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a b s t r a c t 

We propose a pathwise semismooth Newton algorithm (PSNA) for sparse recovery in high-dimensional 

linear models. PSNA is derived from a formulation of the KKT conditions for Lasso and Enet based on 

Newton derivatives. It solves the semismooth KKT equations efficiently by actively and continuously seek- 

ing the support of the regression coefficients along the solution path with warm start. At each knot in 

the path, PSNA converges locally superlinearly for the Enet criterion and achieves the best possible con- 

vergence rate for the Lasso criterion, i.e., PSNA converges in just one step at the cost of two matrix-vector 

multiplication per iteration. Under certain regularity conditions on the design matrix and the minimum 

magnitude of the nonzero elements of the target regression coefficients, we show that PSNA hits a so- 

lution with the same signs as the regression coefficients and achieves a sharp estimation error bound 

in finite steps with high probability. Extensive simulation studies support our theoretical results and in- 

dicate that PSNA is competitive with or outperforms state-of-the-art Lasso solvers in terms of efficiency 

and accuracy. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In this paper, we propose a pathwise semismooth Newton al- 

orithm (PSNA) for sparse recovery in the high-dimensional linear 

odel 

 = X β
† + η, (1.1) 

here y ∈ R 
n is a response vector, X ∈ R 

n ×p is a design matrix,
† = (β† 

1 
, . . . , β† 

p ) 
′ ∈ R 

p is a vector of underlying regression coef- 

cients, and η ∈ R 
n is a vector of random errors. We assume with- 

ut loss of generality that y is centered and the columns of X are 

entered and 
√ 

n -normalized. For this model, the Lasso [1,2] solves 

in 
∈ R p 

L λ( β) := 

1 

2 n 
‖ X β − y ‖ 

2 
2 + λ‖ β‖ 1 , (1.2) 
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165-1684/© 2021 Elsevier B.V. All rights reserved. 
here λ > 0 is a penalty parameter. Closely related to the Lasso is 

he elastic net (Enet) [3] , which solves 

in 
∈ R p 

J λ,α( β) := L λ( β) + 

α

2 n 
‖ β‖ 

2 
2 , α > 0 . (1.3)

his can be viewed as a regularized form of (1.2) . Since J λ,α(·) 
s strongly convex for α > 0 , the Enet solution ̂ βλ,α is unique. 

his enables us to characterize the unique minimum 2-norm Lasso 

olution (1.2) as the limit of ̂ βλ,α as α → 0 + ( Proposition 3.2 ). 
n high-dimensional settings, it is nontrivial to efficiently solve 

1.2) and (1.3) numerically since they are large scale nondifferen- 

iable optimization problems. 

The key ingredient of PSNA is a semismooth Newton algorithm 

SNA), which is derived based on a suitable formulation of the KKT 

onditions. At each step in the iteration, the SNA works by first 

stimating the support of the solution based on a combination of 

he primal and dual information, and then finding the values of 

he nonzero coefficients on the support. Interestingly, our analy- 

is shows that the SNA can be formally derived as a Newton algo- 

ithm based on the notion of Newton derivatives for nondifferen- 

iable functions [4–6] . 

PSNA proceeds by running SNA along a grid of λ values: { λt = 

0 γ
t } t=0 , 1 ,..N with the continuation strategy and warm start, where 

∈ (0 , 1) , λ0 > 0 and the integer N are user given parameters. It is

https://doi.org/10.1016/j.sigpro.2021.108432
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asy to implement and computationally stable. Moreover, our sim- 

lation studies indicate that PSNA is nearly problem independent, 

n the sense that the computational cost of using PSNA to approx- 

mate the solution path is O (Nnp) , independent of the following 

spects of the model, including the ambient dimension, sparsity 

evel, correlation structure of the predictors, range of the magni- 

ude of the nonzero regression coefficients and the noise level. 

.1. Contributions 

The most popular algorithms for solving � 1 -regularized prob- 

ems in the literature are mainly first-order methods. It is natu- 

al to ask whether we can develop a second-order method, i.e, the 

ewton-type method, which is a workhorse in low-dimensional 

roblems, for such nonsmooth optimization problems which con- 

erge faster than first-order methods. We give a definitive answer 

o this question by establishing faster convergence results for SNA. 

e show that, for the Lasso, the SNA converges locally in just one 

tep, which is obviously the best possible local convergence rate 

or any algorithms ( Theorem 3.3 ). For the Enet, it converges lo- 

ally superlinearly ( Theorem 3.2 ). To the best of our knowledge, 

hese are the best convergence rates for Lasso and Enet problems 

ith p � n in the literature. Our computational complexity anal- 

sis shows that the cost of each iteration in SNA is O (np) , which

s the same as most existing Lasso solvers, including LARS and co- 

rdinate descent algorithms. Hence, the overall cost of using SNA 

o find the unique minimizer of J λ,α( β) is still O (np) due to its

uperlinear convergence if it is warm started. 

Another contribution of this paper is that we establish the sta- 

istical properties of PSNA in the Gaussian noise case. Specifically, 

e show that under certain regularity conditions on the design 

atrix X , the solution sequence generated by PSNA enjoys the sign 

onsistency property in finite steps if the minimum magnitude 

f the nonzero elements of β
† 
is of the order O (σ

√ 

2 log (p) /n ) , 

hich is the optimal magnitude of detectable signal. We also es- 

ablish a sharp upper bound in supreme norm for the estimation 

rror of the solution sequence. 

.2. Related work 

[7] showed that the Lasso solution path is continuous and 

iecewise linear as a function of λ. They proposed a Homotopy 

lgorithm that defines an active set of nonzero variables at the 

urrent vertex then moves to a new vertex by adding a new vari- 

ble to or removing an existing one from the active set. [8] pro- 

osed the LARS algorithm to trace the whole solution path of 

1.2) by omitting the removing steps in the Homotopy algorithm. 

9] showed that, in the noiseless case with η = 0 and under cer- 

ain conditions on X and β
† 
, LARS (Homotopy) algorithm has the 

‖ β† ‖ 0 -step” convergence property with the cost of O (‖ β† ‖ 0 np) . 
owever, the convergence property of LARS is unknown when the 

oise vector η is nonzero in the p > n settings. Further connections 

f SNA with LARS, sure independence screening [10] , and active set 

ethods for accelerating coordinate descent [11] are discussed in 

ection 5 . 

Several authors have adopted a Gauss-Seidel type coordinate 

escent algorithm (CD-GS) [12–15] , as well as Jacobi type coor- 

inate descent (CD-J), or iterative thresholding [16,17] to solve 

1.2) . For the CD-GS proposed in [13] , the results of [18] , [19] and

20] only ensure the convergence and sublinear convergence rate 

f the sequence of the objective functions { L λ( β
k 
) , k = 1 , 2 , . . . } ,

ut not the sequence of the solutions { βk 
, k = 1 , 2 , . . . } . Since in

igh-dimensional settings with p � n , the global minimizers ̂ βλ

re generally not unique, hence, it is not clear which minimizer 

he sequence { βk 
, k = 1 , 2 , . . . } generated from CD-GS iterations
2 
onverges to. The CD-GS proposed in [15] and [21] with refined 

weep rules is guaranteed to converge. Other widely used algo- 

ithms include proximal gradient descent [22–25] , alternative di- 

ection method of multiplier (ADMM) [26–28] , among others. For 

ore comprehensive reviews of the literature on the related topics, 

ee the review papers by [29] , and [30] . 

[24] considered the statistical properties of the proximal gradi- 

nt descent path. But their analysis required knowing ‖ β† ‖ 1 , which 

s unknown or hard to estimate in practice. Although this can be 

emedied by using the techniques developed by [25] , it does not 

chieve the sharp error bound as PSNA does. 

.3. Notation 

Some notations used throughout this paper are defined be- 

ow. With ‖ β‖ q = ( 
∑ p 

i =1 
| βi | q ) 1 q we denote the usual q (q ∈ [1 , ∞ ])

orm of a vector β = (β1 , β2 , ..., βp ) ′ ∈ R 
p . ‖ β‖ 0 denotes the num-

er of nonzero elements of β. X ′ denotes the transpose of the co- 
ariate matrix X ∈ R 

n ×p and ‖ X‖ denotes the operator norm of X

nduced by vector with 2-norm. 1 or 0 denote a vector ∈ R 
p or 

 matrix with elements all 1 or 0. Define S = { 1 , . . . , p} . For any
, B ⊆ S with length | A | , | B | , we denote βA ∈ R 

| A | (or X A ∈ R 
| A |×p )

s the subvector (or submatrix) whose entries (or columns) are 

isted in A . X AB denotes submatrix of X whose rows and columns 

re listed in A and B , respectively. We use supp (z) , sgn (z) to de-

ote the support and sign of a vector z , respectively. We use I, G 

nd ̃  y to denote the identity matrix, the regularized Gram matrix 

 
′ X + αI and X ′ y , respectively. 

.4. Organization 

In Section 2 we provide a heuristic and intuitive derivation 

f SNA for solving (1.3) (including (1.2) as a special case by set- 

ing α = 0 ) and describe SNA for pathwise optimization (PSNA). In 

ection 3 we establish the locally superlinear convergence rate of 

NA for (1.3) and local one-step convergence for (1.2) , and ana- 

yze the computational complexity of SNA. In Section 4 we provide 

he conditions for the finite-step sign consistency of PSNA and the 

pper bounds for the estimation error. In Section 5 we discuss the 

elations of SNA with LARS, SIS, and active set methods for acceler- 

ting coordinate descent. The implementation detail and numerical 

omparison with LARS and coordinate descent methods are given 

n Section 6 . We conclude in Section 7 with some comments and 

uture work. The proofs of the main results and some background 

n Newton derivatives used for deriving SNA are included in the 

ppendices. 

. A general description of PSNA 

In this section we first give an intuitive description of the SNA 

or computing the Lasso and Enet solutions at a given λ and α. 

e then describe the PSNA, which uses SNA for computing the 

olution paths with warm start and a continuation strategy. 

.1. Motivating SNA based on the KKT conditions 

The key idea in the proposed algorithm is to iteratively identify 

he active set in the optimization using both the primal and dual 

nformation, then solve the problem on the active set. Here the 

rimal is simply β and its dual is d = ( ̃  y − G β) /n . Recall ˜ y = X ′ y
nd G = X ′ X + αI. For the Lasso, the expression of d simplifies to

 = X ′ ( y − X β) /n , i.e., the correlation vector between the predic- 

ors and the residual. For any given (λ, α) , the KKT conditions 

 Proposition 3.3 ) assert that ̂  βλ,α is the unique Enet solution if and 
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Algorithm 1 ( ̂  β(λ) , ̂  d (λ)) ← − SNA ( β
0 
, d 0 , λ, λ, K) 

1: Input: X, y , α, λ, λ, K, initial guess β
0 
, d 0 , A −1 = supp ( β

0 
) . Set 

k = 0 . 

2: Compute ̃  y = X ′ y and store it. 
3: for k = 0 , 1 , · · · , K do 

4: Compute A k , B k using ( ?? ) . 

5: If A k = A k −1 or k ≥ K. Stop and denote the last iteration 

by β̂ A , β̂ B , d ̂  A , d ̂  B . Else 
6: Compute { βk +1 

, d k +1 } using ( ?? ) - ( ?? ) . k := k + 1 . End 

7: end for 

8: Output: ̂ β(λ) = 

(
β̂ A 
β̂ B 
)

and ̂  d (λ) = 

(
d ̂  A 
d ̂  B 

)
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(

nly if the pair { ̂  βλ,α, ̂  d λ,α} satisfies ̂ d λ,α = ( ̃  y − G ̂
 βλ,α ) /n, ̂ βλ,α = T λ( ̂

 βλ,α + ̂
 d λ,α ) , 

(2.1) 

here T λ( x ) is the soft-threshold operator [31] acting on x compo- 

ent wise, that is, T λ( x ) = (T λ(x 1 ) , . . . , T λ(x p )) ′ with 

 λ(x ) = x − | x + λ| 
2 

+ 

| x − λ| 
2 

, x ∈ R . (2.2) 

The KKT conditions in (2.1) are stated in equalities using the 

oft-threshold operator, rather than in the usual inequality form 

r in terms of set-valued subdifferentials. This is the basis for our 

erivation of the SNA, which seeks to solve these nonsmooth equa- 

ions. 

To simplify the notation we drop the subscripts of ( ̂  βλ,α, ̂  d λ,α ) 

nd write them as ( ̂  β, ̂  d ) , when it does not cause any confusion.

y the second equation of (2.1) and the definition of the soft- 

hreshold operator, we have 

 

B = 0 , (2.3) 

 
 A = λsgn ( ̂  βA + ̂

 d A ) , (2.4) 

here 

 = 

{ 
j ∈ S : | ̂  β j + 

̂ d j | ≥ λ
} 

and B = 

{ 
j ∈ S : | ̂  β j + 

̂ d j | < λ
} 
. 

