Signal Processing 194 (2022) 108432

Contents lists available at ScienceDirect

SIGNAL

PROCESSING

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

PSNA: A pathwise semismooth Newton algorithm for sparse recovery n
with optimal local convergence and oracle properties

Jian Huang®*, Yuling Jiao®, Xiliang Lu"* Yueyong Shi¢, Qinglong Yang¢, Yuanyuan Yang"

2 Department of Statistics and Actuarial Sciences, University of Iowa, Iowa City, Iowa, USA
bSchool of Mathematics and Statistics, Wuhan University, Wuhan, China

¢School of Economics and Management, China University of Geosciences, Wuhan, China

dSchool of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan, China

ARTICLE INFO

Article history:

Received 3 October 2020

Revised 27 September 2021
Accepted 11 December 2021
Available online 14 December 2021

Keywords:

KKT conditions

Lasso

Newton derivative
semismooth functions
sign consistency
superlinear convergence

ABSTRACT

We propose a pathwise semismooth Newton algorithm (PSNA) for sparse recovery in high-dimensional
linear models. PSNA is derived from a formulation of the KKT conditions for Lasso and Enet based on
Newton derivatives. It solves the semismooth KKT equations efficiently by actively and continuously seek-
ing the support of the regression coefficients along the solution path with warm start. At each knot in
the path, PSNA converges locally superlinearly for the Enet criterion and achieves the best possible con-
vergence rate for the Lasso criterion, i.e., PSNA converges in just one step at the cost of two matrix-vector
multiplication per iteration. Under certain regularity conditions on the design matrix and the minimum
magnitude of the nonzero elements of the target regression coefficients, we show that PSNA hits a so-
lution with the same signs as the regression coefficients and achieves a sharp estimation error bound
in finite steps with high probability. Extensive simulation studies support our theoretical results and in-
dicate that PSNA is competitive with or outperforms state-of-the-art Lasso solvers in terms of efficiency
and accuracy.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

where A > 0 is a penalty parameter. Closely related to the Lasso is
the elastic net (Enet) [3], which solves

In this paper, we propose a pathwise semismooth Newton al- . . o 2
gorithm (PSNA) for sparse recovery in the high-dimensional linear Eﬁghﬂ B):=L(B) + ﬁ”ﬂlb’ a>0. (1.3)

model

y=xB"+n,

This can be viewed as a regularized form of (1.2). Since J; ,(-)

~

is strongly convex for « > 0, the Enet solution B, , is unique.
This enables us to characterize the unique minimum 2-norm Lasso
solution (1.2) as the limit of B, , as o — 0F (Proposition 3.2).

(11)

where y € R" is a response vector, X € R™P is a design matrix,
ﬂT = (,BI,...,,BZ)’ € RP is a vector of underlying regression coef-
ficients, and n € R" is a vector of random errors. We assume with-
out loss of generality that y is centered and the columns of X are
centered and +/n-normalized. For this model, the Lasso [1,2] solves

- — Lixg_y2
minL (B) := 5, IXB—yl2 + 2Bl (12)
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In high-dimensional settings, it is nontrivial to efficiently solve
(1.2) and (1.3) numerically since they are large scale nondifferen-
tiable optimization problems.

The key ingredient of PSNA is a semismooth Newton algorithm
(SNA), which is derived based on a suitable formulation of the KKT
conditions. At each step in the iteration, the SNA works by first
estimating the support of the solution based on a combination of
the primal and dual information, and then finding the values of
the nonzero coefficients on the support. Interestingly, our analy-
sis shows that the SNA can be formally derived as a Newton algo-
rithm based on the notion of Newton derivatives for nondifferen-
tiable functions [4-6].

PSNA proceeds by running SNA along a grid of A values: {A; =
Ao¥'}i—o.1..n With the continuation strategy and warm start, where
y € (0,1), Ag > 0 and the integer N are user given parameters. It is
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easy to implement and computationally stable. Moreover, our sim-
ulation studies indicate that PSNA is nearly problem independent,
in the sense that the computational cost of using PSNA to approx-
imate the solution path is O(Nnp), independent of the following
aspects of the model, including the ambient dimension, sparsity
level, correlation structure of the predictors, range of the magni-
tude of the nonzero regression coefficients and the noise level.

1.1. Contributions

The most popular algorithms for solving ¢;-regularized prob-
lems in the literature are mainly first-order methods. It is natu-
ral to ask whether we can develop a second-order method, i.e, the
Newton-type method, which is a workhorse in low-dimensional
problems, for such nonsmooth optimization problems which con-
verge faster than first-order methods. We give a definitive answer
to this question by establishing faster convergence results for SNA.
We show that, for the Lasso, the SNA converges locally in just one
step, which is obviously the best possible local convergence rate
for any algorithms (Theorem 3.3). For the Enet, it converges lo-
cally superlinearly (Theorem 3.2). To the best of our knowledge,
these are the best convergence rates for Lasso and Enet problems
with p>>n in the literature. Our computational complexity anal-
ysis shows that the cost of each iteration in SNA is O(np), which
is the same as most existing Lasso solvers, including LARS and co-
ordinate descent algorithms. Hence, the overall cost of using SNA
to find the unique minimizer of J; ,(B) is still O(np) due to its
superlinear convergence if it is warm started.

Another contribution of this paper is that we establish the sta-
tistical properties of PSNA in the Gaussian noise case. Specifically,
we show that under certain regularity conditions on the design
matrix X, the solution sequence generated by PSNA enjoys the sign
consistency property in finite steps if the minimum magnitude
of the nonzero elements of BT is of the order O(o+/2log(p)/n),
which is the optimal magnitude of detectable signal. We also es-
tablish a sharp upper bound in supreme norm for the estimation
error of the solution sequence.

1.2. Related work

[7] showed that the Lasso solution path is continuous and
piecewise linear as a function of A. They proposed a Homotopy
algorithm that defines an active set of nonzero variables at the
current vertex then moves to a new vertex by adding a new vari-
able to or removing an existing one from the active set. [8] pro-
posed the LARS algorithm to trace the whole solution path of
(1.2) by omitting the removing steps in the Homotopy algorithm.
[9] showed that, in the noiseless case with » =0 and under cer-
tain conditions on X and ,BT, LARS (Homotopy) algorithm has the
“||,BT||0—step" convergence property with the cost of O(||ﬂT||0np).
However, the convergence property of LARS is unknown when the
noise vector 1 is nonzero in the p > n settings. Further connections
of SNA with LARS, sure independence screening [10], and active set
methods for accelerating coordinate descent [11] are discussed in
Section 5.

Several authors have adopted a Gauss-Seidel type coordinate
descent algorithm (CD-GS) [12-15], as well as Jacobi type coor-
dinate descent (CD-J), or iterative thresholding [16,17] to solve
(1.2). For the CD-GS proposed in [13], the results of [18], [19] and
[20] only ensure the convergence and sublinear convergence rate
of the sequence of the objective functions {Lx(ﬂk),k: 1,2,...},
but not the sequence of the solutions {ﬂk,kz 1,2,...}. Since in
high-dimensional settings with p >» n, the global minimizers S,
are generally not unique, hence, it is not clear which minimizer
the sequence {ﬂk,kz 1,2,...} generated from CD-GS iterations
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converges to. The CD-GS proposed in [15] and [21] with refined
sweep rules is guaranteed to converge. Other widely used algo-
rithms include proximal gradient descent [22-25], alternative di-
rection method of multiplier (ADMM) [26-28], among others. For
more comprehensive reviews of the literature on the related topics,
see the review papers by [29], and [30].

[24] considered the statistical properties of the proximal gradi-
ent descent path. But their analysis required knowing || ﬂT||1, which
is unknown or hard to estimate in practice. Although this can be
remedied by using the techniques developed by [25], it does not
achieve the sharp error bound as PSNA does.

1.3. Notation

Some notations used throughout this paper are defined be-

low. With || Bllq = (Z,P:l |,B,~|q)% we denote the usual q (q € [1, 00])
norm of a vector B = (B4, Bs. ... Bp)’ € RP. || Bllp denotes the num-
ber of nonzero elements of 8. X’ denotes the transpose of the co-
variate matrix X € R"™*P and ||X|| denotes the operator norm of X
induced by vector with 2-norm. 1 or 0 denote a vector € RP or
a matrix with elements all 1 or 0. Define S={1,..., p}. For any
A,B S with length |A], |B|, we denote B, < RMI(or X, € RIAIXP)
as the subvector (or submatrix) whose entries (or columns) are
listed in A. Xsp denotes submatrix of X whose rows and columns
are listed in A and B, respectively. We use supp(z), sgn(z) to de-
note the support and sign of a vector z, respectively. We use I, G
and y to denote the identity matrix, the regularized Gram matrix
X'X + al and X'y, respectively.

1.4. Organization

In Section 2 we provide a heuristic and intuitive derivation
of SNA for solving (1.3) (including (1.2) as a special case by set-
ting o = 0) and describe SNA for pathwise optimization (PSNA). In
Section 3 we establish the locally superlinear convergence rate of
SNA for (1.3) and local one-step convergence for (1.2), and ana-
lyze the computational complexity of SNA. In Section 4 we provide
the conditions for the finite-step sign consistency of PSNA and the
upper bounds for the estimation error. In Section 5 we discuss the
relations of SNA with LARS, SIS, and active set methods for acceler-
ating coordinate descent. The implementation detail and numerical
comparison with LARS and coordinate descent methods are given
in Section 6. We conclude in Section 7 with some comments and
future work. The proofs of the main results and some background
on Newton derivatives used for deriving SNA are included in the
appendices.

2. A general description of PSNA

In this section we first give an intuitive description of the SNA
for computing the Lasso and Enet solutions at a given A and «.
We then describe the PSNA, which uses SNA for computing the
solution paths with warm start and a continuation strategy.

