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Abstract
In this paper, we propose a new semiparametric method to simultaneously select
important variables, identify the model structure and estimate covariate effects in the
additive AFTmodel, for which the dimension of covariates is allowed to increase with
sample size. Instead of directly approximating the non-parametric effects as in most
existing studies, we take a linear effect out to weak the condition required for model
identifiability. To compute the proposed estimates numerically, we use an alternating
direction method of multipliers algorithm so that it can be implemented easily and
achieve fast convergence rate. Our method is proved to be selection consistent and
possess an asymptotic oracle property. The performance of the proposed methods is
illustrated through simulations and the real data analysis.
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1 Introduction

The rapid development of technology and information drives high dimensional data
collection in practical study areas such as genomic and health sciences. Under the spar-
sity assumption, various variable selection methods have been proposed to improve
the accuracy of the estimation. Among them, penalized methods have been studied
extensively for uncensored response. Examples include LASSO (Tibshirani 1996),
adaptive LASSO (Zou 2006), SCAD (Fan and Li 2001), the Dantizg selector (Candes
and Tao 2007) and MCP (Zhang 2010). Some of these methods have been adapted to
analyze censored data based on classical Cox model. For example, Tibshirani (1997)
and Fan and Li (2002) extended the LASSO and nonconcave penalized likelihood
methods to the Cox model, respectively. Zhang and Lu (2007) developed the adaptive
LASSO for Cox model. In the literature of survival analysis, a useful alternative to the
Cox model is the accelerated failure time (AFT) model (Wei 1992), which assumes
the linear relationship between the logarithm of survival time and covariates of inter-
est. Compared with the Cox model, estimated parameters in the AFT model can be
easily interpreted in practice. Inference procedures for the AFT model include the
inverse probability weighting (IPW) method (Stute 1993, 1996), Buckley–James iter-
ative method (BJ) and rank-based method (Buckley and James 1979; Zeng and Lin
2007). Some researchers developed variable selection methods for fitting semipara-
metric AFT models in high dimensional data settings (e.g. Wang et al. 2008; Huang
and Ma 2010 etc.). These studies are based on the assumption that the underlying
covariate structure is linear. In practice, it is unclear about the adequacy of this lin-
ear structure assumption and the impact of model misspecification on the analysis.
Therefore, some authors considered more flexible models where nonlinear structure
of covariate was considered, e. g. Chen et al. (2005) andAntoniadis et al. (2014). All of
these works pre-specified which covariate effects are linear and which are nonlinear.

However, generally it is unknown which covariates have linear effects and which
have nonlinear effects in advance for real data. This has driven studies on simulta-
neously identify and estimate the linear and nonlinear components, which is referred
as model pursuit problem. For instance, Zhang et al. (2011) developed a two-step
regularization method under the framework of partial linear model. However, they
did not prove the selection consistency and their method is difficult to realize. Huang
et al. (2012) transformed the model pursuit problem into a group variable selection
problem and proposed an easy implement approach. Another important issue in model
construction is variable selection especially when the number of covariates is large.
Simultaneous model pursuit and variable selection has gained popularity in recent
years. Specifically, Wang and Lin (2019) proposed a robust and efficient method to
simultaneous identify model structure and select important variables for generalized
partial linear varying coefficient models with longitudinal data. This problemwas con-
sidered for high dimensional data under different models, e.g. additive models (Wu
and Stefanski 2015), varying-coefficient models (Chen et al. 2018).

For censored failure time data, the corresponding studies on simultaneously model
pursuit and variable selection are limited. Cao et al. (2016) proposed a semiparametric
pursuit method based on B-spline expansions through a penalized group selection
method with concave penalties. Lian et al. (2013) utilized a double-penalized method
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to identify the model structure, select the relevant covariates and estimate the covariate
effects for censored data under Cox models with varying coefficients. However, The
methods mentioned above are not designed for high dimensional censored data. Our
goal is to develop a new approach for high-dimensional right censored data not only
to select the important variables, but also to identify which variable have nonlinear
effects based on AFT models. We first embed the partial linear AFT model into a
nonparametric additive AFT model as existing methods. Our method is different from
those exiting methods in the way of decomposing the additive component g(X) to
reflect the effect of covariate X . In the existing method (e.g. Zhang et al. 2011, Huang
et al. 2012), g(X) is assumed to be the sum of linear and nonlinear components, i.e.

g(X) = β0 + β1X + φ(X), (1)

where φ(x) is nonparametric function which can be approximated by a linear com-
bination of some basis functions, i.e. φ(x) = ∑qn

k=1 θkψk(x). Then the estimation
of g(X) is transformed into estimation of β0, β1 and θk(k = 1, . . . , qn). To ensure
the parameter identifiability, additional assumptions is needed for the basis functions
(such as the linear function can not be included as basis function). Instead of assum-
ing g(X) to be the sum of linear and nonlinear components directly as did in many
existing researches, we take the linear effect out, i.e. write the covariate effect as
g(X) = Xφ(X). Then the important variables can be selected out if and only if
φ(·) �≡ 0, and the linearity of g(X) can be also identified according to whether the
derivative of φ(·) to be zero or not.We adopt B-spline expansion techniques to approx-
imate the nonparametric function φ(·) and no additional assumptions are needed to the
basis functions. We then simultaneously determine the linear and nonlinear compo-
nents and select important variables with a double penalized approach. We show that,
under the assumption of non-informative censoring and other suitable conditions, the
proposed approach is both model pursuit and variable selection consistent, meaning
that it can correctly identify the linear and nonlinear components and select important
covariates with high probability. We also show that the proposed estimators enjoy an
asymptotic oracle property.

The merits of our approach mainly concentrate on the following points. Firstly,
the model is identifiable under a mild condition. Secondly, our approach is easy-
to-implement. We apply the alternative direction method of multipliers (ADMM)
algorithm (Boyd et al. 2011) to overcome the computing difficulties caused by the
inseparability of unknown parameters. Simulation studies show that the proposed
method can select the true model with high probability, while linear and nonlinear
discoverer (LAND) suggested byZhang et al. (2011) identifies sparsermodels. Finally,
as the considerable difficulties brought by the high dimensional data, we restrict our
researches on the case that the covariate dimension diverses with sample size, i.e.,
dn = O(n1/4), and draw the theoretical conclusions of the model pursuit and variable
selection consistency. By combining the SIS techniques (e.g. Zhang et al. 2018), the
two-step selection procedure adopted in Neykov et al. (2014) and Ma et al. (2006)
makes it feasible analyzing the ultra-high dimensional data, i.e., dn = o(exp(nα))

with some 0 < α < 1.
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The remainder of the paper is organized as follows. In Sect. 2 we propose a
double-penalized procedure for simultaneously selecting variables and model struc-
ture. ADMM algorithm for computation is presented in Sect. 3. We evaluate the
performance of proposed procedure through simulations studies in Sect. 4. In Sect.
5 we apply the proposed procedure to analyze the real data set. Some remarks are
provided in Sect. 6. The proofs of the theoretical results are relegated to the Appendix.

2 Estimation procedures

Suppose that there are n i.i.d. observations in the study. Let Ti , i = 1, . . . , n be the
logarithm of the survival time following an additive AFT model

Ti =
∑

j∈M1

g̃0 j (Xi j ) +
∑

j∈M2

β0 j Xi j +
∑

j∈M3

0 · Xi j + εi , (2)

where g̃0 j is a nonzero non-linear function and Xi j is the observation for the j-th
covariate in the i-th subject. The effects of the covariates to the survival time in model
(2) are split into three types: nonzero non-linear effect, nonzero linear effect and null
effect, whose index sets correspond to M1, M2 and M3 respectively. We suppose that
the density function of the covariate X = (X1, . . . , Xdn )

T has a positive support on
[α1, α2]dn , where dn is the dimension of X being allowed to increase with sample size
n and α1 and α2 are two finite real numbers. Let Ci (i = 1, . . . , n) be the logarithm of
the censoring time for subject i . With censoring, one observes Yi = min(Ti , Ci ) and
δi = I (Ti ≤ Ci ), where I (·) is the indicator function. The observed data consists of
{(Yi , δi , X i ) : i = 1, 2, . . . , n}. However, it is usually unknown in advance to which
part the covariates belong to for real data. To specify the structure of the covariate
effects and select important variables, or equivalently, to identify the index sets M1,
M2 and M3, we note that Eq (2) is a special case that

Ti =
dn∑

j=1

g0 j (Xi j ) + εi (3)

with g0 j (x j ) = β0 j x j + g̃0 j (x j ). Thus, we define in model (3) that g0 j (x j ) =
x jφ0 j (x j ), and suppose that g̃0 j (x j ) = x j φ̃0 j (x j ) for j = 1, . . . , dn , where φ0 j

is an unknown function with the convention that 0/0 = 1 and φ̃0 j is a non-constant
function. This kind of model is an economic way for modeling the structure of the
covariate effects in the context of partially linear models. It is also a convenient way
to achieve the goal of model structure identification and variable selection simulta-
neously. In fact, the j−th covariate X j is an unimportant variable if and only if the
nonparametric part φ0 j takes 0. Otherwise, the corresponding covariate X j has a lin-
ear effect or nonlinear effect according to the derivative of φ0 j takes 0 or not. Define
H = L2[α1, α2], H̃ = {φ̃ j : ∫ α2

α1
φ̃ j (x)dx = 0, φ̃ j ∈ H} for some constant C ,
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Hdn = H × . . . × H︸ ︷︷ ︸
dn

and H̃dn = H̃ × . . . × H̃︸ ︷︷ ︸
dn

. This definition shows that φ̃ j is either

a non-constant function or zero-valued function. The identifiability of model (3) is
guaranteed by the following proposition.

