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Abstract
We propose a projection-based cross-validation method
for estimating a low-dimensional parameter in the pres-
ence of a high-dimensional nuisance parameter in the
Cox regression model. We show that the proposed esti-
mator is asymptotically normal, which enables us to
conduct hypothesis test for the parameter of inter-
est with high-dimensional nuisance parameters. Three
decision rules are presented to avoid the influence of
random splitting of samples. Simulation studies indicate
that our method is more powerful than that of Fang
et al. (2017, JRSSB) when the coefficients of predictors
are high-dimensional and not very sparse. As an illustra-
tive example, we apply our procedure to a breast cancer
study.
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1 INTRODUCTION

Statistical analysis of censored survival data with high-dimensional covariates is of great
practical importance. For example, in cancer genetic studies, an important problem is to iden-
tify genetic elements that are potentially related to patient’s survival from high-throughput
and high-dimensional genomic data. A critical issue is how to estimate their effects on the
survival and make statistical inference about their significance. This problem can be formu-
lated as that of estimating treatment effects in the presence of a large number of nuisance
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parameters. Here we interpret a treatment effect parameter broadly as any low-dimensional
parameter in the model. Therefore, it is interesting to propose an approach to statistical infer-
ence in high-dimensional Cox regression (Cox, 1972) because of its central role in the analysis
of censored survival data and its wide applications (Fleming & Harrington, 1991; Kalbfleisch &
Prentice, 2002).

Several penalty-based variable selection approaches, including the lasso (Tibshirani, 1996)
and the smoothly clipped absolute deviation (SCAD; Fan & Li, 2001) methods, have been adapted
to survival models. For example, Tibshirani (1997) and Fan and Li (2002) applied the lasso
and SCAD methods to the partial likelihood for the Cox model. Zhang and Lu (2007) and
Zou (2008) considered the weighted lasso for low-dimensional Cox model. Huang et al. (2013)
and Kong and Nan (2014) derived error bounds for the lasso in sparse and high-dimensional Cox
model.

However, penalized procedures only yield point estimates but do not provide inferential
statements such as confidence interval and hypothesis testing about a parameter of inter-
est. To deal with this problem, Zhang and Zhang (2014) proposed a regularized projection
approach for constructing asymptotically normal estimators of low-dimensional parameters in
high-dimensional linear models. van de Geer et al. (2014) extended the approach of Zhang
and Zhang (2014) and proposed a novel method by “inverting” the Karush–Kuhn–Tucker
conditions for the lasso to construct estimators of low-dimensional parameters in linear and
generalized linear models. Javanmard and Montanari (2014) constructed confidence inter-
vals and p-values for high-dimensional linear models based on a “de-biased” version of reg-
ularized M-estimators. Wasserman and Roeder (2009) and Meinshausen et al. (2009) con-
structed p-values for high-dimensional regression via sample-splitting based methods. However,
these authors did not consider the statistical inference problem in the high-dimensional Cox
model. In the context of survival analysis, Zhong et al. (2015) considered hypothesis test-
ing for low-dimensional coefficients in the high-dimensional additive hazards model, but it is
unclear how to extend their method to the Cox model. Another closely related work is Fang
et al. (2017), who have proposed a method for hypothesis test and confidence interval construc-
tion for the high-dimensional Cox model based on projection of score functions. However, their
method is conservative and suffers from inefficiency when the coefficients of predictors are
high-dimensional and not very sparse (see page 24 of online supplementary materials of Fang
et al., 2017).

In this article, we propose a projection-based cross-validation approach to inference about a
low-dimensional parameter of interest in the Cox model in the presence of a high-dimensional
nuisance parameter. There are three important aspects of our proposed approach that are dif-
ferent from the abovementioned methods. First, we use a weighted lasso estimator as the initial
estimator. With this estimator, we only penalize the nuisance parameters, but not the parameter
of interest. This is different from the methods of Zhang and Zhang (2014) and Fang et al. (2017)
in which they used a fully penalized estimator as an initial estimator. Second, our method
only needs to calculate the least favorable direction related to the scores of the selected nui-
sance parameters rather than the whole set of the nuisance parameters as in Fang et al. (2017).
Third, our two-stage projection-based cross-validation technique is different from the sample
splitting method in Meinshausen et al. (2009). Roughly speaking, we randomly split the sam-
ple into two halves, and obtain a weighted lasso estimator using the first half of the sample.
Then we fit the Cox model using the variables selected based on the first half of the sam-
ple and use the second half of the data to estimate the parameter of interest; and vice versa.
The proposed estimator is then the average of these two estimators. To avoid the influence of
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random splitting of samples, we further provide three decision rules for the hypothesis test of
interest.