(2.5) 

Substituting (2.3) into the first equation of (2.1) and observing 

 AA is invertible, we can solve the resulting linear system to get 

 

A = G 
−1 
AA 

( ̃  y A − n ̂  d A ) , (2.6) 

 
 B = ( ̃  y B − G BA ̂

 βA ) /n. (2.7) 

herefore, { ̂  β, ̂  d } can be obtained from (2.3) - (2.4) and (2.6) - (2.7) if

 is known. 

Let { βk 
, d k } be the primal and dual approximation of { ̂  β, ̂  d } at

he k th iteration. Based on (2.5) , we approximate the active and 

nactive sets by 

 k = 

{
j ∈ S : | βk 

j + d k j | > λ
}

and B k = 

{
j ∈ S : | βk 

j + d k j | ≤ λ
}
. 

(2.8) 

Based on (2.3) - (2.4) and (2.6) - (2.7) we obtain the updated ap-

roximation { βk +1 
, d k +1 } , 

k +1 
B k 

= 0 , (2.9) 

 

k +1 
A k 

= (λ − λ) sgn ( β
k 
A k 

+ d 
k 
A k 

) , (2.10) 

k +1 
A k 

= G 
−1 
A k A k 

( ̃  y A k − n d 
k +1 
A k 

) , (2.11) 

 

k +1 
B k 

= ( ̃  y B k − G B k A k β
k +1 
A k 

) /n. (2.12) 

n (2.10) we introduce a (small) shift parameter λ with 0 ≤ λ < λ
nd use a slightly more general version of (2.4) , replacing λ with 

− λ in (2.4) . For λ > 0 , we solve a less shrunk version of the 

net. For the solution sequence { βk 
, k ≥ 1 } with a suitable λ > 0 ,

e show that it achieves finite-step sign consistency and sharp es- 

imation error bound ( Theorem 4.1 ). 

Based on the above discussion, we summarize SNA for minimiz- 

ng (1.3) in Algorithm 1 below, where we write ̂ β(λ) = ̂
 βλ,α for a 

xed α. 
3 
emark 2.1. In the algorithm, we use a safeguard maximum num- 

er of iterations K that can be defined by the user. We usually set 

 ≤ 5 due to the locally superlinear/one-step convergence of SNA. 

Each line in Algorithm 1 consists of simple vector and ma- 

rix multiplications, except (2.11) in line 6, where we need to in- 

ert a | A k | × | A k | matrix. Note that A k is usually a small subset

f S if Algorithm 1 is warm started. Intuitively, at the k th step 

n the iteration, this algorithm tries to identify A k , an approxi- 

ation of the underlying support by using the estimated coeffi- 

ients with a proper adjustment d k determined by the KKT, and 

olves a low-dimensional adjusted least squares problem on A k . 

herefore, with a good starting estimation of A k , which is guaran- 

eed by using a continuation strategy with warm start described 

elow, Algorithm 1 can find a good solution in a few steps. In 

ection 3 , we derive Algorithm 1 formally from the semismooth 

ewton method and show that its convergence rate is locally su- 

erlinear for the Enet and locally one-step for the Lasso. 

.2. Solution path approximation 

We are often interested in the whole solution path ̂  β(λ) ≡ ̂ βλ,α

f (1.3) for λ ∈ [ λmin , λmax ] and some given α ≥ 0 . Here we ap-

roximate the solution path by computing ̂ β(λ) on a given finite 

et � = { λ0 , λ1 ..., λN } for some integer N, where λ0 > · · · > λN > 0 .

bviously, ̂  β(λ) = 0 satisfies (2.1) and (2.1) if λ ≥ ‖ X ′ y /n ‖ ∞ . Hence

e set λmax = λ0 = ‖ X ′ y /n ‖ ∞ , λt = λ0 γ
t , t = 0 , 1 , ..., N, and λmin =

0 γ
N , where γ ∈ (0 , 1) . 

We adopt a simple continuation technique with warm start in 

omputing the solution path. This strategy has been successfully 

sed for computing the Lasso and Enet paths [13,32] . We use the 

olution at λt as the initial value for computing the solution at 

t+1 . The shift parameter λ can vary at different path knots λt , 

o here we use λt to demonstrate this. We summarize this in the 

ollowing PSNA algorithm 

When running PSNA with warm start, SNA usually converges in 

 few steps, since SNA converges locally superlinearly and warm 

tart provides a good initial value. 

. Derivation of SNA and convergence analysis 

.1. KKT conditions 

In this subsection, we first discuss the relationship between 

he minimizers of (1.2) and (1.3) . We then characterize the unique 

inimizer (1.3) by its KKT system. 

roposition 3.1. Let M λ be the set of the Lasso solutions given in 

1.2) . Then M is nonempty, convex and compact. 
λ
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In general, the Lasso solution is not unique in the p � n set- 

ings, however, the one in M λ with the minimum Euclidean norm 

s unique. We denote this solution by ̂ βλ. 

roposition 3.2. For α > 0 , the Enet (1.3) admits a unique minimizer 

enoted by ̂ βλ,α . Furthermore, ‖ ̂  βλ,α −̂ βλ‖ 2 → 0 as α → 0 + . 

By Proposition 3.2 , a good numerical solution of (1.3) is a good 

pproximation of the minimum 2-norm minimizer of (1.2) for a 

ufficiently small α. 

roposition 3.3. Let ̂ βλ,α ∈ R 
p be the Enet solution, which is the 

nique minimizer of J λ,α in (1.3) for α > 0 . Then there exists a ̂  d λ,α ∈
 
p such that (2.1) hold. Conversely, if there exists ̂ βλ,α ∈ R 

p and 
 
 λ,α ∈ R 

p satisfying (2.1) , then ̂ βλ,α is the unique minimizer of J λ,α

n (1.3) . 

The KKT equations (2.1) with α = 0 also characterize the Lasso so- 

ution (1.2) , except that the solution may not be unique. 

Here the KKT conditions are formulated in terms of equalities 

2.1) , which are different from but equivalent to the usual inequal- 

ty form 

 
 A = λsgn ( ̂  βA ) , 

 ̂
 d A c ‖ ∞ ≤ λ, 

here, ̂ d = (X ′ y − G ̂
 β) /n and A = supp ( ̂  β) . The reason we adopt

he equation form (2.1) is that we can transform the minimization 

roblem (1.3) into a root finding problem, which helps us derive 

NA formally as a semismooth Newton method. 

.2. SNA as a Newton algorithm 

We now formally derive the SNA based on the KKT conditions 

y using the semismooth Newton method [4–6] for finding a root 

f a nonsmooth equation. This enables us to prove its locally su- 

erlinear convergence stated in Theorem 3.2 below. The definition 

nd related property on Newton derivative are given in Appendix 

. 

Let 

 = 

(
β
d 

)
and F ( z ) = 

[
F 1 ( z ) 
F 2 ( z ) 

]
: R 

p × R 
p → R 

2 p , 

here 

 1 ( z ) := β − T λ( β + d ) , 

 2 ( z ) := G β + n d −˜ y . 

y Proposition 3.3 , to find the minimizer of (1.3) , it suffices to find

 root of F ( z ) . Although the classical Newton algorithm cannot be

pplied directly since F ( z ) is not Fréchet differentiable, we can re- 

ort to semismooth Newton algorithm since F ( z ) is Newton differ- 

ntiable. 

Let 

 := { i ∈ S : | βi + d i | ≥ λ} , B := { i ∈ S : | βi + d i | < λ} . 
e reorder ( β′ , ′ ) ′ such that z = ( d ′ A , β

′ 
B , β

′ 
A , d 

′ 
B ) 

′ . We also reorder

 1 ( z ) and F 2 ( z ) accordingly, 

 ( z ) = 

⎡ ⎢ ⎣ 

βA − T λ( βA + d A ) 
βB − T λ( βB + d B ) 
G AA βA + G AB βB + n d A −˜ y A 
G BA βA + G BB βB + n d B −˜ y B 

⎤ ⎥ ⎦ . 

e have the following result concerning the Newton derivative of 

 . 
4 
heorem 3.1. F ( z ) is Newton differentiable at any point z . And 

 := 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−I AA 0 0 0 

0 I BB 0 0 

nI AA X ′ A X B G AA 0 

0 G BB X ′ B X A nI BB 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

∈ ∇ N F ( z ) . (3.1) 

urthermore, H is invertible and H 
−1 is uniformly bounded with 

 H 
−1 ‖ ≤ 1 + 2(n + 1 + α + ‖ X ‖ 

2 ) 2 /α. 

At the k th iteration, the semismooth Newton method for finding 

he root of F ( z ) = 0 consists of two steps. 

1) Solve H k D 
k = −F ( z k ) for D 

k , where H k is an element of ∇ N F ( z 
k ) .

2) Update z k +1 = z k + D 
k , set k ← k + 1 and go to step (1). 

This has the same form as the classical Newton method, except 

hat here we use an element of ∇ N F (Z 
k ) in step (1). Indeed, the

ey to the success of this method is to find a suitable and invert- 

ble H k . We state this method in Algorithm 3 . 

lgorithm 3 SNA for finding a root of F ( z ) 

1: Input: X, y , λ, α, initial guess z 0 = 

(
β
0 

d 0 

)
. Set k = 0 . 

2: for k = 0 , 1 , 2 , 3 , · · · do 

3: Choose H k ∈ ∇ N F ( z 
k ) . 

4: Get the semismooth Newton direction D k by solving 

H k D 
k = −F ( z k ) . (17) 

5: Update 

z k +1 = z k + D 
k . (18) 

6: Check Stop conditionIf stopDenote the last iteration by ̂ z . Else k := k + 1 . 

7: end for 

8: Output: ̂  z as an estimate of the roots of F ( z ) . 

emark 3.1. When A k = A k +1 holds for some k , Algorithm 1 con-

erges. Hence it is natural to stop Algorithm 1 accordingly. A com- 

on condition that can be used as a stop rule of Algorithm 3 is

hen ‖ F ( z k ) ‖ 2 is sufficiently small, since this algorithm is a 

oot finding process. Therefor we can use both stopping rules 

n Algorithm 1 due to the equivalence of Algorithm 1 and 

lgorithm 3 . We also stop Algorithm 1 when the iteration number 

 exceeds a prespecified integer K. 

It can be verified that Algorithm 1 with λ = 0 is the same as 

lgorithm 3 . However, Algorithm 1 is written in a form that is 

asier to implement computationally. The details are given in Ap- 

endix C. Thus it is indeed a semismooth Newton method. The 

ore compact form of Algorithm 3 is better suited for its conver- 

ence analysis. 

heorem 3.2. Let H k in Algorithm 3 be given in (A.42) . Then the se-

uence { βk 
, k = 1 , 2 , . . . } generated based on Algorithm 3 (and Algo-

ithm 1 with λ = 0 ) converges locally and superlinearly to ̂ βλ,α , the 

nique minimizer of (1.3) . 

Theorem 3.2 shows the local supperlinear convergence rate of 

NA, which is a superior property of Newton-type algorithms to 

rst-order methods. 
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heorem 3.3. For a give λ > 0 , let ̂ β ≡ ̂ βλ be a minimizer of (1.2) ,
 
 = X ′ ( y − X ̂  β) /n , A = { i : | ̂  βi + ̂

 d i | ≥ λ} , ˜ A = { i : | ̂  βi + ̂
 d i | � = λ} , and

 = min 
i ∈ ̃  A || ̂  βi + ̂

 d i | − λ| > 0 . Suppose rank (X A ) = | A | and the ini-
ial guess β

0 
, d 0 satisfies ‖ ̂  β − β

0 ‖ ∞ + ‖ ̂  d − d 0 ‖ ∞ ≤ C. Then, β
1 = ̂

 β, 

here β
1 
is generated by Algorithm 3 with α = 0 and λ = 0 . 

Theorem 3.3 shows that the SNA has the optimal local conver- 

ence rate, since it converges in just one step. This is obviously 

he best possible convergence rate due to the special structure 

f (1.2) and improves the locally superliner convergence rate of 

emismooth Newton method in general situations, see for exam- 

le, [4] , [5] and [6] . 

