
n =150, p =500, K =6, R = 10 and p = 0.1 to 0.9 with an increasing step size

0.1.

We see from Table 4 that Lasso has the best APDR values and worst AFDR and
ADR values for every p. AGSDAR, MCP and the stepwise method have nearly the
same APDR values for each p. AGSDAR always has the best AFDR and ADR values
when p < 0.7, and it is still comparable to the stepwise method in terms of AFDR

@ Springer

GSDAR: a fast Newton algorithm... 519

Table 3 Numerical results

(APDR, AFDR, ADR) on the p Method APDR AFDR ADR
datan =100, K =6, R =10, o Lasso 0.92 0.77 115
p = 0.2 and p = 100:100:700
MCP 0.83 0.20 1.63
Stepwise 0.83 0.15 1.68
AGSDAR 0.82 0.16 1.66
200 Lasso 0.88 0.81 1.07
MCP 0.83 0.23 1.60
Stepwise 0.80 0.16 1.64
AGSDAR 0.80 0.17 1.63
300 Lasso 0.89 0.82 1.07
MCP 0.82 0.29 1.53
Stepwise 0.77 0.16 1.61
AGSDAR 0.80 0.21 1.59
400 Lasso 0.84 0.84 1.00
MCP 0.79 0.34 1.45
Stepwise 0.74 0.18 1.56
AGSDAR 0.75 0.20 1.55
500 Lasso 0.83 0.85 0.98
MCP 0.78 0.35 1.43
Stepwise 0.70 0.17 1.53
AGSDAR 0.74 0.20 1.54
600 Lasso 0.79 0.85 0.94
MCP 0.77 0.39 1.38
Stepwise 0.70 0.19 1.51
AGSDAR 0.70 0.22 1.48
700 Lasso 0.80 0.85 0.95
MCP 0.77 0.37 1.40
Stepwise 0.68 0.20 1.48
AGSDAR 0.70 0.25 1.45

and ADR when p > 0.7. Therefore AGSDAR can simultaneously select the relevant
variables and avoid the irrelevant variables for a wide spectrum of the values of p.

5.3 Number of iterations

To further evaluate the numerical convergence of GSDAR, we conduct simulations to
examine the number of iterations for GSDAR to converge with 7 = K in Algorithm 1.
We generate data in the same way as described in Sect. 5.2. We look at the influence
of the correlation level p. We record the average number of iterations for different
values of p. Figure 1 shows the average number of iterations of GSDAR based on
100 independent replications with n = 500, p = 1000, K = 2:2:50, R = 3 and
p = 0.1:0.2:0.7.

@ Springer

520 J.Huang et al.
(Tgl;'gl:’ i?ﬁf{“ﬁfﬁﬁiﬁihe o Method APDR AFDR ADR
datan =150, p =500, K =6, ¢ Lasso 0.92 0.87 1.05
R =10and p = 0.1:0.1:0.9
MCP 0.87 0.22 1.65
Stepwise 0.86 0.18 1.68
AGSDAR 0.85 0.15 1.70
0.2 Lasso 0.92 0.87 1.05
MCP 0.89 0.21 1.68
Stepwise 0.85 0.18 1.67
AGSDAR 0.85 0.15 1.70
0.3 Lasso 0.92 0.87 1.05
MCP 0.90 0.23 1.67
Stepwise 0.87 0.17 1.70
AGSDAR 0.88 0.13 1.75
0.4 Lasso 0.91 0.87 1.04
MCP 0.87 0.23 1.64
Stepwise 0.84 0.20 1.64
AGSDAR 0.84 0.15 1.69
0.5 Lasso 0.90 0.86 1.04
MCP 0.85 0.26 1.59
Stepwise 0.85 0.18 1.67
AGSDAR 0.83 0.16 1.67
0.6 Lasso 0.90 0.87 1.03
MCP 0.88 0.22 1.66
Stepwise 0.85 0.19 1.66
AGSDAR 0.84 0.16 1.68
0.7 Lasso 0.90 0.86 1.04
MCP 0.83 0.26 1.57
Stepwise 0.81 0.18 1.63
AGSDAR 0.80 0.22 1.58
0.8 Lasso 0.88 0.86 1.02
MCP 0.75 0.31 1.44
Stepwise 0.79 0.22 1.57
AGSDAR 0.75 0.26 1.49
0.9 Lasso 0.82 0.84 0.98
MCP 0.55 0.48 1.07
Stepwise 0.59 0.39 1.20
AGSDAR 0.58 0.44 1.14

