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Abstract: We propose a regularized projection score method for estimating the
treatment effects in a quantile regression in the presence of high-dimensional con-
founding covariates. We show that the proposed estimator of the treatment effects
is consistent and asymptotically normal, with a root-n rate of convergence. We also
provide an efficient algorithm for the proposed estimator. This algorithm can be
implemented easily using existing software. Furthermore, we propose and validate
a refitted wild bootstrapping approach for variance estimation. This enables us
to construct confidence intervals for the treatment effects in high-dimensional set-
tings. Simulation studies are carried out to evaluate the finite-sample performance
of the proposed estimator. A GDP growth rate data set is used to demonstrate an
application of the method.
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1. Introduction

A quantile regression (Koenker and Bassett (1978)) is an important tool for
analyzing the relationship between a response variable and a set of covariates.
It has a wide range of applications in the analysis of non-Gaussian data, which
arise frequently in applied economic research. Unlike a least squares regression,
which models the conditional mean of a response given the covariates, a quantile
regression focuses on the conditional quantiles. Thus, it is able to describe the
conditional distribution of the response, given the covariates. There is an exten-
sive body of literature on the theoretical properties and computational algorithms
for a quantile regression when the number of regressors is fixed or increases at
a lower rate than the sample size; see, for example, Koenker (2005) and the ref-
erences therein. In this study, we estimate low-dimensional treatment effects in
the presence of a high-dimensional nuisance parameter vector.
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There is now a substantial body of work on penalized methods for vari-
able selection in high-dimensional models. Several important penalty functions
have been introduced, including the least absolute shrinkage and selection oper-
ator (Lasso) or ¢; penalty (Tibshirani (1996)), smoothly clipped absolute devia-
tion (SCAD) penalty (Fan and Li (2001)), and minimax concave penalty (MCP)
(Zhang (2010)). A common feature of these penalties is that they are capable of
producing exact zero solutions, which automatically leads to variable selection.
The penalized methods also have many attractive theoretical properties related
to selection, estimation, and prediction in a sparse setting (p > n), including the
asymptotic oracle property under certain conditions. However, these methods
provide no computable error assessment of the selection results in finite-sample
situations. The literature on this topic has grown too vast to be adequately
summarized here. Therefore, for results on convex selection, see Bithlmann and
van de Geer (2011), and the references therein, and for concave selection, see Fan
and Li (2001), Zhang (2010), and Zhang and Zhang (2012).

Recently, many authors have studied the problem of statistical inference for
low-dimensional parameters in high-dimensional regression models. Zhang and
Zhang (2014) proposed a semiparametric efficient score approach for construct-
ing confidence intervals of low-dimensional coefficients in high-dimensional linear
models. Van de Geer et al. (2014) considered the same problem using an ap-
proach that inverts the optimization conditions for the Lasso solution, extending
the work of Zhang and Zhang (2014) to include generalized linear models and
problems with convex loss functions. Javanmard and Montanari (2014) consid-
ered the problem of hypothesis testing in a high-dimensional regression using
a method similar to that of Zhang and Zhang (2014). Fang, Ning and Liu
(2016) studied hypothesis testing and confidence intervals in high-dimensional
proportional hazards models. Neykov et al. (2018) proposed a unified theory of
confidence regions and testing for high-dimensional estimating equations. Ning
and Liu (2017) proposed a decorrelated score approach for hypothesis tests and
confidence regions in sparse high-dimensional models. Zhu and Bradic (2018)
proposed an approach for testing linear hypotheses in high-dimensional linear
models without assumptions on the model sparsity or the loading vector repre-
senting the hypothesis. For other related works that use the regularized score
method, refer to Belloni, Chernozhukov and Wei (2013), Dezeure et al. (2015),
Lockhart et al. (2014), Meinshausen (2014), Meinshausen, Meier and Bithlmann
(2009), Ning and Liu (2017), Stucky and van de Geer (2018), and Yang (2017).

Belloni et al. (2012) proposed a two-stage selection procedure with post-
double selection to estimate a single treatment effect parameter in a high-dimen-
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sional linear model. Tibshirani et al. (2016) considered the statistical inference
for a forward stepwise and least angle regression in high-dimensional models
after selection. Recently, various researchers have considered post-selection in
the presence of high-dimensional parameters, including Berk, Brown and Zhao
(2009); Berk et al. (2013), Lee et al. (2016), Lee and Taylor (2014), Riigamer and
Greven (2018), and Tibshirani et al. (2016).

Belloni and Chernozhukov (2011) studied the ¢1-penalized quantile regression
under a high-dimensional setting and established a near-oracle property of the
estimator. Wang, Wu and Li (2012) showed that the oracle property still holds
when SCAD and MCP penalties are used. Zhao, Kolar and Liu (2014) provided
a globally penalized framework for high-dimensional quantile regression models
by employing adaptive ¢; penalties; this approach achieved consistent shrinkage
of the regression quantile estimates across a continuous range of quantile levels.
Belloni, Chernozhukov and Kato (2018) considered the robust inference of the
regression coefficients of high-dimensional quantile regression models using an
optimal instrument that is a residual from a density-weighted projection of the
regressor of interest on other regressors. Zheng, Peng and He (2015) proposed a
robust and uniformly honest inference in a high-dimensional quantile regression
using a debiased composite quantile estimator.

