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a b s t r a c t

We propose a robust post-selection inference method based on the Huber loss for the
regression coefficients, when the error distribution is heavy-tailed and asymmetric in a
high-dimensional linear model with an intercept term. The asymptotic properties of the
resulting estimators are established under mild conditions. We also extend the proposed
method to accommodate heteroscedasticity assuming the error terms are symmetric and
other suitable conditions. Statistical tests for low-dimensional parameters or individual
coefficient in the high-dimensional linear model are also studied. Simulation studies
demonstrate desirable properties of the proposed method. An application to a genomic
dataset about riboflavin production rate is provided.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Massive and high-dimensional data have now become commonplace in various scientific disciplines, owing to the
ast development in information technologies. There have been many novel statistical methodologies and computational
lgorithms developed for analyzing high-dimensional data. In particular, regularization methods have been successfully
pplied in high-dimensional regression problems. Examples include Meinshausen and Bühlmann (2006), Zhao and Yu
2006), Fan and Lv (2008), Huang et al. (2008), Zhang and Huang (2008), Wainwright (2009), Ishwaran et al. (2010),
hang (2010), Bradic et al. (2011), Liu et al. (2014), among many others. However, variable selection procedures focus on
oint estimation. Since perfect model recovery may not be delivered by variable selection methods, statistical inference
ased on the selected model may give inaccurate or even wrong results. Statistical inference, including interval estimation
nd hypothesis testing with high-dimensional data, is largely untouched until the pioneering works of Zhang and Zhang
2014), van de Geer et al. (2014), Javanmard and Montanari (2014) and Belloni et al. (2015). Other important works include
anková and van de Geer (2015), Cai and Guo (2017), Belloni et al. (2019) and the references therein.

Indeed, there has been ever-increasing interest in developing post-selection inference methods with high-dimensional
ata in recent years. For high-dimensional linear models with sub-Gaussian errors, post-selection inference based on least
quares estimation and novel debiase ideas are studied by Zhang and Zhang (2014), van de Geer et al. (2014), Javanmard
nd Montanari (2014), etc. Nevertheless, statistical procedures based on least squares methods are sensitive to outliers.
he sub-Gaussian assumption is made for technical convenience but may not be realistic in many practical situations
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Cont, 2001; Wang et al., 2015; Eklund et al., 2016), especially for data with heavy-tailed errors that are common in
inance and economics (Fan et al., 2016, 2017). Robust methods based on quantile regression or least absolute deviation
LAD) are studied by Li and Zhu (2008), Zou and Yuan (2008), Wu and Liu (2009), Belloni and Chernozhukov (2011), Wang
2013), Fan et al. (2014), Belloni et al. (2015, 2019), Cheng et al. (2020), among many others. Other than the LAD and the
uantile check loss, the Huber loss (Huber, 1964) is an important robust criterion for parameter estimation. Asymptotic
roperties of the Huber estimators have been studied extensively under the fixed or low-dimensional settings (Huber,
973; Yohai and Maronna, 1979; Portnoy, 1985; He and Shao, 1996, 2000; Zhou et al., 2018). Recently, novel findings

on adaptive robust estimation based on the Huber loss for high-dimensional mean regression are reported by Fan et al.
(2017), Loh (2018), Wang et al. (2020), Sun et al. (2020). Specially, in the presence of asymmetric errors, Fan et al. (2017)
nd Sun et al. (2020) study Huber-type estimators and provide non-asymptotic estimation bounds. Under symmetric or
symmetric errors, data-driven robustification parameter selection can be found in Wang et al. (2020) and Loh (2018),

respectively. Confidence intervals for low-dimensional parameters based on the de-sparsified lasso for high-dimensional
generalized linear models are studied by Janková and van de Geer (2016). Post-selection inference for high-dimensional
linear models based on the weighted Huber loss is considered by Loh (2018). Both works assume a linear model without
an intercept term and assumptions on the error distribution, for example, symmetry around zero, are required to establish
the asymptotic properties.

Despite these developments, different from least squares estimation for mean regression, the intercept in the linear
model cannot be simply removed by centering the response variable with the Huber loss. In this article, we consider
a high-dimensional linear model with an intercept term and develop a one-step post-selection inference procedure
based on the Huber loss. Our proposed procedure is robust in the sense that the error term can be heavy-tailed
and asymmetrically distributed. We also extend proposed method to accommodate heteroscedasticity when the error
distribution is symmetric. Numerical studies confirm that our method is robust in various practical situations.

The rest of the article is organized as follows. Section 2.1 presents the model and the proposed inference procedure.
Theoretical properties of the proposed estimators are given in Section 2.2. Statistical tests for single or low-dimensional
components of the slope parameter vector are developed. Section 3 contains an extension of the proposed method to
handle the heteroscedasticity. Supportive simulation results are reported in Section 4 and an application to a genomic
dataset is provided in Section 5. A few closing remarks are given in Section 6. All proofs are deferred to the Supplementary
Material.

2. Homoscedastic linear model

2.1. Model and estimation method

Consider the linear regression model

Y = µ∗
+ X⊤β∗

+ ϵ, (1)

where Y ∈ R is a response variable, X ∈ Rd is a d-dimensional vector of covariates, ϵ is a zero-mean error term
independent of X , µ∗

∈ R and β∗
∈ Rd are the intercept and the slope parameter vector, respectively. The error term can

be heavy-tailed and asymmetrically distributed. The observations (Xi, Yi), i = 1, . . . , n, are independent and identically
distributed copies of (X, Y ). Throughout the paper, we focus on the high-dimensional setting where d can be of the same
order as n or greater than n, depending on the assumption on the design matrix. Our goal is to conduct post-selection
inference for each component β∗

j , as well as simultaneous inference for β∗

G := {β∗

j : j ∈ G}, where β∗

j is the jth element of
β∗ and G is any fixed-dimensional subset of {1, . . . , d}. Since our inference method is not based on least squares method,
the intercept term µ∗ in model (1) cannot be simply removed by centering the response and the predictors.

Owing to the fact that sparse estimators such as the lasso do not have a tractable limiting distribution, statistical
inference with high-dimensional data is challenging, especially in the context of large d and relatively small n problems.
Write Z = (1, X⊤)⊤ and θ∗ = (µ∗, β∗⊤)⊤. To pursue robust estimation, we consider the Huber loss function

lτ (x) =
{

x2/2 if |x| ≤ τ ;

τ |x| − τ 2/2 if |x| > τ.

For any given τ > 0, we define

θ∗τ = (µ∗

τ , β
∗⊤

τ )⊤ ≡ argmin
θ∈Rd+1

Elτ (Y − Z⊤θ ).

Since the distribution of the error may not be symmetric, θ∗τ ̸= θ∗ in general, indicating that the bias induced by the
Huber loss is nonnegligible. Nonetheless, it is shown in Proposition 1 that the asymmetry of the error can only lead
to biased estimation of the intercept µ∗, but not the slope parameter vector β∗. Wang et al. (2020) also pointed out
this phenomenon under slightly different assumptions. With this view, the Huber loss can provide a leeway to perform
post-selection inference for the slope parameters.
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To estimate the regression coefficient β∗

j , we first consider minimizing the objective function:

l(βj) ≡
1
n

n∑
i=1

lτ (Yi − µ
init
τ − X⊤

i,−jβ
init
τ ,−j − Xi,jβj), (2)

where µinit
τ and β init

τ are certain initial estimators of µ∗
τ and β∗, β init

τ ,−j ≡ {β init
τ ,k : k ̸= j}, and Xi,−j ≡ {Xi,k : k ̸= j}. However,

it is known that the asymptotic normality of the estimator for β∗

j by minimizing (2) cannot be established if the initial
estimators µinit

τ and β init
τ are not n1/2-consistent. Thus, regularized estimators cannot serve as initial estimators. To tackle

this problem, inspired by the ideas of orthogonalization (Neyman, 1959; Zhang and Zhang, 2014; Belloni et al., 2015,
2019) and decorrelated score (Ning and Liu, 2017), we consider the following estimating equation for βj:

1
n

n∑
i=1

(−Xi,j + Z⊤

i,−(j+1)γ̂j)ψτ (Yi − µ
init
τ − X⊤

i,−jβ
init
τ ,−j − Xi,jβj) = 0, (3)

where ψτ (x) = dlτ (x)/dx, γ̂j is a consistent estimator of γ ∗

j , and

γ ∗

j ≡ argmin
γj

E(Xi,j − Z⊤

i,−(j+1)γj)
2.