@ Springer

GSDAR: a fast Newton algorithm... 521

6

— p=0.1
—p=0.3
—p=0.5
—p=0.7

Average number of iterations of GSDAR
»

2 6 10 14 18 22 26 30 34 38 42 46 50
K

Fig.1 The average number of iterations of GSDAR as K increases

As shown in Fig. 1, the average number of iterations of GSDAR increases as the
sparsity level increases from 2 to 50 for every p. But even when the sparsity level K
is 50, the average number of iterations is only 4 when p = 0.1, 0.3, and0.5, and is
about 5.5 when p = 0.7. This indicates that GSDAR converges fast.

5.4 Real data examples

We illustrate the application of GSDAR to five data sets: duke breast-cancer, gisette,
leukemia, madelon and splice, which are described in Table 5. These datasets
are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. The duke
breast-cancer and leukemia data sets have been standardized such that the mean of
each predictor is 0 and variance is 1. The response variable takes the value y = 1
if the subject has the disease and y = 0 otherwise. We fit the logistic regression
model to these data sets and compare the classification accuracy rate of the proposed
methods with Lasso, MCP and the stepwise method. Set 7' = n/log(n) in GSDAR.
We implement the AGSDAR, Lasso, MCP and the stepwise method as described in
Sect. 5. The results are given in Table 6, which show that the classification accuracy
rates of GSDAR and AGSDAR are comparable with those of Lasso, MCP and the
stepwise method. Moreover, we denote the number of selected variables by T, which
is showed in Table 7.

In summary, our simulation results and application to data examples demonstrated
that the proposed GSDAR algorithm performs better than or comparably with other
penalized methods such as Lasso and MCP and the stepwise selection method.

6 Conclusion

GSDAR is a generalized Newton algorithm for fitting sparse, high-dimensional GLMs.
It iteratively solves the KKT system for the £(p-penalized likelihood for the GLMs.

@ Springer

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

522 J.Huang et al.

Table 5 Description of four real data sets

Data name n Samples p Features Training size n Testing set ny
Duke breast-cancer 42 7129 38 4

Gisette 7000 5000 6000 1000
Leukemia 72 7129 38 34

Madelon 2600 500 2000 600

Splice 3175 60 1000 2175

Table 6 Classification accuracy rate

Data name GSDAR AGSDAR Lasso MCP Stepwise
Duke breast-cancer 1 1 1 25% 1

Gisette 54.10% 56.30% 51.30% 59.90% 49.40%
Leukemia 91.18% 94.12% 91.17% 94.11% 44.12%
Madelon 57.83% 59.83% 61.50% 61.50% 49.00%
Splice 84.23% 85.05% 85.70% 84.91% 51.63%

Table 7 The number of selected variables(/T\)

Data name GSDAR AGSDAR Lasso MCP Stepwise
Duke breast-cancer 10 5 23 5 2
Gisette 344 60 507 49 48
Leukemia 5 14 13 4 1
Madelon 6 3 4 2 2

Splice 30 25 40 26 14

We establish an optimal £, error bound for the sequence generated by GSDAR algo-
rithm under appropriate regularity and sparsity conditions. Furthermore, we show
that the oracle estimator can be recovered with high probability if the target signal is
detectable. We also propose the AGSDAR algorithm, an adaptive version of GSDAR,
to handle the problem of unknown sparsity level. Numerical results on simulated and
real data demonstrate that GSDAR/AGSDAR algorithm is fast, stable and accurate.
Therefore, the proposed GSDAR algorithm is a useful addition to the literature on
variable selection in high-dimensional GLMs.

For the future research, it would be interesting to generalize GSDAR to solve
structured sparsity learning problems (Breheny and Huang 2015; Jiao et al. 2017) with
general convex losses or to problems related to deep neural networks (Scardapane et al.
2017; Louizos et al. 2018; Ma et al. 2019).