Proposition 1 (Identifiability) We suppose that the covariates are not linearly depen-
dent. For dn−dimensional function vector (φ1, . . . , φdn )

′ ∈ Hdn , there exists unique
(β1, . . . , βdn )

′ ∈ R
dn and (φ̃1, . . . , φ̃dn )

′ ∈ H̃dn such that

dn∑

j=1

x jφ j (x j ) =
dn∑

j=1

β j x j +
dn∑

j=1

x j φ̃ j (x j ) (4)

with E(X jφ j (X j )) = E(β j X j + X j φ̃ j (X j )) for each j = 1, . . . , dn.

The proposition shows that
∑dn

j=1 g0 j (X j ) in model (3) can be uniquely written as
a sum of non-linear component and linear component as

dn∑

j=1

g0 j (X j ) =
∑

j∈M1

X j φ̃0 j (X j ) +
∑

j∈M2

X jβ0 j . (5)

In the following, we further assume that E(δi g0 j (Xi j )) = 0. As pointed by Huang
(1999), centering E(δi g0 j (Xi j )) instead of E(g0 j (Xi j )) simplifies information cal-

culation and asymptotic analysis. For simplicity, we write g0(x) = ∑dn
j=1 g0 j (x),

φ0 = (φ0 j , j = 1, . . . , dn)T , φ̃0 = (φ̃0 j , j ∈ M1)
T and β0 = (β0 j , j ∈ M2)

T .
We then establish a regularization procedure by constructing a penalized loss func-

tion. Let k be a nonnegative integer, and some α ∈ (0, 1] such that p = k + α > 0.5.
Define φ

(k)
j as the k−th derivative of function φ j and let

G = {φ j : |φ j (x1) − φ j (x2)| ≤ C |x1 − x2|α, x1, x2 ∈ [α1, α2], φ(k)
j ∈ L2[α1, α2]} ⊂ H.

We suppose that the first derivative φ′
0 j exists and φ0 ∈ Gdn .

As a start, we use theB-splines to approximate the unknownnonparametric function
φ0 j , j = 1, . . . , dn in (3). The interval [α1, α2] is split into Kn subintervals IKnt =
[ξt , ξt+1), t = 0, 1, . . . , Kn −2 and IKn Kn−1 = [ξKn−1, ξKn ], where α1 = ξ0 < ξ1 <

· · · < ξKn = α2 and Kn = O(nν) with 0 < ν < 0.5 being a positive integer such
that max1≤ j≤Kn |ξ j − ξ j−1| = O(n−ν). Let 
n be the space of polynomial splines
of order m ≥ 1 consisting of functions h’s, where h is a polynomial of order m on
interval IKnt for t = 0, 1, . . . , Kn − 1, and h is m2 times continuously differentiable
on [α1, α2] for m ≥ 2 and 0 ≤ m2 ≤ m − 2. According to Schumaker (1981), there
exists a local basis {ψk,m, k = 1, 2, . . . , qn} with the basis number qn = Kn + m for

n . Thus, the function φnj (·) in 
n can be approximated by a basis expansion as

φnj (x) = θT
j ψqn ,m(x), j = 1, 2, . . . , dn . (6)
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where θ j = (θ j1, . . . , θ jqn )
T and ψqn ,m(·) = (ψ1,m(·), . . . , ψqn ,m(·))T .

In the sequel, we assume that censoring is completely non-informative. Let

wi (i = 1, . . . , n) be the Kaplan-Meier weight computed as ω1 = δ(1)

n
and

ωi = δ(i)

n − i + 1

∏i−1

j=1

(
n − j

n − j + 1

)δ( j)

for i = 2, . . . , n, where Y(1), . . . , Y(n) are

the order statistics of Yi ’s and δ(1), . . . , δ(n) are the associated censoring indicators.
Similarly, let X(1), . . . , X(n) be the associated covariates of the ordered Yi ’s. Inspired
by Stute (1993), we introduce the weighted least square loss function


n(θ) = 1

2

n∑

i=1

wi

⎡

⎣Y(i) −
dn∑

j=1

X(i) j

qn∑

k=1

θ jkψk,m(X(i) j )

⎤

⎦

2

,

for θ = (θ1, . . . , θdn )
T with θ j ’s are defined as below (6). Define

g jw(φ j , X j ) =
∑n

i=1 wi X(i) jφ j (X(i) j )
∑n

i=1 wi
, Y w =

∑n
i=1 wi Y(i)
∑n

i=1 wi
,

Y ∗ = (Y ∗
(1), . . . , Y ∗

(n))
T and g∗

j = (g∗
(1) j , . . . , g∗

(n) j )
T , where

g∗
(i) j (φ j , X j ) = (nwi )

1/2(X(i) j φ j (X(i) j ) − g jw(φ j , X j )), Y ∗
(i) = (nwi )

1/2(Y(i) − Y w).

Then the weighted least squares loss function is equivalent to


n(θ) = 1

2n

∥
∥
∥
∥
∥
∥

Y ∗ −
dn∑

j=1

g∗
j (φnj , X j )

∥
∥
∥
∥
∥
∥

2

,

where ‖ · ‖ is L2 norm.
We then impose two penalty functions to the loss function to solve a regulariztion

problem

min
θ

Qn(θ) = min
θ


n(θ) + P1
λ1

(θ) + P2
λ2

(θ),

where the penalty P1
λ1

(θ) aims to specify the model structure and P2
λ2

(θ) is for vari-

able selection with tuning parameters λ1 and λ2. It is convenient to take P2
λ2

(θ) as
∑dn

j=1 P2(‖θ j‖; λ2) with P2(·) being a penalty function. To decide P1
λ1

(θ), we note
by de Boor (1978) that

φ′
nj (x j ) = (Cξ θ j )

T ψqn−1,m−1(x j ),
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where Cξ is defined as in Appendix. The problem of structure identification is then
transformed into that of group selection. As a result, we can take

P1
λ1

(θ) =
dn∑

j=1

P1(‖Cξ θ j‖; λ1)

with P1(·) being a penalty function. Thus,we obtain θ̂n , the estimator of θ , byminimiz-
ing the followingobjective function for suitable selected tuningparametersλ1, λ2 ≥ 0,

Qn(θ) = 
n(θ) +
dn∑

j=1

P1(‖Cξ θ j‖; λ1) +
dn∑

j=1

P2(‖θ j‖; λ2). (7)

Remark 1 Instead of usingRKHSnorm inpenalty function as inZhang et al. (2011),we
transform the regularization problem into double group selection procedure through
approximating the nonparametric part by spline expansions, which makes the calcu-
lation implement easier.

In our implement, we consider the following penalties:

(1) group SCAD penalty (γ = 3.7)

P(‖θ j‖; λ) =

⎧
⎪⎨

⎪⎩

λ‖θ j‖, ‖θ j‖ ≤ λ,
2γ λ‖θ j ‖−‖θ j ‖2−λ2

2(γ−1) , λ < ‖θ j‖ ≤ γ λ,

(γ 2 − 1)λ2/(2(γ − 1)), ‖θ j‖ > γλ.

(2) group MCP penalty (γ = 2
1−max

i �= j
xT

i x j /n
)

P(‖θ j‖; λ) =
{

λ‖θ j‖ − ‖θ j ‖2
2γ , ‖θ j‖ ≤ γ λ,

λ2γ
2 , ‖θ j‖ > γλ.

3 Computational algorithm

3.1 ADMM algorithm

Noting that the regularization problem is equivalent to the following constrained opti-
mization problem:

min 
n(θ) +
dn∑

j=1

P1(‖κ j‖; λ1n) +
dn∑

j=1

P2(‖τ j‖; λ2),

subject to κ j − Cξ θ j = 0,

τ j − θ j = 0 for any j = 1, . . . , dn,
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ADMM algorithm is a natural way to easy the calculation complexity. In the ADMM
algorithm, the original regularization problem is transformed to minimize the follow-
ing augmented Lagrange function with respect to (θ, κ, τ ) for given (π1,π2).