.3. Computational complexity analysis 

We now consider the computational complexity of SNA 

 Algorithm 1 ). We look at the number of floating-point opera- 

ions per iteration. Clearly it takes O (p) flops to finish steps 4-7 in

lgorithm 1 . For step 8, we solve the linear equation iteratively by 

he conjugate gradient (CG) method initialized with the projection 

f the previous solution onto the current active set [33] . The main 

perations in CG include two matrix-vector multiplications, which 

ake 2 n | A k | flops. Therefore, the number of CG iterations is smaller

han p/ (2 | A k +1 | ) and there are at most O (np) flops in step 8. For

tep 9, calculation of the matrix-vector product costs np flops. So, 

he total cost per iteration in Algorithm 1 is O (np) , which is also

he cost for the state-of-the-art first-order Lasso solvers. The local 

uperlinear/one-step convergence of SNA guaranteed that a good 

olution can be found in only a few iterations if it is warm started. 

herefore, at each knot on the path, the whole cost of SNA can be

till O (np) if we use the continuation strategy. Thus we can use 

lgorithm 2 (PSNA) to compute the solution path accurately and 

fficiently with O (Nnp) flops, where N is the number of knots on 

he path. See the numerical results in Section 6 . 

. Error bounds and finite-step sign consistency 

As shown in Theorems 3.2 and 3.3 , SNA converges locally su- 

erlinearly for Enet and converges in one step for Lasso. In this 

ection we prove that the simple warm start technique makes the 

SNA converge globally under certain mutual coherence conditions 

n X and a condition on the minimum magnitude of the nonzero 

omponents of β
† 
. Specifically, we show that PSNA hits a solution 

ith the same sign as β
† 
and attains a sharp statistical error bound 

n finitely many steps with high probability, if we properly design 

he path { λt = λ0 γ
t } t=0 , 1 ,..N and run SNA along it with warm start. 

We only consider the Lasso, so we set α = 0 and G = X ′ X . The
utual coherence ν defined as ν = max i � = j | G i, j | /n [34,35] charac- 

erizes the minimum angle between different columns of X/ 
√ 

n . 

et A † = supp ( β
† 
) and T = | A † | . Define | β† | min = min {| β† 

j 
| : j ∈ A † } ,

enote the universal threshold value by λu = σ
√ 

2 log (p) /n . Let 

u = 3 λu , λ0 = ‖ X ′ y/n ‖ ∞ , and λt = λ0 γ
t , t = 0 , 1 , ... . 

We make the following assumptions on the design matrix X , 

he target coefficient β
† 
, and the noise vector η. 

(A1) The mutual coherence satisfies T ν ≤ 1 
4 . 

(A2) The smallest nonzero regression coefficient satisfies 

| β† | min ≥ 78 λu . 

(A3) η satisfies η ∼ N(0 , σ 2 I n ) . 

emma 4.1. Suppose that (A1) to (A3) hold. There exists an integer 

 ∈ [1 , log γ ( 10 δu 
λ0 

)) such that λN > 10 δu ≥ λN+1 and | β† | min > 8 λN / 5

old with probability at least 1 − 1 / (2 
√ 

π log (p) ) . 

heorem 4.1. Suppose that (A1) to (A3) hold. Then with probabil- 

ty at least 1 − 1 / (2 
√ 

π log (p) ) , PSNA (λ0 , γ , N, K) with γ = 8 / 13 , N
5 
etermined in Lemma 4.1 , K ≥ T , and λ = 
9 
10 λt + δu at the t th knot,

as a finite step sign consistence property and achieves a sharp esti- 

ation error, i.e., 

gn ( ̂  β(λN )) = sgn ( β
† 
) , (4.1) 

nd 

 ̂
 β(λN ) − β

† ‖ ∞ < 

23 

6 
λu . (4.2) 

emark 4.1. From the proof of Theorem 4.1 we can see that PSNA 

Algorithm 3 ) with λ = 0 can recover β
† 
exactly by letting λt → 0 

n the case η = 0 . However, if the observation contains noise we 

ave to set the shift parameter λ in PSNA to be nonzero which 

educe the amount of shrinkage of Lasso. 

The properties of Lasso have been studied by many authors. For 

xample, [36] and [37] showed that Lasso is sign consistent under 

 strong irrepresentable condition, which is a little weaker than 

A1). They also required | β† | min to be bounded below by O (n −c/ 2 )

ith c ∈ (0 , 1) , which is a stronger assumption than (A2). [38] re-

uired X satisfy a sparse Rieze condition, which may be weaker 

han (A1); and | β† | min larger than O ( 
√ 

T λu ) , which is stronger

han (A2). [39] assumed a condition stronger than the strong ir- 

epresentable condition to guarantee the uniqueness of Lasso and 

ts sign consistency with a condition on | β† | min similar to (A1). 

40] and [41] assumed the mutual coherence conditions with T ν < 

 / 7 and ν < c/ log (p) for a constant c, respectively; and their re- 

uirements for | β† | min are similar to (A1) with different constants. 

n deriving the � 2 and � ∞ error bounds of the Lasso, [35] and 

42] assumed T ν < 1 / 4 and T ν ≤ 1 / 4 , respectively. The latter is ex-

ctly (A1). However, these existing results do not imply the finite- 

tep sign consistency property established in Theorem 4.1 . 

All the results mentioned above concern the minimizer of the 

asso problem, but they did not directly address the statistical 

roperties of the sequence generated by a specific solver. So there 

s a gap between those theoretical results and the computational 

olutions. There has been effort s to close this gap. For example, 

24] considered the statistical properties of the proximal gradi- 

nt descent path. However, their analysis required knowing ‖ β† ‖ 1 , 
hich is hard to estimate in practice. [25] remedied this, but their 

esult does not achieve the sharp error bound like PSNA does. Also, 

he technique used for deriving the statistical properties of PSNA (a 

ewton-type method), is quite different from the proximal gradi- 

nt method (a gradient type method). 

. Comparison with LARS, SIS and an active set method for 

ccelerating coordinate descent 

The key idea in PSNA is using the Newton-type method SNA to 

teratively identify the active set using both the primal and dual 

nformation, then solve the problem on the active set. In this sec- 

ion we discuss the connections between PSNA with other three 

ual active set methods, i.e., LARS, SIS [10] , and sequential strong 

ule SSR (active set tricks for accelerating coordinate descent) [11] . 

LARS [8] also does not solve (1.2) exactly since it omits the re- 

oving procedure of Homotopy [7] . As discussed in [9] , the LARS 

lgorithm can be formulated as 

k +1 
B k 

= 0 , 

k +1 
A k 

= (X ′ A k X A k ) 
−1 ( ̃  y A k − λ

k 
sgn ( d k A k )) , 

here A k is the set of the indices of the variables with highest 

orrelation with the current residual, B k = (A k ) 
c , λ

k = ‖ d k ‖ ∞ − γk ,

 
k = X ′ ( y − X β

k 
) /n , and γk is the step size to the next breakpoint

n the path [8,9] . Comparing Algorithm 2 (PSNA) (by setting K = 0 )
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Algorithm 2 ̂ β(�) ← − PSNA (λ0 , γ , N, K) 

1: Input: λ0 = ‖ X ′ y/n ‖ ∞ , ̂
 β(λ−1 ) = 0 , ̂  d (λ−1 ) = X ′ y /n, γ , N, K. 

2: for t = 0 , 1 ...N. do 

3: Set λt = λ0 γ
t and ( β

0 
, d 0 ) = ( ̂  β(λt−1 ) , ̂

 d (λt−1 )) . 

4: ( ̂  β(λt ) , ̂  d (λt )) ← − SNA ( β
0 
, d 0 , λt , λt , K) 

5: end for 

6: Output: ̂ β(�) = [ ̂  β(λ0 ) , ..., ̂
 β(λN )] . 
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(

ith the above reformulation of the LARS algorithm, we see that 

oth PSNA and LARS can be understood as approaches for esti- 

ating the support of the underlying solution, which is the es- 

ential aspect in fitting sparse, high-dimensional models. So, PSNA 

nd LARS share some similarity both in formulation and in spirit 

lthough they were derived from different perspectives. However, 

he definitions of the active set in PSNA are based on the sum of 

rimal approximation (current approximation β
k 
) and the dual ap- 

roximation (current correlation d k = X ′ ( y − X β
k 
) /n ) while LARS is 

ased on dual only. The following low-dimensional small noise in- 

erpretation may clarify the difference between the two active set 

efinitions. If X ′ X/n ≈ identity and η ≈ 0 we get 

 

k = X ′ ( y − X β
k 
) /n = X ′ (X β† + η − X β

k 
) /n ≈ β

† − β
k 

+ X ′ η/n ≈ β
† − β

k 

nd 

k + d 
k ≈ β

† 
. 

n addition, LARS selects variables one by one while PSNA can se- 

ect more than one variable at each iteration. Also, the adjusted 

east squares fits on the active sets in PSNA and LARS are different. 

nder certain conditions on X both of them recover β
† 
exactly in 

he noise-free case [9] even when p > n . But the convergence or

onsistency of LARS is unknown when the noise vector η � = 0 . 

Given a starting point λ0 , SNA is initialized with β
0 = 0 , d 0 = 

 
′ y /n . Therefore, 
 0 = { j : | β0 

j + d 0 j | > λ0 } = { j : | x ′ j y /n | > λ0 } . 
hus the first active set generated by PSNA contains the features 

hat coorelated with y larger than λ0 , which are the same as those 

rom the sure independence screening [10] with parameter λ0 and 

nclude the one selected by the first step of LARS. We then use 

2.9) - (2.12) to obtain { β1 
, d 1 } , and update the active set to A 1 

sing (2.8) . Clearly, for k ≥ 1 , A k are determined not just by the

orrelation d k , but by the primal ( β
k 
) and dual ( d k ) together. 

[11] proposed a sequential strong rule (SSR) for discarting pre- 

ictors in Lasso-type problems. At point λt on the solution path, 

his rule discards the jth predictor if 

 ̂
 d j (λt−1 ) | < 2 λt − λt−1 , 

here ̂ d j (λ) = x ′ 
j 
( y − X ̂  β(λ)) /n for the Lasso penalty. They define 

ctive set 

 k = { j : | d j (λt−1 ) | ≥ 2 λt − λt−1 } , 
nd set ̂  β(λt ) B k = 0 for B k = A c 

k 
and solve the Lasso problem on A k .

y combining with a simple check of the KKT condition, it speeds 

p the computation considerably. So SNA shares some similarity 

n spirit with SSR in that both methods seek to identify an ac- 

ive set and solve a smaller optimization problem, although they 

re derived from quite different perspectives. However, there are 

ome important differences. First, the active sets are determined 

ifferently. Specifically, SSR determines the active set only based 

n the dual approximation; while SNA uses both primal and dual 

pproximation. Second, SNA does not need the unit slope assump- 

ion, and additional check of the KKT conditions is not needed (The 
6 
ost of check KKT is O (np) ). Third, as far as we know, the statis-

ical properties of the solution sequence generated from SSR are 

nknown, while error bounds and sign consistency are established 

nder suitable conditions for the solution sequence generated from 

he PSNA. 

. Numerical studies 

In this section, we present numerical examples to evaluate the 

erformance of the proposed PSNA algorithm 2 for solving Lasso. 

e have implemented PSNA in a Matlab package psna , which 

s available at https://github.com/jian94/psna . All experiments are 

erformed in MATLAB R2010b on a quad-core laptop with an Intel 

ore i5 CPU (2.60 GHz) and 8 GB RAM running Windows 8.1 (64 

it). 

.1. Comparison with existing popular algorithms 

Both the LARS [8,9] and the CD [13,43] are popular algo- 

ithms capable of efficiently computing the Lasso solution, hence 

e compare the proposed PSNA with these two algorithms. In 

he implementation, we consider two solvers: (1) SolveLasso, 

he Matlab code for LARS with the Lasso modification, available 

nline at http://sparselab.stanford.edu/SparseLab _ files/Download _ 

les/SparseLab21-Core.zip ; (2) glmnet, the Fortran based Matlab 

ackage using CD, available online at https://github.com/distrep/ 

MLT/tree/master/external/glmnet . The parameters in the solvers 

re the default values as their online versions. In addition to the 

efault stopping parameters in the solvers, we stop LARS (Solve- 

asso), CD (glmnet) and PSNA if the number of nonzero elements 

t some iteration is larger than a given fixed quantity such as 

/ log (p) or even larger 0 . 5 n , since the upper bound of the esti-

ated sparsity level of Lasso is O (n/ log (p)) when n � p [44,45] . 

.2. Tuning parameter selection 

To choose a proper value of λ in (1.2) is a crucial issue for Lasso 

roblems, since it balances the tradeoff between the data fidelity 

nd the sparsity level of the solution. In practice, the Bayesian in- 

ormation criterion (BIC) is a widely used selector for the tuning 

arameter selection, due to its model selection consistency under 

ome regularity conditions. We refer the readers to [46–51] and 

eferences therein for more details. In this paper, we use a modi- 

ed BIC (MBIC) from [50] to choose λ, which is given as 

 = arg min 
λ∈ �

{
1 

2 n 
‖ X ̂  β(λ) − y ‖ 

2 
2 + | ̂  A (λ) | log (n ) log (p) 

n 

}
, (6.1) 

here � = { λt } t is the candidate set for λ, and ̂ A (λ) = { j : ̂ β(λ) � =
 } is the model identified by ̂ β(λ) . Besides, the high-dimensional 

IC (HBIC) in [51] defined by 

 = arg min 
λ∈ �

{
log 

(‖ X ̂  β(λ) − y ‖ 
2 
2 /n 

)
+ | ̂  A (λ) | log ( log n ) log (p) 

n 

}
(6.2) 

s also a good candidate for the selection of λ. Unless otherwise 

pecified, the MBIC (6.1) is the default one to select λ. 