Acknowledgements We wish to thank two anonymous reviewers for their constructive and helpful com-
ments that led to significant improvements in the paper. The work of J. Huang is supported in part by the U.S.
National Science Foundation grant DMS-1916199. The work of Y. Jiao is supported in part by the National
Science Foundation of China grant 11871474 and by the research fund of KLATASDSMOE of China. The

@ Springer

GSDAR: a fast Newton algorithm... 523

research of J. Liu is supported by Duke-NUS Graduate Medical School WBS: R-913-200-098-263 and
MOE2016-T2-2-029 from Ministry of Eduction, Singapore. The work of Y. Liu is supported in part by the
National Science Foundation of China grant 11971362. The work X. Lu is supported by National Science
Foundation of China Grants 11471253 and 91630313.

A Appendix

In the appendix, we prove Lemma 1, Proposition 1 and Theorems 1 and 2.

A.1 Proof of Lemma 1

Proof Let Ly (B) = L(B) + A||Bllo. Assume ’ﬂ\ is a global minimizer of L, (8). Then
by Theorem 10.1 in Rockafellar and Wets (2009), we have

0 VL@B) + 23180,)

where 8||ﬂ llo denotes the limiting subdlfferentlal (see Definition 8.3 in Rockafellar

and Wets (2009)) of || - ||o at ﬂ Letd = —VL(ﬂ) and define G(B) = 5 LB - (ﬂ +

d)||2 + AlIBllo- We recall that, from the definition of the limiting subdifferential of

Definition 8.3 in Rockafellar and Wets (2009)), 9 ||,B llo satisfies that [|B]lo > ||ﬂ llo +
8||/3||0 B — ﬁ Yy +o(lIp — /3||) for any B € R”. (7) is equivalent to

0eB—B+d+2r3Blo.

Moreover, 78 being the minimizer of G(B) is fquivalent to 0 € 8G(E). Obviously,
B satisfies 0 € dG(B). Thus we deduce that B is a KKT point of G(8). Then g =
H, (/3 +d) follows from the result that the KKT points of G c01n01de withits coordlnate-
wise minimizer (Huang et al. 2021). Conversely, suppose ,B andd satisfy (2), then ﬁ is
a local minimizer of L; (8). To show ,B is a local minimizer of L, (B), we can assume
h is small enough and ||h|» < /2. Then we will show L, (B+h) > L,(B)intwo
cases respectively.

First, we denote

= (i 1B +dil =21y, T={i:|B+di| <24}

By the deﬁmtlon of H,(-) and (2), we can conclude that | ,B,| > /2) When i €
A and ﬂ = 0. Thus it yields that supp(ﬂ) A Moreover, we also have d T =

[— VLL(,B)]A = 0, which is equivalent to ﬂA € argmin L(ﬁg)
Bz

Case 1: hy # 0.

IB +hllo = IIB5 + hzllo + Ihzllo,
AIB +hllo — AlIBllo = AIB 5 + hzllo + Alhzllo — 218 7lo.

@ Springer

524 J.Huang et al.

Because |E| > /2Afori € A and [lhlleo < +/2X, we have

MBz +hzllo —AllBzllo =0,
MIB +hllo — AllBllo = Allhzilo > A.

Therefore, we get
Li(B+h) — Li(B)

=Y [e(x] (B +h) — c(x] B)] — y"Xh + Allhzllo

i=1
> 3 lex! (B + M) — cx! B)] — y' Xh + 4
i=1

> 0.

Letm(h) = Z?:l [c(xiT (ﬁ—i— h)) — c(xl.T:B\)] — yTXh, so m(h) is a continuous function
about h. As h is small enough and ||h||oc < +/24, then m(h) + A > 0. Thus the last
inequality holds.

Case 2: hy=0.
MB +hllo— AlBllo = 2Bz +hzllo — 2B zllo-
As |B\,~| > /21 fori € A and lhzlloo < +/24, then we have
AIB +hllo — AlIBllo = AIB5 + hzllo — ABzllo =0,
and
Li(B+h) - Li(B)
n
=Y e} (B+h) —cx/ B)] — y' Xh
i=1
n _ -~
=D le&x 5 Bz +hp) —cx] 5 B~y Xzhz
i=1
n
=D lex] 5Bz +h)l -y X787 +hp)
i=l1
n
= letx{ 3 BD1+ ¥ X387
i=1
> 0.

@ Springer

GSDAR: a fast Newton algorithm...