L�(θ , κ, τ ;π1,π2) = f1(θ; κ, τ ,π1,π2) +
dn∑

j=1

P1(‖κ j‖; λ1) +
dn∑

j=1

P2(‖τ j‖; λ2),

where � is a given constant and

f1(θ; κ, τ ,π1,π2) = 
n(θ) + ∑dn
j=1

�
2‖κ j − Cξ θ j‖2 +

dn∑

j=1
πT
1 j (κ j − Cξ θ j )

+
dn∑

j=1

�
2‖τ j − θ j‖2 +

dn∑

j=1
πT
2 j (τ j − θ j ).

The ADMM algorithm is described as follows.

Step 1 Initialize θ (0), κ (0), τ (0), π
(0)
1 , and π

(0)
2 .

Step 2 Compute the parameter values at the (k + 1)th step. For j = 1, . . . , dn ,

(i) take the ridge solution as the initial point and use Newton-Raphson algorithm
to solve the following optimization problem.

θ
(k+1)
j = argmin

θ j

f1(θ; κ (k), τ (k),π
(k)
1 ,π

(k)
2 ).

(ii) update κ
(k+1)
j and τ

(k+1)
j by

κ
(k+1)
j = argmin

κ j

{
P1(‖κ j‖; λ1) + �

2
‖κ j − Cξ θ

(k+1)
j + 1

�
π

(k)
1 j ‖2

}
,

τ
(k+1)
j = argmin

τ j

{
P2(‖τ j‖; λ2) + �

2
‖τ j − θ

(k+1)
j + 1

�
π

(k)
2 j ‖2

}
.

(iii) update π
(k+1)
1 j and π

(k+1)
2 j with

π
(k+1)
1 j = π

(k)
1 j + �(κ

(k+1)
j − Cξ θ

(k+1)
j ),

π
(k+1)
2 j = π

(k)
2 j + �(τ

(k+1)
j − θ

(k+1)
j ).

Step 3 Repeat Step 2 until ‖θ (k+1) − θ (k)‖∞ is small enough, where ‖ · ‖∞ is the
supremum norm.

This ADMMalgorithm is efficient and easily implemented. In fact, for somewidely
used penalties such as the group MCP and the group SCAD, κ (k+1)

j and τ
(k+1)
j have
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closed forms. We list them as follows with the notations d j = Cξ θ
(k+1)
j − π

(k)
1 j /�,

S(d j ; λ1) = (1 − λ1/‖d j‖)+d j and e j = θ
(k+1)
j − π

(k)
2 j /�.

(1) For the group SCAD penalty,

κ
(k+1)
j =

⎧
⎪⎨

⎪⎩

S(d j ; λ1/�), ‖d j‖ ≤ λ1 + λ1/�,(
�(γ−1)−γ λ1/‖d j‖

)
d j

�γ−�−1 , λ1 + λ1/� < ‖d j‖ ≤ γ λ1,

d j , ‖d j‖ > γλ1.

(2) For the group MCP penalty,

κ
(k+1)
j =

{
S(

�d j
�−1/γ ; λ1

�−1/γ ), ‖d j‖ ≤ γ λ1,

d j , ‖d j‖ > γλ1.

For both penalties, τ (k+1)
j can be updated using the same closed form as κ

(k+1)
j except

replacing d j by e j .

3.2 Tuning parameter selection

The selection of the tuning parameters has great influence on the performance of
the algorithm. Commonly used selection criteria include AIC (Akaike 1973), BIC
(Schwartz 1978) and GCV (Craven and Wahba 1979). As our proposed method has
double penalty functions, we adopt the generalized cross validation (GCV) criterion
combining the ideas suggested by Robert and Gray (1992) to calculate the degree of
freedom. The GCV value is defined as

GCV(λ1, λ2) = 
n(θ)

{1 − d(λ1, λ2)/n}2 , (8)

where the degree of freedom d(λ1, λ2) includes two tuning parameters. By Robert
and Gray (1992), d(λ1, λ2) is taken as

d(λ1, λ2) = (qn − 2)
dn∑

j=1

‖Cξ θ̂nj‖0 +
dn∑

j=1

‖̂θnj‖0,

where ‖ · ‖0 means 0−norm. And the optimal value of (λ1, λ2) is given by

(̂λ1, λ̂2) = argmin
(λ1,λ2)

GCV(λ1, λ2).

4 Asymptotic properties

To describe the theoretical results, we first introduce some notations. Let H and G be
the distribution functions of Y and C . Define τY , τT and τC to be the end points of the
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support of Y , T and C . Denote

F̃0(x, t) =
{

F0(x, t), t < τY ,

F0(x, τY −) + F0(x, {τY })I (τY ∈ A), t ≥ τY ,

where F0 is the joint distribution of (X, T ) and A represents the set of atoms of H .
We use the notation X M to represent a vector or a matrix consisting of (X j , j ∈ M)

with M being an index set. Let �min(·) and �max(·) be the minimal and maximal
eigenvalues of a matrix respectively.

The following conditions are required technically in the process of theoretical
derivation.

(C1) The covariate X is bounded and the true regression parameter β0 belongs to an
open subset of R|M2|.

(C2) E(ε|X) = 0 and E(T 2) < ∞;
(C3) T and C are conditional independent given X and P(T ≤ C |T , X) = P(T ≤

C |T );
(C4) There exists a small positive constant ε such that P(δ = 1|X) > ε and P(τC >

τT |X) > ε almost surely with respect to the probability measure of X ;
(C5) For all (t, x) ∈ [0, τT ]×[α1, α2]dn , the joint density f (t, x, δ) of (T , X, δ = 1)

satisfies c1 ≤ f (t, x, δ) ≤ c2, where 0 < c1 < c2 < ∞ are two constants;
(C6) Let �i = E[XT

Mi
XMi ] and define ρi = �min(�i ) for i = 1, 2. There exists a

positive constant r > 0 such that 0 < r < min{ρ1, ρ2} ≤ max{ρ1, ρ2} = O(1);
(C7) Denote that ρ∗

n = �max(E(XT X)). We suppose that the concave penalty
functions P1(‖θ‖; λ1) and P2(‖θ‖; λ2) satisfy −P

′′
1 (‖θ‖; λ1) ≥ cλa

1‖θ‖−b

and −P
′′
2 (‖θ‖; λ1) ≥ cλa

2‖θ‖−b near original point for some given constants
a ∈ R, 0 ≤ b ≤ 2 and c > 0, P ′

1(0+; λ1) = O(λ1), P ′
2(0+; λ1) = O(λ2), and

λa
1

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
→ ∞,

λa
2

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
→ ∞.

(C8) Let e(y, x) = y − g0(x) for x = (x1, . . . , xdn ). Suppose that
E[δe2(Y , X)XT

M2
XM2 ] < ∞ and

∫ |e(y, x)x j | [C(y)]1/2 F̃0(dx, dy) < ∞
for j ∈ M2, where C(y) = ∫ y−

0 [(1 − H(z))(1 − G(z))]−1G(dz).

Condition (C1) gives the support set of the true parameter. (C2) allows the distribution
of ε to depend on convariates and allows the heteroscedastic error terms, which is
weaker than Buckley–James method (Buckley and James 1979) and the rank based
method (Jin et al., 2003). (C3) shows that the censoring indicator δ is conditionally
independent of the covariate X given the failure time T and the censoring time is
considered noninformative, which is the same as that for the Kanplan-Meier estimtor.
(C4) and (C5) are regularity conditions for additive survival models. (C6) and (C8)
are quite mild for theoretical justification of the Stute estimator. It deserves to note
that when the dimension of non-zero effect covariate is finite, Condition (C6) holds
trivially if {X j , j ∈ M1 ∪ M2} is linearly uncorrelated. Condition (C7) determines
the order of tuning parameters λ1 and λ2. In addition, (C7) makes the assumption
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on the maximum eigenvalue of the correlation matrix E(XT X). This condition has
been used in many literatures (e.g. Joseph 2013) to ensure some near-orthogonality
between important and non-important covariates. The requirement for penalties in
(C7) is satisfied by most general used penalty functions, such as the group SCAD and
group MCP penalty.

For example, for the group SCAD penalty P(‖θ‖; λn),

−‖θ‖b P
′′
(‖θ‖; λn) = ‖θ‖b

γ − 1
1{λn<‖θ‖≤γ λ1} >

λb
n

γ − 1
.

Then there exists constant c such that −P
′′
(‖θ‖; λn) ≥ cλa

n‖θ‖−b if λb−a
n → ∞; for

the group MCP penalty P(‖θ‖; λn), we have

n − ‖θ‖b P
′′
(‖θ‖; λn) = ‖θ‖b

γ
1{‖θ‖≤γ λn}.

So there exists constant c such that −P
′′
(‖θ‖; λn) ≥ cλa

n‖θ‖−b as long as γ λa
n → 0

and γ λn → ∞.