Inspired by the work of Zhang and Zhang (2014) and Ning and Liu (2017),
we consider the estimation of a preconceived low-dimensional parameter based
on a projected score approach, and study its statistical inference under linear
quantile regression models. In particular, our proposed approach is similar to the
decorrelated score method of Ning and Liu (2017). In essence, these approaches
extend the efficient score method for dealing with infinite-dimensional nuisance
parameters in semiparametric models (Bickel et al. (1998)) to high-dimensional
settings. However, the decorrelated score method assumes a smooth loss func-
tion with second derivatives, which is not satisfied in the context of a quantile
regression.

The rest of the paper is organized as follows. Section 2 describes the es-
timation method based on regularized projection scores. The asymptotic prop-
erties of the estimates of the preconceived parameters are obtained in Section
3. We then propose a resampling approach based on cross-validation and con-
firm its validity in Section 4. An efficient computation algorithm is given in
Section 5. Based on this algorithm, we propose a one-step estimator in Section
6. Numerical studies are used to assess the finite-sample performance of the
proposed method in Section 7. All proofs are given in the online Supplemen-
tary Material. An R package implementing the proposed method is available at
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https://github.com/xliusufe/pqr.

2. Regularized Projection Score Estimation

Suppose we have observations {(y;, z;, 2;),7 = 1,...,n} that are independent
and identically distributed as (y, z, z), where y € IR is a response variable, z € R?
is a d-dimensional vector containing the covariates of main interest, and z € IR?
is a g-dimensional covariate with possibly confounding variables. Consider the
linear quantile regression model

Qr (yilzi, 21) = 2iBo + Zo, (2.1)

where Q(+|z;, z;) refers to the conditional 7th quantile, given the covariate (x;, z;).
Here, for notional simplicity, we assume that an intercept term is included in (.
We would like to estimate the effect of the covariate vector x, represented by (o,
on the response variable, while taking into account the effect of the covariate z,
represented by 79. We are interested in the case where d is small (fixed), but ¢
is large, and may be far larger than the sample size n.

In the standard linear quantile regression, the parameters of model (2.1) are

estimated by minimizing

n

My(B,m) =n"" Y pr(yi — 238 — 2in)

=1

with respect to 5 and 7, where p;(u) = u{r — I(u < 0)}. This approach works
well in low-dimensional cases where both d and ¢ are fixed and smaller than n.
However, in the case where ¢ > n, it no longer works, owing to the singularity
of the design matrix. There has been much work on penalized methods for
estimating the parameter vector (fp,n0). An important method is the Lasso
estimator (Tibshirani (1996)),

(Blassmﬁlasso) = ar%min Mn(ﬁ,’l’]) + A(”ﬁ”l + H77H1)
)71

This provides a point estimate of (39, 70), denoted by (3,7). Owing to the shrink-
age effect of the ¢1 penalty, Blasso does not converge at the usual root-n rate, and
its asymptotic distributional property is unknown. The penalized estimate Blasso
cannot be used directly to make statistical inferences about [y, the main param-
eter of interest.

To reduce the shrinkage effect of the penalization of the estimation of 8y, we
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consider the semi-penalized estimator,
- 1 <&
(5,71) = argmin > prlyi — 2iB = 2in) + MlIn]ls- (22)
n i=1

Note that here § is not penalized. Intuitively, the estimator B should be less
biased than @asso, because it is not subject to penalization. However, because
x; and z; are correlated, the bias in 1 will still lead to bias in 3. This can be
observed more clearly by considering the score equations corresponding to (2.2):

1 n

- > ey — B — zim)a; =0, (2.3)
=1

1 n

- D ey — 748 — 2im)z =M0(|Inlh), (2.4)
=1

where 9, (u) = 7 — I(u < 0) is the directional derivative of p,(u), and 9(||n[j1) =
(O(Iml),--.,0(ngl))". Here, d(|n;|) is the subdifferential of |n;|; that is, d(|n;|) =1
if n; >0, d(|n;|) = —1if n; <0, and 9(|n;|) € [-1,1] if n; = 0. The estimator
(B',7) approximately satisfies (2.3) and (2.4). Therefore, 3 is a solution to

1 — 5
=~ ey — @i — 2w = 0.
=1

However, owing to the bias in the estimator 77 and the correlation between x; and
z;, the estimator ﬁN does not have a root-n rate of convergence.