2.1. Motivating SNA based on the KKT conditions

The key idea in the proposed algorithm is to iteratively identify
the active set in the optimization using both the primal and dual
information, then solve the problem on the active set. Here the
primal is simply B and its dual is d = (¥ — GB)/n. Recall y = X'y
and G = X’X + «l. For the Lasso, the expression of d simplifies to
d=X'(y—XpB)/n, ie., the correlation vector between the predic-
tors and the residual. For any given (A,c«), the KKT conditions
(Proposition 3.3) assert that B, , is the unique Enet solution if and



J. Huang, Y. Jiao, X. Lu et al.

only if the pair {BM,&M} satisfies

:&\k,a = @_AGEA,D{)\/na 1
{ﬁ)\,a = T)L(ﬂ)hva +d, o), (2.1)

where T, (%) is the soft-threshold operator [31] acting on ¥ compo-
nent wise, that is, T, (%) = (T) (x1), ..., T, (xp)) with

[x+ Al |x—A]
2 2

The KKT conditions in (2.1) are stated in equalities using the
soft-threshold operator, rather than in the usual inequality form
or in terms of set-valued subdifferentials. This is the basis for our
derivation of the SNA, which seeks to solve these nonsmooth equa-
tions. PR

To simplify the notation we drop the subscripts of (8, . d; 4)
and write them as (B,E), when it does not cause any confusion.
By the second equation of (2.1) and the definition of the soft-
threshold operator, we have

T, (x) =x ,XeR. (2.2)

B; =0, (2.3)
d, = Asgn(B, + dy), (2.4)

where
A:{jes:|3j+ij|zx} and B:{jes:|,§j+d§|<x}.
(2.5)

Substituting (2.3) into the first equation of (2.1) and observing
Gay is invertible, we can solve the resulting linear system to get

By = G} (4 — ndy), (2.6)
ds = (5 — GeaBa)/n. (2.7)

Therefore, {,T?,E} can be obtained from (2.3)-(2.4) and (2.6)-(2.7) if
A is known. R

Let {ﬁk, d*} be the primal and dual approximation of {8, ﬁ} at
the kth iteration. Based on (2.5), we approximate the active and
inactive sets by

Av={jieS:|f+d >} and B ={jesS:|Bf+d| <A}
(2.8)
Based on (2.3)-(2.4) and (2.6)-(2.7) we obtain the updated ap-

proximation {81, d**1},

By =0. (2.9)
di' = (A~ D)sgn(By, +d}). (2.10)
B! =Gyl Ga, — ndf™). (2.11)
i = ¥, — G BaH)/n. (2.12)

In (2.10) we introduce a (small) shift parameter A with 0 <A < A
and use a slightly more general version of (2.4), replacing A with
A—X in (2.4). For A >0, we solve a less shrunk version of the
Enet. For the solution sequence {,Bk,k > 1} with a suitable A > 0,
we show that it achieves finite-step sign consistency and sharp es-
timation error bound (Theorem 4.1).

Based on the above discussion, we summarize SNA for minimiz-
ing (1.3) in Algorithm 1 below, where we write B(A) = 8, , for a
fixed a.
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Algorithm 1 (B(1),d(1)) < SNA(®, d°, 1, X, K)
1: Input: Xy, a, A, A, K, initial guess ﬂo,do, A= supp(ﬂo). Set
k=0.
: Compute ¥ = X'y and store it.
:fork=0,1,--- ,K do
Compute Ay, B, using (2?).
If A, =Ax_q or k>K. Stop and denote the last iteration
by ,Bg, ﬂg, d‘;, d§.Else
6:  Compute {1, d“'} using (2?) - (22).
7: end for

s: Output: B(1) = (’;2) and dG) = (g;)

k:=k+1.End

Remark 2.1. In the algorithm, we use a safeguard maximum num-
ber of iterations K that can be defined by the user. We usually set
K <5 due to the locally superlinear/one-step convergence of SNA.

Each line in Algorithm 1 consists of simple vector and ma-
trix multiplications, except (2.11) in line 6, where we need to in-
vert a |Ai| x |A,| matrix. Note that A, is usually a small subset
of S if Algorithm 1 is warm started. Intuitively, at the kth step
in the iteration, this algorithm tries to identify A,, an approxi-
mation of the underlying support by using the estimated coeffi-
cients with a proper adjustment d* determined by the KKT, and
solves a low-dimensional adjusted least squares problem on A,.
Therefore, with a good starting estimation of A;, which is guaran-
teed by using a continuation strategy with warm start described
below, Algorithm 1 can find a good solution in a few steps. In
Section 3, we derive Algorithm 1 formally from the semismooth
Newton method and show that its convergence rate is locally su-
perlinear for the Enet and locally one-step for the Lasso.

2.2. Solution path approximation

We are often interested in the whole solution path ﬁ(k) = ,T?M[
of (1.3) for A € [Apin, Amax] and some given o > 0. Here we ap-
proximate the solution path by computing 8(1) on a given finite
set A = {Ag, A1..., Ay} for some integer N, where Ag > --- > Ay > 0.
Obviously, B(A) = 0 satisfies (2.1) and (2.1) if A > ||X"y/n||. Hence
we set Amax = Ag = [|X'Y/1|l0os At = Agy!,t=0,1,...,N, and A, =
2oy N, where y € (0, 1).

We adopt a simple continuation technique with warm start in
computing the solution path. This strategy has been successfully
used for computing the Lasso and Enet paths [13,32]. We use the
solution at A; as the initial value for computing the solution at
Ae41. The shift parameter A can vary at different path knots A,
so here we use A; to demonstrate this. We summarize this in the
following PSNA algorithm

When running PSNA with warm start, SNA usually converges in
a few steps, since SNA converges locally superlinearly and warm
start provides a good initial value.

3. Derivation of SNA and convergence analysis

3.1. KKT conditions

In this subsection, we first discuss the relationship between
the minimizers of (1.2) and (1.3). We then characterize the unique
minimizer (1.3) by its KKT system.

Proposition 3.1. Let M, be the set of the Lasso solutions given in
(1.2). Then M, is nonempty, convex and compact.
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In general, the Lasso solution is not unique in the p > n set-
tings, however, the one in M, with the minimum Euclidean norm
is unique. We denote this solution by ;.

Proposition 3.2. For o > 0, the Enet (1.3) admits a unique minimizer
denoted by B, . Furthermore, ||B; , — B, |l — 0 as o — 0T,

By Proposition 3.2, a good numerical solution of (1.3) is a good
approximation of the minimum 2-norm minimizer of (1.2) for a
sufficiently small o.

Proposition 3.3. Let 73,\41 € RP be the Enet solution, which is the
unique minimizer of J, , in (1.3) for a > 0. Then there exists a EM, €
RP such that (2.1) hold. Conversely, if there exists ﬁ,w e RP and
EM € RP satisfying (2.1), then ,T?A,a is the unique minimizer of J, o
in (1.3).

The KKT equations (2.1) with o = 0 also characterize the Lasso so-
lution (1.2), except that the solution may not be unique.

Here the KKT conditions are formulated in terms of equalities
(2.1), which are different from but equivalent to the usual inequal-
ity form

d, = Asgn(B,),

lldaclloc < A,

where, d = X'y — GB)/n and A= supp(ﬁ). The reason we adopt
the equation form (2.1) is that we can transform the minimization
problem (1.3) into a root finding problem, which helps us derive
SNA formally as a semismooth Newton method.

3.2. SNA as a Newton algorithm

We now formally derive the SNA based on the KKT conditions
by using the semismooth Newton method [4-6] for finding a root
of a nonsmooth equation. This enables us to prove its locally su-
perlinear convergence stated in Theorem 3.2 below. The definition
and related property on Newton derivative are given in Appendix
A.

Let
z= (g) and F(z) = [g 8] :RP x RP — R?P,
where

F(z) :=B-T.(B+d),

E(z):=GB+nd-}Y.

By Proposition 3.3, to find the minimizer of (1.3), it suffices to find
a root of F(z). Although the classical Newton algorithm cannot be
applied directly since F(z) is not Fréchet differentiable, we can re-
sort to semismooth Newton algorithm since F(z) is Newton differ-
entiable.

Let

A={ieS:|Bi+di| =X}, B:={ieS:|Bi+d| <A}
We reorder (f/,/)’ such that z = (d};, B5. B d5)’. We also reorder
Fi(z) and F(z) accordingly,

By —T.(Bs+da)

Bs — T (B +dp) B

GanBa + GpsBg + ndy — 4
GeaBa + GesBp +ndp — yp

We have the following result concerning the Newton derivative of
F.

F(z) =

Signal Processing 194 (2022) 108432

Theorem 3.1. F(z) is Newton differentiable at any point z. And

—lpa 0 0 0

0 Iz 0 0
€ VF(2). (31)

TlIAA X;\XB GAA 0

0 Gpg  XjXa nlpp |

Furthermore, H is invertible and H=' is uniformly bounded with
IH ' <142+ 1+ +[IX[2)?/a.

At the k,, iteration, the semismooth Newton method for finding
the root of F(z) = 0 consists of two steps.

olve H D = —F(z*) for D, where Hj, is an element of VyF(z").
(1) Solve HyD¥ = —F(z¥) for DX, where H is an el f ViF(z4)
(2) Update zk+1 = zk 4+ Dk set k < k+1 and go to step (1).

This has the same form as the classical Newton method, except
that here we use an element of VyF(Z¥) in step (1). Indeed, the
key to the success of this method is to find a suitable and invert-
ible H;. We state this method in Algorithm 3.

Algorithm 3 SNA for finding a root of F(z)

0
1: Input: X, y, A, o, initial guess 20 = (50). Set k=0.

2: fork=0,1,2,3,--- do
3:  Choose H, € VyF(zX).
4:  Get the semismooth Newton directionD; by solving

H DK = —F(2"). (17)
5:  Update
247 =z¢ 4 Dk, (18)

6: Check Stop conditionlf stopDenote the last iteration by
ZElsek :=k+1.

7: end for

8: Output:zas an estimate of the roots of F(z).

Remark 3.1. When Ay = Ay, holds for some k, Algorithm 1 con-
verges. Hence it is natural to stop Algorithm 1 accordingly. A com-
mon condition that can be used as a stop rule of Algorithm 3 is
when ||[F(z¥)||, is sufficiently small, since this algorithm is a
root finding process. Therefor we can use both stopping rules
in Algorithm 1 due to the equivalence of Algorithm 1 and
Algorithm 3. We also stop Algorithm 1 when the iteration number
k exceeds a prespecified integer K.