Define φ̂nj (x j ) = θ̂
T
njψqn ,m(x j ) to be the estimator of φ0 j (x j ), and we write the

corresponding estimators for φ̃0 j and non-zero valued β0 j in (5) as φ̂n = (φ̂nj , j ∈
M̂1)

T and β̂n = (φ̂nj , j ∈ M̂2)
T respectively. In themain results, we consider the case

that d4
n/n → 0. Recalling that p > 0.5 is a smoothness parameter for φ0 j , Theorem

1 presents the convergence rate of the estimators β̂n and φ̂n .

Theorem 1 Suppose Conditions (C1)–(C7) hold. If the tuning parameters λ1 =
o(dnn−ν) and λ2 = o(dnn−ν) with 0.25/p < ν < 0.5, then ‖β̂n − β0‖2 =
Op(d2

n (n−(1−ν) + n−2ν p)) and ‖φ̂n − φ̃0‖2 = Op(d2
n (n−(1−ν) + n−2ν p)).

Theorem 2 Suppose Conditions (C1)–(C8) hold. If the tuning parameters satisfy that
λ1 = o(dnn−ν) and λ2 = o(dnn−ν), then for 0.25/p < ν < 0.5 and ν(p + q) > 0.5,

(i) lim
n→∞ P (̂θnj = 0 : j ∈ M3) = 1 and lim

n→∞ P(Cξ θ̂nj = 0 : j ∈ M2) = 1;

(ii) For any u ∈ R
|M2| with ‖u‖2 = 1,

√
nuT �−1/2(β̂n − β0)

d−→ N (0, 1), where
� = �−1

2 �3�
−1
2 , �3 = V ar(δγ0(Y )(Y −g0(X))XM2 + (1−δ)γ1(Y )−γ2(Y ))

with γi (y)’s i = 0, 1, 2 defined as in Appendix.

Theorem 2 shows that the proposed estimators enjoy an asymptotic oracle property.
Specifically, result (i) implies that the estimators are consistent in terms of variable
selection and structure identification, i.e., they can select important variables and iden-
tify the important non-parametric components simultaneously with high probability;
result (ii) states that the estimator of regression coefficient for important linear vari-
ables is asymptotically distributed as normal with mean zero and variance-covariance
matrix as discribed in the theorem.
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5 Simulation studies

In this section, we conduct some simulation studies to evaluate the performance of
our proposed method by using different penalties including group SCAD and group

MCP. The parameter γ is set to 3.7 in group SCAD and γ = 2(1 − max
i �= j

xT
i x j/n)

−1
in

groupMCPaccording to Fan andLi (2001) andZhang (2010) , respectively. The tuning
parameters λ1 and λ2 are selected using the GCV criterion given by (9). The sample
size is taken as n = 400 and all the simulation results are based on 100 replications
using R software. We compare the proposed method with two competeing approaches
in terms of the model selection accuracy as well as estimation accuracy. The first one
is the LAND method by Zhang et al. (2011) and the second is the oracle estimate
which is obtained by assuming the true model structure is known.

To evaluate the estimation accuracy of the estimator μ̂, we report the relative model
error defined by Fan and Li (2002). We first define the model error of the estimator
μ̂(x) as

ME(μ̂) = E{μ̂(x) − μ(x)}2 = E{exp(ĝ(x)) − exp(g0(x))}2,

whereμ(x) = E(Y |x) and ĝ is the proposed estimator of g0. The relative model error
(RME) of the proposed model to the linear AFT model is defined as

RME(μ̂, μ̃) = ME(μ̂)

ME(μ̃)
,

where ME(μ̃) represents the model error under the linear AFT model. We present
the median of the relative model error (MRME) over 100 replications. To evaluate
performance of the comparedmethods in structure selection,we report the true positive
rate that an important variable is correctly selected.

The survival time is generated fromAFTmodel (3). The covariates are generated as
follows. We first generate the covariates X1, . . . , X p from an AR(1) structure model
with X1 ∼ N (0, 1) and Cov(X j1 , X j2) = 0.4| j1− j2| for j1, j2 = 1, . . . , p, and then
we trim X to the range [−1, 1]. The error ε is distributed by N (0, 1). The censoring
times are independently generated from the uniform distribution U [0, c], where c is
chosen to yield about 20% censoring rate. We use cubic splines to select the important
variables and to identify the structure.

Example 1 We set p = 15 and g0 takes the form

g0(x) = 2x1 − 2x2 + 2 f1(x3),

where f1(x) = 2 sin(2πx). In thismodel, the first three variables are important, among
which the first two have linear effect and the third has nonlinear effect.

Example 2 We set p = 15 and g0 takes the form

g0(x) = x1 + 1.5x2 − 0.8x3 + 0.5 f1(x4) + 2 f2(x5) − 0.3 f3(x6),

123



Model pursuit and variable selection in the additive accelerated... 2639

where f1(x) = 9x2 − 6x, f2(x) = sin(2πx), f3(x) = 2 exp(2x) − 3 log(2 + x). In
this model, the first six variables are important with the first three having linear effect
and others having non-linear effect.

Tables 1, 2, 3, and 4 summarize the simulation results. Tables 1 and 3 report the rate
of of each component being selected as an important variable and theMRME over 100
replications in Examples 1 and 2, respectively. It can be seen that the proposedmethods
performs better than LAND in terms of correctly selecting the important variables and
smaller MRME. The MRME’s are less than 1 for all the considered methods, which
suggests that the proposed methods and LAND perform better than the classical AFT
regression method which omits the nonlinear effect. Tables 2 and 4 report the rates of
each important variable being identified as having a nonlinear effect in Examples 1
and 2, respectively. It can be seen that the proposed method can correctly identify the
nonlinear effects with higher probability than LAND method. Tables 1-4 reveal that
LAND rules out unimportant variables with higher rate and selects important variables
with less rates. Hence, LAND selects sparser model compared with proposed method,
while the selected model by using the latter method includes true important linear
effect and non-linear effect variables with higher rate.

Figure 1 displays the functional estimates of g j (x j ), j = 1, 2, 3 and their 95%
confidence intervals inExample1byusinggroupSCAD.Thepointwise standard errors
are calculated based on 200 bootstrap replications. Figure 2 shows the fitted functions
of g j (x j ), j = 1, . . . , 6 in Example 2 by using group SCAD selector. In these figures,
the fitted functions are close to the real ones, and the pointwise confidence intervals
cover the real value of the functions perfectly. So our proposed method by using two
kinds of comparable penalties can efficiently estimate the regression coefficients of
linear effect covariates, the nonparametric functions of non-linear effects and their
pointwise standard errors.

Our proposedmethod works for high-dimensional data. However, it is often that the
dimension of covariates is ultrahigh. The two-step selection procedure for ultrahigh
dimensional data has been extensively used in the existing studies (Neykov et al.
2014, Ma et al. (2006). Therefore, we recommend a two-step methods when applying
our proposed method to the ultrahigh dimensional censored data. We first adapt the
SIS procedure (e.g. Zhang et al. 2018) to reduce the ultrahigh dimension model to
a moderate scale n/(3 log(n)) and then apply our proposed method to analysis the
reduced model. We evaluate the performance of proposed two-step method via the
following example.

Example 3 The data is generated following the same model as in Example 2 but an
ultra-high dimensional case with p = 2500, where the first six variables are important.
The screening procedure by Zhang et al. (2018) is used to screening out the unrelated
variables in the first step. Tables 5 reports the simulation results including the average
of selected model size, MRME and the true positive rate (TPR) which is defined as
the rate that the all the important variables are selected over 100 replications. 6 show
the rate of each important variables being selected. It can be seen that the two-step
methods works well for ultra-high dimensional data.

The theoretical results of proposed method is obtained under completely non-
informative censoring assumption, which may be violated in practice. We conduct
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Table 2 The rate that important
components are selected as
nonlinear effect in Example 1

Method x1 x2 x3

GSCAD .09 .15 .94

GMCP .10 .14 .91

LAND .03 .02 .56

TRUE 0 0 1

GSCAD, GMCP: the proposed method with the group SCAD and
group MCP respectively, TRUE: the oracle method with the model
structure known, LAND: linear and nonlinear discoverer in Zhang
et al. (2011)

additional simulations to examine the robustness of proposed method when this
assumption is violated.

Example 4 We generate the data similar to Example 1, but the error ε is distributed by
N (0, σ 2), and the censoring time is generated from the uniform distribution U [0, c]
with c = (2 + exp(ε))c1 if X1 < 0 and c = (3 + exp(ε))c1 otherwise, where c1 is
taken such that the censoring rate is 20% around. Thus the censoring time is correlated
with the failure time via the covariate X1 and the residual ε, where σ is chosen as 0.3,
0.5 and 1 to control the correlation between failure and censoring time.

Table 7 reports the rate of each component being selected as an important variable
and MRME. Table 8 reports the structure identification results. It can be found that
both the proposed methods and LAND method are robust when the assumption of the
completely non-informative censoring is violated.