To obtain an estimator of Sy with a root-n rate of convergence and an asymp-
totically normal distribution, we propose a regularized projection score approach.
To describe this approach, we first consider the projection score function for 3
based on the loss function p; at the population level. The projection score is
defined as the residual of the projection of the score function ¥, (y — 2’8 — 2'n)z
for 8 onto the closure of the linear span of the score function v (y—2'8—2'n)z for
the nuisance parameter 7 in the Hilbert space Ly(P), where P is the distribution
of (y,z,z) under model (2.1). That is, we need to find a matrix Hy € R?*? that
minimizes

E|vr(y — 2'Bo — 2'no)x — ¥r(y — 2'Bo — 2'no) Hz||> = E{y2(e)||z — Hz||*}
(2.5)

with respect to H € R4, where ¢ = y — 2/8y — 2'ng. Here, || - || denotes the
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Euclidean norm. Then, the projection score function for £ in the direction Hy is

Ur(y — 2B = 2Z'n)x — i (y — 2’8 — 2'n)Hoz = ¢, (y — 2'B — 2'n)(x — Hoz).
(2.6)

In general, (2.5) is a weighted least squares function. Under the quantile
regression model given in (2.1), it can be simplified considerably. By the law of
iterated expectations, we have

E{¢7(e)lle — Hz|*} =E{E[7(e)|z, 2]l — Hz||*}

=7(1 - 7)E||z — Hz||%, 27)

where the last equation follows from (2.1). Thus, minimizing (2.5) is equivalent

to minimizing (2.7). Because 7 is independent of H, we have

Hy = argmin E||z — Hz|%.
HeRdxa
This is a least squares problem that can be solved explicitly. In particular, Hy
satisfies the normal equation E{(z — Hz)z'} = 0, which yields

Hy = BE(z2){E(z2)} L

However, the sample version of E(z2'), which is given by n™* "% | 2,2/, is not
invertible if ¢ > n. Therefore, we cannot estimate Hy by simply using the sarnple
versions of E(xz’) and E(z2’). We need to regularize the projection calculation.
We can use either the standard Lasso or the group Lasso for the multi-response
linear regression (Obozinski, Wainwright and Jordan (2011); Wang, Liang and
Xing (2013)) estimation of the matrix Hy. For any H € R4 denote its jth
column by h;. We estimate Hy by

H-argmm—ZHmz HzZHQ—i—)\QZZ\th] (2.8)

HER‘“‘J

7=1 k=1
or
H—argrgm—anz el 4203 Iyl (2.9)
HeRdxa
j=1

Note that Zhang and Zhang (2014) and van de Geer et al. (2014) use the standard
Lasso to calculate the approximate projection.
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By the KKT conditions, we obtain

1< .
— Z(.’El — HZZ‘)ZZ‘]'
" =1

<A, 1<5<q.

This implies that the vectors z; and x; — Hz; are nearly orthogonal for a small
Ao. Furthermore, Lemma 1 of the Supplementary Material states that we need
a sparsity assumption on Hy in the sense that A2 >27_, [|hojl| is small, where ho,
is the jth column of Hy. The orthogonality property is important in establishing
the theoretical properties of the proposed estimator described below.

We are now ready to describe the proposed regularized projection score esti-
mator. Define the score function in the direction H as

W5, H] = 3 e — 4 — 2l s — ). (2.10)
=1

Because the parameter n is unknown, we replace it with the initial estimator
7 given in (2.2). We also estimate H by H. We then define the regularized
projection score function for 8 as

Bo(8) = Wa(B, ] =~ S ey~ — )i — ). (210)
=1

Thus, we estimate the parameter 5y based on the following estimating equation:
¥,(8) = 0. (2.12)

Owing to the nonsmoothness of -, ¥,, may not have an exact zero root. In that
case, we need only to solve (2.12) within o,(n~'/?) precision. In Section 5, we
consider a series of minimization problems that corresponds to solving (2.12) in
an iterative way.

We summarize the proposed regularized projection score approach in two
steps:

(S1) estimate the vector 1y and the matrix Hy by solving (2.2) and (2.9), respec-
tively;

(S2) estimate the parameter vector [y by solving the estimation equation (2.12).
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3. Asymptotic Properties

In this section, we establish the asymptotic results for 3 , where B is a solution
of (2.12). The asymptotic results of the Lasso estimate 7 and the block Lasso es-
timate H are given by Belloni and Chernozhukov (2011), Obozinski, Wainwright
and Jordan (2011), and Wang, Liang and Xing (2013). To simplify the presenta-
tion, we summarize their regularity conditions below; moreover, we need to make
some additional assumptions.

(A1) z follows N(0,3,), and the covariance X satisfies (', 2')’ 0 < cp < Apin(X)
< AmaX(E) < Cp < 0. HB(]H + ||n0|| + maxi<;j<g HhOJH < Co, where Cj is a
constant and hg; is the jth column of Hy.

(A2) The coefficient 79 is sparse with s = o(n), and \; = O(y/log(q)/n), where
S={j:no; #0,j=1,...,¢} and s =|S|.

(A3) If the estimated coefficient matrix H is obtained from (2.8), Hy is sparse
with sp < sp = o(1), for 1 < k < d, where Sy, = {j : hox; # 0, j =
1,...,q} and sp = [Spil| If H is obtained from (2.9), Hy is sparse with
sp = o(1), where S, = {j : hoj #0, j =1,...,q}, sp = |Sh|. s2 Vs? =
o(yv/n/log(q)), and A2 = O(y/log(q)/n). There exists a constant cg € (0, 1]
such that ||E§hlsh lloo < co, where X7, 1, is the submatrix of ¥ with row and
column index sets I; and Is, respectively.