It can be verified that Algorithm 1 with A =0 is the same as
Algorithm 3. However, Algorithm 1 is written in a form that is
easier to implement computationally. The details are given in Ap-
pendix C. Thus it is indeed a semismooth Newton method. The
more compact form of Algorithm 3 is better suited for its conver-
gence analysis.

Theorem 3.2. Let H;, in Algorithm 3 be given in (A.42). Then the se-
quence {ﬂk, k=1,2,...} generated based on Algorithm 3 (and Algo-
rithm 1 with A = 0) converges locally and superlinearly to B;. o the
unique minimizer of (1.3).

Theorem 3.2 shows the local supperlinear convergence rate of
SNA, which is a superior property of Newton-type algorithms to
first-order methods.
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Theorem 3.3. For a give A >0, let BE B}\ be a minimizer of (1.2),
d=X'(y-XB)/n A={i:|Bi+dil=r), A={i:|Bi+dj| # 1}, and
C =min,_;||8;+ di| — A| > 0. Suppose rank(X,) = |A| and the ini-
tial guess ﬂo, d° satisfies ||E - [30||oo + ||E —d°| <C. Then, ﬂl = ﬁ
where ﬂ] is generated by Algorithm 3 with o = 0 and A = 0.

Theorem 3.3 shows that the SNA has the optimal local conver-
gence rate, since it converges in just one step. This is obviously
the best possible convergence rate due to the special structure
of (1.2) and improves the locally superliner convergence rate of
semismooth Newton method in general situations, see for exam-
ple, [4], [5] and [6].

3.3. Computational complexity analysis

We now consider the computational complexity of SNA
(Algorithm 1). We look at the number of floating-point opera-
tions per iteration. Clearly it takes O(p) flops to finish steps 4-7 in
Algorithm 1. For step 8, we solve the linear equation iteratively by
the conjugate gradient (CG) method initialized with the projection
of the previous solution onto the current active set [33]. The main
operations in CG include two matrix-vector multiplications, which
take 2n|A;| flops. Therefore, the number of CG iterations is smaller
than p/(2|A;,1|) and there are at most O(np) flops in step 8. For
step 9, calculation of the matrix-vector product costs np flops. So,
the total cost per iteration in Algorithm 1 is O(np), which is also
the cost for the state-of-the-art first-order Lasso solvers. The local
superlinear/one-step convergence of SNA guaranteed that a good
solution can be found in only a few iterations if it is warm started.
Therefore, at each knot on the path, the whole cost of SNA can be
still O(np) if we use the continuation strategy. Thus we can use
Algorithm 2 (PSNA) to compute the solution path accurately and
efficiently with O(Nnp) flops, where N is the number of knots on
the path. See the numerical results in Section 6.

4. Error bounds and finite-step sign consistency

As shown in Theorems 3.2 and 3.3, SNA converges locally su-
perlinearly for Enet and converges in one step for Lasso. In this
section we prove that the simple warm start technique makes the
PSNA converge globally under certain mutual coherence conditions
on X and a condition on the minimum magnitude of the nonzero
components of ﬂT. Specifically, we show that PSNA hits a solution
with the same sign as BT and attains a sharp statistical error bound
in finitely many steps with high probability, if we properly design
the path {A; = Xg¥'}—0.1,.n and run SNA along it with warm start.

We only consider the Lasso, so we set « =0 and G = X'X. The
mutual coherence v defined as v = max;;|G;;|/n [34,35] charac-
terizes the minimum angle between different columns of X//n.
Let A" = supp(B') and T = |AT|. Define |B"|nin = min{|B]] : j < AT},

Denote the universal threshold value by A, = o./2log(p)/n. Let
8y =3Au, Ao = IX'y/Nl0o, and A¢ = Aoyt t=0,1, ...

We make the following assumptions on the design matrix X,
the target coefficient ﬁT, and the noise vector 7.

(A1) The mutual coherence satisfies Tv < %.

(A2) The smallest nonzero regression
|ﬂT|min = 78)‘11-
(A3) 7 satisfies 5 ~ N(0, o2I,).

Lemma 4.1. Suppose that (A1) to (A3) hold. There exists an integer
Ne[1, logy(%)) such that Ay > 108, > Any1 and | B |min > 8An/5

coefficient satisfies

hold with probability at least 1 —1/(2/7 log(p)).

Theorem 4.1. Suppose that (A1) to (A3) hold. Then with probabil-
ity at least 1 — 1/(2,/m log(p)), PSNA(Aq, y, N,K) with y =8/13, N
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determined in Lemma 4.1, K> T, and A = %M + &y at the ty, knot,

has a finite step sign consistence property and achieves a sharp esti-
mation error, i.e.,

sgn(BO)) = sgn(Bh), (41)
and
1BGw) Bl < (42)

Remark 4.1. From the proof of Theorem 4.1 we can see that PSNA
(Algorithm 3) with A = 0 can recover BT exactly by letting A; — 0
in the case 5§ = 0. However, if the observation contains noise we
have to set the shift parameter A in PSNA to be nonzero which
reduce the amount of shrinkage of Lasso.

The properties of Lasso have been studied by many authors. For
example, [36] and [37] showed that Lasso is sign consistent under
a strong irrepresentable condition, which is a little weaker than
(A1). They also required I,BTIml-n to be bounded below by 0(n~¢/2)
with ¢ € (0, 1), which is a stronger assumption than (A2). [38] re-
quired X satisfy a sparse Rieze condition, which may be weaker
than (A1); and |;3T|m,~,1 larger than O(~/TAy), which is stronger
than (A2). [39] assumed a condition stronger than the strong ir-
representable condition to guarantee the uniqueness of Lasso and
its sign consistency with a condition on |BT|mm similar to (A1).
[40] and [41] assumed the mutual coherence conditions with Tv <
1/7 and v < c¢/log(p) for a constant c, respectively; and their re-
quirements for | ﬁT|m,~n are similar to (A1) with different constants.
In deriving the ¢, and ¢, error bounds of the Lasso, [35] and
[42] assumed Tv < 1/4 and Tv < 1/4, respectively. The latter is ex-
actly (A1). However, these existing results do not imply the finite-
step sign consistency property established in Theorem 4.1.

All the results mentioned above concern the minimizer of the
Lasso problem, but they did not directly address the statistical
properties of the sequence generated by a specific solver. So there
is a gap between those theoretical results and the computational
solutions. There has been efforts to close this gap. For example,
[24] considered the statistical properties of the proximal gradi-
ent descent path. However, their analysis required knowing ||ﬂT||1,
which is hard to estimate in practice. [25] remedied this, but their
result does not achieve the sharp error bound like PSNA does. Also,
the technique used for deriving the statistical properties of PSNA (a
Newton-type method), is quite different from the proximal gradi-
ent method (a gradient type method).

5. Comparison with LARS, SIS and an active set method for
accelerating coordinate descent

The key idea in PSNA is using the Newton-type method SNA to
iteratively identify the active set using both the primal and dual
information, then solve the problem on the active set. In this sec-
tion we discuss the connections between PSNA with other three
dual active set methods, i.e., LARS, SIS [10], and sequential strong
rule SSR (active set tricks for accelerating coordinate descent) [11].

LARS [8] also does not solve (1.2) exactly since it omits the re-
moving procedure of Homotopy [7]. As discussed in [9], the LARS
algorithm can be formulated as

B =0

y 1~ —k
Bl = (X4 Xa) ' Fa, — A sgn(d})).
where A is the set of the indices of the variables with highest

. . . —k
correlation with the current residual, By, = (A;)¢, A = Id¥| o — Vies

d =X’(nyﬂk)/n, and yj is the step size to the next breakpoint
on the path [8,9]. Comparing Algorithm 2 (PSNA) (by setting K = 0)



J. Huang, Y. Jiao, X. Lu et al.

Algorithm 2 B(A) < PSNA(Xg, ¥, N, K)

- Input: Ag = [[X'y/nle B(A_1) = 0.d(A_y) = X'y/n. y.N.K.
: for t =0,1..N. do R R
Set A¢ = hoy* and (B°,d°) = (B(ri1).d(h1)).
(B(). d(he)) < SNAB®. d° 4. 2. )
end for _ R _
: Output: B(A) =[B(ho). ... B(AN)]-

D A W N =

with the above reformulation of the LARS algorithm, we see that
both PSNA and LARS can be understood as approaches for esti-
mating the support of the underlying solution, which is the es-
sential aspect in fitting sparse, high-dimensional models. So, PSNA
and LARS share some similarity both in formulation and in spirit
although they were derived from different perspectives. However,
the definitions of the active set in PSNA are based on the sum of
primal approximation (current approximation ﬂk) and the dual ap-
proximation (current correlation d* = X’ (y — Xﬂk)/n) while LARS is
based on dual only. The following low-dimensional small noise in-
terpretation may clarify the difference between the two active set
definitions. If X’X/n ~ identity and n ~ 0 we get

d“ =X'(y-XB“)/n=x'(xB +n-XB)n~p' - B*
+X'g/n~ ' - B

and

,Bk n dk ~ IBT.

In addition, LARS selects variables one by one while PSNA can se-

lect more than one variable at each iteration. Also, the adjusted

least squares fits on the active sets in PSNA and LARS are different.

Under certain conditions on X both of them recover ﬁT exactly in

the noise-free case [9] even when p > n. But the convergence or

consistency of LARS is unknown when the noise vector y # 0.

Given a starting point Ay, SNA is initialized with ,BO =0,d° =
X'y/n. Therefore,
Ao=1{j: 1B +d% > Ao} = (j : [¥y/n| > ko).
Thus the first active set generated by PSNA contains the features
that coorelated with y larger than Aq, which are the same as those
from the sure independence screening [10] with parameter Ao and
include the one selected by the first step of LARS. We then use
(2.9) - (2.12) to obtain {ﬂl,dl}, and update the active set to A,
using (2.8). Clearly, for k > 1, A, are determined not just by the
correlation d¥, but by the primal (,Bk) and dual (dk) together.