It can be easily verified that the estimating Eq. (3) corresponds to the following orthogonality property
∂

∂η
E{(−Xi,j + Z⊤

i,−(j+1)γj)ψτ (Yi − µ− X⊤

i,−jβ−j − Xi,jβ
∗

j )}|η=η∗ = 0, (4)

where η = (γ⊤

j , µ, β
⊤

−j)
⊤, and η∗ = (γ ∗⊤

j , µ∗
τ , β

∗⊤

−j )
⊤. The orthogonal property in (4) ensures that the convergence rate

of the estimator of β∗

j derived from (3) will not be affected by the estimation of µinit
τ and β init

τ ,−j, namely, µinit
τ and β init

τ ,−j
are allowed to converge to µ∗

τ and β∗

−j at a slower rate than n−1/2, for instance, o(n−1/4). However, solving (3) directly
is numerically inconvenient due to the discontinuity of the indicator function and sign function. Invoking the idea of
one-step estimation in Bickel (1975), we define

S(βj) ≡ E{(−Xi,j + Z⊤

i,−(j+1)γ
∗

j )ψτ (Yi − µ
∗

τ − X⊤

i,−jβ
∗

τ ,−j − Xi,jβj)}

and

Ṡ(βj) ≡ −E{Xi,j(−Xi,j + Z⊤

i,−(j+1)γ
∗

j )I(|Yi − µ
∗

τ − X⊤

i,−jβ
∗

τ ,−j − Xi,jβj| ≤ τ )}.

It can be verified that Ṡ(βj) is the derivative of S(βj) with respect to βj. Let ϵ initi,τ = Yi − µinit
τ − X⊤

i β
init
τ . Instead of solving

(3) for βj, we consider a one-step estimator:

β̂τ ,j = β init
τ ,j + {Ṡ(β∗

j )}
−1 1

n

n∑
i=1

(Xi,j − Z⊤

i,−(j+1)γ̂j)ψτ (ϵ
init
i,τ ). (5)

Since {Ṡ(β∗

j )}
−1 is unknown, we plug in its empirical counterpart into (5) and obtain the proposed estimator

β̂τ ,j = β init
τ ,j +

∑n
i=1(Xi,j − Z⊤

i,−(j+1)γ̂j)ψτ (ϵ
init
i,τ )∑n

i=1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂j)×
1
n

∑n
i=1 I(|ϵ

init
i,τ | ≤ τ )

. (6)

For the initial estimator, in view of the popularity and simplicity of the lasso (Tibshirani, 1996), we let the initial estimators
µinit
τ , β init

τ be the minimizer of

1
2n

n∑
i=1

lτ (Yi − Z⊤

i θ )+ λn∥β∥1, (7)

where λn is a tuning parameter and ∥β∥1 =
∑d

j=1 |βj|. Meanwhile, according to van de Geer et al. (2014), one can obtain
an appropriate estimator of γ ∗

j , denoted by γ̂j, by minimizing

Wn(γj) ≡
1
n

n∑
i=1

(Xi,j − Z⊤

i,−(j+1)γj)
2
+ ωj∥γj∥1, (8)

over γj, where ωj is a regularization parameter.

2.2. Theoretical results

We first define the notation needed below. Let ∥·∥2 be the Euclidean norm, ∥·∥0 be the number of nonzero components
of a vector and ∥ ·∥ be the maximal absolute value in the components of a vector. Define s = 1+∥β∗

∥ and S = E(ZZ⊤).
∞ 0
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et S−1
j be the (j + 1)-th row of the inverse matrix of S. The notation a ≍ b represents that there exist two positive

onstants e0 and e1 such that e0a ≤ b ≤ e1a.
We assume the following conditions in Theorems 1–3 and Proposition 1.

(C1) The error ϵ is an absolutely continuous random variable with a cumulative distribution function Fϵ(x). There exists
a positive constant M1 such that E|ϵ| < M1.

(C2) There exist two positive constants m and M such that

m ≤ inf
∥∆∥2 ̸=0,∆∈Rd+1

∥S1/2∆∥22
∥∆∥22

≤ sup
∥∆∥2 ̸=0,∆∈Rd+1

∥S1/2∆∥22
∥∆∥22

≤ M.

(C3) There exists a positive constant A0 such that, for any a ∈ Rd+1 and any t > 0,

P(|⟨a, z⟩| ≥ A0∥a∥2t) ≤ 2e−t2 ,

where z = S−1/2Z and ⟨a, z⟩ = a⊤z.
(C4) The dimensionality d and s satisfy s2 log(d+ 1)/n = o(1).
(C5) There exist two positive constants N1 and N2 such that ∥θ∗τ ∥2 ≤ N2 for all τ ≥ N1. Also, there exists a positive

constant L such that supx fϵ(x) ≤ L, where fϵ(x) is the density function of ϵ.
(C6) The regularization parameter ωj in (8) satisfies ωj ≍

√
log(d+ 1)/n. Suppose that ∥S−1

j ∥0 ≤ s1 for some positive
integer s1, and s31s

3 log3(d + 1) = o(nα) for some α ∈ (0, 1). In addition, we assume Condition (C6)(a) or Condition
(C6)(b) below holds:

(C6)(a) Let λmax ≡ ∥(1/n)
∑n

i=1 ZiZ
⊤

i − S∥sp, where ∥A∥sp is the spectral norm of a matrix A, i.e., the square root of the
largest eigenvalue of A⊤A. Assume that λmax = Op(max(

√
d/n, d/n)) and d = O(n).

(C6)(b) There exists a positive constant N3 such that with probability tending to one,

sup
∥x∥0≤2n/log(d+1)

∥x∥2=1

x⊤
(
1
n

n∑
i=1

ZiZ⊤

i

)
x ≤ N3.

Condition (C1) ensures that β∗
τ = β∗ for any τ > 0. The bounded first moment condition is needed to prove that the

restricted strong convexity condition (Fan et al., 2017) is satisfied by the Huber loss. Many commonly-used distributions
such as normal distribution, shifted Chi-square distribution, Student’s t-distribution with degrees of freedom greater
han 1, satisfy Condition (C1). Conditions (C2)-(C4) are regularity conditions for high-dimensional models (van de Geer
t al., 2014; Fan et al., 2017). The boundedness conditions in (C5) are assumed for technical convenience. It follows from
heorem 4.7.1 in Vershynin (2018, page 94) and Condition (C2) that Condition (C6)(a) holds for sub-Gaussian covariates.
ondition (C6) part (a) indicates that d can have the same order as n; Condition (C6)(b) holds for Gaussian covariates, and
t allows d to grow at an exponential rate of n (Belloni and Chernozhukov, 2011).

Remark 1. When d is fixed, by Theorem 4.7.1 in Vershynin (2018), Markov’s inequality and Condition (C2), it follows that
sub-Gaussian covariates satisfy ∥(1/n)

∑n
i=1 ZiZ

⊤

i − S∥sp = Op(n−1/2). Therefore, λmax = Op(max(
√
d/n, d/n)) in Condition

(C6)(a) is satisfied for fixed d.