525

As known that ﬁg € argmin E(,B), so the last inequality holds. In summary, ﬁ isa

Bz
local minimizer of L, (B).

A.2 Proof of Proposition 1

Proof Denote D¥ = — (J{k)_l F (w*). Then

Wit — wk — (g{k>_l F (wk)

can be recast as

KDk = —F (wk) ,

W = wh 4 Dk,

Partition w¥, D* and F (wX) according to A* and 7* such that

Substituting (10), (11) and HF into (8), we have

(a5 + DY) =0,

Bh + Db =0y,

B
nV2L (B (l;fg") +n (g

Ik
It follows from (9) that

k+1
ﬁ+

n[VL(B")1 ke + ndt,

)=nwawﬁywm@

]

®)
(C))

(10)

(11)

(12)
(13)

(14)

15)

@ Springer

526 J.Huang et al.

Substituting (15) into (12)—(14), we get (4) of Algorithm 1. This completes the proof.
O

A.3 Preparatory lemmas

The proofs of Theorems 1 and 2 are built on the following lemmas.
Lemma 2 Assume (C1) holds and ||B*|lo = K < T. Denote B* = A\ A*=!. Then,
IV LB NIV g L(BY)lloo = 2LEILBY) = L(BY)],

|B¥|

where ; = W

Proof Obviously, this lemma holds if A¥ = A*=1 or L(ﬁk) < L(B*). So we only
prove the lemma by assuming AK #* A%1 and L(ﬁk) > L(B*). The condition (C1)
indicates

L(B*) — L(BY) — (VL(BY). B* — B¥)
= 28— 84,187 - B4
Hence,
(=VL@BY), B - BY)
= (VL(BY). —B%)
= S~ 8,18~ B+ 285 — £ (8"

o VAL — B, B~ By 285 — £8)

From the definition of A¥ and A*, it is known that B contains the first | B¥|-largest
elements (in absolute value) of VL(ﬂk), and supp(VL(ﬂk)) (supp(B*) = A\ AK-L,
Thus, we have

(VL(BY), =B%) = —= V5L (BYI2 1B gt 2

Ve LB 211 (B* — B) pxy a1 1l2

- 5l- -5l

||V3m(ﬂ)2 118* — B 112

< ﬁ\/nvgkuﬂ%ul||kaL<ﬂ")||oo

<\ 18* — 11 18" — B oo

@ Springer

GSDAR: a fast Newton algorithm... 527

Therefore,
V2L L(B*) — L(B")
1
< ﬁ/nvgkw’%n]||VBkL<ﬁ">||oo.
In summary,

IV LBV e L (B5) oo > 2LE[L(BY) — L(BH].
O

Lemma 3 Assume (CI) holds with 0 < U <
before Algorithm I terminates,

%, and K < T in Algorithm 1. Then
LB — L(B*) < ELL(BY) — L(B)].

where & =1 — 2L0=20) € (0, 1),

Proof Let A% = ﬁk - VL(ﬁk). The condition of (C1) indicates

LA) = LB < (VLB AR e — B4

+ %“ Ak+1 |Ak+l _ ﬂk+] ||1|| Ak+1 |Ak+1 _ ﬁk+1 HOO

On the one hand, by the definition of B and VL (B4, we have

(VL(ﬂk+l), Ak+l|Ak+1 —ﬂk+l>
= (VLB AR)
= (Vaern LB, AR
= (Varrna LB, AR 0.
Further, we also have

| AR g — B
= AR eyt + AT g
— By Ak — B gy an ||
= A%t el + TAGE A e = B A ael
+ B e |

= H A]XL}l\Ak ”1 + ”ﬂi_/t\lAkH

1°

@ Springer

528 J.Huang et al.

and
H Ak+l|Ak+1 _ ﬂk+1 ”Oo
= H AR+ |Ak+1\Ak + AR | gk+1 M Ak
— gt | Ak ak — gL | Ay Ak+1 Hoo

= AZJ{L\A;{ ”oo \/ ng]:kr\lAkH ”oo
where a \/ b = max{a, b}. By the definition of AK, AF+1 and ,BkH, we know that

k+1 k+1
|Ak\Ak+1| — |Ak+1\Ak|, AA—It\AkJrl = ﬂA-]"‘_\AIH'l.