(A4) |f(u|z,z) — f(Olz,2)| < C|u|'/? for some constant C' uniformly on (z, z)
in a neighborhood of zero. f(0|x,z) is uniformly bounded from above by
fmax < 0o, and from below by fuin > 0, for all (x, z), where f(:|z,2) is the
density function of ¢ =y — 2’53y — 2'np.

(A5) maxi<j<q B{[|(x — Hoz)zj[|} = O(1), maxi<;j<a E{[|(z — Hoz)z;]|} = O(1),
and {E[]|2]|oo)?}? < Cp, with (s V 55)3/2C A = o(n'/?) and 7, (s V sp,) log(
Cnsh)\gnfl/z) = o(1), where 7, = (s V sp)(A1V A2). For any w; between

x;(ﬁ — Bo) + 2(7 — no) and zero, and for any H € Uy,
-1 e o V(e N || — -1 —-1/2
112;:2{(1 n Zl fwilz, z) (2 HZz)ZU = Op(s {log(q)} ),

where Uy = {H € R4 : =123 ||(H — Hy)zi|| = Op(slog(q)/n)}.
(A6) E{f(0|z,z)(xz — Hpz)x'} is an invertible matrix.

Assumption (A1) imposes an eigenvalue restriction on the design matrix. As-
sumption (A2) is the mutual incoherence and self-incoherence condition that
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bounds the difference between the estimator H and the true matrix Hy and
the difference between the estimator 77 and the true parameter 79. Under As-
sumptions (A1) and (A2), the conditions of Belloni and Chernozhukov (2011),
Obozinski, Wainwright and Jordan (2011), and Wang, Liang and Xing (2013) are
satisfied. Assumption (A3) limits the increasing rate of the covariate dimension
relative to the sample size to ensure that the Bahadur representation of the es-
timator /3’ holds. Assumption (A4) is used to obtain B, which is widely used in
the quantile regression literature. Assumption (A5) imposes the orthogonality
of x — Hz and z, where z — Hz is the projection of z to the space of z. Be-
cause E {(z — Hopz)z;} = 0, from the definition of Hy, Assumption (A5) holds if
(x — Hoz)zj is weakly correlated with f(0|z, z), the conditional density around
zero. Thus, it is weaker than the assumption of independence between (z, z) and
€, which is imposed by Zhao, Kolar and Liu (2014) and Bradic and Kolar (2017).
Similar conditions are used in Theorem 3.1 of van de Geer et al. (2014) when
generalized linear models are considered.

Theorem 1. Under model (2.1), if Assumptions (A1)—(A4) hold,
B = Bo.
Theorem 2. Under model (2.1), if Assumptions (A1)—(A6) hold,
n!/2(8 — fo) =+ N(0.Q7'DQ ),

where Q@ = E{f(0|z,z)(x — Hyoz)z'} and D = 7(1 — 7)E{(z — Hoz)(z — Hpz)'} .

Theorem 2 establishes that the proposed estimator is asymptotically normal.
However, under the high-dimensional setting, it is challenging to estimate the
asymptotic covariance matrix Q~'DQ'~!, in which the density of the error term
is involved. In the following section, we propose a resampling method that avoids
estimating the error density at zero.

4. Refitted Wild Bootstrap

Adopting the ideas of the refitted cross-validation of Fan, Guo and Hao
(2011) and the wild bootstrap of Feng, He and Hu (2011), we propose a refitted
wild bootstrap method to estimate the asymptotic variance-covariance matrix of
B. This resampling method accounts for heterogeneous errors and can bypass
the estimation of different densities of errors at zero. Unlike the method of
Wang, Keilegom and Maidman (2018), which only considered a fixed number
of covariates, the proposed refitted wild bootstrap method can deal with high-
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dimensional confounding covariates with divergent dimension gq.
We randomly split the original data set into two even parts and carry out
the refitted wild bootstrapping using the following steps.

(B1) Estimate the parameters using the method described in Section 2 and the
first part of the data set, and denote the estimates as 7.

(B2) Use the second part of the data set to estimate the parameters using the
regular quantile regression method based on the nonzero coefficient set de-
termined by the vector 7;. Denote the estimate as ( Bé, 745), where the vector
72 includes those zero coefficients determined in Step (B1), for notation con-
sistency.

(B3) Independently generate weights (; satisfying the following conditions:

(B3.1) there are two positive constants ¢; and cg satisfying sup{¢ € G : { <
0} = —c; and inf{¢ € G : { > 0} = c2, where G is the support of (;
. . . . 00 . 0 _
(B3.2) the distribution G of { satisfies 0+ Clgw)d¢=— [~ ¢g(¢)dc¢
= 1/2 and E¢[[¢|] < oo, where g(¢) is the density of ¢ and the
expectation E¢ is taken under G;

(B3.3) the 7th quantile of the weight ( is zero.

(B4) Use the second part of the data set to obtain the bootstrapped samples as
Yy = Byxi +1pzi + G|, where 7 = y; — Byzi — Tlpz;.