The following proposition shows that, for the mean regression under an asymmetrical error distribution, estimation
based on the Huber loss function still delivers unbiased estimators for the slope parameters but a biased estimator for
the intercept term.

Proposition 1. Under Conditions (C1) and (C2), for any τ > 0, there exists a constant µτ depending on τ , such that
µ∗
τ = µ∗

− µτ and β∗
τ = β∗.

Remark 2. We note that an independent work (Wang et al., 2020) reports the same result under the assumptions that
E{lτ (ϵ−α)} has a unique minimizer and P(|ϵ − µτ |) > 0. We prove Proposition 1 under milder conditions that are easier
to verify in practice.

The next theorem establishes the consistency of θ initτ ≡ (µinit
τ , (β init

τ )⊤)⊤.

Theorem 1. Assume Conditions (C1)-(C5) hold. Then, there exists a positive constant c0 depending on A0, m, M, M1, N1 and
N2, such that when τ ≥ c0 and λn = κτ

√
log(d+ 1)/n, with probability at least 1− (1+ e)/(1+ d)− c1 exp(−c2n),

∥θ initτ − θ∗τ ∥2 ≤ fτ ,s

√
log(d+ 1)

n
and

∥θ init − θ∗∥1 ≤ 4
√
sfτ ,s

√
log(d+ 1)

,
τ τ n
419
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here e is Euler’s number, κτ could be any positive constant no less than κ̃τ which depends on τ , A0 and M, c1 and c2 are two
positive constants depending on A0, m, M, M1, N1 and N2, and fτ ,s depends on A0, m, M, M1, N1, N2, κτ and s.

The next theorem provides the asymptotic distribution of β̂τ ,j, which enables us to construct confidence intervals for
β∗

j .

Theorem 2. Under Conditions (C1)-(C6), for any τ ≥ c0 and λn = κτ
√
log(d+ 1)/n, σ−1

τ ,j n
1/2 (̂βτ ,j − β∗

j ) → N(0, 1)
n distribution as n → ∞, where κτ could be any positive constant no less than κ̌τ which depends on τ , A0, M and N3,
σ 2
τ ,j = E{ϵ2i,τ I(|ϵi,τ | ≤ τ )+ τ 2I(|ϵi,τ > τ |)}/[E{(X⊥

i,j )
2
}P2(|ϵi,τ | ≤ τ )], X⊥

i,j = Xi,j − Z⊤

i,−(j+1)γ
∗

j and ϵi,τ = Yi − µ
∗
τ − X⊤

i β
∗.

The asymptotic variance of n1/2 (̂βτ ,j − β∗

j ) can be consistently estimated by

σ̂ 2
τ ,j =

∑n
i=1(ϵ

init
i,τ )2I(|ϵ initi,τ | ≤ τ )+ τ 2I(|ϵ initi,τ > τ |)∑n

i=1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂j){
1
n

∑n
i=1 I(|ϵ

init
i,τ | ≤ τ )}2

.

We next present the confidence intervals for β∗

j in the following corollary.

orollary 1. Under Conditions (C1)-(C6), for any τ ≥ c0 and λn = κτ
√
log(d+ 1)/n, and any 0 < ξ̃ < 1,⏐⏐P{β∗

j ∈ [̂βτ ,j ± n−1/2σ̂τ ,jΦ
−1(1− ξ̃ /2)]} − (1− ξ̃ )

⏐⏐→ 0

s n → ∞, where Φ(·) is the cumulative distribution function of the standard normal distribution and Φ−1(·) is its inverse
unction.

Let v̂j = (1/n)
∑n

i=1 Xi,j(Xi,j−Z⊤

i,−(j+1)γ̂j), ρ̂j = (−γ̂j,1, . . . ,−γ̂j,j, 1,−γ̂j,j+1, . . . ,−γ̂j,d), Σ̂−1
τ ,j = ρ̂j/{̂vj(1/n)

∑n
i=1 I(|ϵ

init
i,τ | ≤

)}, Σ̂−1
τ ,G = {Σ̂−1

τ ,j : j ∈ G}, and Ŝ = (1/n)
∑n

i=1 ZiZ
⊤

i .
In addition to Conditions (C1)-(C6), the following condition is needed for simultaneous inference for β∗

G .

(C7) maxj∈G ∥S−1
j ∥0 ≤ s1 and ωj ≍

√
log(d+ 1)/n uniformly in j ∈ G.

Condition (C7) is a standard assumption in the context of post-selection inference (van de Geer et al., 2014).

Theorem 3. Under Conditions (C1)-(C7), for any τ ≥ c0 and λn = κτ
√
log(d+ 1)/n, and any fixed-dimensional subset

⊂ {1, . . . , d}, we have

β̂τ ,G − β
∗

G = Σ̂−1
τ ,G

1
n

n∑
i=1

Ziψτ (ϵi,τ )+ β̂rem
τ ,G , ∥β̂

rem
τ ,G ∥∞ = op(n−1/2),

where β̂τ ,G = {̂βτ ,j : j ∈ G}, and κτ could be any positive constant no less than κ̌τ which depends on τ , A0, M and N3.

Define

Ω̂ =
1
n

n∑
i=1

{(ϵ initi,τ )2I(|ϵ initi,τ | ≤ τ )+ τ 2I(|ϵ initi,τ > τ |)}Σ̂−1
τ ,ĜS(Σ̂

−1
τ ,G)

⊤.

By Theorem 3, under H0,G : β∗

j = 0, ∀j ∈ G, the distribution of ∥
√
nΩ̂−1/2β̂τ ,G∥

2
2 is asymptotically equal to χ2(|G|),

where |G| is the cardinality of the set G. Let uξ̃ be the (1-ξ̃ )-quantile of χ2(|G|). One may reject H0,G if ∥
√
nΩ̂−1/2β̂τ ,G∥

2
2 >

ξ̃ .

emark 3. Janková and van de Geer (2016) developed a similar one-step debiased estimator and pointwise post-selection
nference, which requires the error is symmetrically distributed, for high-dimensional homoscedastic linear models.
ompared with Janková and van de Geer (2016), our proposed method is valid for a homoscedastic linear model with an
ntercept term, allowing the error distribution is asymmetric; when the error distribution is symmetric, our method can
e extended to accommodate heteroscedasticity.

. Heteroscedastic linear model

.1. Model and estimation method

In this section, we consider model (1) when ϵ1, . . . , ϵn are independent but not identically distributed. Similar to
ection 2, for any given τ > 0, we define

θ̄∗τ = (µ̄∗

τ , β̄
∗⊤

τ )⊤ ≡ argmin
θ∈Rd+1

E{
n∑

i=1

lτ (Yi − Z⊤

i θ )}.

he following assumption is needed for parameter identifiability.
420
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(
(

(

a

w
N

D1) For any 1 ≤ i ≤ n, the distribution of ϵi is symmetric. There exists a positive constant N4 such that for any τ > N4,
the function θ → E{

∑n
i=1 lτ (Yi − Z⊤

i θ )} has a unique minimizer θ̄∗τ .

n the presence of heteroscedasticity, the symmetry assumption of the error distributions ensures that the true parameter
∗ in model (1) is a minimizer of E{

∑n
i=1 lτ (Yi − Z⊤

i θ )}. For parameter identifiability, we also need the assumption that
{
∑n

i=1 lτ (Yi − Z⊤

i θ )} has a unique minimizer. The following proposition shows that the target parameter θ̄∗τ coincides
ith θ∗.

roposition 2. Under Condition (D1), for any τ > N4, we have θ̄∗τ = θ∗.