.3. Simulation 

.3.1. Implementation 

The n × p design matrix X is generated as follows. 

i) Classical Gaussian matrix with correlation parameter ρ . The 

rows of X are drawn independently from N(0 , 
) with 
 jk = 

ρ| j−k | , 1 ≤ j, k ≤ p, ρ ∈ (0 , 1) . 

https://github.com/jian94/psna
http://sparselab.stanford.edu/SparseLab_files/Download_files/SparseLab21-Core.zip
https://github.com/distrep/DMLT/tree/master/external/glmnet
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Fig. 1. The influence of the PSNA parameters N (left panel) and K (right panel) on the exact support recovery probability. 
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ii) Random Gaussian matrix with auto-correlation parameter ν . 
First we generate a random Gaussian matrix ˜ X ∈ R 

n ×p with its 

entries following i.i.d. N(0 , 1) . Then we define a matrix X ∈ 

R 
n ×p by setting X 1 = ̃

 X 1 , 

X j = ̃
 X j + ν ∗ ( ̃  X j−1 + ̃

 X j+1 ) , j = 2 , ..., p − 1 , 

and X p = ̃
 X p . 

The elements of the error vector η are generated independently 

ith ηi ∼ N(0 , σ 2 ) , i = 1 , 2 , ..., n . Let A † = supp ( β
† 
) be the support

f β
† 
, and let R † = max {| β† 

A † 
|} / min {| β† 

A † 
|} be the range of magni- 

ude of nonzero elements of β
† 
. The underlying regression coeffi- 

ient vector β
† ∈ R 

p is generated in a way that A † is a randomly

hosen subset of S with | A † | = T . As in [52] , [53] and [54] , each

onzero entry of β
† 
is generated as follows: 

† 
j 
= ξ1 j 10 

ξ2 j , (6.3) 

here j ∈ A † , ξ1 j = ±1 with probability 1 2 and ξ2 j is uniformly dis- 

ributed in [0,1]. Then the observation vector y = X β
† + η. For con- 

enience, we use (n, p, ρ, σ, T , R † ) and (n, p, ν, σ, T , R † ) to denote

he data generated as above, respectively. 

.3.2. The performance of PSNA 

The algorithm parameters of PSNA. We study the influence of 

he free parameters N and K in the PSNA algorithm on the ex- 

ct support recovery probability (Probability for short), that is, 

he percentage of the estimated model ̂ A agrees with the true 

odel A † . To this end, we independently generate 20 datasets 

rom (n = 200 , p = 1000 , ρ = 0 . 1 , σ = 0 . 01 , T = 5 : 5 : 30 , R † = 10)

or each combination of (N, K) . Here 5 : 5 : 30 means the sparsity

evel starts from 5 to 30 with an increment of 5. The numerical 

esults are summarized in Fig. 1 , which consider the following two 

ettings: (a) K = 1 , and varying N ∈ { 40 , 60 , 80 , 100 } ; (b) N = 100 ,

nd varying K ∈ { 1 , 2 , 3 } . 
It is observed from Fig. 1 that the influence of K is very mild on

he exact support recovery probability and K = 1 generally works 

ell in practice, due to the locally superlinear convergence of SNA 

nd the continuation technique with warm start on the solution 

ath, which is consistent with the conclusions in Section 2 . It is 

lso found in Fig. 1 that Larger N values make the algorithm have 

etter exact support recovery probability, but the enhancement de- 

reases as N increases. Thus, unless otherwise specified, we set 

N, K) = (100 , 1) for the PSNA solver. 

The MBIC selector for PSNA. We illustrate the performance of 

he MBIC selector (6.1) for PSNA with simulated data (n = 400 , p =
7 
0 0 0 , ρ = 0 . 5 , σ = 0 . 1 , T = 10 , R † = 10) . The results are summa-

ized in Fig. 2 . It can be observed from Fig. 2 that the MBIC selec-

or performs very well for the PSNA algorithm on the continuation 

olution path introduced in Section 2.2 . The local superlinear con- 

ergence of PSNA. To gain further insight into the PSNA algorithm, 

e illustrate the convergence behavior of the algorithm using the 

imulated data as that of Fig. 2 . Let ̂ A t = { j : ̂ β j (λt ) � = 0 } , where
 (λt ) is the solution to the λt -problem. Set (N, K) = (100 , 5) . The

onvergence history is shown in Fig. 3 , which presents the change 

f the active sets and the number of iterations for each fixed 

t along the path λ0 > λ1 > · · · > ̂
 λ. It is observed in Fig. 3 that

 
 t ⊂ A † , and the size | ̂  A t | increases monotonically as the path 

roceeds and eventually equals the true model size | A † | . In par-
icular, for each λt+1 problem with ̂ β(λt ) as the initial guess, 

SNA generally reaches convergence within two iterations (typi- 

ally one, noting that the maximum number of iterations K = 5 

ere). This is attributed to the local superlinear/one-step conver- 

ence of the algorithm for Lasso, which is consistent with the re- 

ults in Theorem 3.3 . Hence, the overall procedure is very efficient. 

he accuracy versus the sparsity level. We now consider the influ- 

nce of the sparsity level T on the performance of PSNA, LARS and 

D in terms of the exact support recovery probability. Data are 

enerated from the model with ( n = 10 0 0 , p = 20 0 0 , ρ = 0 . 2 , σ =
 . 1 , T = 5 : 5 : 100 , R † = 1 ). The results are summarized in Fig. 4 .

s shown in the figure, our method performs well when the spar- 

ity level varies from small to large. 

.3.3. Efficiency and accuracy 

To further evaluate the efficiency and accuracy of the pro- 

osed PSNA algorithm, we independently generate M = 100 

atasets from two settings: (i) the classical Gaussian matrix with 

n, p, ρ, σ, T , R † ) = (60 0 , 30 0 0 , 0 . 3 : 0 . 2 : 0 . 7 , 0 . 2 : 0 . 2 : 0 . 4 , 40 , 10) ; 

ii) the random Gaussian matrix with (n, p, ν, σ, T , R † ) =
10 0 0 , 10 0 0 0 , 0 . 3 : 0 . 2 : 0 . 7 , 0 . 2 : 0 . 2 : 0 . 4 , 50 , 10) . Based on M

ndependent runs, we compare PSNA with CD and LARS in terms 

f the average CPU time (Time, in seconds), the estimated aver- 

ge model size (MS) M 
−1 

∑ M 

m =1 | ̂  A (m ) | , the proportion of correct 
odels (CM, in percentage terms) M 

−1 
∑ M 

m =1 I 
{̂ A (m ) = A † 

}
, the 

verage � ∞ absolute error (AE) M 
−1 

∑ M 

m =1 ‖ ̂  β
(m ) − β

† ‖ ∞ 
, and the 

verage � 2 relative error (RE) M 
−1 

∑ M 

m =1 

(‖ ̂  β
(m ) − β

† ‖ 2 / ‖ β† ‖ 2 
)
. 

he measure Time reflects the efficiency of the solvers, while 

easures MS, CM, AE and RE evaluate the accuracy (quality) of 

he solutions. Simulation results are summarized in Table 1 and 

able 2 , respectively. 

For each (ρ, σ ) combination, it can be observed from 

able 1 that PSNA has better speed performance than CD and LARS. 
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Fig. 2. Plots for PSNA using the MBIC selector with data (n = 400 , p = 2000 , ρ = 0 . 5 , σ = 0 . 1 , T = 10 , R † = 10) : MBIC curve (top left panel), the solution path (top right 

panel), and the comparison between the underlying true parameter β
† 
and the selected solution ̂  β( ̂ λ) (bottom left panel). The red vertical line in the middle panel shows 

the solutions selected by MBIC. 
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ith ρ fixed, the CPU time of CD and PSNA slightly decreases as σ
ncreases, while higher σ increases the timing of LARS in general. 

iven σ , the CPU time of CD and PSNA is relatively robust with 

espect to ρ , while that of LARS generally increases as ρ increases. 

ccording to MS, all solvers tend to overestimate the true model 

nd PSNA usually selects a smaller model, while PSNA can select 

he correct model far more frequently than CD and LARS in terms 

f CM. The errors of all solvers AE and RE are small, which means

hey all can produce estimates that are very close to the true val- 

es of β
† 
, while the AE and RE of PSNA are smaller than that of the

ther two, indicating that PSNA is generally more accurate than CD 

nd LARS. Unsurprisingly, larger ρ or σ will degrade the accuracy 

f all solvers. In addition, it is shown from Table 1 that PSNA gen-

rally has smaller ((or comparable) standard errors, especially in 

ccuracy metrics MS, AE and RE, which means the results of PSNA 

re stable and robust. Similar phenomena also hold for the random 

aussian matrix setting in Table 2 . In particular, since the value of 

p is large in Table 2 , the timing advantage of PSNA is more obvi-
 o

8 
us, which implies that PSNA is capable of handling much larger 

ata sets. In summary, PSNA behaves very well in simulation stud- 

es and generally outperforms the state-of-the-art solvers such as 

ARS and CD in terms of both efficiency and accuracy. 

.4. Application 

We analyze the breast cancer data which comes from breast 

ancer tissue samples deposited to The Cancer Genome At- 

as (TCGA) project and compiles results obtained using Agilent 

RNA expression microarrays to illustrate the application of the 

SNA algorithm in high-dimensional settings. This data, which is 

amed bcTCGA, is available at https://portal.gdc.cancer.gov/ . In this 

cTCGA dataset, we have expression measurements of 17814 genes 

rom 536 patients (all expression measurements are recorded on 

he log scale). There are 491 genes with missing data, which we 

ave excluded. We restrict our attention to the 17323 genes with- 

ut missing values. The response variable y measures one of the 

https://portal.gdc.cancer.gov/
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Fig. 3. Convergence behavior of PSNA with data (n = 400 , p = 2000 , ρ = 0 . 5 , σ = 0 . 1 , T = 10 , R † = 10) : the change of the active sets (left panel) and the number of iterations 

(right panel) for each λt -problem along the path. ̂  A t \ A † ( A † \ ̂  A t ) denotes the set difference of sets ̂  A t and A 
† ( A † and ̂  A t ). In the left panel, the vertical axis is the size of sets; 

in the right panel, the vertical axis is the number of iterations. 

Fig. 4. The influence of the sparsity level T on the exact support recovery probability of the solvers. 

1

l

c

t

p

i

e

u

[

(

t

g

n

t

n  

T

P

t

b

7

n

o

s

w

7323 genes, a numeric vector of length 536 giving expression 

evel of gene BRCA1, which is the first gene identified that in- 

reases the risk of early onset breast cancer, and the design ma- 

rix X is a 536 × 17322 matrix, which represents the remaining ex- 

ression measurements of 17322 genes. Because BRCA1 is likely to 

nteract with many other genes, it is of interest to find genes with 

xpression levels related to that of BRCA1. This has been studied by 

sing different methods in the recent literature; see, for example, 

54–58] . In this subsection, we apply methods CD (glmnet), LARS 

SolveLasso) and PSNA, coupled with the HBIC selector, to analyze 

his dataset. 

First, we analyze the complete dataset of 536 patients. The 

enes selected by each method along with their corresponding 
9 
onzero coefficient estimates, the CPU time (Time, in seconds), 

he model size (MS) and the prediction error (PE) calculated by 

 
−1 

∑ n 
i =1 ( ̂  y i − y i ) 

2 are provided in Table 3 . It can be seen from

able 3 that PSNA runs faster than LARS and CD, while the PE by 

SNA is smaller than that by LARS and CD, which demonstrates 

hat PSNA performs better than the other two solvers in terms of 

oth efficiency and accuracy. Further, CD, LARS and PSNA identify 

, 9 and 4 genes respectively, with 3 identified probes in common, 

amely, C17orf53, NBR2 and TIMELESS. Although the magnitudes 

f estimates for the common genes are not equal, they have the 

ame signs, which suggests similar biological conclusions. 

To further evaluate the performance of the three methods, 

e implement the cross validation (CV) procedure similar to 
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Table 1 

Simulation results for the classical Gaussian matrix with n = 600 , p = 3000 , T = 40 and R † = 10 based on 100 inde- 

pendent runs. The numbers in the parentheses are the corresponding standard errors. 