The remainder of this article is organized as follows. In Section 2 we describe the Cox model
and propose a projection-based cross-validation estimator. In Section 3 we first state an oracle
inequality for the weighted lasso in the high-dimensional Cox model. We then establish the
asymptotic normality of the proposed estimator, which provides a theoretical basis for making
statistical inference. In Section 4 we conduct simulation studies and demonstrate the proposed
method on a breast cancer gene expression data set. In Section 5 we give concluding remarks. All
proofs are deferred to the Appendix.

2 MODEL AND METHOD

2.1 Model

Consider an n-dimensional counting process N(n)(t)= (N1(t), … ,Nn(t)), t> 0 on a time interval
[0, 𝜏] with 𝜏 > 0, where Ni(t) counts the number of observed events for the ith individual in the
time interval [0, t], i= 1, … ,n. Let t be the filtration representing all the information available
up to time t> 0. Following Andersen and Gill (1982), we assume that for {t, t ≥ 0}, N(n) has a
predictable compensator Λ(n) = (Λ1, … ,Λn) with

dΛi(t) = Yi(t) exp{𝛽TXi(t) + 𝜂TZi(t)}dΛ0(t), i = 1, … ,n, (1)

where 𝛽 ∈ Rd is a parameter vector of interest, 𝜂 ∈ Rq is a vector of nuisance parameters, Λ0(t) =∫ t
0 𝜆0(s)ds is an unknownbaseline cumulative hazard function, andYi(t)∈ {0, 1} is predictable.We
assume the dimension d of the parameter vector of interest 𝛽 is fixed and small, but the dimension
q of the nuisance parameter 𝜂 can be large or even larger than the sample size.

Denote Vi(t)= (Xi(t)T ,Zi(t)T)T and let 𝜃0 = (𝛽T0 , 𝜂
T
0 )
T ∈ Rp be the true values of the regres-

sion coefficients, where p is possibly much bigger than n. Define S0 = {j ∶ 𝜃j0 ≠ 0} with its
complement denoted by Sc0 = {j ∶ 𝜃j0 = 0}. Let d0 = |S0| be the cardinality of S0 with d0≪n.

To estimate the parameter 𝜃 in the fixed-dimensional settings with p<n, Cox (1975) proposed
the partial likelihood method. The negative log-partial likelihood function for (1) is

𝓁(𝜃) = 1
n

[
∫

𝜏

0
log

[ n∑
i=1
Yi(t) exp{𝜃TVi(t)}

]
dN(t) −

n∑
i=1

∫
𝜏

0
{𝜃TVi(t)}dNi(t)

]
, (2)

where N =
∑n

i=1 Ni. The maximum partial likelihood estimator can be obtained by minimizing
𝓁(𝜃). However, in high-dimensional settings with p≫n, the maximum partial likelihood esti-
mator is not well defined. Thus statistical inference cannot be based on the partial likelihood
directly.

For any given set I ⊂ {1, … ,n} and S⊂ {1, … , p}, define

Φk(t, 𝜃; I, S) =
1|I|∑i∈I V⊗k

iS (t)Yi(t) exp{𝜃TSViS(t)}, for k = 0, 1, 2;

Σ(𝜃; I, S) = 1|I|∑i∈I ∫
𝜏

0

[
Φ2(t, 𝜃; I, S)
Φ0(t, 𝜃; I, S)

−
{

Φ1(t, 𝜃; I, S)
Φ0(t, 𝜃; I, S)

}⊗2
]
dNi(t), (3)