We extend the method proposed in Section 2 for the inference of β∗

j . To avoid technical complications arising from
he heteroscedasticity, a data-splitting technique is employed. Without loss of generality, we assume that n is an even
umber. Given the observations (X1, Y1), . . . , (Xn, Yn), the first sub-sample {(Xi, Yi)

n/2
i=1} are used to construct an initial

stimator θ̂ init1τ of θ∗ and an estimator γ̂ (1)
j of γ ∗

j according to (7) and (8) respectively. Similarly, θ̂ init2τ and γ̂ (2)
j can be

calculated with the second sub-sample {(Xi, Yi)ni=n/2+1}. Define

β̂
(1)
τ ,j = β init1

τ ,j +

∑n
i=n/2+1(Xi,j − Z⊤

i,−(j+1)γ̂
(2)
j )ψτ (ϵ init1i,τ )∑n

i=n/2+1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(2)
j )× 2

n

∑n
i=n/2+1 I(|ϵ

init1
i,τ | ≤ τ )

nd

β̂
(2)
τ ,j = β init2

τ ,j +

∑n/2
i=1(Xi,j − Z⊤

i,−(j+1)γ̂
(1)
j )ψτ (ϵ init2i,τ )∑n/2

i=1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(1)
j )× 2

n

∑n/2
i=1 I(|ϵ

init2
i,τ | ≤ τ )

.

here ϵ init1i,τ = Yi −µ
init1
τ − X⊤

i β
init1
τ and ϵ init2i,τ = Yi −µ

init2
τ − X⊤

i β
init2
τ . To avoid efficiency loss due to the sample splitting,

e propose the following average estimator

β̂
avg
τ ,j = (̂β (1)

τ ,j + β̂
(2)
τ ,j )/2.

he asymptotic properties of β̂avg
τ ,j are presented in the next subsection.

.2. Theoretical results

Let

σn,τ ,j =
1
n

n/2∑
i=1

E{ϵ2i I(|ϵi| ≤ τ )+ τ 2I(|ϵi > τ |)}

E{(X⊥

i,j )2}{
2
n

∑n/2
i=1 P2(|ϵi| ≤ τ )}2

+
1
n

n∑
i=n/2+1

E{ϵ2i I(|ϵi| ≤ τ )+ τ 2I(|ϵi > τ |)}
E{(X⊥

i,j )2}{
2
n

∑n
i=n/2+1 P2(|ϵi| ≤ τ )}2

.

Apart from Conditions (C2)-(C7), additional assumptions are needed.

D2) There exists a positive constant M2 such that max1≤i≤n E|ϵi| < M2.
D3) There exists a positive constant M3 such that for any τ > N4, max{2

∑n/2
i=1 E{I(|ϵi| ≤ τ )}/n, 2

∑n
i=n/2+1 E{I(|ϵi| ≤

τ )}/n} > M3 and σn,τ ,j > M3.
D4) Assume that max1≤i≤n supx fϵi (x) ≤ L, where fϵi (x) is the density function of ϵi. Moreover, ∥S−1

j ∥0 ≤ s1, (s21s +
s2s1) log2(d+ 1) = o(n) and ωj ≍

√
log(d+ 1)/n.

The next theorem establishes the consistency of θ̂ init1τ and θ̂ init2τ .

Theorem 4. Under Conditions (C2)-(C4), (D1) and (D2), there exists a positive constant c ′0 depending on A0, m, M2, and N4
such that for τ ≥ c ′0 and λn = κ ′τ

√
log(d+ 1)/n, with probability at least 1− (1+ e)/(1+ d)− c ′1 exp(−c ′2n),

∥θ init1τ − θ∗∥2 ≤ f ′τ ,s

√
log(d+ 1)

n
, ∥θ init2τ − θ∗∥2 ≤ f ′τ ,s

√
log(d+ 1)

n
,

nd

∥θ init1τ − θ∗∥1 ≤ 4
√
sf ′τ ,s

√
log(d+ 1)

n
, ∥θ init2τ − θ∗∥1 ≤ 4

√
sf ′τ ,s

√
log(d+ 1)

n
,

here κ ′τ is a positive constant depending on τ , A0 and M, c ′1 and c ′2 are two positive constants depending on A0, m, M2, and
, and f ′ depends on A , m, M, M , N , κ ′ and s.
4 τ ,s 0 2 4 τ
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The asymptotic distribution of β̂avg
τ ,j is given in the next theorem.

heorem 5. Under Conditions (C2)-(C4) and (D1)-(D4), for any τ ≥ c ′0 and λn = κ ′τ
√
log(d+ 1)/n, σ−1

n,τ ,jn
1/2 (̂βavg

τ ,j − β∗

j ) →
(0, 1) in distribution as n → ∞.

The asymptotic variance of n1/2 (̂βavg
τ ,j − β∗

j ) can be consistently estimated by

σ̂ 2
n,τ ,j =

∑n/2
i=1(ϵ

init2
i,τ )2I(|ϵ init2i,τ | ≤ τ )+ τ 2I(|ϵ init2i,τ > τ |)

2
∑n/2

i=1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(1)
j ){ 2n

∑n/2
i=1 I(|ϵ

init2
i,τ | ≤ τ )}2

+

∑n
i=n/2+1(ϵ

init1
i,τ )2I(|ϵ init1i,τ | ≤ τ )+ τ 2I(|ϵ init1i,τ > τ |)

2
∑n

i=n/2+1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(2)
j ){ 2n

∑n
i=n/2+1 I(|ϵ

init1
i,τ | ≤ τ )}2

.

e provide the pointwise confidence interval for β∗

j in the next corollary.

orollary 2. Under Conditions (C2)-(C4) and (D1)-(D4), for any τ ≥ c ′0 and λn = κ ′τ
√
log(d+ 1)/n, and any 0 < ξ̃ < 1,⏐⏐P{β∗

j ∈ [̂β
avg
τ ,j ± n−1/2σ̂n,τ ,jΦ

−1(1− ξ̃ /2)]} − (1− ξ̃ )
⏐⏐→ 0

s n → ∞, where Φ(·) and Φ−1(·) are the same as in Corollary 1.

Let v̂(1)j = (2/n)
∑n/2

i=1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(1)
j ), v̂(2)j = (2/n)

∑n
i=n/2+1 Xi,j(Xi,j − Z⊤

i,−(j+1)γ̂
(2)
j ), ρ̂(1)

j = (−γ̂ (1)
j,1 , . . . ,−γ̂

(1)
j,j , 1,

−γ̂
(1)
j,j+1, . . . ,−γ̂

(1)
j,d ), ρ̂

(2)
j = (−γ̂ (2)

j,1 , . . . ,−γ̂
(2)
j,j , 1,−γ̂

(2)
j,j+1, . . . ,−γ̂

(2)
j,d ), Ω̂

(1)
τ ,j = ρ̂

(1)
j /{̂v

(1)
j (2/n)

∑n/2
i=1 I(|ϵ

init2
i,τ | ≤ τ )}, Ω̂ (2)

τ ,j =
(2)
j /{̂v

(2)
j (2/n)

∑n
i=n/2+1 I(|ϵ

init1
i,τ | ≤ τ )}, Ω̂ (1)

τ ,G = {Ω̂
(1)
τ ,j : j ∈ G} and Ω̂ (2)

τ ,G = {Ω̂
(2)
τ ,j : j ∈ G}. The next theorem provides

theoretical guarantee for simultaneous inference of β∗

G .

Theorem 6. Under Conditions (C2)-(C4), (C7) and (D1)-(D4), for any τ ≥ c ′0 and λn = κ ′τ
√
log(d+ 1)/n, and any

ixed-dimensional subset G ⊂ {1, . . . , d}, we have

β̂
avg
τ ,G − β∗

G = Ω̂
(1)
τ ,G

1
n

n/2∑
i=1

Ziψτ (ϵi)+ Ω̂
(2)
τ ,G

1
n

n∑
i=n/2+1

Ziψτ (ϵi)+ β̃rem
τ ,G , ∥β̃

rem
τ ,G ∥∞ = op(n−1/2),

where β̂avg
τ ,G = {̂β

avg
τ ,j : j ∈ G}.