ρ σ Method Time MS CM AE RE 

0.3 0.2 CD 0.2287(0.0060) 41.35(1.1135) 23%(0.4230) 0.1270(0.0286) 0.0172(0.0042) 

LARS 0.2066(0.0336) 41.25(1.1315) 29%(0.4560) 0.1208(0.0273) 0.0163(0.0039) 

PSNA 0.1784(0.0111) 40.07(0.2932) 94%(0.2387) 0.0808(0.0192) 0.0105(0.0030) 

0.4 CD 0.2233(0.0023) 42.71(1.5973) 8%(0.2727) 0.2041(0.0349) 0.0275(0.0047) 

LARS 0.2121(0.0316) 42.14(3.0978) 13%(0.3380) 0.2672(0.6802) 0.0344(0.0767) 

PSNA 0.1569(0.0041) 40.23(0.4894) 80%(0.4020) 0.1528(0.0309) 0.0200(0.0046) 

0.5 0.2 CD 0.2272(0.0025) 42.74(1.8836) 11%(0.3145) 0.1484(0.0454) 0.0193(0.0057) 

LARS 0.2086(0.0318) 42.53(2.0863) 15%(0.3589) 0.1808(0.2411) 0.0223(0.0317) 

PSNA 0.1746(0.0036) 40.19(0.4861) 84%(0.3685) 0.0925(0.0319) 0.0117(0.0039) 

0.4 CD 0.2236(0.0027) 44.48(2.1057) 0%(0.0000) 0.2333(0.0616) 0.0299(0.0066) 

LARS 0.2162(0.0364) 43.58(5.0835) 1%(0.1000) 0.3518(0.9235) 0.0427(0.1029) 

PSNA 0.1548(0.0039) 40.62(0.8138) 55%(0.5000) 0.1693(0.0439) 0.0213(0.0045) 

0.7 0.2 CD 0.2280(0.0023) 47.96(3.2315) 0%(0.0000) 0.2062(0.0956) 0.0223(0.0061) 

LARS 0.2325(0.0317) 47.85(3.4855) 0%(0.0000) 0.3177(0.6256) 0.0255(0.0219) 

PSNA 0.1737(0.0047) 41.25(1.2340) 34%(0.4761) 0.1274(0.0596) 0.0136(0.0040) 

0.4 CD 0.2249(0.0023) 50.59(3.6517) 0%(0.0000) 0.3323(0.1500) 0.0349(0.0081) 

LARS 0.2437(0.0310) 50.61(5.4028) 0%(0.0000) 0.5283(0.7663) 0.0463(0.0679) 

PSNA 0.1561(0.0040) 41.92(1.4885) 16%(0.3685) 0.2337(0.0914) 0.0245(0.0054) 

Table 2 

Simulation results for the random Gaussian matrix with n = 10 0 0 , p = 10 0 0 0 , T = 50 and R † = 10 based on 100 inde- 

pendent runs. The numbers in the parentheses are the corresponding standard errors. 

ν σ Method Time MS CM AE RE 

0.3 0.2 CD 1.6607(0.0185) 51.59(1.5511) 26%(0.4408) 0.0902(0.0229) 0.0121(0.0027) 

LARS 1.0458(0.1729) 51.48(1.5007) 29%(0.4560) 0.0859(0.0215) 0.0116(0.0027) 

PSNA 0.8685(0.0289) 50.08(0.3075) 93%(0.2564) 0.0553(0.0133) 0.0072(0.0017) 

0.4 CD 1.6416(0.0074) 52.76(1.8916) 9%(0.2876) 0.1403(0.0314) 0.0184(0.0031) 

LARS 1.1354(0.2245) 52.40(2.0792) 12%(0.3266) 0.1560(0.2001) 0.0204(0.0272) 

PSNA 0.7764(0.0149) 50.28(0.5519) 76%(0.4292) 0.1007(0.0217) 0.0128(0.0022) 

0.5 0.2 CD 1.6719(0.0058) 55.71(2.6678) 0%(0.0000) 0.0959(0.0583) 0.0111(0.0028) 

LARS 1.1819(0.2301) 55.59(3.3937) 0%(0.0000) 0.2002(0.4392) 0.0164(0.0377) 

PSNA 0.8980(0.0108) 50.82(1.0767) 49%(0.5024) 0.0559(0.0320) 0.0064(0.0019) 

0.4 CD 1.6504(0.0064) 57.86(3.0847) 0%(0.0000) 0.1583(0.1068) 0.0164(0.0044) 

LARS 1.3180(0.2388) 56.85(4.2530) 0%(0.0000) 0.1954(0.4346) 0.0220(0.0584) 

PSNA 0.8098(0.0172) 51.20(1.1192) 31%(0.4648) 0.1091(0.0674) 0.0112(0.0028) 

0.7 0.2 CD 1.6962(0.0100) 65.22(4.6113) 0%(0.0000) 0.1411(0.1521) 0.0114(0.0060) 

LARS 1.4585(0.2683) 64.90(7.2202) 0%(0.0000) 0.5015(1.0090) 0.0249(0.0411) 

PSNA 0.9439(0.0506) 53.09(1.7529) 6%(0.2387) 0.0858(0.1374) 0.0068(0.0100) 

0.4 CD 1.6715(0.0090) 67.12(4.8996) 0%(0.0000) 0.1880(0.2146) 0.0156(0.0082) 

LARS 1.5399(0.2448) 67.07(6.4499) 0%(0.0000) 0.5493(0.9422) 0.0271(0.0299) 

PSNA 0.8441(0.0889) 52.84(3.3536) 6%(0.2387) 0.1907(0.5365) 0.0187(0.0611) 

Table 3 

The genes identified by CD, LARS and PSNA that correlated with 

BRCA1 based on the complete dataset of bcTCGA ( n = 536 , p = 

17322 ). The zero entries correspond to variables omitted. 

No. Term Gene CD LARS PSNA 

Intercept -1.0865 -1.0217 -0.4985 

1 β1743 C17orf53 0.1008 0.0983 0.4140 

2 β2739 CCDC56 0 0.0108 0 

3 β2964 CDC25C 0 0.0136 0 

4 β4543 DTL 0.0764 0.0844 0 

5 β9230 MFGE8 0 0 -0.1168 

6 β9941 NBR2 0.1519 0.1885 0.4673 

7 β12146 PSME3 0.0480 0.0615 0 

8 β15122 TIMELESS 0.0157 0.0279 0.2854 

9 β15535 TOP2A 0.0259 0.0331 0 

10 β16315 VPS25 0.1006 0.1083 0 

Time 3.5436 2.1070 0.7884 

MS 7 9 4 

PE 0.3298 0.3023 0.2345 

[

e

s

t

n

Table 4 

The CPU time (Time), model size (MS) and prediction error (PE) av- 

eraged across 100 random partitions of the bcTCGA data (numbers 

in parentheses are standard deviations) 

Method Time MS PE 

CD 2.0598(0.0393) 8.72(3.3667) 0.3503(0.0764) 

LARS 0.5861(0.3625) 7.90(3.5689) 0.3514(0.0831) 

PSNA 0.6554(0.0906) 6.10(3.0830) 0.2742(0.0593) 
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54–57,59,60] . We conduct 100 random partitions of the data. For 

ach partition, we randomly choose 3 / 4 observations and 1 / 4 ob- 

ervations as the training and test data, respectively. We compute 

he CPU time (Time, in seconds) and the model size (MS, i.e., the 

umber of selected genes) using the training data, and calculate 
10 
he prediction error (PE) based on the test data. Table 4 presents 

he average values over 100 random partitions, along with corre- 

ponding standard deviations in the parentheses. 

Due to the CV procedure, the working sample size decreases to 

 CV = 
3 
4 n . Hence, the CPU time of three solvers in Table 4 decreases

ccordingly compared with the counterpart in Table 3 . Obviously, 

t is shown in Table 4 that PSNA is still running faster than CD, 

nd is quite comparable to LARS in speed. Compared to LARS, the 

PU time of PSNA is less sensitive to the sample size, which means 

SNA has more potential than LARS to be applied to a larger vol- 

me of noisy data. Also, as clearly shown in the Table 4 , PSNA se-

ects fewer genes and has a smaller PE, which implies that PSNA 

ould provide a more targeted list of the gene sets. Based on 100 

andom partitions, we report the selected genes and their corre- 
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Table 5 

Frequency table for 100 random partitions of the bcTCGA data. To save 

space, only the genes with Freq ≥ 5 are listed. 

CD LARS PSNA 

Gene Freq Gene Freq Gene Freq 

C17orf53 98 C17orf53 93 NBR2 95 

DTL 91 NBR2 89 C17orf53 91 

NBR2 91 VPS25 87 DTL 32 

VPS25 90 DTL 86 MFGE8 29 

PSME3 77 PSME3 73 CCDC56 25 

TOP2A 73 TOP2A 67 CDC25C 23 

TIMELESS 49 TIMELESS 41 TUBG1 23 

CCDC56 41 CCDC56 33 LMNB1 18 

CDC25C 35 CDC25C 30 GNL1 18 

CENPK 26 CENPK 24 TIMELESS 16 

SPRY2 20 RDM1 20 VPS25 16 

SPAG5 18 CDC6 17 TOP2A 15 

RDM1 18 TUBG1 15 ZYX 14 

TUBG1 17 SPRY2 15 KIAA0101 14 

CDC6 17 C16orf59 12 KHDRBS1 12 

UHRF1 16 CCDC43 11 PSME3 11 

C16orf59 13 UHRF1 10 SPAG5 10 

CCDC43 13 SPAG5 10 TUBA1B 8 

ZWINT 9 NSF 9 FGFRL1 8 

KIAA0101 9 KIAA0101 8 CMTM5 7 

NSF 8 ZWINT 5 SYNGR4 5 

MLX 6 

TRAIP 5 
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ponding frequency (Freq) in Table 5 , where the genes are ordered 

uch that the frequency is decreasing. To save space, we only list 

enes with frequency greater than or equal to 5 counts. It is ob- 

erved from Table 5 that some genes such as NBR2, C17orf53, DTL 

nd VPS25 have quite high frequencies (Freq ≥ 80 ) with all three 

olvers, which largely implies these genes are related to BRCA1. 

ombining the findings in Table 5 and taking into account the 

mall MS and PE of PSNA in Table 4 , we have a strong belief that

enes NBR2 and C17orf53 selected by PSNA are particularly associ- 

ted with BRCA1. 

. Concluding Remarks 

Starting from the KKT conditions we developed SNA for com- 

uting the Lasso and Enet solutions in high-dimensional linear re- 

ression models. We approximate the whole solution paths us- 

ng PSNA by utilizing the continuation technique with warm start. 

SNA is easy to implement, stable, fast and accurate. We estab- 

ished the locally superlinear of SNA for the Enet and local one- 

tep convergence for the Lasso. We provided sufficient conditions 

nder which SANP enjoys the sign consistency property in finite 

teps. Moreover, PSNA has the same computational complexity as 

ARS and CD. Our simulation studies demonstrate that PSNA is 

ompetitive with these state-of-the-art solvers in accuracy and 

utperforms them in efficiency. These theoretical and numerical 

esults suggest that PSNA is a promising new method for dealing 

ith large-scale � 1 -regularized linear regression problems. 

We have only considered the linear regression model with con- 

ex penalties. It would be interesting to generalize PSNA to other 

odels such as the generalized linear and Cox models. It would 

lso be interesting to extend the idea of PSNA to problems with 

onconvex penalties such as SCAD [61] and MCP [62] . Coordinate 

escent algorithms for these penalties have been considered by 

63] and [64] . In our paper we adopt simple continuation strat- 

gy to globalize SNA, globalization via smoothing Newton methods 

65–67] is also an interesting future work. 
11 
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ppendix A. Appendices 

1. Background on convex analysis and Newton derivative 

In order to derive the KKT system (2.1) and prove the locally su- 

erlinear convergence of Algorithm 1 , we recall some background 

n convex analysis [68] and describe the concept and some prop- 

rties of Newton derivative [4–6] . 

The standard Euclidean inner product for two vector z , w ∈ R 
p 

s defined by 〈 z , w 〉 := 

∑ p 
i =1 

z i w i . The class of all proper lower

emicontinuous convex functions on R 
p is denoted by �0 (R 

p ) . The 

ubdifferential of f : R 
p → R 

1 denoted by ∂ f is a set-value map- 

ing defined as 

f (z) := { w ∈ R 
p : f ( v ) ≥ f ( z ) + 〈 w , v − z 〉 , for all v ∈ R 

p } . 
f f is convex and differentiable it holds that 

f ( z ) = ∇ f ( z ) (A.1) 

urthermore, if f, g ∈ �0 (R 
p ) then 

( f + g)( z ) = ∂ f ( z ) + ∂g( z ) (A.2) 

ecall the classical Fermat’s rule [68] , 

 ∈ ∂ f ( z ∗) ⇔ z ∗ ∈ argmin 
z ∈ R p 

f (z) . (A.3) 

oreover, a more general case is [69] 

 ∈ ∂ f ( z ) ⇔ z = Prox f ( z + w ) , (A.4) 

here Prox f is the proximal operator for f ∈ �0 (R 
p ) defined as 

rox f ( z ) := argmin 
x ∈ R p 

1 

2 
‖ x − z ‖ 

2 
2 + f ( x ) . 
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ere we should mention that the proximal operator of λ‖ · ‖ 1 is 
iven in a closed form by the componentwise soft-threshold oper- 

tor, i.e., 

rox λ‖ x ‖ 1 (z) = T λ( x ) , (A.5) 

here T λ( x ) is defined in (2.2) . 