By the definition of A1 we can conclude that

k+1
”AAk\Ak+l||1 = ||ﬁAk\Ak+l“1 < ”AAk-H\Ak”la

k+1 k+1 k+1
AAk+1\Ak||oo \/ ||,BAk\Ak+1 ||oo = ||AAk+1\Ak||oo-

Due to —VAk+l\AkL(ﬂk+l) = A]:[ll\Ak and U < %, hence we can deduce that
LA) = LB

(VAk+1\AkL(ﬂk+l)? A]anl—l \Al‘) +U H Aitﬁl—l \Ak || 1 || Aitﬁl—l \Ak || 00

—(1/T =)|V gy gk LB} 5 | Varrr ae LB |

IA

A

By the definition of B!, we have

LB — L(BY) < LAk) — LY
< —(1/T =)| Vprrt g LB x |V arr ac LBH]

* k—1
Moreover, |AT\AT | < K. By Lemma 2, we have
|BF] y

2L(1 —TU)

k4+1y k _ ky _ *
LB —L(BY) < TAT K [L(B") — L(BD)].

Therefore, we have
LB — L(B*) < £[L(BY) — L(BM)],
whereé:l—%e(o, 1. O

Lemma4 Assume L satisfies (C1) and
LB — L(B*) < EILBY) — L(BY)]

@ Springer

GSDAR: a fast Newton algorithm... 529

forall k > 0. Then,

U
185 = B*lloe < /(K + T)(1 +)OI — B*lloo
L (16)

2 *
+ T IVEB oo

Proof 1If ||ﬁk — B oo < w, then (16) holds, so we only consider the case
that ||,Bk — B0 = w. On the one hand, L satisfies (C1), then

LBy — LY
> (VL(B), X — B*) + HM B*|, 18 - B,
= ~IVEBNolB ~ 871 + 2|8~ 87,8~ 7).

Due to [| B¢ — B*[|oc > AYEE then
(Mk—ﬁwrwmk—ww@<§wk—ﬁwm—nwxwmm)zo

Further, we can get
%Mk—Wﬁ@ﬂwﬁwﬂ%ﬂﬁ—ﬂww—ww5—£wm50,

which is univariate quadratic inequality about 18X — B*lloo. Thus, by simple compu-
tation, we can get

ky * *
”M_ﬂwmstMHMﬁ) L0, AVEE)

L L

On the other hand, because L satisfies (C1), then
L(B°%) — L(B)
< (VEBY). 80— 8%)+ 5 |8 — 8°],[8° - 8]
SHVLwﬂMAMO—ﬁwl+§Wﬂ°—ﬂWJw°—ﬁWW
< K+)80~ B LUV | + 5 18— 8]0
Then, we can get

L(BF) — L(B*) < e[L(Bh — L(B)]

@ Springer

530 J.Huang et al.

< EFL(BY) — L (B
<&K+D|B -8,
U
< (IVEB) o + S 18° = B[)

_E LUK +T)
- 2

18° - 8|2

Hence, by (17), we have

U
|wk—ﬂwms\MK+TXL+Zx¢®Hw°—ﬂWm

2 k
+ L IVEEB) oo

m}

Lemma5 (Proof of Corollary 2 in Loh and Wainwright (2015)). Assume x; ;8 are
sub-Gaussian and n 2 1og(p), then there exists universal constants (c1, ¢z, c3) with
0<c¢ <oo,i=1,2,3 such that

log(p)
n

P (”VL(ﬂ*)”oo >l) < caexp(—c3 log(p)).

A.4 Proof of Theorem 1
Proof By Lemma 3, we have
LB — L(B*) < E[L(BY) — LB,

where

_2L(1-TU)

§=1 T0+K)G@J)

So the conditions of Lemma 4 are satisfied. Taking 8 = 0, we can get

1B = B*llso

U 2
=&+ + z)(\/g)k”ﬂ*”oo + ZIIVL(ﬂ*)Iloo-

By Lemma 5, then there exists universal constants (cy, ¢2, c3) defined in Lemma 5,
with at least probability 1 — c; exp(—c3 log(p)), we have

I1B* — B*lloo

@ Springer

GSDAR: a fast Newton algorithm... 531

U 2 1
<&+ D)0+ DD 1Bl + = °gn(p). (18)

Some algebra shows that

log(p)
18" = B¥lloo = 0/ =)
by taking k > O(logé %) in (18). Then, the proof is complete. O