Define

Ω̃ =
1
n

n/2∑
i=1

{(ϵ init2i,τ )2I(|ϵ init2i,τ | ≤ τ )+ τ 2I(|ϵ init2i,τ > τ |)}Ω̂ (1)
τ ,ĜS(Ω̂

(1)
τ ,G)

⊤

+
1
n

n∑
i=n/2+1

{(ϵ init1i,τ )2I(|ϵ init1i,τ | ≤ τ )+ τ 2I(|ϵ init1i,τ > τ |)}Ω̂ (2)
τ ,ĜS(Ω̂

(2)
τ ,G)

⊤.

By Theorem 6, under H0,G : β∗

j = 0, ∀j ∈ G, ∥
√
nΩ̃−1/2β̂

avg
τ ,G ∥

2
2 converges to χ2(|G|) in distribution as n → ∞, where

G| is the cardinality of the set G. As a result, one may reject H0,G if ∥
√
nΩ̃−1/2β̂

avg
τ ,G ∥

2
2 > uξ̃ , where uξ̃ is the (1-ξ̃ )-quantile

f χ2(|G|).

. Simulation

We carry out extensive simulation studies to evaluate the finite-sampler performance of the proposed method.

.1. Simulated data: various error distributions and relatively strong signal

We first investigate the performance when the signals of the regression parameters are relatively strong. The first 5
omponents of β∗ are set to be 1 and the rest components of β∗ are 0 (setting (i)). Similar to Janková (2017), we generate
he covariate vector X from N(0,Λ−1), where Λj,j = 1; Λj,k = 0.5 if |j− k| = 1; Λj,k = 0.4 if |j− k| = 2; otherwise,
j,k = 0. Five error distributions are tried:
(A) Standard normal distribution, shorted as N(0, 1);
(B) Student’s t distribution with degrees of freedom 3, shorted as t(3);
(C) Shifted Chi-square distribution with degrees of freedom 8, shorted as χ2(8)− 8;
(D) Skewed normal distribution with location parameter 0, scale parameter 1 and shape parameter 1, shorted as

N(0, 1, 1);
(E) Pareto distribution with scale parameter 1 and shape parameter 2; shorted as P(1, 2).
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Table 1
The average of the coverage probabilities (ACP) of the 95% confidence intervals and the average length (AL) of the 95%
confidence intervals over S1

∞
, S1c

∞
, and ⌊d⌋, respectively.

β∗ in Setting (i) Method ACP AL

S1
∞

S1c
∞

⌊d⌋ S1
∞

S1c
∞

⌊d⌋

n = 200, d = 400,N(0, 1) Proposed 0.918 0.981 0.980 0.369 0.416 0.415
Z. & Z. 0.922 0.950 0.950 0.392 0.402 0.402

n = 200, d = 400, t(3) Proposed 0.918 0.979 0.978 0.453 0.508 0.507
Z. & Z. 0.921 0.946 0.946 0.490 0.505 0.504

n = 300, d = 400,N(0, 1) Proposed 0.942 0.978 0.977 0.313 0.361 0.360
Z. & Z. 0.942 0.943 0.943 0.332 0.348 0.347

n = 300, d = 400, t(3) Proposed 0.912 0.978 0.977 0.371 0.426 0.425
Z. & Z. 0.915 0.950 0.949 0.430 0.449 0.449

n = 200, d = 800,N(0, 1) Proposed 0.906 0.979 0.978 0.394 0.400 0.400
Z. & Z. 0.904 0.951 0.950 0.384 0.392 0.392

n = 200, d = 800, t(3) Proposed 0.916 0.982 0.981 0.436 0.473 0.473
Z. & Z. 0.928 0.950 0.949 0.481 0.493 0.493

n = 300, d = 800,N(0, 1) Proposed 0.918 0.981 0.980 0.306 0.343 0.342
Z. & Z. 0.890 0.952 0.952 0.320 0.332 0.332

n = 300, d = 800, t(3) Proposed 0.922 0.981 0.980 0.367 0.409 0.409
Z. & Z. 0.920 0.952 0.952 0.378 0.389 0.389

Notes: Z. & Z. stands for the method in Zhang and Zhang (2014).

For cases (A)-(C), we set the intercept µ∗
= 0 for comparison with the method by Zhang and Zhang (2014). In cases (D)

and (E), for identifiability, the mean of the skewed normal variable and the Pareto variable are shifted to the intercept term.
As a result, cases (D) and (E) could be used to examine the performance of the proposed method under a linear model
with a non-zero intercept term. Note that the variance of the Pareto distribution in case (E) is infinite. For hypothesis
testing, two configurations are considered: G1 = {1, 2, 3, 4, 5} and G2 = {6, 7, 8, 9, 10}.

In our numerical studies, similar to many existing works, such as Neykov et al. (2016), Fan et al. (2017) and Sun et al.
(2020), the tuning parameter λn in (7) is selected by the 10-fold cross validation. For each j = 1, . . . , d, we select the tuning
parameter ωj using 5-fold cross validation. Moreover, the robustification parameter τ is tuned by the criterion that 80%
of the predicted errors are in [−τ , τ ]. For a set A ⊂ {2, . . . , d + 1}, the average of the empirical coverage probabilities
(ACP) of the 95% confidence intervals over the set A is defined as

ACP(A) =
∑
j∈A

CPj/|A|,

where CPj is the empirical coverage probability of the 95% confidence interval for θ∗j . The average length (AL) of the
95% confidence intervals over the set A can be defined analogously. The results presented below are based on 100
replications with sample sizes n = 200 and 300 and dimensionality d = 400 and 800. We implement the proposed
method with the hqreg package in R (https://cran.r-project.org/web/packages/hqreg/index.html), in which a semismooth
Newton coordinate descent algorithm (SNCD) is employed to reduce the computational cost per iteration from O(nd2) to
O(nd) compared with the semismooth Newton algorithm (SNA) (Yi and Huang, 2017).

For comparison, we also consider the methods by Zhang and Zhang (2014), Fan et al. (2017) and Sun et al. (2020). Let
S∞ = {j|θ∗j ̸= 0}, Sc

∞
= {j|θ∗j = 0}, S1

∞
= S∞ \ {1}, and S1c

∞
= Sc

∞
\ {1}. Table 1 reports the ACP and AL over S1

∞
, S1c

∞
, and

⌊d⌋ in cases (A) and (B), where ⌊d⌋ = {2, . . . , d+ 1}. Tables 2 and 3 present the averaged ℓ1 and ℓ2 distances between β̂τ
and β∗, the empirical probability of selecting the correct model (CM) over replications in the model selection step, and
the empirical sizes and powers of the test statistic ∥

√
nΩ̂−1/2β̂τ ,G∥

2
2 at the significance level of ξ̃ = 0.05. The results for

ases (C)-(E) are given in Tables 4–6, respectively.
It can be seen from Tables 1–6 that the empirical sizes of our proposed method are close to the nominal level 0.05

and the ACP is reasonable across various settings. The empirical probability of selecting the correct model is close to 1 for
most of the cases in Tables 2, 3, 5 and 6, indicating that the true sparse model can be recovered in the model selection
tep. In addition, Tables 2, 3, 5 and 6 also show that the statistical test based on the proposed statistic ∥