Let F : R 
m → R 

l be a nonlinear map. [70] generalized classical 

ewton’s algorithm for finding a root of F ( z ) = 0 when F is not

réchet differentiable but only Newton differentiable [6] . 

efinition 7.1. F : R 
m → R 

l is called Newton differentiable at x ∈ 

 
m if there exists an open neighborhood N( x ) and a family of map- 

ings D : N(x ) → R 
l×m such that 

 F ( x + h ) − F ( x ) − D ( x + h ) h ‖ 2 = o(‖ h ‖ 2 ) for ‖ h ‖ 2 −→ 0 . 

he set of maps { D ( z ) : z ∈ N( x ) } denoted by ∇ N F ( x ) is called the

ewton derivative of F at x . 

It can be easily seen that ∇ N F ( x ) coincides with the Fréchet

erivative at x if F is continuously Fréchet differentiable. An ex- 

mple that is Newton differentiable but not Fréchet differentiable 

s the absolute function F (z) = | z| defined on R 
1 . In fact, let G (z +

 ) h = 
z+ h 
| z+ h | h and G (0) h = rh with r be any constant in R 

1 . Then 

 N F (z) = 

{ 

1 , z > 0 , 
−1 , z < 0 , 

r ∈ R 
1 , z = 0 . 

(A.6) 

ollows from the definition of Newton derivative. 

Suppose F i : R 
m → R 

1 is Newton differentiable at x with New- 

on derivative ∇ N F i ( x ) , i = 1 , . . . , l. Then F = (F 1 , . . . , F l ) 
′ is also

ewton differentiable at x with Newton derivative 

 N F ( x ) = 

⎛ ⎜ ⎜ ⎝ 

∇ N F 1 ( x ) 
∇ N F 2 ( x ) 

. . . 
∇ N F l ( x ) 

⎞ ⎟ ⎟ ⎠ 

. (A.7) 

urthermore, if F 1 and F 2 are Newton differentiable at x , then the 

inear combination of them are also Newton differentiable at x , i.e., 

or any θ, γ ∈ R 
1 , 

 N (θF 1 + γ F 2 )( x ) = θ∇ N F 1 ( x ) + γ∇ N F 2 ( x ) . (A.8)

Let F 1 : R 
s → R 

l be Newton differentiable with Newton deriva- 

ive ∇ N F 1 . Let L ∈ R 
s ×m and define F ( x ) = F 1 (L x + z ) . It can be ver-

fied that the chain rule holds, i.e., F ( x ) is Newton differentiable at 

 with Newton derivative 

 N F ( x ) = ∇ N F 1 (L x + z ) L. (A.9) 

With the above preparation we can calculate the Newton 

erivative of the componentwise soft threshold operator T λ( x ) . 

emma 7.1. T λ(·) : R 
p → R 

p is Newton differentiable at any point 

 ∈ R 
p . And diag ( b ) ∈ ∇ N T λ( x ) , where diag ( b ) is a diagonal matrix

ith 

 = ( 1 {| x 1 | >λ} , . . . , 1 {| x p | >λ} ) ′ , 

nd 1 A is the indicator function of set A . 

This lemma is used in the derivation of the SNA given in 

ubsection 3.2 . 

roof of Lemma7.1.. As shown in (A.6) , 1 {| z| > 0 } ∈ ∇ N | z| . Then, it
ollows from (A .8) - (A .9) that the scalar function T λ(z) = z − | z +
| / 2 + | z − λ| / 2 is Newton differentiable by with 

 {| z| >λ} ∈ ∇ N T λ(z) . (A.10) 

et 

 i ( x ) = T λ(e 
′ x ) : x ∈ R 

p → R 
1 , i = 1 , . . . , p, 
i 

12 
here the column vector e i is the i th orthonormal basis in R 
p . 

hen, it follow from (A.9) and (A.10) that 

 
′ 
i 1 {| x i | >λ} ∈ ∇ N F i ( x ) . (A.11) 

y using (A.7) and (A.11) we have T λ( x ) = (F 1 ( x ) , . . . , F p ( x )) 
′ is

ewton differentiable and diag { b } ∈ ∇ N T λ( x ) . This completes the 

roof of Lemma 7.1 . �

2. Proofs 

roof of Proposition 3.1.. This is a standard result in convex op- 

imization, we include a proof here for completeness. Obviously 

 λ(·) is bounded below by 0, thus, has infimum denoted by L ∗. Let
 β
k } k be a sequence such that L λ( β

k 
) → L ∗. Then { βk } k is bounded

ue to 

 λ( β) → + ∞ as ‖ β‖ 1 → + ∞ . (A.12) 

ence { βk } k has a subsequence still denoted by { βk } k that con- 
erge to some βλ. Then the continuity of L λ(·) implies βλ ∈ 

 λ, i.e., M λ is nonempty. The boundedness of M λ follows from 

A.12) and the closeness follows from the continuity of L λ(·) , i.e., 
 λ is compact. The convexity of M λ follows from the convexity of 

 λ(·) . This completes the proof of Proposition 3.1 . �

roof of Proposition 3.2.. By the same argument in the proof of 

roposition 3.1 , there exists a minimizer of J λ,α(·) . We denote this 

inimizer by ̂  βλ,α . It follow from the strict convexity of J λ,α(·) that 
 

λ,α is unique. Let ̂ βλ be the one in M λ with the minimum Eu- 

lidean. We have 

 λ( ̂
 βλ) + 

α

2 n 
‖ ̂

 βλ,α‖ 
2 
2 ≤ L λ( ̂

 βλ,α ) + 

α

2 n 
‖ ̂

 βλ,α‖ 
2 
2 = J λ,α( ̂  βλ,α ) 

≤ J λ,α( ̂  βλ) = L λ( ̂
 βλ) + 

α

2 n 
‖ βλ‖ 

2 
2 , (A.13) 

here the first inequality use the the property that ̂ βλ is a mini- 

izer of L λ(·) , and the second inequality use the the property that 
 

λ,α is a minimizer of J λ,α(·) . Then it follows from (A.13) that 

 ̂
 βλ,α‖ 

2 
2 ≤ ‖ ̂

 βλ‖ 
2 
2 . (A.14) 

his implies { ̂  βλ,α} α is bounded and thus there exist a subse- 

uence of { ̂  βλ,α} α denoted by { βλ,α} α that converge to some β∗
s α → 0 + . Let α → 0 + in (A.13) and (A.14) we get 

 λ( β∗) ≤ L λ( ̂
 βλ) 

nd 

 β∗‖ 2 ≤ ‖ ̂
 βλ‖ 2 . 

he above two inequality imply β∗ is a minimizer of L λ(·) with 

inimum 2-norm. Thus, β∗ = ̂
 βλ due to the uniqueness of such a 

inimizer. Hence βλ,α converges to βλ. The same argument shows 

hat any subsequence of { ̂  βλ,α} α has a further subsequence con- 

erging to βλ. This implies that the whole sequence { ̂  βλ,α} α con- 

erges to ̂ βλ. This completes the proof of Proposition 3.2 . �

roof of Proposition 3.3.. We first assume ̂ βλ,α ∈ R 
p is a mini- 

izer of (1.3) . Then it follows from (A .1) - (A .3) that 

 ∈ X ′ (X ̂  βλ,α − y ) /n + α̂ βλ,α + λ∂‖ · ‖ 1 ( ̂
 βλ,α ) . 

herefore, there exists ̂  d λ,α ∈ λ∂‖ · ‖ 1 ( ̂  βλ,α ) such that 

 = X ′ (X ̂  βλ,α − y ) /n + α̂ βλ,α + ̂
 d λ,α, 

.e. the first equation of (2.1) holds by noticing G = X ′ X + αI and
  = X ′ y . Furthermore, it follow from (A.4) that 

 
 λ,α ∈ λ∂‖ · ‖ 1 ( ̂

 βλ,α ) 
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s equivalent to 

 

λ,α = Prox λ∂‖·‖ 1 ( ̂
 βλ,α + ̂

 d λ,α ) . 

y using (A.5) , we have 

 

λ,α = T λ( ̂
 βλ,α + ̂

 d λ,α ) , 

hich is the second equation of (2.1) . 

Conversely, if (2.1) are satisfied for some ̂ βλ,α ∈ R 
p , ̂ d λ,α ∈ R 

p . 

y using (A.4) and (A.5) again, we deduce 

 
 λ,α ∈ λ‖ · ‖ 1 ( ̂

 βλ,α ) 

rom the second equation of (2.1) . Substituting this into the first 

quation of (2.1) we have 

 ∈ (G ̂
 βλ,α −˜ y ) /n + λ‖ · ‖ 1 ( ̂

 βλ,α ) , 

hich implies that ̂ βλ,α is a minimizer of (1.3) by Fermat’s rule 

A.3) . 

The proof for (1.2) can be derived similarly. This completes the 

roof of Proposition 3.3 . �

roof of Theorem 3.1. It follows from Lemma 7.1 and (A.8) - 

A.9) that F 1 ( z ) is Newton differentiable. Furthermore, by using 

emma 7.1 and the definition of A and B , we have 
 −I AA 0 0 0 

0 I BB 0 0 

] 

∈ ∇ N F 1 ( z ) . (A.15) 

Obviously, F 2 ( z ) is continuously differentiable with 

F 2 ( z ) = 

[ 

nI AA X ′ A X B G AA 0 

0 G BB X ′ B X A nI BB 

] 

. (A.16) 

hen it follows from (A .15) - (A .16) and (A .7) that F is Newton dif-

erentiable z with H ∈ ∇ N F ( z ) . 

Let 

 1 = 

[
−I AA 0 
0 I BB 

]
, H 2 = 

[ 

nI AA X ′ A X B 

0 G BB 

] 

, 

 3 = 

[ 

G AA 0 

X ′ B X A nI BB 

] 

. 

bviously, H i , i = 1 , 2 , 3 is invertible and 

 
−1 = 

[
H 

−1 
1 

0 

−H 
−1 
3 

H 2 H 
−1 
1 

H 
−1 
3 

]
. 

et g = (g ′ 
1 
, g ′ 

2 
) ′ be an arbitrary vector in R 

2 p . Then 

 H 
−1 g‖ 

2 
2 = ‖ 

[
H 

−1 
1 

0 

−H 
−1 
3 

H 2 H 
−1 
1 

H 
−1 
3 

](
g 1 
g 2 

)
‖ 
2 
2 

= ‖ H 
−1 
1 g 1 ‖ 

2 
2 + ‖ − H 

−1 
3 H 2 H 

−1 
1 g 1 + H 

−1 
3 g 2 ‖ 

2 
2 

≤ ‖ H 
−1 
1 ‖‖ g 1 ‖ 

2 
2 + ‖ H 

−1 
3 ‖ 

2 (‖ H 2 ‖‖ H 
−1 
1 ‖‖ g 1 ‖ 2 

+ ‖ g 2 ‖ 2 ) 
2 

≤ (‖ H 
−1 
1 ‖ + ‖ H 

−1 
3 ‖ (1 + ‖ H 2 ‖‖ H 

−1 
1 ‖ )) 2 ‖ g‖ 

2 
2 , 

hich shows 

 H 
−1 ‖ ≤ ‖ H 

−1 
1 ‖ + ‖ H 

−1 
3 ‖ (1 + ‖ H 2 ‖‖ H 

−1 
1 ‖ ) . (A.17)

he similar argument shows 

 H 2 ‖ ≤ n + α + 2 ‖ X ‖ 

2 
, (A.18) 
13 
nd 

 H 
−1 
3 ‖ ≤ 1 /n + (1 + ‖ X ‖ 

2 ) /α. (A.19) 

ombining (A .18) - (A .19) with (A .17) and observing ‖ H 
−1 
1 

‖ = 1 we

et 

 H 
−1 ‖ < 1 + 2(n + 1 + α + ‖ X ‖ 

2 ) 2 /α. 