[11] proposed a sequential strong rule (SSR) for discarting pre-
dictors in Lasso-type problems. At point A; on the solution path,
this rule discards the jth predictor if

|d; (he—1)| < 22 — Aea,

where dAj()») = x;(y—X/Ai(A))/n for the Lasso penalty. They define
active set

A= 1{j:ldjhe1)| = 2Ae — Aeq},

and set ﬁ(kt)gk =0 for By = A} and solve the Lasso problem on Ay.
By combining with a simple check of the KKT condition, it speeds
up the computation considerably. So SNA shares some similarity
in spirit with SSR in that both methods seek to identify an ac-
tive set and solve a smaller optimization problem, although they
are derived from quite different perspectives. However, there are
some important differences. First, the active sets are determined
differently. Specifically, SSR determines the active set only based
on the dual approximation; while SNA uses both primal and dual
approximation. Second, SNA does not need the unit slope assump-
tion, and additional check of the KKT conditions is not needed (The

—~ . 1 -~ -~
A = argmin {ZnHXB(M —y3+ AV

7. =argmin {log (IXBG) —yl3/m) + 1AM

Signal Processing 194 (2022) 108432

cost of check KKT is O(np)). Third, as far as we know, the statis-
tical properties of the solution sequence generated from SSR are
unknown, while error bounds and sign consistency are established
under suitable conditions for the solution sequence generated from
the PSNA.

6. Numerical studies

In this section, we present numerical examples to evaluate the
performance of the proposed PSNA algorithm 2 for solving Lasso.
We have implemented PSNA in a Matlab package psna, which
is available at https://github.com/jian94/psna. All experiments are
performed in MATLAB R2010b on a quad-core laptop with an Intel
Core i5 CPU (2.60 GHz) and 8 GB RAM running Windows 8.1 (64
bit).

6.1. Comparison with existing popular algorithms

Both the LARS [8,9] and the CD [13,43] are popular algo-
rithms capable of efficiently computing the Lasso solution, hence
we compare the proposed PSNA with these two algorithms. In
the implementation, we consider two solvers: (1) Solvelasso,
the Matlab code for LARS with the Lasso modification, available
online at http://sparselab.stanford.edu/SparseLab_files/Download_
files/SparseLab21-Core.zip ; (2) glmnet, the Fortran based Matlab
package using CD, available online at https://github.com/distrep/
DMLT/tree/master/external/glmnet. The parameters in the solvers
are the default values as their online versions. In addition to the
default stopping parameters in the solvers, we stop LARS (Solve-
Lasso), CD (glmnet) and PSNA if the number of nonzero elements
at some iteration is larger than a given fixed quantity such as
n/log(p) or even larger 0.5n, since the upper bound of the esti-
mated sparsity level of Lasso is O(n/log(p)) when n « p [44,45].

6.2. Tuning parameter selection

To choose a proper value of A in (1.2) is a crucial issue for Lasso
problems, since it balances the tradeoff between the data fidelity
and the sparsity level of the solution. In practice, the Bayesian in-
formation criterion (BIC) is a widely used selector for the tuning
parameter selection, due to its model selection consistency under
some regularity conditions. We refer the readers to [46-51] and
references therein for more details. In this paper, we use a modi-
fied BIC (MBIC) from [50] to choose A, which is given as

log(n) log(p) } 61)
e .

reA

where A = {A¢}; is the candidate set for A, and AQV) = {j: E(A) #
0} is the model identified by B(A). Besides, the high-dimensional
BIC (HBIC) in [51] defined by

log(logn) log(p) }
AeA n

(6.2)
is also a good candidate for the selection of A. Unless otherwise
specified, the MBIC (6.1) is the default one to select A.

6.3. Simulation
6.3.1. Implementation
The n x p design matrix X is generated as follows.

(i) Classical Gaussian matrix with correlation parameter p. The
rows of X are drawn independently from N(0, ¥) with ¥ =

Pl 1<jk<p, pe(01).


https://github.com/jian94/psna
http://sparselab.stanford.edu/SparseLab_files/Download_files/SparseLab21-Core.zip
https://github.com/distrep/DMLT/tree/master/external/glmnet
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Fig. 1. The influence of the PSNA parameters N (left panel) and K (right panel) on the exact support recovery probability.

(ii) Random Gaussian matrix with auto-correlation parameter v.
First we generate a random Gaussian matrix X e R™P with its
entries following iid. N(0,1). Then we define a matrix X e
R™P by setting X; = Xj,

Xj =)?j + Vo ()?j_] +5€j+1), j=2,...,p—-1,

and X, = X,

The elements of the error vector 5 are generated independently
with n; ~N(0,062),i=1,2,...,n. Let AT = supp(,BT) be the support
of ﬂT, and let R = max{|ﬂZT|}/min{|ﬁ;T|} be the range of magni-

tude of nonzero elements of ﬂT. The underlying regression coeffi-

cient vector ,BJr € RP is generated in a way that AT is a randomly
chosen subset of S with |AT| =T. As in [52], [53] and [54], each

nonzero entry of ﬂT is generated as follows:
Bl = &1j10%,

where j € AT, &; = +£1 with probability § and &; is uniformly dis-

(6.3)

tributed in [0,1]. Then the observation vector y = XﬂJr + 5. For con-
venience, we use (n, p, p,o,T,R") and (n, p,v,o, T,R") to denote
the data generated as above, respectively.

6.3.2. The performance of PSNA

The algorithm parameters of PSNA. We study the influence of
the free parameters N and K in the PSNA algorithm on the ex-
act support recovery probability (Probability for short), that is,
the percentage of the estimated model A agrees with the true
model Af. To this end, we independently generate 20 datasets
from (n =200, p=1000,p=01,0=001,T=5:5:30,R =10)
for each combination of (N, K). Here 5 :5 : 30 means the sparsity
level starts from 5 to 30 with an increment of 5. The numerical
results are summarized in Fig. 1, which consider the following two
settings: (a) K =1, and varying N < {40, 60, 80, 100}; (b) N = 100,
and varying K € {1, 2, 3}.

It is observed from Fig. 1 that the influence of K is very mild on
the exact support recovery probability and K = 1 generally works
well in practice, due to the locally superlinear convergence of SNA
and the continuation technique with warm start on the solution
path, which is consistent with the conclusions in Section 2. It is
also found in Fig. 1 that Larger N values make the algorithm have
better exact support recovery probability, but the enhancement de-
creases as N increases. Thus, unless otherwise specified, we set
(N,K) = (100, 1) for the PSNA solver.

The MBIC selector for PSNA. We illustrate the performance of
the MBIC selector (6.1) for PSNA with simulated data (n = 400, p =

2000, p =0.5,0 =0.1,T = 10,R" = 10). The results are summa-
rized in Fig. 2. It can be observed from Fig. 2 that the MBIC selec-
tor performs very well for the PSNA algorithm on the continuation
solution path introduced in Section 2.2. The local superlinear con-
vergence of PSNA. To gain further insight into the PSNA algorithm,
we illustrate the convergence behavior of the algorithm using the
simulated data as that of Fig. 2. Let A = {j: Bj(Ae) # 0}, where

ﬁ(kt) is the solution to the A;-problem. Set (N, K) = (100, 5). The
convergence history is shown in Fig. 3, which presents the change
of the active sets and the number of iterations for each fixed
A¢ along the path Ag > A > --- > A. It is observed in Fig. 3 that
Ar C AT, and the size |A;| increases monotonically as the path
proceeds and eventually equals the true model size |AT|. In par-
ticular, for each A, ; problem with B(X;) as the initial guess,
PSNA generally reaches convergence within two iterations (typi-
cally one, noting that the maximum number of iterations K =5
here). This is attributed to the local superlinear/one-step conver-
gence of the algorithm for Lasso, which is consistent with the re-
sults in Theorem 3.3. Hence, the overall procedure is very efficient.
The accuracy versus the sparsity level. We now consider the influ-
ence of the sparsity level T on the performance of PSNA, LARS and
CD in terms of the exact support recovery probability. Data are
generated from the model with (n = 1000, p =2000,p =0.2,0 =
0.1,T=5:5:100,R" = 1). The results are summarized in Fig. 4.
As shown in the figure, our method performs well when the spar-
sity level varies from small to large.

6.3.3. Efficiency and accuracy

To further evaluate the efficiency and accuracy of the pro-
posed PSNA algorithm, we independently generate M = 100
datasets from two settings: (i) the classical Gaussian matrix with
(n,p, p,o,T, RN = (600, 3000,0.3:0.2:0.7,0.2:0.2:0.4,40,10);
(i) the random Gaussian matrix with (n,p,v,o,T,RV) =
(1000, 10000,0.3:0.2:0.7,0.2:0.2:0.4,50,10). Based on M
independent runs, we compare PSNA with CD and LARS in terms
of the average CPU time (Time, in seconds), the estimated aver-
age model size (MS) M~1YM_, |A(|, the proportion of correct
models (CM, in percentage terms) M~! Zmzll{A(m) =AT}, the

average (o, absolute error (AE) M~! Z",L] ||ﬁ(m) —ﬂTHw and the

average ¢, relative error (RE) M~'yM_, (||B(m)*ﬂT||z/||ﬂT||2).
The measure Time reflects the efficiency of the solvers, while
measures MS, CM, AE and RE evaluate the accuracy (quality) of
the solutions. Simulation results are summarized in Table 1 and
Table 2, respectively.

For each (p,o0) combination, it can be observed from
Table 1 that PSNA has better speed performance than CD and LARS.
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Fig. 2. Plots for PSNA using the MBIC selector with data (n =400, p = 2000, p =0.5,0 =0.1,T = 10, Rf = 10): MBIC curve (top left panel), the solution path (top right
panel), and the comparison between the underlying true parameter ﬂT and the selected solution (1) (bottom left panel). The red vertical line in the middle panel shows

the solutions selected by MBIC.