√
nΩ̂−1/2β̂τ ,G∥

2
2 is

owerful. The overall performance of the proposed method gets better when the sample size increases from 200 to 300.
or cases (A) and (B), the proposed method is comparable to that of Zhang and Zhang (2014). For cases (C)-(E), especially
he heavy-tailed case (E), our method outperforms the method by Zhang and Zhang (2014) in terms of AL and the averaged
ℓ1 and ℓ2 distance, indicating that our method is more robust than that of Zhang and Zhang (2014). Moreover, we observe
that the shrinkage methods by Fan et al. (2017) and Sun et al. (2020) outperform the proposed method in terms of ℓ1
and ℓ2 distance. We believe this is due to the fact that post-selection inference methods, such as that of Zhang and Zhang
(2014) and van de Geer et al. (2014), focus on post-selection inference, but not the shrinkage or sparsity recovery of the
regression coefficients. We also display the histograms of

√
n(̂β − β∗)/σ̂ , j = 1, 3, 6, 8, in Fig. 1, in which n = 300
τ ,j j τ ,j

423
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Table 2
The averaged ℓ1 and ℓ2 distances between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (i) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 200, d = 400,N(0, 1)

Proposed 28.289 3.168 1.000 0.040 1.000
Z. & Z. 32.809 4.244 1.000 – –
FLW17 0.962 0.113 1.000 – –
SZF19 0.729 0.143 1.000 – –

n = 200, d = 400, t(3)

Proposed 34.651 5.120 1.000 0.040 0.990
Z. & Z. 41.119 7.660 1.000 – –
FLW17 1.182 0.288 1.000 – –
SZF19 1.179 0.288 1.000 – –

n = 200, d = 800,N(0, 1)

Proposed 53.402 5.640 1.000 0.080 1.000
Z. & Z. 63.715 8.013 1.000 – –
FLW17 1.231 0.132 1.000 – –
SZF19 0.852 0.127 1.000 – –

n = 200, d = 800, t(3)

Proposed 62.685 7.843 1.000 0.030 1.000
Z. & Z. 78.629 16.218 1.000 – –
FLW17 0.973 0.179 1.000 – –
SZF19 1.112 0.170 1.000 – –

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014); FLW17 represents the method by Fan et al. (2017);
SZF19 stands for the method by Sun et al. (2020); ‘‘-" means not applicable.

Table 3
The averaged ℓ1 and ℓ2 distances between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (i) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 300, d = 400,N(0, 1)

Proposed 24.875 2.431 1.000 0.050 1.000
Z. & Z. 30.138 5.077 1.000 – –
FLW17 0.603 0.070 1.000 – –
SZF19 0.843 0.191 1.000 – –

n = 300, d = 400, t(3)

Proposed 29.667 3.523 1.000 0.080 1.000
Z. & Z. 35.640 5.678 1.000 – –
FLW17 0.726 0.141 1.000 – –
SZF19 0.924 0.235 1.000 – –

n = 300, d = 800,N(0, 1)

Proposed 46.536 4.264 1.000 0.070 1.000
Z. & Z. 53.711 5.662 1.000 – –
FLW17 0.729 0.080 1.000 – –
SZF19 0.837 0.194 1.000 – –

n = 300, d = 800, t(3)

Proposed 55.231 6.082 1.000 0.030 1.000
Z. & Z. 62.783 7.912 1.000 – –
FLW17 1.148 0.119 1.000 – –
SZF19 0.785 0.170 1.000 – –

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014); FLW17 represents the method by Fan et al. (2017);
SZF19 stands for the method by Sun et al. (2020); ‘‘-" means not applicable.

and d = 800. For each j and different error distributions, one can see that the distribution of
√
n(̂βτ ,j − β∗

j )/σ̂τ ,j is similar
to the standard normal distribution, which confirms the theory. Similar conclusions can be drawn under other settings.

4.2. Simulated data: weak signals

In the second part, we conduct simulations to check the performance when the signals of the parameters are weak.
The first 10 components of β∗ are set to be 0.15 and other components of β∗ are 0 (setting (ii)). For hypothesis testing,
we consider two configurations: G3 = {1, 2, . . . , 10} and G4 = {11, 12, . . . , 20}. We consider two error distributions: the
standard normal distribution, shorted as N(0, 1); Student’s t distribution with degrees of freedom 3, shorted as t(3). Other
setups are the same as in Section 4.1. The simulation results are presented in Tables 7–9 and Fig. 2. It can be seen that
he proposed method performs reasonably well when the signals are relatively weak. And it is more robust than that of
hang and Zhang (2014). Note that all methods cannot identify the correct model in the model selection step when the
424
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Table 4
The average of the coverage probabilities (ACP) of the 95% confidence intervals and the average length (AL) of the 95%
confidence intervals over S1

∞
, S1c

∞
, and ⌊d⌋, respectively.

β∗ in Setting (i) Method ACP AL

S1
∞

S1c
∞

⌊d⌋ S1
∞

S1c
∞

⌊d⌋

n = 200, d = 400, χ2(8)− 8 Proposed 0.910 0.975 0.974 1.349 1.516 1.514
Z. & Z. 0.902 0.952 0.951 1.572 1.615 1.614

n = 300, d = 400, χ2(8)− 8 Proposed 0.914 0.974 0.974 1.189 1.366 1.363
Z. & Z. 0.910 0.943 0.942 1.330 1.388 1.388

n = 200, d = 800, χ2(8)− 8 Proposed 0.880 0.977 0.977 1.388 1.536 1.535
Z. & Z. 0.880 0.951 0.951 1.544 1.578 1.578

n = 300, d = 800, χ2(8)− 8 Proposed 0.902 0.976 0.976 1.169 1.309 1.308
Z. & Z. 0.904 0.952 0.952 1.297 1.339 1.339

n = 200, d = 400, SN(0, 0, 1) Proposed 0.896 0.970 0.969 0.277 0.311 0.311
Z. & Z. 0.939 0.950 0.950 0.488 0.501 0.501

n = 300, d = 400, SN(0, 0, 1) Proposed 0.858 0.970 0.968 0.279 0.313 0.312
Z. & Z. 0.913 0.952 0.952 0.369 0.379 0.379

n = 200, d = 800, SN(0, 0, 1) Proposed 0.892 0.968 0.968 0.292 0.318 0.318
Z. & Z. 0.920 0.953 0.953 0.350 0.358 0.358

n = 300, d = 800, SN(0, 0, 1) Proposed 0.852 0.961 0.961 0.220 0.247 0.247
Z. & Z. 0.906 0.953 0.953 0.268 0.277 0.277

n = 200, d = 400, P(1, 2) Proposed 0.894 0.962 0.961 0.304 0.341 0.341
Z. & Z. 0.931 0.952 0.952 0.972 1.000 1.000

n = 300, d = 400, P(1, 2) Proposed 0.892 0.962 0.961 0.279 0.317 0.317
Z. & Z. 0.924 0.952 0.951 1.350 1.408 1.407

n = 200, d = 800, P(1, 2) Proposed 0.880 0.969 0.969 0.352 0.381 0.381
Z. & Z. 0.904 0.952 0.952 0.784 0.803 0.803

n = 300, d = 800, P(1, 2) Proposed 0.890 0.962 0.962 0.250 0.279 0.279
Z. & Z. 0.926 0.950 0.950 0.731 0.757 0.757

Notes: Z. & Z. stands for method by Zhang and Zhang (2014).

ignals are weak, but post-selection methods are still able to carry out valid statistical inference. Similar to Section 4.1,
he methods by Fan et al. (2017) and Sun et al. (2020) give smaller ℓ1 and ℓ2 distance than our method.

.3. Simulated data: heteroscedastic errors

In the third part, we generate data from a heteroscedastic linear model (case F), where the error follows a hybrid
istribution, i.e., half of the errors follow N(0, 1) and another half follow t(3). Since a sample-splitting technique is
mployed, we set the sample size n = 400 and 600. Other setups are the same as in Section 4.1. The simulation results
re summarized in Table 10 and Fig. 3, from which one can see that the proposed method performs well in the presence
f heteroscedasticity. Similar conclusions to those in Section 4.1 can be drawn in the comparison with the methods by
hang and Zhang (2014), Fan et al. (2017) and Sun et al. (2020).