 14679469, 2022, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12515 by H

ong K
ong Poly U

niversity, W
iley O

nline Library on [08/02/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



356 ZHANG et al.

and

𝓁(𝜃; I, S) = 1|I|
[
∫

𝜏

0
log

[∑
i∈I
Yi(t) exp{𝜃TSViS(t)}

]
dN(t; I) −

∑
i∈I

∫
𝜏

0
{𝜃TSViS(t)}dNi(t)

]
, (4)

where for any vector a, a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT; aS denotes the subvector of awith compo-
nents whose indices are in S; |I| denotes the cardinality of set I, andN(t; I) =

∑
i∈INi(t). Hereafter,

for notational simplicity, we assume that |I|=n/2 if n is even and |I|= (n+ 1)/2 if n is odd. We
partition the matrix Σ(𝜃; I, S) into

Σ(𝜃; I, S) =

[
Σ11(𝜃; I, S) Σ12(𝜃; I, S)
Σ21(𝜃; I, S) Σ22(𝜃; I, S)

]
, (5)

where Σ11(𝜃; I, S) ∈ Rd×d, Σ21(𝜃; I, S) ∈ R(|S|−d)×d, and Σ22(𝜃; I, S) ∈ R(|S|−d)×(|S|−d). Let
Σ𝛽|𝜂(𝜃; I, S) = Σ11(𝜃; I, S) − Σ12(𝜃; I, S)Σ−1

22 (𝜃; I, S)Σ21(𝜃; I, S), we denote the population versions of
the quantities in (3) as

𝜙k(t, 𝜃; S) = E[V⊗k
S (t)Y (t) exp{𝜃TSVS(t)}], for k = 0, 1, 2;

Σ∗(𝜃; S) = E

{
∫

𝜏

0

[
𝜙2(t, 𝜃; S)
𝜙0(t, 𝜃; S)

−
{

𝜙1(t, 𝜃; S)
𝜙0(t, 𝜃; S)

}⊗2
]
dN(t)

}
.

We partition the matrix Σ∗(𝜃; S) according to (5) as

Σ∗(𝜃; S) =

[
Σ∗
11(𝜃; S) Σ∗

12(𝜃; S)
Σ∗
21(𝜃; S) Σ∗

22(𝜃; S)

]
, (6)

and let Σ∗
𝛽|𝜂(𝜃; S) = Σ∗

11(𝜃; S) − Σ∗
12(𝜃; S)Σ

∗−1
22 (𝜃; S)Σ∗

21(𝜃; S).

2.2 Projection-based cross-validation method

In this section, we describe the proposed two-stage projection-based cross-validation approach
to statistical inference for the high-dimensional Cox model. Our basic idea is to split the data
randomly into two halves I1 and I2, and perform model selection using the first half of the data
I1. Then we fit the Cox model on the basis of the variables selected in the first stage, and calculate
a projection-based estimator 𝛽1 using the second half of the data I2. We then switch the roles of
I1 and I2 and use the same procedure to obtain an estimator 𝛽2. Below we describe the proposed
method in details.

Stage 1. We split the data randomly into two halves I1 and I2. Using the first half of the data
I1, we obtain a weighted lasso estimator, which is defined as

𝜃̆ = (𝛽, 𝜂̆) = argmin𝛽,𝜂

{
𝓁(𝜃; I1, Sp) + 𝜆

q∑
j=1
wj|𝜂j|

}
, (7)
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ZHANG et al. 357

where 𝓁(𝜃; I1, Sp) is defined in (4), Sp = {1, … , p}; 𝜆 > 0 is a tuning parameter, and wj ≥ 0 are
weights for the nuisance parameters 𝜂j, j= 1, … , q. Let S1 = {j ∶ 𝜃̆j ≠ 0} be the index set of the
nonzero estimated coefficients. Our goal is to make statistical inference about 𝛽, we only penalize
𝜂 while 𝛽 is not penalized. Thus, the estimator 𝜃̆ can be referred as a “semipenalized” estimator.