With p fixed, the CPU time of CD and PSNA slightly decreases as o
increases, while higher o increases the timing of LARS in general.
Given o, the CPU time of CD and PSNA is relatively robust with
respect to p, while that of LARS generally increases as p increases.
According to MS, all solvers tend to overestimate the true model
and PSNA usually selects a smaller model, while PSNA can select
the correct model far more frequently than CD and LARS in terms
of CM. The errors of all solvers AE and RE are small, which means
they all can produce estimates that are very close to the true val-
ues of ﬂT, while the AE and RE of PSNA are smaller than that of the
other two, indicating that PSNA is generally more accurate than CD
and LARS. Unsurprisingly, larger p or o will degrade the accuracy
of all solvers. In addition, it is shown from Table 1 that PSNA gen-
erally has smaller ((or comparable) standard errors, especially in
accuracy metrics MS, AE and RE, which means the results of PSNA
are stable and robust. Similar phenomena also hold for the random
Gaussian matrix setting in Table 2. In particular, since the value of
p is large in Table 2, the timing advantage of PSNA is more obvi-

ous, which implies that PSNA is capable of handling much larger
data sets. In summary, PSNA behaves very well in simulation stud-
ies and generally outperforms the state-of-the-art solvers such as
LARS and CD in terms of both efficiency and accuracy.

6.4. Application

We analyze the breast cancer data which comes from breast
cancer tissue samples deposited to The Cancer Genome At-
las (TCGA) project and compiles results obtained using Agilent
mRNA expression microarrays to illustrate the application of the
PSNA algorithm in high-dimensional settings. This data, which is
named bcTCGA, is available at https://portal.gdc.cancer.gov/. In this
bcTCGA dataset, we have expression measurements of 17814 genes
from 536 patients (all expression measurements are recorded on
the log scale). There are 491 genes with missing data, which we
have excluded. We restrict our attention to the 17323 genes with-
out missing values. The response variable y measures one of the
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Fig. 4. The influence of the sparsity level T on the exact support recovery probability of the solvers.

17323 genes, a numeric vector of length 536 giving expression
level of gene BRCA1, which is the first gene identified that in-
creases the risk of early onset breast cancer, and the design ma-
trix X is a 536 x 17322 matrix, which represents the remaining ex-
pression measurements of 17322 genes. Because BRCA1 is likely to
interact with many other genes, it is of interest to find genes with
expression levels related to that of BRCA1. This has been studied by
using different methods in the recent literature; see, for example,
[54-58]. In this subsection, we apply methods CD (glmnet), LARS
(SolveLasso) and PSNA, coupled with the HBIC selector, to analyze
this dataset.
First, we analyze the complete dataset of 536 patients. The
genes selected by each method along with their corresponding

nonzero coefficient estimates, the CPU time (Time, in seconds),
the model size (MS) and the prediction error (PE) calculated by
n~1y! (3 —y;)? are provided in Table 3. It can be seen from
Table 3 that PSNA runs faster than LARS and CD, while the PE by
PSNA is smaller than that by LARS and CD, which demonstrates
that PSNA performs better than the other two solvers in terms of
both efficiency and accuracy. Further, CD, LARS and PSNA identify
7,9 and 4 genes respectively, with 3 identified probes in common,
namely, C17orf53, NBR2 and TIMELESS. Although the magnitudes
of estimates for the common genes are not equal, they have the
same signs, which suggests similar biological conclusions.

To further evaluate the performance of the three methods,
we implement the cross validation (CV) procedure similar to
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Simulation results for the classical Gaussian matrix with n =600, p = 3000, T =40 and R" = 10 based on 100 inde-
pendent runs. The numbers in the parentheses are the corresponding standard errors.

P o Method  Time MS M AE RE
03 02 (D 0.2287(0.0060)  41.35(1.1135)  23%(0.4230)  0.1270(0.0286)  0.0172(0.0042)
LARS 0.2066(0.0336)  41.25(1.1315)  29%(0.4560)  0.1208(0.0273)  0.0163(0.0039)
PSNA 0.1784(0.0111)  40.07(0.2932)  94%(0.2387)  0.0808(0.0192)  0.0105(0.0030)
04 CD 0.2233(0.0023)  42.71(1.5973)  8%(0.2727) 0.2041(0.0349)  0.0275(0.0047)
LARS 0.2121(0.0316)  42.14(3.0978)  13%(0.3380)  0.2672(0.6802)  0.0344(0.0767)
PSNA 0.1569(0.0041)  40.23(0.4894)  80%(0.4020)  0.1528(0.0309)  0.0200(0.0046)
05 02 (D 0.2272(0.0025)  42.74(1.8836)  11%(0.3145)  0.1484(0.0454)  0.0193(0.0057)
LARS 0.2086(0.0318)  42.53(2.0863)  15%(0.3589)  0.1808(0.2411)  0.0223(0.0317)
PSNA 0.1746(0.0036)  40.19(0.4861)  84%(0.3685)  0.0925(0.0319)  0.0117(0.0039)
04 (D 0.2236(0.0027)  44.48(2.1057)  0%(0.0000) 0.2333(0.0616)  0.0299(0.0066)
LARS 0.2162(0.0364)  43.58(5.0835)  1%(0.1000) 0.3518(0.9235)  0.0427(0.1029)
PSNA 0.1548(0.0039)  40.62(0.8138)  55%(0.5000)  0.1693(0.0439)  0.0213(0.0045)
07 02 (D 0.2280(0.0023)  47.96(3.2315)  0%(0.0000) 0.2062(0.0956)  0.0223(0.0061)
LARS 0.2325(0.0317)  47.85(3.4855)  0%(0.0000) 0.3177(0.6256)  0.0255(0.0219)
PSNA 0.1737(0.0047)  41.25(1.2340)  34%(0.4761)  0.1274(0.0596)  0.0136(0.0040)
04 (D 0.2249(0.0023)  50.59(3.6517)  0%(0.0000) 0.3323(0.1500)  0.0349(0.0081)
LARS 0.2437(0.0310)  50.61(5.4028)  0%(0.0000) 0.5283(0.7663)  0.0463(0.0679)
PSNA 0.1561(0.0040)  41.92(1.4885)  16%(0.3685)  0.2337(0.0914)  0.0245(0.0054)
Table 2

Simulation results for the random Gaussian matrix with n = 1000, p = 10000, T = 50 and R" = 10 based on 100 inde-
pendent runs. The numbers in the parentheses are the corresponding standard errors.

% o Method  Time MS M AE RE
03 02 (D 1.6607(0.0185)  51.59(1.5511)  26%(0.4408)  0.0902(0.0229)  0.0121(0.0027)
LARS 1.0458(0.1729)  51.48(1.5007)  29%(0.4560)  0.0859(0.0215)  0.0116(0.0027)
PSNA 0.8685(0.0289)  50.08(0.3075)  93%(0.2564)  0.0553(0.0133)  0.0072(0.0017)
04 CD 1.6416(0.0074)  52.76(1.8916)  9%(0.2876) 0.1403(0.0314)  0.0184(0.0031)
LARS 1.1354(0.2245)  52.40(2.0792)  12%(0.3266)  0.1560(0.2001)  0.0204(0.0272)
PSNA 0.7764(0.0149)  50.28(0.5519)  76%(0.4292)  0.1007(0.0217)  0.0128(0.0022)
05 02 (D 1.6719(0.0058)  55.71(2.6678)  0%(0.0000) 0.0959(0.0583)  0.0111(0.0028)
LARS 1.1819(0.2301)  55.59(3.3937)  0%(0.0000) 0.2002(0.4392)  0.0164(0.0377)
PSNA 0.8980(0.0108)  50.82(1.0767)  49%(0.5024)  0.0559(0.0320)  0.0064(0.0019)
04 CD 1.6504(0.0064)  57.86(3.0847)  0%(0.0000) 0.1583(0.1068)  0.0164(0.0044)
LARS 1.3180(0.2388)  56.85(4.2530)  0%(0.0000) 0.1954(0.4346)  0.0220(0.0584)
PSNA 0.8098(0.0172)  51.20(1.1192)  31%(0.4648)  0.1091(0.0674)  0.0112(0.0028)
07 02 (D 1.6962(0.0100)  65.22(4.6113)  0%(0.0000) 0.1411(0.1521)  0.0114(0.0060)
LARS 1.4585(0.2683)  64.90(7.2202)  0%(0.0000) 0.5015(1.0090)  0.0249(0.0411)
PSNA 0.9439(0.0506)  53.09(1.7529)  6%(0.2387) 0.0858(0.1374)  0.0068(0.0100)
04 (D 1.6715(0.0090)  67.12(4.8996)  0%(0.0000) 0.1880(0.2146)  0.0156(0.0082)
LARS 1.5399(0.2448)  67.07(6.4499)  0%(0.0000) 0.5493(0.9422)  0.0271(0.0299)
PSNA 0.8441(0.0889)  52.84(3.3536)  6%(0.2387) 0.1907(0.5365)  0.0187(0.0611)

Table 3

Table 4

The genes identified by CD, LARS and PSNA that correlated with
BRCA1 based on the complete dataset of bcTCGA (n=536,p=
17322). The zero entries correspond to variables omitted.

No. Term Gene CcD LARS PSNA
Intercept -1.0865  -1.0217  -0.4985
1 Bz C170rf53  0.1008  0.0983  0.4140
2 Bar3o CCDC56 0 0.0108 0
3 Bagea CDC25C 0 0.0136 0
4 Basas DTL 0.0764 00844 0
5 Bazzo MFGES 0 0 -0.1168
6 Boom NBR2 0.1519  0.1885  0.4673
7 Bizias PSME3 0.0480 00615 0
8 Brsiza TIMELESS ~ 0.0157 0.0279  0.2854
9 Biss3s TOP2A 0.0259  0.0331 0
10 PBiesis VPS25 0.1006  0.1083 0
Time 35436 21070  0.7884
MS 7 9 4
PE 03298 03023  0.2345

[54-57,59,60]. We conduct 100 random partitions of the data. For
each partition, we randomly choose 3/4 observations and 1/4 ob-
servations as the training and test data, respectively. We compute
the CPU time (Time, in seconds) and the model size (MS, i.e., the
number of selected genes) using the training data, and calculate

10

The CPU time (Time), model size (MS) and prediction error (PE) av-
eraged across 100 random partitions of the bcTCGA data (numbers
in parentheses are standard deviations)

Method  Time MS PE

CcD 2.0598(0.0393)  8.72(3.3667)  0.3503(0.0764)
LARS 0.5861(0.3625)  7.90(3.5689)  0.3514(0.0831)
PSNA 0.6554(0.0906)  6.10(3.0830)  0.2742(0.0593)

the prediction error (PE) based on the test data. Table 4 presents
the average values over 100 random partitions, along with corre-
sponding standard deviations in the parentheses.