(B5) Use the bootstrapped samples to estimate the parameters using the method
of Section 2, and denote the estimate of 5y by B*

(B6) Repeat (B2)—(B5) B times, and denote the sample variance of B copies of
B* as 172

Similarly, we use the second part of the data set to determine those variables with
nonzero coefficients, and use the first part to estimate the variance-covariance
matrix using the approach described in (B1)—(B6). Denote the estimated matrix
as V1. We use (171 + 172)/2 to estimate the variance of 3, and repeat the above
procedure a certain number of times to reduce the randomness effects of splitting
the data.

The growth rate of the dimension of § in condition (A3) is too fast to ensure
the validity of the refitted wild bootstrap of (B1)—(B6). We need to further limit
the rate to

(A3') slog(q)/n/? = 0.
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Let P* denote the probability under the resampling procedure given in (B1)—(B6).

Theorem 3. Under Assumptions (A1)—~(A2), (A4)-(A6), and (A3'), using the
resampling approach described in steps (B1)—(B6), we have

sup
z€R

p* ((Z)W(B* ~p) < :c) —P(n'?(B - Bo) < z)| 0.

Theorem 3 provides a theoretical justification for using the refitted wild boot-
strap to estimate the asymptotic variance-covariance matrix. This makes it pos-
sible to conduct statistical inferences without estimating the error densities. In
the following section, we describe a computational algorithm for solving the esti-
mating equation (2.12).

5. Computation

As pointed out in Section 2, we need to determine how to solve
Un(8) = = > ey — 248 — 2jii) (ws — Hz) = 0. (5.1)
Let g, = y; — 27 and =; = x; — Hz;. Write
n
> e yi — 28 — 2 (@i — Hzi) = Z Vel — (Hz) B — 7B}

Let * be the value at the kth iteration, for k = 0,1,2,.... We take the Lasso es-
timator by solving (2.2) as the initial estimator 3°, and use the following iterative
steps:

Step 1: Calculate

Step 2: Solve
n
BET = argmin Y  pr (55 — F;8).
B

i=1

Step 3: Set k < k+1; go to Step 1 until certain convergence criteria are satisfied.

Note that Step 2 is an optimization problem based on a low-dimensional quantile
regression, so it can be solved using existing software. Refer to Koenker (2005)
for details on its computation.



34 CHENG ET AL.

6. One-Step Estimator

The procedure given in Section 5 inspired the following one-step estimation
approach.

First, we obtain an initial estimator of 8 by solving (2.2). Recall that the
projected score function is

U, (8) = %Zwr(?ﬁ — @B — 2ii) (i — Hz),
=1

where H is obtained by solving (2.9). We consider a modified projected score
function

-, 1 & - N ~ .
vn8) = > {yi — (i — Hz)'B— (Hz)' B — 2} (w; — Hz).
i=1
Let §; = yi — (Hz)' 8 — 2. Then, solving ¥*(8) = 0 is equivalent to solving
1o .
/Bone = arg;nin ; Zl Pr (gz - (wz - HZZ)//B)
Clearly, Bone can be considered a one-step update from the initial estimator B
We replace Assumption (A6) with the following assumption:

(A6") E{f(0]z,2)(x — Hoz)(xz — Hoz)'} is an invertible matrix.

We then have the following result.

Theorem 4. Under model (2.1), if Assumptions (A1)—(A5) and (A6’) hold, then

1 (Bone = Bo) = N(0,Q7' DQ™),
where Q = E{f(0lz, z)(z — Hoz)(z — Hoz)'}, and D is defined as in Theorem 2.

Note that @ is different from @ in Theorem 2, owing to the modification of
the score function. In addition, the refitted wild bootstrap method of Section 4
can be used similarly to estimate the asymptotic covariance matrix @_ID@_I.
The computation of this estimator is efficient because no iterations of (Step 1)—
(Step 2) are needed.
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7. Numerical Studies
7.1. A simulation study

We investigate the finite-sample performance of the estimation method of
Section 2 using the variance-covariance matrix estimated by the refitted wild
bootstrap method described in Section 4. T'wo sample sizes, n = 50 and n = 100,
are used, and two quantile levels, 7 = 0.5 and 7 = 0.75, are considered.

We simulate data from the model

3 199
vi= 14> B+ Yz +en i=1,...,n,
j=1 k=1
where all the covariate variables and the model error e; are generated indepen-
dently from the standard normal distribution. We consider a sparsity structure
with coefficients given as

(H)617ﬁ27/637771777277737 cee 777199) = (37373737373707 v 70)

We use the method of Huang, Breheny and Ma (2012) to solve (2.9), using
the Bayesian information criterion for the choice of penalties. Then, we use the
method of Belloni and Chernozhukov (2011) to solve (2.2) at confidence levels
0.7 and 0.8, corresponding to sample sizes n = 50 and n = 100, respectively. We
repeat the bootstrap procedure 1,000 times to estimate the covariance matrix,
where the random weights follow the discrete distribution

1—7,w=2(1-71)

)
T, w = —27

PW=w)= {
for 0 < 7 < 1. The R packages quantreg and grpreg are used to solve (2.2)
and (2.9), respectively. We generate 1,000 Monte Carlo samples to compare the
performance of the proposed method and the oracle method, where the sparsity
structure is assumed to be known.