his completes the proof of Theorem 3.1 . �

roof of Theorem 3.2.. Let z α = ( ̂  β
′ 
α, ̂  d 

′ 
α) ′ be a root of F ( z ) . Let

 
k be sufficiently close to z α . By using the definition of Newton 

erivative and H k ∈ ∇ N F ( z 
k ) , we have 

 H k ( z 
k − z α) − F ( z k ) + F ( z α) ‖ 2 ≤ ε‖ z k − z α‖ 2 , (A.20)

here ε → 0 as z k → z α . Then, 

 z k +1 − z α‖ 2 

= ‖ z k − H 
−1 
k 

F ( z k ) − z α‖ 2 

= ‖ z k − H 
−1 
k 

F ( z k ) − z α + H 
−1 
k 

F ( z α) ‖ 2 

≤
∥∥H 

−1 
k 

∥∥‖ H k ( z 
k − z α) − F ( z k ) + F ( z α) ‖ 2 

≤ ε(1 + 2(n + 1 + α + ‖ X ‖ 
2 ) 2 /α) ‖ z k − z α‖ 2 , 

here the first equality uses () - (), the second equality uses 

 ( z α) = 0 , the first inequality is some algebra, and the last in-

quality uses (A.20) and the uniform boundedness of H 
−1 
k 

proved 

n Theorem 3.1 . Then we get the sequence z k generated by 

lgorithm 3 converge to z α locally superlinearly. The definition of 

 ( z ) implies its root z α = ( ̂  β
′ 
α, ̂  d 

′ 
α) ′ satisfies the KKT conditions

2.1) . Thus, it follows from Proposition 3.3 that ̂ βα is the unique 

inimizer of (1.3) . Therefore, Theorem 3.2 holds by the equiva- 

ence between Algorithm 1 and Algorithm 3 . This completes the 

roof of Theorem 3.2 . �

roof of Theorem 3.3.. First, we have ̂ 

i + 
̂ d i − β0 

i − d 0 i 

≤ | β0 
i + d 0 i − ̂ βi − ̂ d i | 

≤ ‖ ̂
 β − β

0 ‖ ∞ + ‖ ̂
 d − d 

0 ‖ ∞ 

≤ C 

≤ ̂ βi + 
̂ d i − λ, ∀ i ∈ { j ∈ ̃

 A : ̂ β j + 
̂ d j > λ} 

here the last inequality uses the definition that C = min 
i ∈ ̃  A || ̂  βi + ̂ 

 i | − λ| . This implies that ̂ βi + ̂
 d i > λ �⇒ β0 

i 
+ d 0 

i 
> λ (similarly, we 

an show 
̂ βi + ̂

 d i < −λ �⇒ β0 
i 

+ d 0 
i 

< −λ), i.e., { i : | ̂  βi + ̂
 d i | > λ} ⊆

 0 = { i : | β0 
i 

+ d 0 
i 
| > λ} . Meanwhile, by the same argument we can

how that | ̂  βi + ̂
 d i | < λ �⇒ | β0 

i 
+ d 0 

i 
| < λ, i.e., A 0 ⊆ A . Then by the

econd equation of (2.1) and the definition of soft threshold op- 

rator we get ̂  d A = λsgn ( ̂  d A + ̂
 βA ) which implies ̂  d A 0 = λsgn ( ̂  d A 0 + 

 

A 0 
) . This together with the first equation of (2.1) and (2.11) im- 

lies 

 
′ 
A 0 
X A 0 ̂

 βA 0 
+ n ̂  d A 0 = X ′ A 0 y = X ′ A 0 X A 0 β

1 
A 0 

+ n d 
1 
A 0 

. 

hen we get X ′ 
A 0 
X A 0 ( ̂

 βA 0 
− β

1 
A 0 

) = 0 , therefore, ̂ βA 0 
= β

1 
A 0 

follows 

rom the above equation and the assumption that rank (X A ) = 

 A | . Let B 0 = (A 0 ) 
c , by (2.9) and the fact A ⊂ A 0 we deduce

hat β
1 
B 0 = 0 = ̂

 βB 0 . Hence, 
̂ β = β

1 
. This completes the proof of 

heorem 3.3 . �

In order to prove Lemma 4.1 , we need the following two lem- 

as. Lemma 7.2 collects some property on mutual coherence and 

emma 7.3 states that the effect of the noise η can be controlled 

ith high probability. 
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emma 7.2. Let A , B be disjoint subsets of S = 1 , 2 , ..., p , with | A | = a ,

 B | = b. Let ν be the mutual coherence of X. Then we have 

 X ′ B X A u ‖ ∞ 
≤ naν‖ u ‖ ∞ 

, ∀ u ∈ R 
| A | , (A.21) 

 X A ‖ = 

∥∥X ′ A ∥∥ ≤
√ 

n (1 + (a − 1) ν) . (A.22) 

urthermore, if ν < 1 / (a − 1) , then ∀ u ∈ R 
| A | , 

 (X ′ A X A ) u ‖ ∞ 
≥ n (1 − (a − 1) ν) ‖ u ‖ ∞ 

, (A.23) 

 (X ′ A X A ) −1 u ‖ ∞ 
≤ ‖ u ‖ ∞ 

n (1 − (a − 1) ν) 
, (A.24) 

 (X ′ A X A − nI) u ‖ ∞ 
≤ n (1 + (a − 1) ν) ‖ u ‖ ∞ 

. (A.25) 

roof. Let G = X ′ X/n . ∀ i ∈ B, | ∑ a 
j=1 G i, j u j | ≤ μa ‖ u ‖ ∞ 

, which im-

lies (A.21) . For any i ∈ A , by using Gerschgorin’s disk theorem, 

 

∥∥G A,A 

∥∥− G i,i | ≤ ∑ a 
i � = j=1 | G i, j | ≤ (a − 1) μ, i.e., (A.21) holds. Let i ∈

 such that ‖ u ‖ ∞ 
= | u i | . (A.23) follows from that | ∑ a 

j=1 G i, j u j | ≥
 u i | −∑ a 

i � = j=1 | G i, j || u j | ≥ ‖ u ‖ ∞ 
− μ(a − 1) ‖ u ‖ ∞ 

. (A.24) follows di-

ectly from (A .23) . And (A .25) can be showed similarly as the

A.23) . This complete the proof of Lemma 7.2 . �

emma 7.3. Suppose (A3) holds. We have 

 

(
‖ X ′ η‖ ∞ 

/n ≤ λu 

)
≥ 1 − 1 

2 
√ 

π log (p) 
. (A.26) 

roof. This inequality follows from standard probabilities 

alculations. �

Recall that λu = σ
√ 

2 log (p) /n , δu = 3 λu , γ = 8 / 13 , λ0 = 

 X ′ y/n ‖ ∞ and λt = λ0 γ
t , t = 0 , 1 , ... . 

roof of Lemma 4.1.. We first show that under the assumption of 

emma 4.1 , 

1 > 10 δu (A.27) 

olds with probability at least 1 − 1 

2 
√ 

π log (p) 
. In fact, 

1 = λ0 γ = 

8 

13 
‖ X ′ y /n ‖ ∞ 

= 

8 

13 
‖ X ′ (X β† + η) /n ‖ ∞ 

≥ 8 

13 
( ‖ X ′ 

A † 
X A † β

† 

A † 
/n ‖ ∞ 

− ‖ X ′ η/n ‖ ∞ 
) 

≥ 8 

13 
((1 − (T − 1) ν) ‖ β

† ‖ ∞ 
− λu ) W. H. P. 

> 

8 

13 
( 
3 

4 
26 δu − δu 

3 
) 

> 10 δu 

here the first inequality is the triangle inequality, the second in- 

quality uses Lemma (A .23) - (A .26) , and the third one follows uses

ssumption (A1)-(A2). Here in the third line, “W. H. P.” stands 

or with high probability, that is, with probability at least 1 −
 / (2 

√ 

π log (p) ) . Then it follow from (A.27) and the definition of 

t that there exist an integer N ∈ [1 , log γ ( 10 δu 
λ0 

)) such that 

N > 10 δu ≥ λN+1 (A.28) 

olds with high probability. It follows from assumption (A2) and 

A.28) that λN+1 = λN 8 / 13 ≤ 10 δu ≤ | β† | min 10 / 26 , which implies

hat with high probability | β† | min > 8 λN / 5 holds. This complete the

roof of Lemma 4.1 . �

The main idea behind the proof of Theorem 4.1 is that under 

ssumption (A1)-(A3) the active generated by PSNA is contained 

n the underlying target support and increase in some sense with 
14 
igh probability. To show this we need the following two Lemmas. 

emma 7.4 gives one-step error estimations of SNA ( Algorithm 1 ) 

nd Lemma 7.4 shows that some monotone property of the active 

et. 

emma 7.4. Suppose assumption (A1) holds. Let A k , B k , β
k +1 

, d k +1 

re generated by Sna ( β
0 
, d 0 , λ, λ, K) with λ > λ = 

9 λ
10 + δu . Denote

 
k = A † \ A k and i k = { i ∈ B k : | β† 

i | = ‖ β† ‖ ∞ 
} . If A k ⊂ A † , then with

robability at least 1 − 1 

2 
√ 

π log (p) 
we have 

 β
k +1 
A k + d 

k +1 
A k − β

† 

A k 
‖ ∞ 

< 

1 

3 
| β† 

i k 
| + 

λ

30 
, (A.29) 

 β
k +1 
i + d 

k +1 
i | > | β† 

i | − 1 

3 
| β† 

i k 
| − λ

30 
, ∀ i ∈ A k , (A.30) 

 d 
k +1 
i | < 

1 

3 
| β† 

i k 
| + 

λ

30 
, (A.31) 

 d 
k +1 
i k 

| > 

2 

3 
| β† 

i k 
| − λ

30 
. (A.32) 

roof. Since β
k +1 

, d k +1 are generated by SNA with λ > λ = 
9 λ
10 + 

u , A 
k ⊂ A † , E k = A † \ A k and y = X A † β

† 

A † 
+ η we have 

k +1 
A k = (X ′ 

A k 
X A k ) 

−1 (X ′ 
A k 

(X A k β
† 

A k 
+ X E k β

† 

E k 
+ η) − n d 

k +1 ) (A.33) 

nd 

 β
k +1 
A k + d 

k +1 
A k − β

† 

A k 
‖ ∞ 

≤ ‖ (X ′ 
A k 
X A k ) 

−1 (X ′ 
A k 

(X E k β
† 

E k 
+ η)) ‖ ∞ 

+ ‖ (X ′ 
A k 
X A k ) 

−1 (X ′ 
A k 
X A k − nI) d k +1 ‖ ∞ 

≤ n | E k | ν| β† 
i k 
| + ‖ X ′ 

A k 
η‖ ∞ 

n (1 − (| A k | − 1) ν) 
+ 

n (| A k | − 1) ν

n (1 − (| A k | − 1) ν) 
(λ − λ) 

< 

T ν| β† 
i k 
| + λu 

(1 − T ν) 
+ 

T ν

(1 − T ν) 
(λ − ( 

9 λ

10 
+ δu )) W.H.P . 

≤ 1 

3 
| β† 

i k 
| + 

λ

30 

here the first inequality uses (A.33) and the triangle inequality, 

he second inequality uses (A .21), (A .24) and (A .24) , the third in-

quality uses (A.26) , the last inequality uses assumption (A1). Thus, 

A.29) holds. Then, (A.30) follows from (A.29) and the triangle in- 

quality. ∀ i ∈ B k , 

 d 
k +1 
i | = | X ′ i (X A k ( β† 

A k 
− β

k +1 

A k 
− d 

k +1 

A k 
) + X 

A k 
d 
k +1 

A k 
+ X 

E k 
β

† 

E k 
+ η) /n | 

≤ | X ′ i X A k ( β† 

A k 
− β

k +1 

A k 
− d 

k +1 

A k 
) | + | X ′ i X A k d k +1 

A k 
+ X ′ i X E k β

† 

E k 
+ X ′ i η| /n 

≤ ν| A k | ‖ βk +1 

A k 
+ d 

k +1 

A k 
− β

† 

A k 
‖ ∞ 

+ ν| A k | (λ − λ) + ν| E k || β† 
i k 
| + λu W.H.P. 