Stage 2. Consider a submodel based on the variables selected in the first stage (S1), using the
second half of the data I2,

dΛi(t) = Yi(t) exp{𝜃TS1ViS1(t)}dΛ0(t), i ∈ I2, (8)

where Yi(t) and Λ0(t) are given in (1). The negative log-partial likelihood function based on (8) is

𝓁(𝜃; I2, S1) =
1|I2|

[
∫

𝜏

0
log

[∑
i∈I2

Yi(t) exp{𝜃TS1ViS1(t)}

]
dN(t; I2) −

∑
i∈I2

∫
𝜏

0
{𝜃TS1ViS1(t)}dNi(t)

]
, (9)

where N(t; I2) =
∑

i∈I2
Ni(t). Let Mi(t) = Ni(t) − ∫ t

0 Yi(u) exp{𝜃
T
S1
ViS1(u)}dΛ0(u) be the martin-

gales with predictable variation processes ⟨Mi,Mi⟩(t) = ∫ t
0 Yi(u) exp{𝜃

T
S1
ViS1(u)}dΛ0(u), and⟨Mi,Mj⟩= 0 for i≠ j. The gradient of 𝓁(𝜃; I2, S1) is

𝓁̇(𝜃; I2, S1) =
𝜕𝓁(𝜃; I2, S1)

𝜕𝜃S1
= − 1|I2|∑i∈I2 ∫

𝜏

0
{ViS1 (t) − V(t, 𝜃; I2, S1)}dNi(t),

and the Hessian matrix of 𝓁(𝜃; I2, S1) is

𝓁̈(𝜃; I2, S1) = Σ(𝜃; I2, S1) =
1|I2| ∫

𝜏

0

[
Φ2(t, 𝜃; I2, S1)
Φ0(t, 𝜃; I2, S1)

−
{

Φ1(t, 𝜃; I2, S1)
Φ0(t, 𝜃; I2, S1)

}⊗2
]
dN(t; I2),

where V(t, 𝜃; I2, S1) = Φ1(t, 𝜃; I2, S1)∕Φ0(t, 𝜃; I2, S1), and Φk(t, 𝜃; I, S) is defined in (3), k= 0
and 1. For notational simplicity, we partition the gradient 𝓁̇(𝜃; I2, S1) into 𝓁̇(𝜃; I2, S1) =
(𝓁̇𝛽(𝜃; I2, S1), 𝓁̇𝜂(𝜃; I2, S1)T)T, where 𝓁̇𝛽(𝜃; I2, S1) ∈ Rd is the score function for the
low-dimensional parameter of interest 𝛽, and 𝓁̇𝜂(𝜃; I2, S1) ∈ R|S1|−d is the score function of the
nuisance parameters.

To remove the effects of the nuisance parameters, we project 𝓁̇𝛽(𝜃; I2, S1) onto the linear span
of the partial score function 𝓁̇𝜂(𝜃; I2, S1) and consider the projected partial score function for 𝛽,

U(𝜃0, h0; I2, S1) = 𝓁̇𝛽(𝜃0; I2, S1) − hT0 𝓁̇𝜂(𝜃0; I2, S1), (10)

where h0 = argminhE{𝓁̇𝛽(𝜃0; I2, S1) − hT0 𝓁̇𝜂(𝜃0; I2, S1)}⊗2 with an explicit expression

h0 = E{𝓁̇𝜂(𝜃0; I2, S1)𝓁̇
T
𝜂 (𝜃0; I2, S1)}−1E{𝓁̇𝜂(𝜃0; I2, S1)𝓁̇𝛽(𝜃0; I2, S1)}

= Σ∗−1
22 (𝜃0; S1)Σ∗

21(𝜃0; S1). (11)

To better understand (10), we focus on the geometric interpretation for U(𝜃0, h0; I2, S1). The
linear space  spanned by the score function 𝓁̇(𝜃; I2, S1) is the closure of {aT𝜃 𝓁̇𝛽(𝜃; I2, S1) +
bT
𝜃
𝓁̇𝜂(𝜃; I2, S1) ∶ a𝜃 ∈ Rd, b𝜃 ∈ R|S1|−d}. As indicated by the notation, a𝜃 and b𝜃 can depend on 𝜃.