6 Applications

DLBCL is the gene-expression data set fromdiffuse largeB-cell lymphomas published
in Rosenwald (2002). There includes 3583 gene expression data from 112 tumors with
the germinal center B-like phenotype and from 82 tumors with the activated B-like
phenotype in R package DLBCL. In addition, survival information is available from
190 patients. To identify genes whose expression levels are significantly associated
with survival, we first delete two samples with missing data and apply global normal-
ization to gene expression levels so that they are comparable for different patients. To
avoid the instability caused by a high dimensional matrix, we adapt SIS procedure to
reduce the model to a moderate scale n/4.

We then apply the proposed method and competing LAND approach to identify
model structure and select important variables using 188 patients data with 47 gene
expressions. The analysis results are summarized in Fig. 3. All selectors identify that
the gene expressions have only linear effects on the survival time, where group MCP
selects 16 important linear effect gene expressions, group SCAD selects 23 important
variables, and LAND identifies only one variable as important variable. Thus, LAND
identifies much more sparser models than the proposed method, which is consistent
with our simulation results.
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Table 4 The rate that important
components are selected as
nonlinear effect in Example 2

Method x1 x2 x3 x4 x5 x6

GSCAD .37 .34 .35 1 1 .71

GMCP .35 .37 .32 1 1 .68

LAND .05 .08 .01 .90 .23 .85

TRUE 0 0 0 1 1 1

GSCAD, GMCP: the proposed method with the group SCAD and
group MCP respectively, TRUE: the oracle method with the model
structure known, LAND: linear and nonlinear discoverer in Zhang
et al. (2011) respectively
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Fig. 1 Estimates of functions g j (x j ), j = 1, . . . , 3 by group SCAD selector in Example 1. The solid line
is the true function, the dot and dash line is the pointwise mean estimate, and the dotted lines are the 95%
pointwise confidence intervals
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pointwise confidence intervals
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Table 5 The results of variable
selection in Example 3

Method #S TPR MRME

GSCAD 8.69 .992 .871

GMCP 8.32 .987 .856

TRUE 6 1 −
GSCAD, GMCP: the proposed method with the group SCAD and
group MCP respectively. #S: the number of selected important vari-
ables; TPR: the true positive rate; MRME: the median of the relative
model error;

Table 6 The rate that important
components are selected as
nonlinear effect in Example 3

Method x1 x2 x3 x4 x5 x6

GSCAD .39 .34 .39 1 1 .73

GMCP .45 .36 .43 1 1 .75

TRUE 0 0 0 1 1 1

GSCAD, GMCP: the proposed method with the group SCAD and
group MCP respectively

7 Concluding remarks

In this paper, we have developed a double penalized weighted least square procedure
to automatically eliminate the coefficients associated with inactive variables, pursuit
model structure, and estimate the nonzero effects simultaneously in additive AFT
model. We show that the proposed approach can consistently identify the true model
under mild assumptions and the estimates of the coefficients have the oracle property.
An ADMM algorithm is applied to solve the optimization problem. Numerical calcu-
lations show that the proposed method performs well in selecting important variables,
identifying the model structure and estimating the effects. We have a couple of cau-
tionary notes on the limitations of the proposed method. Firstly, our method is based
on Stute’s weighted least square loss function. The validity of the proposed method
relies on the assumption that the failure time and censoring time are independent. In
the Buckey–James and rank based estimators, it requires only some conditional inde-
pendent assumption. It is worthy to extend our proposed method to Buckey–James
and rank based method. Secondly, to deal with more practical data sets, we can further
consider a partially linear model

Ti =
p∑

j=1

β ′Zi j +
d∑

j=1

g j (Xi j ) + εi , (9)

where the covariates Z j ’s are pre-known to have linear effects (e.g. the categorical
variables). The proposedmethod is readily extended to this kind of model. Thirdly, our
theoretical results are obtained under the assumption of non-informative censoring,
which may not be true in most of practices. Extension of the proposed method to
non-informative censoring assumption is worth of future studies. Finally, this paper
tackles the theoretical problems under the scenario that the covariate dimension is the
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Table 8 The rate that important
components are selected as
nonlinear effect in Example 4

Method σ x1 x2 x3

GSCAD 0.3 .03 .13 .88

0.5 .05 .11 .89

1 .11 .10 .93

GMCP 0.3 .06 .15 .89

0.5 .07 .12 .93

1 .07 .15 .93

LAND 0.3 .11 .12 .58

0.5 .14 .11 .43

1 .17 .17 .37

TRUE − 0 0 1

GSCAD, GMCP: the proposed method with the group SCAD and
group MCP respectively, LAND: linear and nonlinear discoverer in
Zhang et al. (2011)
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Fig. 3 The results of selection and estimation for the DLBCL data by using group MCP, group SCAD and
LAND selectors

polynomial order of sample size. For ultrahigh dimensional data, we recommend a
two-step method, i.e., reducing the dimension to moderate scale first by using of the
existing screening methods (e.g. Liu et al. 2018; Zhang et al. 2018) and then applying
our proposed method. The further research for the ultrahigh dimensional data is still
in progress.
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Appendix: Proofs

Proof of Proposition 1. First, the fact that φ j (x) = β j + φ̃ j (x)with β j = ∫ α2
α1

φ j (x)dx

and φ̃ j (x) = φ j (x) − β j for j = 1, . . . , p implies that the decomposition (4)
holds. To show the uniqueness of the decomposition, we assume that there exist
(β

(l)
1 , . . . , β

(l)
dn

)′ ∈ R
dn and (φ̃

(l)
1 , . . . , φ̃

(l)
dn

)′ ∈ H̃dn , l = 1, 2 such that

dn∑

j=1

x j [β(1)
j + φ̃

(1)
j (x j )] ≡

dn∑

j=1

x j [β(2)
j + φ̃

(2)
j (x j )]. (10)

It suffices to prove that β(1)
j = β

(2)
j and φ̃

(1)
j (x) ≡ φ̃

(2)
j (x) for each j = 1, . . . , dn . To

the end, we note that (10) implies that

dn∑

j=1

x j

( [
β

(1)
j − β

(2)
j

]
+

[
φ̃

(1)
j (x j ) − φ̃

(2)
j (x j )

] )
≡ 0.

When the covariates are not linearly dependent, by the Fubini’s theorem, there exists
(x01 , . . . , x0j−1, x0j+1, . . . , x0dn

) ∈ [α1, α2]dn−1 such that

x j

(
[β(1)

j − β
(2)
j ] + [φ̃(1)

j (x j ) − φ̃
(2)
j (x j )]

)
≡ −

∑

i �= j

x0i

(
[β(1)

i − β
(2)
i ] + [φ̃(1)

i (x0i ) − φ̃
(2)
i (x0i )]

)
.

Writing −∑
i �= j x0i

(
[β(1)

i − β
(2)
i ] + [φ̃(1)

i (x0i ) − φ̃
(2)
i (x0i )]

)
as C j and using the con-

dition that E(β
(l)
j X j + X j φ̃

(l)
j (X j )) = E(X jφ(X j )) for l = 1, 2, we have

(β
(1)
j − β

(2)
j ) + [φ̃(1)

j (x) − φ̃
(2)
j (x)] ≡ 0 (11)

for each j = 1, . . . , dn . Noting that φ̃
(l)
j (x) ∈ H̃, integrating two sides of (11) on

variable x from α1 to α2 gives that

β
(1)
j = β

(2)
j .

Combining with (11), we get that

φ̃
(1)
j (x) ≡ φ̃

(2)
j (x).

��

Let Pn be the empirical measure of {(Yi , δi , X i ) : i = 1, 2, . . . , n}, and
P be the probability measure of (Y , δ, X). Define g∗

nj (X j ) = g∗
j (φnj , X j ) and
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g∗
0 j (X j ) = g∗

j (φ0 j , X j ) for φnj ∈ 
n . Then denote gn(X) = ∑dn
j=1 X jφnj (X j ),

g∗
n(X) = ∑dn

j=1 g∗
nj (X j ) and g∗

0(X) = ∑dn
j=1 g∗

0 j (X j ). Define

Cξ =

⎛

⎜
⎜
⎜
⎜
⎝

− m
um+1−u1

m
um+1−u1

0 · · · 0
0 − m

um+2−u2
m

um+2−u2
· · · 0

.

.

.
.
.
.

. . .
. . .

.

.

.

0 0 · · · − m
uqn+m−1−uqn−1

m
uqn+m−1−uqn−1

⎞

⎟
⎟
⎟
⎟
⎠

(qn−1)×qn ,

for u0 = · · · = um = ξ0, um+1 = ξ1, . . . , uqn−1 = ξKn−1, uqn = · · · = uqn+m =
ξKn . Let

P−→ and
d−→ represent convergence in probability and in distribution, respec-

tively, as n → ∞ unless otherwise stated. Similar to Lemma A5 in Huang (1999), the
following lemma can be established first.