. Application

We apply our method to analyze a genomic dataset concerning the riboflavin (vitamin B2) production rate. This dataset
as been analyzed in van de Geer et al. (2014), Javanmard and Montanari (2014) and Janková and van de Geer (2016).
total of 71 samples of genetically engineered mutants of bacillus subtilis are included in the analysis. The response

ariable is the logarithm of the riboflavin production rate. In addition, 4088 covariates which measure the logarithm of
he expression level of 4088 genes are treated as predictors. The selection methods of the tuning parameters τ , ωj, and
n are the same as those in the simulation studies. Our goal is to select predictors that are associated with the riboflavin
roduction rate.
Following Janková and van de Geer (2016), we first conduct variable screening to reduce the dimensionality to a

oderate scale. We choose the top 300 covariates deemed most relevant for subsequent linear modeling. Table 11 presents
he estimates, and the 95% confidence intervals for the coefficients of the significant covariates. With the proposed method,
t can be seen from Table 11 that two genes, XLYA_at and YCKE_at, are selected and both are positively correlated with
he riboflavin production rate. In addition, the p-value of ∥

√
nΩ̂−1/2β̂τ ,G∥

2
2 for testing H0,G with G = {XLYA_at, YCKE_at}

is 3.559 × 10−6, which also suggests the significance of these two covariates. For comparison, the method by Zhang
and Zhang (2014) identifies 7 genes including YXLD_at, YXLE_at, YEEI_at, YCGO_at, YSFE_at, YCKE_at, and HISI_at with
non-zero coefficients.
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Table 5
The averaged ℓ1 and ℓ2 distances between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (i) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 200, d = 400, χ2(8)− 8

Proposed 108.566 46.539 1.000 0.090 1.000
Z. & Z. 130.598 67.327 1.000 – –
FLW17 6.661 2.287 1.000 – –
SZF19 5.228 1.978 1.000 – –

n = 200, d = 800, χ2(8)− 8

Proposed 211.536 88.276 1.000 0.030 1.000
Z. & Z. 256.712 129.922 1.000 – –
FLW17 3.316 2.983 1.000 – –
SZF19 3.319 2.990 1.000 – –

n = 200, d = 400, SN(0, 0, 1)

Proposed 22.697 2.046 1.000 0.110 1.000
Z. & Z. 27.231 2.924 1.000 – –
FLW17 0.940 0.111 1.000 – –
SZF19 0.717 0.143 1.000 – –

n = 200, d = 800, SN(0, 0, 1)

Proposed 46.316 4.232 1.000 0.100 1.000
Z. & Z. 56.357 9.509 0.990 – –
FLW17 0.749 0.144 1.000 – –
SZF19 0.797 0.124 1.000 – –

n = 200, d = 400, P(1, 2)

Proposed 26.199 2.720 1.000 0.060 1.000
Z. & Z. 79.392 37.029 0.970 – –
FLW17 4.722 2.156 1.000 – –
SZF19 4.088 1.968 1.000 – –

n = 200, d = 800, P(1, 2)

Proposed 55.655 6.143 1.000 0.070 1.000
Z. & Z. 130.047 40.530 1.000 – –
FLW17 4.566 1.532 1.000 – –
SZF19 5.406 1.689 1.000 – –

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014); FLW17 represents the method by Fan et al. (2017);
SZF19 stands for the method by Sun et al. (2020); ‘‘-" means not applicable.

Table 6
The averaged ℓ1 and ℓ2 distances between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (i) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 300, d = 400, χ2(8)− 8

Proposed 98.105 38.003 1.000 0.050 1.000
Z. & Z. 117.968 61.962 1.000 – –
FLW17 2.345 1.287 1.000 – –
SZF19 2.353 1.276 1.000 – –

n = 300, d = 800, χ2(8)− 8

Proposed 184.822 67.213 1.000 0.070 1.000
Z. & Z. 217.143 92.569 1.000 – –
FLW17 2.681 1.425 1.000 – –
SZF19 2.959 2.394 1.000 – –

n = 300, d = 400, SN(0, 0, 1)

Proposed 22.977 2.089 1.000 0.050 1.000
Z. & Z. 29.470 4.828 0.990 – –
FLW17 0.987 0.120 1.000 – –
SZF19 1.055 0.306 1.000 – –

n = 300, d = 800, SN(0, 0, 1)

Proposed 38.065 2.855 1.000 0.060 1.000
Z. & Z. 44.718 3.931 1.000 – –
FLW17 0.736 0.078 1.000 – –
SZF19 0.675 0.129 1.000 – –

n = 300, d = 400, P(1, 2)

Proposed 28.761 3.281 1.000 0.010 1.000
Z. & Z. 64.441 19.843 0.990 – –
FLW17 2.499 0.805 1.000 – –
SZF19 2.010 0.874 1.000 – –

n = 300, d = 800, P(1, 2)

Proposed 42.876 3.627 1.000 0.050 1.000
Z. & Z. 122.914 43.598 1.000 – –
FLW17 2.724 1.441 1.000 – –
SZF19 3.157 1.466 1.000 – –

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014); FLW17 represents the method by Fan et al. (2017);
SZF19 stands for the method by Sun et al. (2020); ‘‘-" means not applicable.
426



D. Han, J. Huang, Y. Lin et al. Journal of Econometrics 230 (2022) 416–431
Fig. 1. Histograms of
√
n(̂βτ ,j − β∗

j )/σ̂τ ,j , j = 1, 3, 6, 8 under setting (i) with n = 300, d = 800. Different rows correspond to different error
distributions in cases (A)-(E). The red curve is the density function of the standard normal distribution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Table 7
The average of the coverage probabilities (ACP) of the 95% confidence intervals and the average length (AL) of the 95%
confidence intervals over S1

∞
, S1c

∞
, and ⌊d⌋, respectively.

β∗ in Setting (ii) Method ACP AL

S1
∞

S1c
∞

⌊d⌋ S1
∞

S1c
∞

⌊d⌋

n = 200, d = 400,N(0, 1) Proposed 0.928 0.975 0.975 0.350 0.392 0.392
Z. & Z. 0.935 0.952 0.952 0.402 0.412 0.412

n = 300, d = 400,N(0, 1) Proposed 0.936 0.973 0.973 0.295 0.340 0.339
Z. & Z. 0.954 0.956 0.956 0.339 0.353 0.353

n = 200, d = 800,N(0, 1) Proposed 0.928 0.977 0.977 0.367 0.389 0.389
Z. & Z. 0.943 0.954 0.954 0.391 0.400 0.400

n = 300, d = 800,N(0, 1) Proposed 0.928 0.978 0.978 0.300 0.335 0.335
Z. & Z. 0.920 0.953 0.953 0.329 0.339 0.339

n = 200, d = 400, t(3) Proposed 0.938 0.974 0.974 0.377 0.423 0.422
Z. & Z. 0.941 0.952 0.952 0.490 0.505 0.504

n = 300, d = 400, t(3) Proposed 0.912 0.971 0.970 0.307 0.352 0.351
Z. & Z. 0.950 0.951 0.951 0.405 0.422 0.421

n = 200, d = 800, t(3) Proposed 0.902 0.975 0.974 0.365 0.383 0.383
Z. & Z. 0.930 0.954 0.953 0.482 0.493 0.493

n = 300, d = 800, t(3) Proposed 0.938 0.975 0.975 0.302 0.339 0.339
Z. & Z. 0.940 0.953 0.953 0.387 0.400 0.400

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014).