< 

1 

4 
( 
1 

3 
| β† 

i k 
| + 

λ

30 
) + 

1 

4 
(λ − λ) + 

1 

4 
| β† 

i k 
| + λu 

= 

1 

3 
| β† 

i k 
| + 

λ

30 

here the first equality uses (A.33) , the first inequality is the tri- 

ngle inequality, the second inequality is due to (A.21) and (A.26) , 

nd the third inequality uses (A.29) , i.e., (A.31) holds. Observing 

 k ∈ E k and (A.33) we get 

 d 
k +1 
i k 

| = | X ′ i k (X A k ( β† 

A k 
− β

k +1 
A k − d 

k +1 
A k ) + X A k d 

k +1 
A k + X i k β

† 
i k 

+ X E k \ i k β
† 

E k \ i k + η) /n | 
≥ | β† 

i k 
| − | X ′ i X A k ( β† 

A k 
− β

k +1 
A k − d 

k +1 
A k ) | − | X ′ i (X A k d k +1 

A k + X E k \ i k β
† 

E k \ i k + η| /n 
≥ | β† 

i k 
| − ν| A k | ‖ βk +1 

A k − d 
k +1 
A k − β

† 

A k 
‖ ∞ 

− ν| A k | (λ − λ) − ν| E k || β† 
i k 
| − λu W.H.P ,

> | β† 
i k 
| − 1 

4 
( 
1 

3 
| β† 

i k 
| + 

λ

30 
) − 1 

4 
(λ − λ) − 1 

4 
| β† 

i k 
| − λu 

> 

2 

3 
| β† 

i k 
| − λ

30 
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here the first inequality is the triangle inequality, the second in- 

quality is due to Lemma (A.21) and (A.26) , and the third one uses

.29 , i.e., (A.32) holds. This complete the proof of Lemma 7.4 . �

For a given τ > 0 , we define S λ,τ = { i : | β† 
i | ≥ λτ } . 

emma 7.5. Suppose assumption (A1) hold. Let κ = 
8 
5 and τ = κ or 

+ 1 . Denote E k = A † \ A k and i k = { i ∈ B k : | β† 
i | = ‖ β† ‖ ∞ 

} . If S λ,τ ⊂
 
k ⊂ A † then S λ,τ ⊂ A k +1 ⊂ A † . Meanwhile, if S λ,κ+1 ⊂ A k ⊂ A † and 

 λ,κ � A k then | β† 
i k 
| > | β† 

i k +1 
| . 

roof. Assume S λ,τ ⊂ A k ⊂ A † . Since E k = A † \ A k and i k ∈ E k , we get

 k / ∈ A k which implies | β† 
i k 
| < λτ. ∀ i ∈ S λ,τ ⊂ A k . By using (A.30) we

ave 

 β
k +1 
i + d 

k +1 
i | > | β† 

i | − 1 

3 
| β† 

i k 
| − λ

30 
> λτ − 1 

3 
λτ − λ

30 
> λ, 

hich implies i ∈ A k +1 , i.e., S λ,κ ⊂ A k +1 holds. ∀ i ∈ (A † ) c ⊂ B k . By

sing (A.31) we get 

 β
k +1 
i + d 

k +1 
i | = | d k +1 

i | < 

1 

3 
| β† 

i k 
| + 

λ

30 
< 

{
λ, τ = κ + 1 , 

κ
κ+1 

λ, τ = κ, 

(A.34) 

.e., i / ∈ A k +1 which implies A k +1 ⊂ A † . Next we turn to the second

ssertion. Assume S λ,κ+1 ⊂ A k ⊂ A † , S λ,κ � A k . It suffice to show

ll the elements of | β† | that larger than | β† 
i k 
| move into A k +1 .

t follows from the definition of S λ,κ , S λ,κ+1 and i k ∈ E k = A † \ A k 
hat i k ∈ S λ,κ\ S λ,κ+1 , i.e., | β† 

i k 
| ∈ [ λκ, λ(κ + 1)) . By using (A.32) we

ave 

 β
k +1 
i k 

+ d 
k +1 
i k 

| = | d k +1 
i k 

| > 

2 

3 
| β† 

i k 
| − 1 

30 
λ > 

2 

3 
λκ − 1 

30 
λ > λ, 

hich implies i k ∈ A k +1 . Let i ∈ A k satisfy | β† 
i | ≥ | β† 

i k 
| . Then it fol-

ows from (A.30) that 

 β
k +1 
i + d 

k +1 
i | > | β† 

i | − 1 

3 
| β† 

i k 
| − λ

30 

> 

2 

3 
| β† 

i k 
| − 1 

30 
λ

> 

2 

3 
λκ − 1 

30 
λ > λ, 

hich implies i ∈ A k +1 . This complete the proof of Lemma 7.5 . �

With the above preparation, we now give the prove of Theorem 

.1 . 

roof of Theorem 4.1.. Let λt = 
9 
10 λt + δu . By using 

emma 4.1 and the definition of λt and we get λt > λt , t = 

 , 1 , ..., N. At the t th knot of Snap(λ0 , γ , N, K) , suppose it takes

lgorithm Sna ( β
0 
, d 0 , λt , λt , K) k t iterations to get the solu-

ion ( ̂  β(λt ) , ̂  d (λt )) , where ( β
0 
, d 0 ) = ( ̂  β(λt−1 ) , ̂

 d (λt−1 )) and

 t ≤ K by the definition of PSNA. We denote the approxi- 

ate primal dual solution pair and active set generated in 

na ( ̂  β(λt−1 ) , ̂
 d (λt−1 ) , λt , λt , K) by ( β

k 
t , d 

k 
t ) and A k t , respec-

ively, k = 0 , 1 , ..., k t . By the construction of PSNA we have

 β
k t 
t , d 

k t 
t ) = ( ̂  β(λt ) , ̂  d (λt )) , i.e, the solution at the t th stage is the

nitial value for the t + 1 stage which implies 

 
k t 
t ⊆ A 0 t+1 . (A.35) 

e claim that 

 λt ,κ+1 ⊆ A 0 t ⊆ A † , t = 0 , 1 , ..., N. (A.36) 

 λ ,κ ⊆ A k t ⊆ A † , t = 0 , 1 , ..., N. (A.37) 

t t 

15 
e prove the above two claims by mathematical induction. First 

e show that ∅ = S λ0 ,κ+1 ⊆ A 0 
0 

⊆ A † . Let | β† 
i | = ‖ β† ‖ ∞ 

. 

κ + 1) λ0 = 

13 

5 
‖ X ′ y /n ‖ ∞ 

= 

13 

5 
‖ X ′ (X β† + η) /n ‖ ∞ 

≥ 13 

5 
( ‖ X ′ 

A † 
X A † β

† 

A † 
/n ‖ ∞ 

− ‖ X ′ η/n ‖ ∞ 
) 

≥ 13 

5 
((1 − (T − 1) ν) | β† 

i | − λu ) , W.H.P 

> 

13 

5 
( 
3 

4 
| β† 

i | − λu ) 

> | β† 
i | (A.38) 

here the first inequality is the triangle equation and the sec- 

nd inequality uses (A.23) and (A.26) , the third inequality uses 

ssumption (A1), and the last inequality is derive from as- 

umption (A2). This implies ∅ = S λ0 ,κ+1 . By the construction of 

nap(λ0 , γ , N, K) we get A 0 
0 

= { j : | X ′ 
j 
y /n | > λ0 = ‖ X ′ y /n ‖ ∞ 

} = ∅ .
herefore, (A.36) holds when t = 0 . Now we suppose (A.36) holds 

or some t ≥ 0 . Then by the first assertion of Lemma 7.5 we get 

 λt ,κ+1 ⊆ A k t ⊆ A † , k = 0 , 1 , ..., k t . (A.39)

y the stopping rule of Sna (β0 , d 0 , λt , λt , K) it holds either A k t t =
 

k t −1 
t or k t = K ≥ T when it stops. In both cases, by using 

A.39) and the second assertion of Lemma 7.5 we get 

 λt ,κ ⊆ A k t t ⊆ A † , 

.e., (A.37) holds for this given t . Observing the relation 

 λt+1 ,κ+1 = S λt ,κ
and (A .34) - (A .35) we get S λt+1 ,κ+1 ⊆ A 0 

t+1 
⊆ A † , i.e.,

A.36) holds for t + 1 . Therefore, (A .36) - (A .37) are verified by

athematical induction on t . That is all the active set generated 

n PSNA is contained in A † . Therefore, by Lemma 4.1 we get 

 
† ⊆ S λN ,κ ⊆ A k N 

N 
⊆ A † , 

.e., 

upp ( ̂  β(λN )) = A † . (A.40) 

hen, 

 β
† −̂ β(λN ) ‖ ∞ 

= ‖ β† 

A † 
− (X ′ 

A † 
X A † ) 

−1 ( ̃  y A † − n ̂  d (λN ) A † ) ‖ ∞ 

= ‖ β† 

A † 
− (X ′ 

A † 
X A † ) 

−1 (X ′ 
A † 

(X A † β
† 

A † 
+ η) − n ̂  d (λN ) A † ) ‖ ∞ 

≤ ‖ X ′ 
A † 
η‖ ∞ 

+ n (λN − λN ) 

n (1 − T ν) 

< 

λu + 
λN 

10 
− 3 λu 

1 − 1 
4 

W.H.P. 

≤
39 
8 
λu − 2 λu 

3 
4 

= 

23 

6 
λu , 

here the first inequality uses (A.24) , the second inequality uses 

A.26) , and last inequality uses Lemma 4.1 , i.e., (4.2) holds. The sign

onsistency (4.1) follows directly from (A.40), (4.2) and assumption 

A2). This complete the proof of Theorem 4.1 . �

3. Details in Algorithm 3 

We now describe in detail the quantities in the k th iteration in 

lgorithm 3 . This paves the way for showing that Algorithm 1 is a

pecialization of Algorithm 3 . At z k = ( β
k ′ 

, d k ′ ) ′ , we define A k and

 k by (2.8) . By a similar reordering of ( β
k ′ 

, d k ′ ) ′ , F 1 ( z k ) and F 2 ( z k )
s concerning the Newton derivative of F in Theorem 3.1 , and us- 

ng the definition of T λ(·) , we get 

 
k = 

⎛ ⎜ ⎜ ⎝ 

d 
k 
A k 

β
k 
B k 

β
k 
A k 

d 
k 
B k 

⎞ ⎟ ⎟ ⎠ 

, F ( z k ) = 

⎡ ⎢ ⎢ ⎣ 

−d 
k 
A k 

+ λsgn ( β
k 
A k 

+ d 
k 
A k 

) 

β
k 
B k 

G A k A k β
k 
A k 

+ G A k B k β
k 
B k 

+ n d 
k 
A k 

−˜ y 
k 
A k 

G B k A k β
k 
A + G B k B k β

k 
B + n d 

k 
B −˜ y 

k 
B 

⎤ ⎥ ⎥ ⎦ 

. (A.41) 
k k k k 



J. Huang, Y. Jiao, X. Lu et al. Signal Processing 194 (2022) 108432 

T  

X

H

(

n

c

D

a

d

β

G

n

O⎛⎜⎜⎝
a  

(

R

 

 

 

 

 

 

 

 

 

 

 

[

[

[

[  

[

[  

[  

[  

[

[

[  

[

[

[

[  

[

[  

[

[

[

[

[  

[

[  

[  
hen, by using Theorem 3.1 and noting that G B k A k 
= X ′ 

B k 
X A k , G A k B k 

=
 
′ 
A k 
X B k we have H k ∈ ∇ N F ( z 

k ) , where 

 k = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−I A k A k 0 0 0 

0 I B k B k 0 0 

nI A k A k X ′ A k X B k G A k A k 0 

0 G B k B k X ′ B k X A k nI B k B k 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (A.42) 

Algorithm 3 is well defined if we choose H k in the form of 

A.42) , since H k is invertible as shown in Theorem 3.1 . 

In Section 2.1 we derived Algorithm 1 in an intuitive way. We 

ow verify that Algorithm 1 is indeed Algorithm 3 in a form that 

an be easily and efficiently implemented computationally. Let 

 
k = 

⎛ ⎜ ⎜ ⎝ 

D 
d 
A k 

D 

β
B k 

D 

β
A k 

D 
d 
B k 

⎞ ⎟ ⎟ ⎠ 

nd substitute (A.41) and (A.42) into () we get 

 

k 
A k 

+ D 
d 
A k 

= λsgn ( β
k 
A k 

+ d 
k 
A k 

) , (A.43) 

k 
B k 

+ D 

β
B k 

= 0 , (A.44) 

 A k A k ( β
k 
A k 

+ D 

β
A k 

) = ̃  y A k − n ( d 
k 
A k 

+ D 
d 
A k 

) − X ′ A k X B k ( β
k 
B k 

+ D 

β
B k 

) , (A.45) 

 ( d k B k + D 
d 
B k 

) = ̃  y B k − X ′ B k X A k ( β
k 
A k 

+ D 

β
A k 

) − G B k B k ( β
k 
B k 

+ D 

β
B k 

) . (A.46) 

bserving the relationship (by ()), 

 

 

 

 

d 
k +1 
A k 

β
k +1 
B k 

β
k +1 
A k 

d 
k +1 
B k 

⎞ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 

d 
k 
A k 

+ D 
d 
A k 

β
k 
B k 

+ D 

β
B k 

β
k 
A k 

+ D 

β
A k 

d 
k 
B k 

+ D 
d 
B k 

⎞ ⎟ ⎟ ⎟ ⎠ 

. 

nd substituting (A.43) - (A.44) into (A.45) - (A.46) , we obtain (2.9) -

2.12) , which are the computational steps in Algorithm 1 . 
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