Lemma 1 Assume that Conditions (C1)–(C4) hold for any 1 ≤ j ≤ dn. Then there
exists a function φnj ∈ 
n such that

‖g∗
n − g∗

0‖∞ = ‖gn − g0‖∞ = Op(dn(n−ν p + n−(1−ν)/2))

with Pnδgnj = 0.

Proof According to Corollary 6.21 of Schumaker (1981), for any 1 ≤ j ≤ dn ,
there exists φnj ∈ 
n such that ‖φnj − φ0 j‖∞ = O(n−ν p). We define g̃n j (X j ) =
X jφnj (X j ) and

gnj = g̃n j − n−1
δ Pnδg̃n j ,

where nδ = ∑n
i=1 δi/n. Then it is easy to see that Pnδgnj = 0 for any 1 ≤ j ≤ dn .

Furthermore, we note that

‖gnj − g0 j‖∞ ≤ ‖gnj − g̃n j‖∞ + ‖g̃n j − g0 j‖∞ � I1n + I2n, (12)

where

I1n = ‖gnj − g̃n j‖∞ ≤ c‖Pnδg̃n j‖∞ ≤ c(‖(Pn − P)δg̃n j‖∞ + ‖P(δg̃n j − δg0 j )‖∞),

with c being a constant independent of n. By Lemma 3.4.2 in van der Vaart andWellner
(1996), we have (Pn −P)δg̃n j = Op(n−1/2nν/2). And the definition of φnj shows that
‖P(δg̃n j − δg0 j )‖∞ ≤ E(δ)‖g̃n j − g0 j‖∞ = O(n−ν p). Hence we have

I1n = Op(n
−ν p + n−(1−ν)/2). (13)

In addition,
I2n = ‖X jφnj − X jφ0 j‖∞ = Op(n

−ν p). (14)
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Plugging (13) and (14) into (12), we can get ‖gnj − g0 j‖∞ = Op(n−ν p + n−(1−ν)/2).
By using the property of Kaplan–Meier weights (Stute 1993) and Lemma 3.4.2 in van
der Vaart and Wellner (1996), we have

‖g∗
nj − g∗

0 j‖∞ ≤ c1‖(X jφnj − X jφ0 j ) − (g jw(φnj , X j ) − g jw(φ0 j , X j ))‖∞

≤ c1‖g̃n j − g0 j‖∞ + c2
∥
∥
∥

n∑

i=1

ωi X(i) jφnj (X(i) j ) − δg̃n j

∥
∥
∥∞

+c3
∥
∥
∥

n∑

i=1

ωi X(i) jφ0 j (X(i) j ) − δg0 j‖∞ + c4‖δg̃n j − δg0 j

∥
∥
∥∞

= Op(n
−ν p) + Op(n

−(1−ν)/2) + Op(n
−1/2) + Op(n

−ν p)

= Op(n
−ν p + n−(1−ν)/2),

where ci ’s i = 1, . . . , 4 are finite constants. Thus, we have

‖g∗
n − g∗

0‖∞ = ‖gn − g0‖∞ = Op(dn(n−ν p + n−(1−ν)/2)).

��
Define ĝ∗

nj (X j ) = g∗
j (φ̂nj , X j ) and ĝ∗

n(X) = ∑dn
j=1 ĝ∗

nj (X j ), then we have the
following lemma.

Lemma 2 Assume that Conditions (C1)–(C7) hold. If 0.25/p < ν < 0.5, then ‖ĝ∗
n −

g∗
n‖2 = op(d2

n q−1
n ) and

∥
∥
∥
∥
1

dn
(ĝ∗

n − g∗
n)

∥
∥
∥
∥∞

= op(1).

Proof Let ηnj ∈ 
n such that ηnj (x) = θ∗T
nj ψqn ,m(x) and ‖ηnj (x)‖2 = O(q−1

n ).

Denote h∗
n(X) = ∑dn

j=1 g∗
j (ηnj , X j ), then we have ‖ 1

dn
h∗

n(X)‖2 = Op(q
−1
n ). Define

Hn(α) = Qn(θn + αθ∗
n). To prove this lemma, it is sufficient to show that for any

α0 > 0, H ′
n(α0) > 0 and H ′

n(−α0) < 0 with probability tending to one.
Note that

Hn(α0) = 1

2n
‖Y ∗ − (g∗

n + α0h∗
n)(X)‖2 +

dn∑

j=1

P1(‖Cξ (θnj + α0θ
∗
nj )‖; λ1)

+
dn∑

j=1

P2(‖θnj + α0θ
∗
nj‖; λ2).

Then

H ′
n(α0) = −Pn

[
h∗

n

(
Y ∗ − g∗

n − α0h∗
n

)]

+
dn∑

j=1

P ′
1(‖Cξ (θnj + α0θ

∗
nj )‖; λ1)

(Cξ θ
∗
nj )

T Cξ (θnj + α0θ
∗
nj )

‖Cξ (θnj + α0θ
∗
nj )‖
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+
dn∑

j=1

P ′
2(‖θnj + α0θ

∗
nj‖; λ2)

θ∗T
nj (θnj + α0θ

∗
nj )

‖θnj + α0θ
∗
nj‖

� H1 + H2 + H3.

We consider the first part

H1 = −Pn
[
h∗

n(Y
∗ − g∗

n)
] + α0Pn(h∗

n · h∗
n)

= −Pn
[
h∗

n(Y
∗ − g∗

n)
] + α0P‖h∗

n(X)‖2 + α0(Pn − P)(h∗
n · h∗

n)

= −Pn
[
h∗

n(Y
∗ − g∗

n)
] + c0α0d2

n n−ν + Op(n
−1/2d2

n ),

where c0 > 0 is a constant and the first term

Pn
[
h∗

n(Y
∗ − g∗

n)
] = (Pn − P)

[
h∗

n(Y
∗ − g∗

n)
] + P

[
h∗

n(Y ∗ − g∗
n)
]

� J1n + J2n .

In J1n , ‖Y ∗ −g∗
n‖∞ = ‖Y ∗ −g∗

0 +g∗
0 −g∗

n‖∞ ≤ Op(1)+ Op(dn(n−ν p +n−(1−ν)/2)).

Since d4
n/n → 0, 0.25/p < ν < 0.5, we have ‖ 1

d2
n

h∗
n(Y

∗ − g∗
n)‖∞ ≤ M0 with a

constant M0. Let

μ0(η) =
{
1

d2
n

h∗
n · (Y ∗ − g∗

n) :
∥
∥
∥
∥
1

dn
h∗

n

∥
∥
∥
∥ ≤ η,

∥
∥
∥
∥
1

dn
(g∗

n − g∗
0)

∥
∥
∥
∥ ≤ η

}

.

Then similar to Lemma A2 and Corollary A1 in Huang (1999), we have

log N�(ε, μ0(η), L2(P)) ≤ c0qn log(η/ε),

for any ε < η with a constant c0 and

J�(η, μ0, L2(P)) ≤ c0q1/2
n η.

Here we can take η = q−1/2
n . Combining the results of Lemma 3.4.2 in van der Vaart

and Wellner (1996) and Lemma A1 in Huang (1999), we get

J1n = Op(1) · d2
n · n−1/2

(
q1/2

n η + qn√
n

M0

)
= Op

(
n−1/2d2

n

)
.

We then consider J2n as

J2n = P
[
h∗

n(g
∗
n − g∗

0)
] = d2

n · P
[h∗

n

dn
· g∗

0 − g∗
n

dn

]
,
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which gives that

|J2n| ≤ Op(1) · d2
n · ∥∥h∗

n

dn

∥
∥ · ∥∥g∗

0 − g∗
n

dn

∥
∥ = Op

(
d2

n (n−(1/2+p)ν + n−1/2)
)
.

Therefore,

H1 ≥ c0α0d2
n n−ν + Op(d

2
n n−1/2) + Op(d

2
n (n−(1/2+p)ν + n−1/2)).

Next we focus on H2 and H3. Let B j (X j ) = (ψqn ,m(X1 j ), . . . ,ψqn ,m(Xnj ))
T . By

Lemma3ofHuang andMa (2010), it follows that there are constants 0 < c3 < c4 < ∞
such that

c3q−1
n ≤ �min

( B j (X j )
T B j (X j )

n

)
≤ �max

( B j (X j )
T B j (X j )

n

)
≤ c4q−1

n

with probability tending to one. Then we have ‖θ∗
nj‖ = Op(1) and ‖Cξ θ

∗
nj‖ = Op(1)

by using of the fact that ‖θ∗T
nj ψqn ,m(X j )‖ = O(q−1/2

n ). Observing that

|H2| =
∣
∣
∣
∣
∣
∣

dn∑

j=1

P ′
1(‖Cξ (θnj + α0θ

∗
nj )‖; λ1)

(Cξ θ
∗
nj )

T Cξ (θnj + α0θ
∗
nj )

‖Cξ (θnj + α0θ
∗
nj )‖

∣
∣
∣
∣
∣
∣

≤
dn∑

j=1

P ′
1(‖Cξ (θnj + α0θ

∗
nj )‖; λ1)

∣
∣(Cξ θ

∗
nj )

T Cξ (θnj + α0θ
∗
nj )

∣
∣

‖Cξ (θnj + α0θ
∗
nj )‖

,

by using of Condition (C9) and λ1 = o(dnn−ν), we have

|H2| ≤ P ′
1(0+; λ1)

dn∑

j=1

‖Cξ θ
∗
nj‖ ≤ O(λ1)Op(dn) = op(d

2
n n−ν).