Due to the CV procedure, the working sample size decreases to
Ney = %n. Hence, the CPU time of three solvers in Table 4 decreases
accordingly compared with the counterpart in Table 3. Obviously,
it is shown in Table 4 that PSNA is still running faster than CD,
and is quite comparable to LARS in speed. Compared to LARS, the
CPU time of PSNA is less sensitive to the sample size, which means
PSNA has more potential than LARS to be applied to a larger vol-
ume of noisy data. Also, as clearly shown in the Table 4, PSNA se-
lects fewer genes and has a smaller PE, which implies that PSNA
could provide a more targeted list of the gene sets. Based on 100
random partitions, we report the selected genes and their corre-
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Table 5
Frequency table for 100 random partitions of the bcTCGA data. To save
space, only the genes with Freq > 5 are listed.

cD LARS PSNA

Gene Freq Gene Freq Gene Freq
C170rf53 98 C170rf53 93 NBR2 95
DTL 91 NBR2 89 C170rf53 91
NBR2 91 VPS25 87 DTL 32
VPS25 90 DTL 86 MFGE8 29
PSME3 77 PSME3 73 CCDC56 25
TOP2A 73 TOP2A 67 CDC25C 23
TIMELESS 49 TIMELESS 41 TUBG1 23
CCDC56 41 CCDC56 33 LMNB1 18
CDC25C 35 CDC25C 30 GNL1 18
CENPK 26 CENPK 24 TIMELESS 16
SPRY2 20 RDM1 20 VPS25 16
SPAG5 18 CDC6 17 TOP2A 15
RDM1 18 TUBG1 15 ZYX 14
TUBG1 17 SPRY2 15 KIAA0101 14
CDC6 17 C160rf59 12 KHDRBS1 12
UHRF1 16 CCDC43 11 PSME3 11
C160rf59 13 UHRF1 10 SPAG5 10
CCDC43 13 SPAG5 10 TUBA1B 8
ZWINT 9 NSF 9 FGFRL1 8
KIAA0101 9 KIAA0101 8 CMTM5 7
NSF 8 ZWINT 5 SYNGR4 5
MLX 6

TRAIP 5

sponding frequency (Freq) in Table 5, where the genes are ordered
such that the frequency is decreasing. To save space, we only list
genes with frequency greater than or equal to 5 counts. It is ob-
served from Table 5 that some genes such as NBR2, C170rf53, DTL
and VPS25 have quite high frequencies (Freq > 80) with all three
solvers, which largely implies these genes are related to BRCAL.
Combining the findings in Table 5 and taking into account the
small MS and PE of PSNA in Table 4, we have a strong belief that
genes NBR2 and C170rf53 selected by PSNA are particularly associ-
ated with BRCA1.

7. Concluding Remarks

Starting from the KKT conditions we developed SNA for com-
puting the Lasso and Enet solutions in high-dimensional linear re-
gression models. We approximate the whole solution paths us-
ing PSNA by utilizing the continuation technique with warm start.
PSNA is easy to implement, stable, fast and accurate. We estab-
lished the locally superlinear of SNA for the Enet and local one-
step convergence for the Lasso. We provided sufficient conditions
under which SANP enjoys the sign consistency property in finite
steps. Moreover, PSNA has the same computational complexity as
LARS and CD. Our simulation studies demonstrate that PSNA is
competitive with these state-of-the-art solvers in accuracy and
outperforms them in efficiency. These theoretical and numerical
results suggest that PSNA is a promising new method for dealing
with large-scale ¢;-regularized linear regression problems.

We have only considered the linear regression model with con-
vex penalties. It would be interesting to generalize PSNA to other
models such as the generalized linear and Cox models. It would
also be interesting to extend the idea of PSNA to problems with
nonconvex penalties such as SCAD [61] and MCP [62]. Coordinate
descent algorithms for these penalties have been considered by
[63] and [64]. In our paper we adopt simple continuation strat-
egy to globalize SNA, globalization via smoothing Newton methods
[65-67] is also an interesting future work.
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Appendix A. Appendices
Al. Background on convex analysis and Newton derivative

In order to derive the KKT system (2.1) and prove the locally su-
perlinear convergence of Algorithm 1, we recall some background
in convex analysis [68] and describe the concept and some prop-
erties of Newton derivative [4-6].

The standard Euclidean inner product for two vector z, w € RP
is defined by (z,w) := ZL ziw;. The class of all proper lower
semicontinuous convex functions on RP is denoted by I'g(RP). The
subdifferential of f: RP — R! denoted by df is a set-value map-
ping defined as

0f(z) :={weRP: f(v)> f(2) + (Ww,v—2z), for all veRP}

If f is convex and differentiable it holds that

f(z)=Vf(2) (A1)
Furthermore, if f,g e ['y(RP) then

0(f+8)(z) =0f(2) +3g(z) (A2)
Recall the classical Fermat’s rule [68],

0cif(z) &z ¢ arzgglpin f(2). (A.3)
Moreover, a more general case is [69]

we df(z) & z=Proxg(z+w), (A4)

where Prox; is the proximal operator for f € I'g(RP) defined as

.1
Prox((z) := argmin 5 lx— 2|12 + f(x).
XecRP
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Here we should mention that the proximal operator of A| - || is
given in a closed form by the componentwise soft-threshold oper-
ator, i.e.,

Prox, xj, (2) = T,.(%), (A.5)

where T, (x) is defined in (2.2).

Let F: R™ — R! be a nonlinear map. [70] generalized classical
Newton'’s algorithm for finding a root of F(z) =0 when F is not
Fréchet differentiable but only Newton differentiable [6].

Definition 7.1. F : R™ — R! is called Newton differentiable at x €
R™ if there exists an open neighborhood N(x) and a family of map-
pings D : N(x) — R!*™ such that

|IF(x+h) — F(x) — D(x+ h)h|]; = o(||h]2) for [h|l; — O.
The set of maps {D(z) : z < N(x)} denoted by VyF(x) is called the

Newton derivative of F at x.

It can be easily seen that VyF(x) coincides with the Fréchet
derivative at x if F is continuously Fréchet differentiable. An ex-
ample that is Newton differentiable but not Fréchet differentiable
is the absolute function F(z) = |z| defined on R!. In fact, let G(z +

h)h = é%’;‘h and G(0)h = rh with r be any constant in R!. Then
1, z> 0,

VNF(2) = 1 -1, z<0, (A.6)
reR!, z=0.

follows from the definition of Newton derivative.
Suppose F : R™ — R! is Newton differentiable at x with New-

ton derivative VyFE(x), i=1,...,1. Then F= (F,...,F)" is also
Newton differentiable at ¥ with Newton derivative
VnF (x)
VnE (%)
VnF (%) = . (A7)
VnE (%)

Furthermore, if F; and F, are Newton differentiable at x, then the
linear combination of them are also Newton differentiable at x, i.e.,
for any 0,y e R!,

VN(OF + yEB) () = OVNE (%) + Y VB (X). (A.8)

Let F; : RS — R! be Newton differentiable with Newton deriva-
tive VyF. Let L € RS*™ and define F(x) = F; (Lx + z). It can be ver-
ified that the chain rule holds, i.e., F(x) is Newton differentiable at
x with Newton derivative

VNF(x) = VyF (Lx + 2)L. (A.9)

With the above preparation we can calculate the Newton
derivative of the componentwise soft threshold operator T; (x).

Lemma 71. T, () : RP — RP is Newton differentiable at any point
x € RP. And diag(b) € VNT, (x), where diag(b) is a diagonal matrix
with

b= (11 -

and 1, is the indicator function of set A.

!/
5

o Y =2)

This lemma is used in the derivation of the SNA given in
Subsection 3.2.

Proof of Lemma7Z1.. As shown in (A.6), 1.y € Vnlz|. Then, it
follows from (A.8)-(A.9) that the scalar function T, (z) =z— |z +
A|/2 + |z — A|/2 is Newton differentiable by with

1.2 € WL(2D).
Let
Fx) =T, (e}x):xeRP >R i=1,..

(A.10)

D,

12
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where the column vector e; is the iy, orthonormal basis in RP.
Then, it follow from (A.9) and (A.10) that

9;1{|xi|>” € VNE(X) (Al1)

By using (A.7) and (A.11) we have T, (%) = (F(X),...,F(x)) is
Newton differentiable and diag{b} € VT, (x). This completes the
proof of Lemma 7.1. O

A2. Proofs

Proof of Proposition 3.1.. This is a standard result in convex op-
timization, we include a proof here for completeness. Obviously
L, (-) is bounded below by 0, thus, has infimum denoted by L*. Let
{ﬂk},< be a sequence such that Lj (ﬂk) — L*. Then {ﬂk},< is bounded
due to

Ly(B) > 400 as |IBll1 —» +oo. (A12)

Hence {,Bk}k has a subsequence still denoted by {/3"},c that con-
verge to some f,. Then the continuity of L, (-) implies B; e
M;, ie., M, is nonempty. The boundedness of M, follows from
(A.12) and the closeness follows from the continuity of L, (.), i.e,
M; is compact. The convexity of M, follows from the convexity of
L, (-). This completes the proof of Proposition 3.1. O

Proof of Proposition 3.2.. By the same argument in the proof of
Proposition 3.1, there exists a minimizer of J, ,(-). We denote this
minimizer by B, ,. It follow from the strict convexity of J; ,, (-) that

B, is unique. Let B, be the one in M, with the minimum Eu-
clidean. We have

LB + 5 1By ol = i (Bro) + 5 1B alld =Jra (Bo)
<haB) =LB) + 5118,

where the first inequality use the the property that ,T‘}A is a mini-
mizer of L, (-), and the second inequality use the the property that
B;.o is a minimizer of J, , (). Then it follows from (A.13) that

185z < B2 13-

This implies {EA,a}a is bounded and thus there exist a subse-

quence of {f, ,}o denoted by {B/\,a}oz that converge to some S,
as o — 0". Let « — 0" in (A.13) and (A.14) we get

L.(B.) <Ly (BA)

and

1B.1l2 < 1B, 1l2.