We report the biases of the proposed and the oracle estimators, as well as
the relative efficiency, which is the ratio of the mean squared errors of the two
estimators. We also estimate the coverage probabilities of the proposed method
at the 95% confidence level. As shown in Table 1, the bootstrap leads to overall
conservative interval estimates, especially when the quantile level 7 = 0.75. When
the sample size is as small as 50, the relative efficiencies vary from 70% to 82%;
these efficiencies can be improved to 82% to 92% when the sample size is doubled.
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Table 1. Estimated coverage probability (CP) at 95% confidence level, and the estimated
relative efficiencies (RE) and biases (Bias) of the proposed estimator (EC) and the oracle
estimator (Oracle).

n =50 Parameter Bias of EC (x1073) Bias of Oracle (x1072) RE CP (x100%)

51 -9.608 -0.971 0.811 95.9
7=0.5 Ba 0.945 1.993 0.701 95.8

B3 -3.486 -8.541 0.813 96.2

51 -2.744 -6.880 0.697 99.0
T=0.75 Ba 2.891 -0.413 0.617 97.8

B3 -4.957 -12.802 0.690 98.7
n =100 Parameter Bias of EC (x1073) Bias of Oracle (x107%) RE CP (x100%)

51 -2.245 -1.684 0.992 95.6
7=0.5 Ba -2.913 0.455 0.919 96.5

B3 -7.060 -6.316 0.948 96.2

b1 -5.663 -0.863 0.854 97.2
7=0.75 B 1.615 1.790 0.927 97.7

B3 -8.156 -2.809 0.938 97.8

From the results shown in Table 1, the proposed method usually leads to estimates
with smaller biases, probably because of the projection procedure used in our
estimation.

7.2. Case study of GDP growth rate

In this section, we analyze the national growth rate of GDP using data col-
lected by Barro and Lee (2013). Their results indicate that in a broad group
of countries, educational attainment serves as a proxy for the stock of human
capital, as well as for economic development. This data set includes 138 coun-
tries and eight broad categories comprising national income, education, popu-
lation /fertility, government expenditure, PPP deflators, political variables, and
trade policy, among others. A detailed description can be found at http://
www.barrolee.com/. Data are presented either quinquennially, for the period
1950-2010, or as averages of five-year sub-periods over 1950-2010.

There is a subset of data including 90 complete observations (by country)
with 61 covariates, which can be downloaded in the R package hdm (Cher-
nozhukov, Hansen and Spindler (2016)). There are 41 observations out of 90
from 1965; the rest are from 1975. In this example, we only consider the 49
observations from 1975. We choose national GDP growth rate per capita as
the response y;, and denote the 61 scaled covariates by =; = (Zj1, ..., Tip)’, for
1=1,...,n, where n =49 and p = 61. We first take the logarithm or cubic-root


http://www.barrolee.com/
http://www.barrolee.com/
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Table 2. List of p-values of the two variables for GDP growth rate. The numbers in
parentheses are the estimated coefficients at the corresponding quantile levels. *govsh41:
Ratio of real government “consumption” expenditure to real GDP, and *gvxdxe41: Ratio
of real government “consumption” expenditure, net of spending on defense and education,
to real GDP.

Variable Name 7=0.25 7=05 7=0.75
govsh41* 0.0122 ( 0.8215) 0.2722 ( 0.1971) 0.9356 (-0.00498)
gvxdxedl* 0.0043 (-0.6523)  0.0026 (-0.3530) 0.7259 (-0.2403)

transformation such that each predictor’s empirical distribution is more normally
distributed.

There is a large body of literature on the relationship between economic de-
velopment and government consumption expenditure; see Landau (1986), Barro
(1990), Barro (1991), Barro (1989), Devarajan, Swaroop and Zou (1996), d’Agostino,
Dunne and Pieroni (2016), and Dissou, Didic and Yakautsava (2016). Owing to
the correlation between government consumption expenditure and other variables
that characterize population/fertility, political instability, the economic system,
and so on, we need to reduce their influence by using the proposed regularized
projection procedure.

The following two variables are important to understanding the effect of
a country’s government consumption expenditure on its economic growth rate:
the ratio of real government “consumption” expenditure to real GDP (govsh4l,
denoted by Z;1), and the ratio of real government “consumption” expenditure, net
of spending on defense and education, to real GDP (gvxdxe4l, denoted by Z;2).
We use these two variables as treatments, denoted by z; = (Z;1, Z;2)’, and the
remaining ones as confounders, denoted by z;, 7 = 1,...,n. Then we consider the
linear quantile regression model (2.1) on these treatments and confounders:

2 59
Qr(yilwi, 1) = Po+ Y wiBi + Dz, = 1,...,49.
=1 k=1

We report the estimated coefficients and the corresponding p-values in Table 2.
Barro (1989, 1990, 1991) found that both variables, govsh/1 and gvzdze41, are
negatively associated with the GDP growth rate. However, our results indicate
that it may be a good strategy to promote GDP growth by increasing the total
government consumption expenditure in slowly growing economies. At the same
time, countries with relatively slow GDP growth rates should limit government

expenditure on defense and education to ensure economic growth.
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8. Conclusion

In this work, we used regularized projection scores to estimate low-dimens-
ional preconceived parameters in high-dimensional quantile regression models.
Our asymptotic results facilitate classical statistical inference in high-dimensional
scenarios, which has been largely overlooked in the quantile regression literature.
In addition, we proposed a refitted wild bootstrapping approach to bypass the
estimation of the variance-covariance matrix of the estimator, which involves the
probability densities of the errors. To the best of our knowledge, this is the first
demonstration of wild bootstrapping in a high-dimensional setting in the quantile
regression literature.