The same arguments as above give that |H3| ≤ op(d2
n n−ν) if λ2 = o(dnn−ν).

Consequently, H ′
n(α0) ≥ c0α0d2

n n−ν + op(d2
n n−ν) > 0 with probability tending

to one. Similarly, we can prove that H ′
n(−α0) < 0 with probability tending to one.

Therefore, the boundness of covariate X in Condition (C2) ensures that

‖ĝ∗
n − g∗

n‖2 = op(d
2
n q−1

n ) = op(d
2
n n−ν).

Subsequently, Lemma 7 of Stone (1986) yields that ‖ 1

dn
(ĝ∗

n − g∗
n)‖∞ = op(1). ��

To verify the consistency of parameter estimation, we need the following lemma.
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Lemma 3 Define m0(x, y∗; g∗) = (y∗ − g∗(x))2/d2
n . Denote M0 = Pm0 and Mn =

Pnm0 = 1

n
‖Y ∗ − g∗(X)‖2/d2

n . Under the conditions of Lemma 1, for any function

g(·) satisfying E[δg(X)] = 0, there exists a constant c > 0 such that

Pm0(·; g∗) − Pm0(·; g∗
n) = c

∥
∥
∥
∥
1

dn
(g∗ − g∗

n)

∥
∥
∥
∥

2

+ Op(n
−2ν p + n−(1−ν)).

Proof Let h∗ = g∗ − g∗
0 and

L(s) = Pm0(·; g∗
0 + sh∗) − Pm0(·; g∗

0)

= 1

d2
n

[
P(Y ∗ − (g∗

0 + sh∗))2 − P(Y ∗ − g∗
0)

2]

= 1

d2
n
P(−2sY ∗h∗ + 2sg∗

0h∗ + s2h∗2).

Since L ′(0) = 0 and L ′′(0) = 2P(h∗2)/d2
n , there exists a constant c > 0, such that

Pm0(·; g∗) − Pm0(·; g∗
0) = c

∥
∥
∥
∥
1

dn
(g∗ − g∗

0)

∥
∥
∥
∥

2

. Similarly, we have

Pm0(·; g∗
n) − Pm0(·; g∗

0) = Op(1)

∥
∥
∥
∥
1

dn
(g∗

n − g∗
0)

∥
∥
∥
∥

2

.

By Lemma 1, Pm0(·; g∗
n) − Pm0(·; g∗

0) = Op(n−2ν p + n−(1−ν)). Combining the
following equality

Pm0(·; g∗) − Pm0(·; g∗
n) =

(
Pm0(·; g∗) − Pm0(·; g∗

0)
)

+
(
Pm0(·; g∗

0) − Pm0(·; g∗
n)
)

with the triangle inequality

‖g∗ − g∗
n‖2 − ‖g∗

n − g∗
0‖2 ≤ ‖g∗ − g∗

0‖2 ≤ ‖g∗ − g∗
n‖2 + ‖g∗

n − g∗
0‖2,

we have

Pm0(·; g∗) − Pm0(·; g∗
n) = c

∥
∥
∥
∥
1

dn
(g∗ − g∗

n)

∥
∥
∥
∥

2

+ Op(n
−2ν p + n−(1−ν)),

where c > 0 is a finite constant. ��
Proof of Theorem 1. Let

V = Mn(g∗) − Mn(g∗
n) − (M0(g

∗) − M0(g
∗
n))

= Pnm0(·; g∗) − Pnm0(·; g∗
n) − (Pm0(·; g∗) − Pm0(·; g∗

n))

= (Pn − P)(m0(·; g∗) − m0(·; g∗
n)),
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By Lemma 3.4.2 of van der Vaart and Wellner (1996),

E sup
∥
∥
∥ 1

dn
(g∗−g∗

n )

∥
∥
∥≤η

|V | = n−1/2ηq1/2
n .

Then by Theorem 3.4.1 of van der Vaart and Wellner (1996), choosing the distance
d(ĝ∗

n , g∗
n) = −[Pm0(·; ĝ∗

n) − Pm0(·; g∗
n)] there, we have

−r21n[Pm0(·; ĝ∗
n) − Pm0(·; g∗

n)] = Op(1),

where r1n = O(n1/2q−1/2
n ) = O(n(1−ν)/2). Therefore, Pm0(·; ĝ∗

n) − Pm0(·; g∗
n) =

Op(n−(1−ν)). Thus Lemma 3 gives that ‖ 1
dn

(ĝ∗
n − g∗

n)‖2 = Op(n−2ν p + n−(1−ν)).

Combining the result in Lemma 1 that ‖g∗
n − g∗

0‖2∞ = Op(d2
n (n−2ν p + n−(1−ν))), we

have

‖ĝ∗
n − g∗

0‖2 = Op(d
2
n (n−2ν p + n−(1−ν))).

By Conditions (C2)–(C4), it follows that

Eδ
∥
∥XM1(φ̂n(XM1) − φ̃0(XM1)) + XM2(β̂n − β0)

∥
∥2 = O(d2

n (n−2ν p + n−(1−ν))).

Denoting the projection of XM2 on XM1 as W , we have

Eδ
∥
∥(XM2 − W )(β̂n − β0) + W (β̂n − β0) + XM1(φ̂n − φ̃0)

∥
∥2

= Eδ
∥
∥(XM2 − W )(β̂n − β0)

∥
∥2 + Eδ

∥
∥W (β̂n − β0) + XM1(φ̂n − φ̃0)

∥
∥2

= O(d2
n (n−2ν p + n−(1−ν))).

By Condition (C6), we obtain

‖β̂n − β0‖2 = Op(d
2
n (n−(1−ν) + n−2ν p)).

This in turn implies Eδ
∥
∥XM1(φ̂n − φ̃0)

∥
∥2 = Op(d2

n (n−(1−ν) + n−2ν p)). Therefore,

‖φ̂n − φ̃0‖2 = Op(d
2
n (n−(1−ν) + n−2ν p)).

This completes the proof of Theorem 1. ��
Proof of Theorem 2. (i) First, we prove the selection consistency of the variables.

Let θ̃n = (̃θ
T
n1, . . . , θ̃

T
ndn

)T with

θ̃nj =
{

θ̂nj , if j /∈ M3,
0, if j ∈ M3.
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Note that θ̂n satisfies
∂ Qn (̂θn)

∂θ
= 0. By the definition of θ̂n and θ̃n , we have

Qn (̂θn) − Qn (̃θn)

= ∂ Qn (̂θn)T

∂θ
(̂θn − θ̃n) − 1

2
(̂θn − θ̃n)T ∂2Qn(θ∗

n)

∂θ∂θT
(̂θn − θ̃n)

= −1

2
(̂θn − θ̃n)T ∂2Qn(θ∗

n)

∂θ∂θT
(̂θn − θ̃n)

= −1

2
θ̂

T
nM3

∂2
n(θ∗
n)

∂θ M3∂θT
M3

θ̂nM3 − 1

2

∑

j∈M3

(Cξ θ̂nj )
T (P ′′

1 (‖Cξ θ̂nj ‖; λ1) + op(1)
)
(Cξ θ̂nj )

−1

2

∑

j∈M3

θ̂
T
nj

(
P ′′
2 (‖̂θnj ‖; λ2) + op(1)

)
θ̂nj ,

where θ∗
n is between θ̂n and θ̃n .

Since θ̂n is the minimizer of Q(θ), we have Q(̂θn) ≤ Q(̃θn), which implies that

1

2
θ̂

T
nM3

∂2
n(θ∗
n)

∂θ M3∂θT
M3

θ̂nM3 ≥ −1

2

∑

j∈M3

(Cξ θ̂nj )
T (P ′′

1 (‖Cξ θ̂nj‖; λ1) + op(1)
)
(Cξ θ̂nj )

−1

2

∑

j∈M3

θ̂
T
nj

(
P ′′
2 (‖̂θnj‖; λ2) + op(1)

)
θ̂nj . (15)

Note that the left hand of Eq (15)

I1 ≤ ĉθ
T
nM3

E(X T
M3

X M3 )̂θnM3 ≤ cρ∗
n ‖̂θnM3‖2

for some constant c by the continuity of the B-spline functions and the definition
of ρ∗

n . And using Condition (C9), there exist constants a, b and c such that the
right hand of Eq (15)

I2 ≥ c(λa
1 + λa

2)‖̂θnM3‖2−b.