A.5 Proof of Theorem 2
Proof (18) and assumption (C2) and some algebra shows that that

18X — B*lloo

U 2
< J(K+T)(1+ Z)(JE)"nﬁ*noo + S 185+ lmin

< ”ﬂjx* Ilmin»

if k > logé 9(T + K)(1 + ¥)r?. This implies that A* < A*. o

References

Abramovich F, Benjamini Y, Donoho DL, Johnstone IM et al (2006) Adapting to unknown sparsity by
controlling the false discovery rate. Ann Stat 34(2):584-653

Birgé L, Massart P (2001) Gaussian model selection. J Eur Math Soc 3(3):203-268

Bogdan M, Ghosh JK, Doerge R (2004) Modifying the schwarz bayesian information criterion to locate
multiple interacting quantitative trait loci. Genetics 167(2):989-999

Bogdan M, Ghosh JK, Zak-Szatkowska M (2008) Selecting explanatory variables with the modified version
of the Bayesian information criterion. Qual Reliab Eng Int 24(6):627-641

Breheny P, Huang J (2011) Coordinate descent algorithms for nonconvex penalized regression, with appli-
cations to biological feature selection. Ann Appl Stat 5(1):232

Breheny P, Huang J (2015) Group descent algorithms for nonconvex penalized linear and logistic regression
models with grouped predictors. Stat Comput 25(2):173-187

Chen J, Chen Z (2008) Extended bayesian information criteria for model selection with large model spaces.
Biometrika 95(3):759-771

Chen J, Chen Z (2012) Extended bic for small-n-large-p sparse glm. Stat Sinica 22:555-574

Chen X, Nashed Z, Qi L (2000) Smoothing methods and semismooth methods for nondifferentiable operator
equations. STAM J Numer Anal 38(4):1200-1216

Chen X, Ge D, Wang Z, Ye Y (2014) Complexity of unconstrained 12-lp minimization. Math Program
143(1-2):371-383

Dolejsi E, Bodenstorfer B, Frommlet F (2014) Analyzing genome-wide association studies with an fdr
controlling modification of the bayesian information criterion. PloS One 9(7):¢103322

Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J] Am
stat Assoc 96(456):1348-1360

Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc: Ser
B (Stat Methodol) 70(5):849-911

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate
descent. J Stat Softw 33(1):1

@ Springer

532 J.Huang et al.

Frommlet F, Nuel G (2016) An adaptive ridge procedure for 1 O regularization. PloS One 11(2):e0148620

Frommlet F, Ruhaltinger F, Twar6g P, Bogdan M (2012) Modified versions of Bayesian information criterion
for genome-wide association studies. Comput Stat Data Anal 56(5):1038-1051

Frommlet F, Bogdan M, Ramsey D (2016) Phenotypes and genotypes. Springer, Berlin

Ge J, Li X, Jiang H, Liu H, Zhang T, Wang M, Zhao T (2019) Picasso: A sparse learning library for high
dimensional data analysis in R and Python. J Mach Learn Res 20(44):1-5

Huang J, Jiao Y, Liu Y, Lu X (2018) A constructive approach to 1 0 penalized regression.] Mach Learn Res
19(1):403-439

Huang J, Jiao Y, Jin B, Liu J, Lu X, Yang C (2021) A unified primal dual active set algorithm for nonconvex
sparse recovery. Stat Sci (to appear). arXiv:1310.1147

Jiao Y, Jin B, Lu X (2017) Group sparse recovery via the 02 penalty: theory and algorithm. IEEE Trans
Signal Process 65(4):998-1012

Li X, Yang L, Ge J, Haupt J, Zhang T, Zhao T (2017) On quadratic convergence of DC proximal Newton
algorithm in nonconvex sparse learning. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R,
Vishwanathan S, Garnett R (eds) Advances in neural information processing systems, vol 30, Curran
Associates, Inc

Loh P-L, Wainwright MJ (2015) Regularized m-estimators with nonconvexity: statistical and algorithmic
theory for local optima.] Mach Learn Res 16:559-616

Louizos C, Welling M, Kingma DP (2018) Learning sparse neural networks through L regularization. In:
International conference on learning representations, pp 1-13. URL https://openreview.net/forum?
id=H1Y8hhgOb