Table 8
The averaged ℓ1 and ℓ2 distances between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (ii) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 200, d = 400,N(0, 1)

Proposed 27.638 3.038 0.080 0.090 1.000
Z. & Z. 33.236 4.369 0.000 – –
FLW17 1.342 0.133 0.040 – –
SZF19 1.695 0.151 0.060 – –

n = 200, d = 400, t(3)

Proposed 29.796 3.526 0.030 0.060 1.000
Z. & Z. 40.814 6.812 0.000 – –
FLW17 1.255 0.155 0.000 – –
SZF19 1.346 0.159 0.000 – –

n = 200, d = 800,N(0, 1)

Proposed 53.722 5.700 0.030 0.070 1.000
Z. & Z. 64.052 8.078 0.000 – –
FLW17 1.062 0.130 0.000 – –
SZF19 1.252 0.127 0.030 – –

n = 200, d = 800, t(3)

Proposed 53.643 5.720 0.060 0.050 1.000
Z. & Z. 79.432 13.774 0.000 – –
FLW17 1.626 0.219 0.000 – –
SZF19 1.444 0.202 0.000 – –

Notes: Z. & Z. stands for the method by Zhang and Zhang (2014); FLW17 represents the method by Fan et al. (2017);
SZF19 stands for the method by Sun et al. (2020); ‘‘-" means not applicable.

6. Concluding remarks

In this article, we study one-step post-selection inference with the Huber loss for a high-dimensional linear model
with an intercept. When the errors are identically distributed, our proposed method allows for asymmetric and heavy-
tailed error distributions. As suggested by an anonymous reviewer, we further extend our method to accommodate
heteroscedasticity when the error distribution is assumed symmetric. We develop the asymptotic properties of the
proposed estimators. Statistical tests are studied for low-dimensional components of the slope parameter vector. The
simulation results show that the proposed method works well for various practical situations. An application to a genomic
dataset on riboflavin (vitamin B2) production rate is provided to illustrate our method.

The main theorems we established requires a sub-Gaussian assumption on the covariate. It appears to be nontrivial to
generalize our main results to heavy-tailed predictors in high dimensions. Some additional conditions on the moment
of the covariates may be needed. In addition, to pursue a more robust method in both covariate and the error, one
may replace the Neyman least squares projection by a Huber loss. Nevertheless, theoretical justifications become more
challenging. Moreover, as pointed by an anonymous reviewer, it would be interesting to consider a smoothed version
of the Huber loss. Finally, in the numerical work, we select τ using the criterion that 80% of the predicted errors are in
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s

i

Table 9
The averaged ℓ1 and ℓ2 distance between β̂τ and β∗ , the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

significant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
β∗ in Setting (ii) Method Distance CM Testing

ℓ1 ℓ2 Size Power

n = 300, d = 400,N(0, 1)

Proposed 24.457 2.363 0.250 0.060 1.000
Z. & Z. 28.376 3.164 0.100 – –
FLW17 0.953 0.098 0.120 – –
SZF19 0.915 0.104 0.060 – –

n = 300, d = 400, t(3)

Proposed 25.509 2.592 0.160 0.050 1.000
Z. & Z. 33.898 4.628 0.020 – –
FLW17 1.333 0.129 0.070 – –
SZF19 2.212 0.184 0.110 – –

n = 300, d = 800,N(0, 1)

Proposed 46.755 4.304 0.190 0.050 1.000
Z. & Z. 54.744 5.883 0.050 – –
FLW17 1.063 0.101 0.080 – –
SZF19 1.028 0.101 0.080 – –

n = 300, d = 800, t(3)

Proposed 48.330 4.595 0.190 0.040 1.000
Z. & Z. 64.749 8.423 0.060 – –
FLW17 1.554 0.139 0.110 – –
SZF19 1.350 0.129 0.090 – –

Notes: Z. & Z. stands for the method in Zhang and Zhang (2014); FLW17 represents the method in Fan et al. (2017);
SZF19 stands for the method in Sun et al. (2020); ‘‘-" means not applicable.

Table 10
The average ℓ1 and ℓ2 distances between β̂τ and β∗ , the average of the coverage probabilities (ACP) of the 95% confidence intervals, the average
length (AL) of the 95% confidence intervals over S1

∞
, S1c

∞
, and ⌊d⌋, the averaged and the empirical sizes and powers of ||

√
nΩ̂−1/2β̂τ ,G||

2
2 at the

ignificant level 0.05, and the empirical probability of selecting the correct model (CM) in the model selection step.
Setting (i) of β∗ Method Distance ACP AL CM Testing

ℓ1 ℓ2 S1
∞

S1c
∞

⌊d⌋ S1
∞

S1c
∞

⌊d⌋ Size Power

n = 400, d = 400, NID

Proposed 24.107 2.308 0.890 0.977 0.976 0.309 0.347 0.347 1.000 0.070 1.000
Z. & Z. 34.964 4.870 0.931 0.951 0.950 0.406 0.429 0.429 1.000 – –
FLW17 0.907 0.098 – – – – – – 1.000 – –
SZF19 1.266 0.424 – – – – – – 1.000 – –

n = 600, d = 400, NID

Proposed 21.263 1.789 0.896 0.973 0.972 0.258 0.296 0.296 1.000 0.030 1.000
Z. & Z. 31.226 3.974 0.952 0.949 0.949 0.352 0.383 0.383 1.000 – –
FLW17 0.670 0.081 – – – – – – 1.000 – –
SZF19 1.463 0.546 – – – – – – 1.000 – –

n = 400, d = 800, NID

Proposed 44.715 3.948 0.860 0.979 0.978 0.321 0.328 0.328 1.000 0.040 1.000
Z. & Z. 69.918 11.402 0.945 0.953 0.953 0.423 0.442 0.442 0.990 – –
FLW17 0.712 0.126 – – – – – – 1.000 – –
SZF19 0.945 0.239 – – – – – – 1.000 – –

n = 600, d = 800, NID

Proposed 40.652 3.247 0.870 0.978 0.978 0.260 0.292 0.292 1.000 0.020 1.000
Z. & Z. 70.022 13.478 0.925 0.940 0.940 1.026 1.092 1.091 0.960 – –
FLW17 0.849 0.094 – – – – – – 1.000 – –
SZF19 1.282 0.430 – – – – – – 1.000 – –

Notes: Z. & Z. stands for the method in Zhang and Zhang (2014); FLW17 represents the method in Fan et al. (2017); SZF19 stands for the method
n Sun et al. (2020); NID means non identically-distributed errors in case (F); ‘‘-" means not applicable.

Table 11
Estimates (Est) and the 95% confidence intervals (CI) for the coefficients of those significant predictors.
Method Gene Est CI

Proposed XLYA_at 0.276 [0.088,0.464]
YCKE_at 0.254 [0.014,0.494]

Z. and Z. YXLD_at −0.406 [−0.804,−0.009]
YXLE_at −0.510 [−0.928,−0.091]
YEEI_at 0.994 [0.174,1.81]
YCGO_at −0.331 [−0.591,−0.071]
YSFE_at 0.569 [0.005,1.133]
YCKE_at 0.370 [0.021,0.719]
HISI_at 0.670 [0.115,1.225]
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Fig. 2. Histograms of
√
n(̂βτ ,j − β∗

j )/σ̂τ ,j , j = 1, 6, 11, 16 under setting (ii) with n = 300, d = 800. Different rows correspond to different error
distributions in cases (A)-(B). The red curve is the density function of the standard normal distribution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Histograms of
√
n(̂βτ ,j − β∗

j )/σ̂τ ,j , j = 1, 3, 6, 8 under setting (i) with n = 600, d = 800 and non identically-distributed errors. The red curve
s the density function of the standard normal distribution. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

−τ , τ ], which leads to satisfactory performance in our simulation studies. However, a rigorous data-driven selector that
orks in our problem with theoretical guarantees has yet to be found. It would be interesting to consider this problem

n the future.
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