The above two inequality imply B, is a minimizer of L, (-) with
minimum 2-norm. Thus, f, = ,T?A due to the uniqueness of such a
minimizer. Hence B)\,a converges to f8,. The same argument shows
that any subsequence of {I§A.a}a has a further subsequence con-
verging to ;. This implies that the whole sequence {ﬁ,\,a}a con-
verges to EA. This completes the proof of Proposition 3.2. O

2. (A13)

(A14)

Proof of Proposition 3.3.. We first assume Bk,a € RP is a mini-
mizer of (1.3). Then it follows from (A.1)-(A.3) that

0cX' (XByo —¥)/n+aBy o +20[ - 11 (B
Therefore, there exists EM e Ad] -1 (ﬁ,\,a) such that
0= X/(Xﬂk,a _y)/n + aﬂk.a +Ek,av

i.e. the first equation of (2.1) holds by noticing G = X'X + «I and
y = X’y. Furthermore, it follow from (A.4) that

iy 13l 1h(Bro)
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is equivalent to

Bi.o =ProxX; g, (Bro + o).

By using (A.5), we have
ﬂA,a = T)» (ﬂk,a + d}\.O()*

which is the second equation of (2.1). R _
Conversely, if (2.1) are satisfied for some B; , € R, d, , € RP.
By using (A.4) and (A.5) again, we deduce

a,\,a Al ||1(B,\.a)

from the second equation of (2.1). Substituting this into the first
equation of (2.1) we have

0 (GBro - /mn+All-1h(Bro)

which implies that ﬁk,a is a minimizer of (1.3) by Fermat’s rule
(A3).

The proof for (1.2) can be derived similarly. This completes the
proof of Proposition 3.3. O

Proof of Theorem 3.1. It follows from Lemma 7.1 and (A.8)-
(A.9) that F (z) is Newton differentiable. Furthermore, by using
Lemma 7.1 and the definition of A and B, we have

s 0 0 O
€ VnF (2). (A15)
0 Igg 0 O
Obviously, F (z) is continuously differentiable with
Nl XAXB GAA 0
VE(2) = . (A.16)
0 Ggp XéXA nlgg

Then it follows from (A.15)-(A.16) and (A.7) that F is Newton dif-
ferentiable z with H € VyF(2).

Let
/
by~ I 0 Hy — Ny XAXB
0 Igg |’ 0 Grp ’

Gaa 0
XéXA nl BB

Obviously, H;,i= 1,2, 3 is invertible and

g1 H;! 0
—-H;'H,H;' H3'|

Let g = (g]. &)’ be an arbitrary vector in R?P. Then

H;

14012 _ Hf] 0 g1 )2
IH g||2_”|:—H31H2H11 | (5 ) B

= |H{'g: 15 + | - H;'HoHy'gy + Hy 'gs |13
< IH Mg 3 + IHS IR AH HTH g
+llg212)?

< (IH 1+ IES A+ T HTTD)? g

which shows

2
25

IHM < [1H '+ IHS T+ TH2HH D (A7)
The similar argument shows
IHa |l < n+a +2|IX]1%, (A18)

13
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and
IH3 ] < 1/n+ (1 + IX]1*)/er.

Combining (A.18)-(A.19) with (A.17) and observing ||H]*1|| =1 we
get

IH ' <1+2m+1+a+ ||X]*)?/a.

(A19)

This completes the proof of Theorem 3.1. O

Proof of Theorem 3.2.. Let z, = (TB;,E;)/ be a root of F(z). Let
z* be sufficiently close to z,. By using the definition of Newton
derivative and H, e VyF(z¥), we have

|Hi(z" — zo) — F(Z*) + F(Za) |2 < €2, — 24

2 (A.20)

where ¢ — 0 as zK — z,. Then,

241 =zl

= |12" - H'F(Z") — zall2

= ||2* = H'F(2") — 2o + H;'F(20) |I2

< [H I He@* = 2o) = F(2*) + F(za) |12
<e(1+2(n+1+a+ [X[1)2/a) 2" - 242,

where the first equality uses () - (), the second equality uses
F(zy) =0, the first inequality is some algebra, and the last in-
equality uses (A.20) and the uniform boundedness of Hk*l proved

in Theorem 3.1. Then we get the sequence zK generated by
Algorithm 3 converge to z¢% locally superlinearly. The definition of
F(z) implies its root zy = (B;,E;)’ satisfies theA KKT conditions
(2.1). Thus, it follows from Proposition 3.3 that B, is the unique
minimizer of (1.3). Therefore, Theorem 3.2 holds by the equiva-
lence between Algorithm 1 and Algorithm 3. This completes the
proof of Theorem 3.2. O

Proof of Theorem 3.3.. First, we have
Bi+di— B —d?
< 1B +d? - Bi - dil

<18 =Bl + ld —d°|
<C

<Brdi—r Vie{jeA:B+d > 1)

vi/here the last inequality uses Athe definition that C = min,_3 IIE,- +
d;| — A|. This implies that f; + d; > A = B2 +d? > A (similarly, we
can show B +d; < -2 = 0 +d° < —1), ie, {i:|Bi+di|l > A} <
Ag={i: |,3in d?|A> A}. Meanwhile, by the same argument we can
show that |B; +d;| <A = |B? +d?| <A, i.e, Ay € A. Then by the
second equation of (2.1) and the definition of soft threshold op-
erator we get dy = Asgn(d, + 8,) which implies dy, = Asgn(dy, +
'Eﬂo)' This together with the first equation of (2.1) and (2.11) im-
plies

- “5 1
X} XaoBay + ndp, = X3y = X3 Xa, Ba, +nd .

Then we get XAOXAO (E‘A0 —13:10) =0, therefore, ﬁAO = ﬁ};o follows
from the above equation and the assumption that rank(X,) =
|A|. Let B%=(Ag)¢, by (2.9) and the fact Ac Ay we deduce
that ﬂ,lso =0=BBO. Hence, ﬁ:ﬁl. This completes the proof of
Theorem 3.3. O

In order to prove Lemma 4.1, we need the following two lem-
mas. Lemma 7.2 collects some property on mutual coherence and
Lemma 7.3 states that the effect of the noise 5 can be controlled
with high probability.
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Lemma 7.2. Let A, B be disjoint subsets of S =1, 2, ..., p, with |A| = q,
|B| = b. Let v be the mutual coherence of X. Then we have

I XsXautl, < nav|ul|, Yu e R, (A.21)

IXall = [ X4 < v/n(1+ (@@= D). (A22)

Furthermore, if v < 1/(a — 1), then Yu € RIAI,

XXoull, = n(1 = (a—Dv)[ul, (A23)
Iy -1 llull

(XX~ ull, < O CESE (A.24)

| (XaXa —nDu|l . < n(1+ (a—-Dv)|ull,. (A.25)

Proof. Let G =X'X/n. Vie B, | Yi_; G ju;| < pallull,, which im-
plies (A.21). For any i€ A, by using Gerschgorin’s disk theorem,
I|Gan] = Giil = Xjet 1Gijl < (= 1p, ie., (A21) holds. Let ie
A such that ||ul|,, = |u;|. (A.23) follows from that |Z?:1 Gi jujl =
uil = X ijer 1GijlIujl = llulloe — m(@—Dlully. (A24) follows di-
rectly from (A.23). And (A.25) can be showed similarly as the
(A.23). This complete the proof of Lemma 7.2. O

Lemma 7.3. Suppose (A3) holds. We have

P(IXl/n <) =1~ !

2,/mlog(p)

inequality follows
|

(A.26)

Proof. This
calculations.

Recall that Ay =o0,/2log(p)/n, Sy =3Ay, ¥y =8/13, Ag=
IX'y/nlls and A; = Agyt, t=0,1, ....

from standard probabilities

Proof of Lemma 4.1.. We first show that under the assumption of
Lemma 4.1,

)\.1 > 108u

holds with probability at least 1 — — 1
2/ log(p)

8 8
ki =hoy = Xyl = IX KB+ mymll,

(A.27)

. In fact,

8
= 13 X Xu By /nl, = IX'n/nll.0)

= %“l ~T=DWB e —A) W.H.P.

8 3 Ou
> 104,

where the first inequality is the triangle inequality, the second in-
equality uses Lemma (A.23)-(A.26), and the third one follows uses
assumption (A1)-(A2). Here in the third line, “W. H. P.” stands
for with high probability, that is, with probability at least 1—
1/(2/m log(p)). Then it follow from (A.27) and the definition of

A¢ that there exist an integer N e [1, logy(lgg” )) such that

)\'N > 108u > )"N+l (AZS)

holds with high probability. It follows from assumption (A2) and
(A.28) that Ay,q = An8/13 < 108, < |B'|;min10/26, which implies
that with high probability | ﬂTlmm > 8An/5 holds. This complete the
proof of Lemma 4.1. O

The main idea behind the proof of Theorem 4.1 is that under
assumption (A1)-(A3) the active generated by PSNA is contained
in the underlying target support and increase in some sense with

14
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high probability. To show this we need the following two Lemmas.
Lemma 7.4 gives one-step error estimations of SNA (Algorithm 1)
and Lemma 7.4 shows that some monotone property of the active
set.