Luo S, Chen Z (2014) Sequential lasso cum ebic for feature selection with ultra-high dimensional feature
space. J Am Stat Assoc 109(507):1229-1240

Ma R, Miao J, Niu L, Zhang P (2019) Transformed ¢ regularization for learning sparse deep neural
networks. URL https://arxiv.org/abs/1901.01021

McCullagh P (2019) Generalized linear models. Routledge, Oxfordshire

Meier L, Van De Geer S, Biithlmann P (2008) The group lasso for logistic regression. J R Stat Soc: Ser B
(Stat Methodol) 70(1):53-71

Natarajan BK (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24(2):227-234

Nelder JA, Wedderburn RW (1972) Generalized linear models. JR Stat Soc: Ser A (General) 135(3):370-384

Nesterov Y (2013) Gradient methods for minimizing composite functions. Math Program 140(1):125-161

Park MY, Hastie T (2007) L1-regularization path algorithm for generalized linear models. J R Stat Soc: Ser
B (Stat Methodol) 69(4):659-677

Qi L (1993) Convergence analysis of some algorithms for solving nonsmooth equations. Math Oper Res
18(1):227-244

Qi L, SunJ (1993) A nonsmooth version of Newton’s method. Math Program 58(1-3):353-367

Rockafellar RT, Wets RJ-B (2009) Var Anal. Springer Science & Business Media, Berlin

Scardapane S, Comminiello D, Hussain A, Uncini A (2017) Group sparse regularization for deep neural
networks. Neurocomputing 241:81-89

Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6(2):461-464

Shen J, Li P (2017) On the iteration complexity of support recovery via hard thresholding pursuit. In:
Proceedings of the 34th international conference on machine learning-volume 70, pp 3115-3124

Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc: Ser B (Methodological)
58(1):267-288

Van de Geer SA et al (2008) High-dimensional generalized linear models and the lasso. Ann Stat 36(2):614—
645

Wang L, Kim Y, Li R (2013) Calibrating non-convex penalized regression in ultra-high dimension. Ann
Stat 41(5):2505

Wang R, Xiu N, Zhou S (2019) Fast newton method for sparse logistic regression. arXiv preprint
arXiv:1901.02768

Wang Z, Liu H, Zhang T (2014) Optimal computational and statistical rates of convergence for sparse
nonconvex learning problems. Ann Stat 42(6):2164

Ye F, Zhang C-H (2010) Rate minimaxity of the lasso and dantzig selector for the Iq loss in Ir balls.] Mach
Learn Res 11(Dec):3519-3540

Yuan X-T, Li P, Zhang T (2017) Gradient hard thresholding pursuit. J Mach Learn Res 18:166

Zak-Szatkowska M, Bogdan M (2011) Modified versions of the bayesian information criterion for sparse
generalized linear models. Comput Stat Data Anal 55(11):2908-2924

@ Springer

http://arxiv.org/abs/1310.1147
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://arxiv.org/abs/1901.01021
http://arxiv.org/abs/1901.02768

GSDAR: a fast Newton algorithm... 533

Zhang C-H (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38(2):894—
942

Zhang C-H, Zhang T et al (2012) A general theory of concave regularization for high-dimensional sparse
estimation problems. Stat Sci 27(4):576-593

Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc: Ser B (Stat
Methodol) 67(2):301-320

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	GSDAR: a fast Newton algorithm for ell0 regularized generalized linear models with statistical guarantee
	Abstract
	1 Introduction
	2 Derivation of GSDAR
	2.1 GSDAR as a generalized Newton algorithm

	3 Theoretical properties
	3.1 ellinfty Error bounds
	3.2 Support recovery

	4 Adaptive GSDAR
	5 Simulation studies and real data analysis
	5.1 Accuracy, efficiency and classification accuracy rate
	5.2 Influence of the model parameters
	5.2.1 Influence of the sample size n
	5.2.2 Influence of the variable dimension p
	5.2.3 Influence of the correlation ρ

	5.3 Number of iterations
	5.4 Real data examples

	6 Conclusion

	Acknowledgements
	A Appendix
	A.1 Proof of Lemma 1
	A.2 Proof of Proposition 1
	A.3 Preparatory lemmas
	A.4 Proof of Theorem 1
	A.5 Proof of Theorem 2

	References