The proposed method can be implemented easily because its computation is
based on existing algorithms, which can be accomplished using R packages. In
practice, we advocate the one-step estimator owing to its computational efficiency
in high-dimensional settings, especially when a resampling approach is needed.

Supplementary Material

The proofs of Theorems 1-4 and related technical details can be found in the

online Supplementary Material.

Acknowledgments

The authors are grateful to the anonymous referees, associate editor, and
editor for their helpful comments. Feng’s research was supported by the National
Natural Science Foundation of China (11971292 and 11690012), Program for
Innovative Research Team of SUFE, and Key Laboratory for Applied Statistics
of MOE (130028906), Northeast Normal University. Huang’s work was supported
in part by NSF grant DMS-1916199. Liu’s research was supported by the National
Natural Science Foundation of China (11771267).

References

Barro, R. J. (1989). A cross-country study of growth, saving, and government. In National
Saving and Economic Performance, 271-304. National Bureau of Economic Research.

Barro, R. J. (1990). Government spending in a simple model of endogeneous growth. Journal of
Political Economy 98, 103-125.

Barro, R. J. (1991). Economic growth in a cross section of countries. The Quarterly Journal of
FEconomics 106, 407-443.

Barro, R. J. and Lee, J. W. (2013). A new data set of educational attainment in the world,
1950-2010. Journal of Development Economics 104, 184—198.

Belloni, A., Chen, D., Chernozhukov, V. and Hansen, C. (2012). Sparse models and methods for



REGULARIZED PROJECTION SCORE ESTIMATION 39

optimal instruments with an application to eminent domain. Econometrica 80, 2369-2429.

Belloni, A. and Chernozhukov, V. (2011). ¢;-penalized quantile regression in high-dimensional
sparse models. The Annals of Statistics 39, 82—130.

Belloni, A., Chernozhukov, V. and Kato, K. (2018). Valid post-selection inference in high-
dimensional approximately sparse quantile regression models. Journal of the American
Statistical Association 114, 749-758.

Belloni, A., Chernozhukov, V. and Wei, Y. (2013). Honest Confidence Regions for a Regression
Parameter in Logistic Regression with a Large Number of Controls. Cemmap working paper.
No. CWP67/13. Centre for Microdata Methods and Practice. London.

Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2013). Valid post-selection inference.
The Annals of Statistics 41, 802-837.

Berk, R., Brown, L. and Zhao, L. (2009). Statistical inference after model selection. Journal of
Quantitative Criminology 26, 217-236.

Bickel, P., Klaassen, C., Ritov, Y. and Wellner, J. (1998). Efficient and Adaptive Estimation for
Semiparametric Models. Springer-Verlag, New York.

Bradic, J. and Kolar, M. (2017). Uniform inference for high-dimensional quantile regression: :
Linear functionals and regression rank scores. arXiv preprint arXiv:1702.06209.

Bithlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data. Springer, Berlin
Heidelberg.

Chernozhukov, V., Hansen, C. and Spindler, M. (2016). hdm: High-dimensional metrics. arXiv
preprint arXiv:1608.00354.

d’Agostino, G., Dunne, J. P. and Pieroni, L. (2016). Government spending, corruption and
economic growth. World Development 84, 190-205.

Devarajan, S., Swaroop, V. and Zou, H. (1996). The composition of public expenditure and
economic growth. Journal of Monetary Economics 37, 313-344.

Dezeure, R., Biihlmann, P., Meier, L. and Meinshausen, N. (2015). High-dimensional inference:
Confidence intervals, p-values and R-software hdi. Statistical Science 30, 533-558.

Dissou, Y., Didic, S. and Yakautsava, T. (2016). Government spending on education, human
capital accumulation, and growth. Economic Modelling 58, 9-21.

Fan, J., Guo, S. and Hao, N. (2011). Variance estimation using refitted cross-validation in ultra-
high dimensional regression. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 74, 37-65.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association 96, 1348-1360.

Fang, E. X., Ning, Y. and Liu, H. (2016). Testing and confidence intervals for high dimensional
proportional hazards models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 79, 1415-1437.

Feng, X., He, X. and Hu, J. (2011). Wild bootstrap for quantile regression. Biometrika 98, 995—
999.

Huang, J., Breheny, P. and Ma, S. (2012). A selective review of group selection in high dimension
models. Statistical Science 27, 481-499.

Javanmard, A. and Montanari, A. (2014). Confidence intervals and hypothesis testing for high-
dimensional regression. Journal of Machine Learning Research 15, 2869-2909.