Thus, by the results of Theorem 1, we obtain that

Op(1)(d
2
n (n−(1−ν) + n−2ν p))b/2 ≥ ‖̂θnM3‖b ≥ Op(1)

λa
1 + λa

2

ρ∗
n

.

This shows that under the condition that
λa
1

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
and

λa
2

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
goes to infinity,

P(‖̂θnM3‖ > 0) ≤ P
( λa

1 + λa
2

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
≤ Op(1)

)
→ 0.
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Next, we prove the structure selection consistency. Assume that θ∼n
=

(θ∼
T

n1
, . . . , θ∼

T

ndn

)T with

θ∼nM2

=
{

θ̂nj , if j /∈ M2,
θ∼nj

, s.t . Cξ θ∼nj
= 0, if j ∈ M2.

Then we have

1

2

(
θ̂nM2 − θ∼nM2

)T ∂2
n(θ0n)

∂θ M2∂θT
M2

(
θ̂nM2 − θ∼nM2

)

≥ −1

2

∑

j∈M2

(Cξ θ̂nj )
T (P ′′

1 (‖Cξ θ̂nj‖; λ1) + op(1)
)
(Cξ θ̂nj )

−1

2

∑

j∈M2

(
θ̂nj − θ∼nj

)T (
P ′′
2 (‖̂θnj‖; λ2) + op(1)

)(
θ̂nj − θ∼nj

)
, (16)

where θ0n is between θ̂n and θ∼n
. The left hand of equation (16)

I I1 ≤ Op(1)
(
Cξ (̂θnM2 − θ∼nM2

)
)T · ∂2
n(θ0n)

∂θ M2∂θT
M2

·
(
Cξ (̂θnM2 − θ∼nM2

)
)

= Op(1)(Cξ θ̂nM2)
T · ∂2
n(θ0n)

∂θ M2∂θT
M2

· (Cξ θ̂nM2)

≤ Op(1)ρ
∗
n ‖̂θnM2‖2.

Similarly, we can obtain that the right hand of equation (16)

I I2 ≥ c(λa
1 + λa

2)‖̂θnM2‖2−b.

Therefore,

P(‖̂θnM2‖ > 0) ≤ P
( λa

1 + λa
2

ρ∗
n (d2

n (n−(1−ν) + n−2ν p))b/2
≤ Op(1)

)
→ 0.

The selection consistency of variable and structure is concluded.
(ii) Let the column and row vectors of covariate matrix X∗ are X∗

1, . . . , X∗
dn

and
X∗

(1), . . . , X∗
(n), respectively. Define

Xw =
∑n

i=1 ωi X(i)
∑n

i=1 ωi
, X∗

(i) = (nωi )
1/2(X(i) − Xw),
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U (W;β, φ̂n) � (−X∗
M2

)
(

Y ∗ −
∑

j∈M1

ĝ∗
nj (X j ) − X∗

M2
β
)
,

Ûn(β) � 1

n

n∑

i=1

U (W i ;β, φ̂n),

with W � (ω, X, Y ). Then β̂n satisfies the estimating equation Ûn(β̂) = 0 by
the definition of β̂n and φ̂n .

Let Un(β) � 1

n

∑n

i=1
U (W i ;β, φ̃0) and β̃n be the root of Un(β) = 0. We

then show that β̂n has the same distribution with β̃n . The Fréchet derivative of
U (W;β0,φ) at φ̃0 in the direction h is given as

D(W , h) = lim
α→0

U (W;β0, φ̃0 + αh) − U (W;β0, φ̃0)

α

= X∗T
M2

X∗
M1

h,

with h ∈ {h1 + . . . + h|M1|, h j ∈ H̃, j ∈ M1}.
The relation ‖(φ̂n − φ̃0)/dn‖ = Op(n−(1−ν)/2 + n−ν p) = op(n−1/4) ensures
that the linear assumption 5.1 in Newey (1994) is satisfied. Then by Lemma 3.4.2
of van der Vaart and Wellner (1996), we have

√
n(Pn − P){D(W; φ̂n − φ̃0)} P−→ 0.

It follows that the stochastic equicontinuity assumption 5.2 holds. For φ close
enough to φ̃0, a straightforward calculation yields that E D(W;φ − φ̃0) = 0
by using Condition (C8). Then the mean square continuity assumption 5.3 holds
with α(W) = 0. By Lemma 5.1 of Newey (1994), β̂n and β̃n have the same
distribution.
Next, we seek for the asymptotic distribution of β̃nM2

. Let ιn = n−1/2, V1n(a) =
Qn(β0+ ιn(aT , 0T )T , φ̃0)− Qn(β0, φ̃0), where a = (a1, . . . , a|M2|)T is a |M2|-
dimensional constant vector and 0 is a |M3|-dimensional zero vector. By part (i)
of Theorem 2, β̃n −β0 = ιn (̂aT

n , 0T )T with probability converging to one, where
ân = argmin{V1n(a) : a ∈ R

|M2|}. Letting θ̃n be the estimator corresponding
to β̃n , then similar to Theorem 2 (i), we also have Cξ θ̃nj = 0 ( j ∈ M2) with
probability converging to one.
Note that

V1n(a) = Qn(β0 + ιn(aT , 0T )T , φ̃0) − Qn(β0, φ̃0)

=
(
ιnaT Un(β0) + ι2n

2
aT U ′

n(β0)a
)
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+
⎛

⎝
∑

j∈M2

P1(‖Cξ θ̃nj‖; λ1) −
∑

j∈M2

P1(‖Cξ θ0 j‖; λ1)

⎞

⎠

+
⎛

⎝
∑

j∈M2

P2(‖̃θnj‖; λ2n) −
∑

j∈M2

P2(‖θ0 j‖; λ2n)

⎞

⎠

� A1n(a) + A2n(a) + A3n(a).

Since β̃nM2
− β0 = ιna = ψqn ,m(XM2)

T (̃θnM2 − θ0M2), we have

θ̃nj − θ0 j = (ψqn ,m(X j )ψqn ,m(X j )
T )−1ψqn ,m(X j )ιna j , j = s1 + 1, . . . , s2.

It follows that

A3n(a) =
∑

j∈M2

P2(‖̃θnj‖; λ2n) −
∑

j∈M2

P2(‖θ0 j‖; λ2n)

=
∑

j∈M2

[

P ′
2(‖θ0 j‖; λ2n)

θT
0 j

‖θ0 j‖ + op(1)

]

[
(ψqn ,m(X j )ψqn ,m(X j )

T )−1ψqn ,m(X j )ιna j
]
.

By Condition (C7), we have

|A3n(a)| ≤ dn P ′
2(0+; λ2n)

√
‖(ψqn,m

(X j )ψqn,m
(X j )T )−1‖ιna j

= Op(d
2
n n−ν)Op(n

−(1−ν)/2) = op(1).

Similarly, we can get that A2n(a)
p−→ 0.

Hence, ân = argmin{V1n(a) : a ∈ R
|M2|} = argmin{A1n(a) : a ∈ R

|M2|} and
so we only care about the minimum of n A1n(a). Similar to Huang et al. (2010),
we have

n A1n(a) = aT (√nUn(β0)
) + 1

2
aT U ′

n(β0)a

� aT T1 + aT T2a.

It can be seen that T2
p−→ �2 and u�

−1/2
3 T1 is distributed asymptotically by

N (0, 1) for any u ∈ R
|M2| with ‖u‖ = 1 , where �3 = V ar(δγ0(Y )(Y −

g0(X))XM2 + (1 − δ)γ1(Y ) − γ2(Y )) with the following notations that

H̃11(x, y) = P(X ≤ x, Y ≤ y, δ = 1), H̃0 = P(Y ≤ y, δ = 0),

γ0(y) = exp

(∫ y−

0

H̃0(dw)

1 − H(w)

)

,
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γ1, j (y) = 1

1 − H(y)

∫

I (z > y)e(z, x)x jγ0(z)H̃11(dx, dz),

γ2, j (y) =
∫∫

I (v < y, v < z)e(z, x)x jγ0(z)

[1 − H(v)]2 H̃0(dv)H̃11(dx, dz),

γl(y) = (γl, j ; j ∈ M2), l = 1, 2.

Let â = argmin{V1(a) = aT T1 + 1
2 a

T �2a : a ∈ R
|M2|}. According to the

continuousmapping theoremofKim and Pollard (1990),
√

nu�−1/2(β̂nM2
−β0)

has the same asymptotical distribution as u�−1/2 â
d−→ N (0, 1) for any u ∈ R

|M2|
with ‖u‖ = 1, where � = �−1

2 �3�
−1
2 . This completes the proof of Theorem 2.

��
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