By Small and McLeish (1994), the space  is a Hilbert space with an inner product given by
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⟨g1(𝜃; I2, S1), g2(𝜃; I2, S1)⟩ = E{g1(𝜃; I2, S1)g2(𝜃; I2, S1)} for any g1 ∈  and g2 ∈ .We further con-
sider the linear space N spanned by the nuisance score functions {bT

𝜃
𝓁̇𝜂(𝜃; I2, S1)} with b𝜃 ∈

R|S1|−d, and its orthogonal complement⟂
N = {g ∈ , ⟨g, f ⟩ = 0,∀f ∈ N}. Since 𝓁̇𝛽(𝜃0; I2, S1) ∈, andN is a closed space, the projection of 𝓁̇𝛽(𝜃0; I2, S1) toN is well defined and identical to

U(𝜃0, h0; I2, S1).
In what follows, we need an initial consistent estimator 𝜃 for estimating h0. First, we obtain a

weighted lasso estimator

𝜃 = argmin
𝜃

{
𝓁(𝜃; I2, Sp) + 𝜆

p∑
j=1
wj|𝜃j|

}
, (12)

where Sp = {1, … , p}, and 𝓁(𝜃; I, S) is defined in (9); 𝜆 > 0 is the penalty parameter, and wi is a
weight. In view of (11), we can estimate h0 by its sample version and plug-in the weighted lasso
estimator 𝜃 for 𝜃. The resulting estimator has an explicit expression:

h̃ = Σ−1
22 (𝜃; I2, S1)Σ21(𝜃; I2, S1), (13)

whereΣ and 𝜃 are defined in (5) and (12), respectively.We construct an estimated projected partial
score function

U(𝛽, 𝜂̃, h̃; I2, S1) = 𝓁̇𝛽(𝛽, 𝜂̃; I2, S1) − h̃T𝓁̇𝜂(𝛽, 𝜂̃; I2, S1),

where 𝜂̃ and h̃ are defined in (12) and (13), respectively. Note that U(𝛽, 𝜂̃, h̃; I2, S1) can be
regarded as an approximately unbiased estimating function for 𝛽. We define an estimator 𝛽1
as the solution to U(𝛽, 𝜂̃, h̃; I2, S1) = 0, which can be solved by the Newton–Raphson algorithm.
In practice, we use the weighted lasso estimator 𝛽 in (12) as the initial value to start the
algorithm.

Similarly, we first select variables using the second half of the data I2 and denote the active
set as S2 = {j ∶ 𝜃̆j ≠ 0}. We then consider the submodel based on the variables whose indices are
in S2,

dΛi(t) = Yi(t) exp
{
𝜃TS2
ViS2(t)

}
dΛ0(t), i ∈ I1. (14)

Based on (14), we obtain a projected partial score estimator 𝛽2 parallel to the estimation pro-
cedure for 𝛽1. The two-stage projection-based cross-validation (TPCV) estimator of 𝛽 is defined
as

𝛽 =
𝛽1 + 𝛽2

2
. (15)

We use a diagram to illustrate the above two-stage estimation procedure in Figure 1. There
are three attractive features of our method. First, it has effectively handled the uncertainty due to
variable selection via cross-validation, because we use one half of data to do model selection, and
fit the selected variables using another half of the data. In addition, the martingale theory is still
applicable in deriving the theoretical properties, since the selection of active variables in Stage 1
is independent of the samples used in Stage 2. Second, the TPCV estimator 𝛽 makes use of all the
information in the data by using cross-validation twice. Third, the estimated projection vector h̃
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ZHANG et al. 359

F I GURE 1 A scenario of two-stage projection-based cross-validation procedure

has an explicit expression and its dimension is much smaller than p. Therefore, our method is
easy to implement for practical applications.