Koenker, R. (2005). Quantile Regression. Cambridge University Press, New York.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 33-50.



40 CHENG ET AL.

Landau, D. (1986). Government and economic growth in the less developed countries: An
empirical study for 1960-1980. Economic Development and Cultural Change 35, 35-75.

Lee, J. D., Sun, D. L., Sun, Y. and Taylor, J. E. (2016). Exact post-selection inference, with
application to the Lasso. The Annals of Statistics 44, 907-927.

Lee, J. D. and Taylor, J. E. (2014). Exact post model selection inference for marginal screening.
In Advances in Neural Information Processing Systems, 136—144. Curran Associates, Inc.

Lockhart, R., Taylor, J., Tibshirani, R. J. and Tibshirani, R. (2014). A significance test for the
Lasso. The Annals of Statistics 42, 413-468.

Meinshausen, N. (2014). Group bound: Confidence intervals for groups of variables in sparse high
dimensional regression without assumptions on the design. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 77, 923-945.

Meinshausen, N., Meier, L. and Biithlmann, P. (2009). p-Values for high-dimensional regression.
Journal of the American Statistical Association 104, 1671-1681.

Neykov, M., Ning, Y., Liu, J. S. and Liu, H. (2018). A unified theory of confidence regions and
testing for high dimensional estimating equations. Statistical Science 33, 427-443.

Ning, Y. and Liu, H. (2017). A general theory of hypothesis tests and confidence regions for
sparse high dimensional models. The Annals of Statistics 45, 158-195.

Obozinski, G., Wainwright, M. J. and Jordan, M. I. (2011). Support union recovery in high-
dimensional multivariate regression. The Annals of Statistics 39, 1-47.

Riigamer, D. and Greven, S. (2018). Selective inference after likelihood-or test-based model
selection in linear models. Statistics € Probability Letters 140, 7-12.

Stucky, B. and van de Geer, S. (2018). Asymptotic confidence regions for high-dimensional
structured sparsity. IEEE Transactions on Signal Processing 66, 2178-2190.

Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society: Series B (Methodological) 58, 267—288.

Tibshirani, R. J., Taylor, J., Lockhart, R. and Tibshirani, R. (2016). Exact post-selection in-
ference for sequential regression procedures. Journal of the American Statistical Associa-
tion 111, 600-620.

van de Geer, S., Bithlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically optimal con-
fidence regions and tests for high-dimensional models. The Annals of Statistics 42, 1166—
1202.

Wang, L., Keilegom, I. V. and Maidman, A. (2018). Wild residual bootstrap inference for
penalized quantile regression with heteroscedastic errors. Biometrika 105, 859-872.

Wang, L., Wu, Y. and Li, R. (2012). Quantile regression for analyzing heterogeneity in ultra-high
dimension. Journal of the American Statistical Association 107, 214-222.

Wang, W., Liang, Y. and Xing, E. (2013). Block regularized Lasso for multivariate multi-
response linear regression. In Proceedings of the Sixteenth International Conference on Ar-
tificial Intelligence and Statistics volume 31 of Proceedings of Machine Learning Research,
608-617. PMLR.

Yang, Y. (2017). Statistical inference for high dimensional regression via constrained Lasso.
arXiw preprint arXiv:1704.05098.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics 38, 894-942.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in

high dimensional linear models. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 76, 217-242.



REGULARIZED PROJECTION SCORE ESTIMATION 41

Zhang, C.-H. and Zhang, T. (2012). A general theory of concave regularization for high-
dimensional sparse estimation problems. Statistical Science 27, 576-593.

Zhao, T., Kolar, M. and Liu, H. (2014). A general framework for robust testing and confidence
regions in high-dimensional quantile regression. arXiv preprint arXiv:1412.8724.

Zheng, Q., Peng, L. and He, X. (2015). Globally adaptive quantile regression with ultra-high
dimensional data. The Annals of Statistics 43, 2225-2258.

Zhu, Y. and Bradic, J. (2018). Linear hypothesis testing in dense high-dimensional linear models.
Journal of the American Statistical Association 113, 1583-1600.

Chao Cheng

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai
200433, China.

E-mail: 2017310132@live.sufe.edu.cn
Xingdong Feng

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai
200433, China.

E-mail: feng.xingdong@mail.sufe.edu.cn
Jian Huang

Department of Statistics and Actuarial Science, University of Iowa, lowa City, lowa. 52246,
USA

E-mail: jian-huang@uiowa.edu
Xu Liu

School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai
200433, China.

E-mail: liu.xu@sufe.edu.cn

(Received June 2018; accepted May 2020)


mailto:2017310132@live.sufe.edu.cn
mailto:feng.xingdong@mail.sufe.edu.cn
mailto:jian-huang@uiowa.edu
mailto:liu.xu@sufe.edu.cn

	Introduction
	Regularized Projection Score Estimation
	Asymptotic Properties
	Refitted Wild Bootstrap
	Computation
	One-Step Estimator
	Numerical Studies
	A simulation study
	Case study of GDP growth rate

	Conclusion