Lemma 7.4. Suppose assumption (A1) holds. Let Ak BK B**1 d**!
are generated by Sna(8°,d° A, %K) with i > A = 9 +&,. Denote
Ek = AT\Ak and i, = {i e B¢ : |BT| = | B7]|..). If Ak C AT, then with

i 1
probability at least 1 — W 0) we have
ki1 | kil of 10 A
1Bx" + i = Byl < 5181+ 35- (A.29)
B a7 > Bl - SIBLI— Lo Vi A" (A30)
1 1 i 3 Pk 30° s .
1 A
k+1 1
ld;i™| < §|ﬂik| T30 (A31)
k+1 2 ot A
i1 > 3181 - 55 (A32)
Proof. Since ﬂkﬂ,dk” are generated by SNA with A > A = ?—A +
Su, A¥ C AT, Ek = AN\AK and y = X L +n we have
= (XX ™ (X (X Bl + Xer Bl + 1) — nd*) (A.33)
and
1B + ™ — Blull., = 1l (XpXa) ™" (K KBl + ),

1 X Xg) ™ (XX — D ||

nlE“IBL I+ Xyl nglAk| - 1v G-
n(i= (A=) " n( = (A=)
Bl +x T 95

<= +(1_TU)(X—(ﬁ+8u)) W.H.P.

1, A
=3 |ﬂik| + 30
where the first inequality uses (A.33) and the triangle inequality,
the second inequality uses (A.21), (A.24) and (A.24), the third in-
equality uses (A.26), the last inequality uses assumption (A1). Thus,
(A.29) holds. Then, (A.30) follows from (A.29) and the triangle in-
equality. Vi e B¥,

k k+1
| = X X (Bl — B

- dk+1) +XAkdk+1

ok ok +X5kﬂ;k +m)/n|

k /
= |X,-/XA,< (ﬂ;k *ﬂA;] *dﬁ:l)l +1X] Akdﬁ;;l + X Ekﬁ;k +X{nl/n
. -
< VA By + " — Bl +vIAY O =) + VIEIB] |+ 2 WHP.
1,1 4 A 1 = 1 .t
< Z(E\ﬂik|+%)+Z(A*A)+Z|I3ik|+}uu

1 A

=3 |ﬂik| + 30
where the first equality uses (A.33), the first inequality is the tri-
angle inequality, the second inequality is due to (A.21) and (A.26),

and the third inequality uses (A.29), i.e., (A.31) holds. Observing
i, € EX and (A.33) we get

i = X X (Bl — Bit — di™) + X + X, BL, + Xy, By, + 1)/l
> BL1 = X/ Xu (Bl — Bit" — di)] = X/ (X!
> [BL1 - viak B3
i 1,1, 4 A 1 = 1 .
> |Bi| - Z(g‘ﬂﬂ + %) - Z()»*)L) - Zlﬁ.k\ =

2, o A
> §‘ﬂik|_%

+XE‘<\ikB}:‘k\ik +7|/n
—d& — BlIl — IA¥| (. — &) — VIE¥[|BL| - Ay WH.P,
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where the first inequality is the triangle inequality, the second in-
equality is due to Lemma (A.21) and (A.26), and the third one uses
A.29, i.e., (A.32) holds. This complete the proof of Lemma 7.4. O

For a given 7 > 0, we define S, ; = {i: Iﬂfl > AT}

Lemma 7.5. Suppose assumption (A1) hold. Let k = % and T =k or
k + 1. Denote E¥ = AN\AK and i, = {i ¢ B*: Iﬂ;rl = 118" ll). If Siz C
Ak C AT then S, , c A+ CAT. Meanwhile, if S, .1 c A¥ Cc AT and
S £ A then |B] | > |B]
Proof. Assume S; , ¢ Ak c AT. Since EK = AT\A¥ and i, € E¥, we get

iy ¢ AX which implies |ﬁ?k| < AT.VieS, ; c Ak By using (A.30) we
have

1k+1

A
B a8 - S1BLI 2o > At - ghr— s
which implies i € A1, e, SM c A"+1 holds. Vi € (A")¢ c B*. By
using (A.31) we get
IHl | akil)  qkily Lt A A T=k+1,
1B +di | =1di" | < §|ﬂik|+% < {xil}‘ T—x,
(A.34)

i.e, i ¢ A1 which implies A¥+1 c AT, Next we turn to the second
assertion. Assume S, . c AK C AT, S, ¢ Ak. It suffice to show

all the elements of |ﬂT| that larger than |/3;rk| move into A1,

It follows from the definition of S; ., S; .1 and iy € EK = AT\A

that iy € S,  \Sa 41, 1-€. |ﬂ:»r’ | € [k, A(k +1)). By using (A.32) we
’ i K

have
k1 2 Lo 2oL
1Bi, | > 3|ﬂik| 30)» > 3)»K 30)» > A,

which implies i, € A1, Let i e Ak satisfy |Bl| > | ﬂ,Tk|. Then it fol-
lows from (A.30) that

k+1 k+1
+d;7| = |di”

1
B+ > 1Bl - 5181
2
> §|ﬂ;rk ~ 320
2 1
> §)»K %)» > A,

which implies i € A¥+1. This complete the proof of Lemma 7.5. O

With the above preparation, we now give the prove of Theorem
4.1.

Proof of Theorem 4.1.Llet A=A +8. By using
Lemma 4.1 and the definition of A; and we get A; > A, t =
0,1,..,N. At the t;, knot of Snap(Xq,y,N,K), suppose it takes
AlgorithAm Sna(ﬂo,do,)\t,xt,K) ke iteraticlns to get the solu-
tion (B(h).d(%), where (B°,d°) = (B(1).d( 1)) and
ke <K by the definition of PSNA. We denote the approxi-
mate primal dual solution pair and active set generated in
Sna(Bh_1), d(hi_1), At 2, K) by (BF.d¥) and Ak, respec-
tlvely. k=0,1,. kt By the construction of PSNA we have
(ﬂ d"’) = (ﬂ(At) d()»t)) i.e, the solution at the t,, stage is the
initial value for the t + 1 stage which implies

Al C AP (A35)
We claim that

Siuws1 CAYCAT E=0,1,..,N. (A36)
Spw CAMCAT t=0,1,..,N (A37)
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We prove the above two claims by mathematical induction. First
we show that # =S, 1 A5 CAl. Let 1Bl =18,

13

= IX'XB" +mml,,

13
(k +Dho = = IXy/nll =

> 7(” X B/l — 11X m/mll)

> f((l —(T=1)v)|B]| - M), WHP
13 3

> = (G181 -2

> | ,3} (A38)
where the first inequality is the triangle equation and the sec-
ond inequality uses (A.23) and (A.26), the third inequality uses
assumption (A1), and the last inequality is derive from as-
sumption (A2). This implies 0 =S),u+1- BY the construction of
Snap(ho. y.N.K) we get A§={j: [Xjy/n| > %o =[X'y/nll} =0
Therefore, (A.36) holds when t = 0. Now we suppose (A.36) holds
for some t > 0. Then by the first assertion of Lemma 7.5 we get
Shuws1 CAKC AT k=01, k. (A.39)

By the stopping rule of Sna(8°,dO, A;, A, K) it holds either Af‘ =
Ai‘f’1 or kk=K>T when it stops. In both cases, by using
(A.39) and the second assertion of Lemma 7.5 we get

Spu S Ak C AT,

i.e, (A.37) holds for this given t. Observing the relation
Shesraer1 = Siec and (A34)-(A35) we get S, | .1 CAD | AT, ie,
(A.36) holds for t+ 1. Therefore, (A.36) - (A 37) are verified by

mathematical induction on t. That is all the active set generated
in PSNA is contained in A'. Therefore, by Lemma 4.1 we get

ATCS;, « CANCAT,

ie.,
supp(B(Ay)) = A'. (A.40)
Then,
18" = BOW Il = I1BL — X}Xe) ™ Far — nd ) a)

= ”ﬂm - TXAT)7 X Af(XAfﬂerﬂ) *nd()»N)Ai)HOQ

X Tnll +n(Ay — An)

- n(1-Tv)

- u W.H.P.

1-3
39y _
=< s 7 Au; 2)”‘ = %)\u,

)
where the first inequality uses (A.24), the second inequality uses
(A.26), and last inequality uses Lemma 4.1, i.e., (4.2) holds. The sign
consistency (4.1) follows directly from (A.40), (4.2) and assumption
(A2). This complete the proof of Theorem 4.1. O

A3. Details in Algorithm 3

We now describe in detail the quantities in the k;, iteration in
Algorithm 3. This paves the way for showing that Algorithm 1 is a
specialization of Algorithm 3. At 2 = (8%, d"'), we define A, and
B, by (2.8). By a similar reordering of (8“,d"Y, F () and K (z")
as concerning the Newton derivative of F in Theorem 3.1, and us-
ing the definition of T, (), we get

d%k _dA + ngn(ﬂAk + dAk

= | Po p - By B, |- (A41)
ﬂ?k GAkAkﬂAk + GAkBkﬂBk + ndAk Ya,
d;, G4, ﬂAk + GBkBkﬂBk + nd ﬂ;,
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Then, by using Theorem 3.1 and noting that Gp 4, = XE’,kXAk, GaB, =
XAkXBk we have H; e VyF(2), where

Ml O 0 0
0 In.5, 0 0
H, = (A42)
M, X3 Xs,  Gaa, 0
0 Ggp,  XgXa, nlgp, |

Algorithm 3 is well defined if we choose H; in the form of
(A.42), since Hy is invertible as shown in Theorem 3.1.

In Section 2.1 we derived Algorithm 1 in an intuitive way. We
now verify that Algorithm 1 is indeed Algorithm 3 in a form that
can be easily and efficiently implemented computationally. Let

Dk =

and substitute (A.41) and (A.42) into () we get

dj +D3 =)sgn(By +dj). (A43)

Bs, +Df =0, (A.44)

G (Bs, + D) =F4, —n(dh, +D4) — X; X5, (B, +Df ). (A45)

~ k k
n(dy, + D) = Vs, — X5 Xa, (B4, + D) — Ga,, (By, +Dj ). (A46)
Observing the relationship (by ()),

di! dj, +D4
AN

fgl Bﬁk K Df"
dy, dp + ng

and substituting (A.43) - (A.44) into (A.45)-(A.46), we obtain (2.9) -
(2.12), which are the computational steps in Algorithm 1.
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