3 THEORETICAL RESULTS

3.1 Nonasymptotic oracle inequality

For the two-stage projection-based cross-validated estimation procedure, we adopt the weighted
lasso to select active variables. Similar to Fang et al. (2017), we need to prove that the weighted
lasso estimator 𝜃 has the convergence rate ||𝜃 − 𝜃0||1 = OP(𝜆d0), which ensures estimation consis-
tency under some regularity conditions. In addition, the nonasymptotic oracle inequality for the
weighted lasso has its independent interest. For example, the convergence rate for penalty-based
estimator plays an important role in establishing distributional results for confidence interval
and hypothesis testing in high-dimensional models (Fang et al., 2017; Neykov et al., 2018; Ning
& Liu, 2017; Zhang & Zhang, 2014). Huang et al. (2013) and Kong and Nan (2014) consid-
ered oracle inequalities for the lasso in the high-dimensional Cox model. Zhang et al. (2017)
studied oracle inequalities for weighted lasso estimator in the high-dimensional additive haz-
ards model. Below, we present some general convergence results for weighted lasso estimator
in the high-dimensional Cox model (1), which are suitable for the estimator given by (12) in
Stage 2. Let w ∈ Rp be a (possibly estimated) weight vector with nonnegative elements wj,
1≤ j≤ p andW = diag{w}. For any vector a ∈ Rp andmatrixA ∈ Rp×p, we define ||a||1 = ∑p

i=1 |ai|,
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360 ZHANG et al.

||a||∞ = max1≤i≤p|ai|, and ||A||∞ = max1≤i,j≤p|aij|. The weighted L1 loss function is
Q(𝜃) = 𝓁(𝜃) + 𝜆||W𝜃||1,

where 𝜆 ≥ 0 is a penalty parameter, and 𝓁(⋅) is defined in (2). The weighted lasso estimator is
given by

𝜃 = argmin
𝜃

Q(𝜃). (16)

Note that if the variables in S⊂ {1, … , p} are of primary interest, it is not necessary to penalize
𝜃S, which leads to “semipenalized” estimators with wj = 0 for j∈ S and wj ≠ 0 for j∈ Sc. In what
follows, it is sufficient to requiremin{wSc} > 0. A vector 𝜃 is a global minimizer of (16) if and only
if it satisfies the Karush–Kuhn–Tucker (KKT) conditions{

𝓁̇j(𝜃) = −𝜆wjsgn(𝜃j), if 𝜃j ≠ 0,|𝓁̇j(𝜃)| ≤ 𝜆wj, if 𝜃j = 0.
(17)

Theorem 1. Let 𝜃 be the weighted lasso estimator defined in (16), and R̃ = 𝜃 − 𝜃0. Then the
following inequality holds:

(𝜆 − z0)||WScR̃Sc ||1 ≤ D(𝜃, 𝜃0) + (𝜆 − z0)||WScR̃Sc ||1 ≤ (𝜆||wS||∞ + z0)||R̃S||1,
where z0 = max{||𝓁̇(𝜃0)S||∞, ||W−1

Sc 𝓁̇(𝜃0)Sc ||∞}, andD(𝜃, 𝜃) = (𝜃 − 𝜃)T{𝓁̇(𝜃) − 𝓁̇(𝜃)} is the Bregman
divergence. Furthermore, for any 𝜉 > ||wS||∞, we have ||WScR̃Sc ||1 ≤ 𝜉||R̃S||1 in the event {z0 ≤ (𝜉 −||wS||∞)∕(𝜉 + 1)𝜆}, where WSc denotes the submatrix of W with components in Sc.

By Theorem 1, in the event {z0 ≤ (𝜉 − ||wS||∞)∕(𝜉 + 1)𝜆}, for any 𝜉 > ||wS||∞, the estimation
error 𝜃 − 𝜃0 belongs to the cone

G(𝜉, S) = {b ∈ R
p ∶ ||WScbSc ||1 ≤ 𝜉||bS||1}. (18)

To control estimation error of the weighted lasso in the Cox model, for the cone in (18) and
the Hessian matrix 𝓁̈(𝜃0), we use a compatibility factor as Huang et al. (2013),

𝜅(𝜉, S) = inf
0≠b∈G(𝜉,S)

d1∕20 {bT𝓁̈(𝜃0)b}1∕2||bS||1 .

In fact, the 𝜅(𝜉, S) is a direct extension of the compatibility factor in linear models (Huang &
Zhang, 2012; van de Geer, 2007; van de Geer & Bühlmann, 2009) by taking the Hessian of the
log-partial likelihood at the true 𝜃0.

We make the following assumptions:

(C.1) ∫ 𝜏

0 𝜆0(t)dt < ∞.
(C.2) The covariates are uniformly bounded: sup

0≤t≤𝜏
max
1≤i≤n max1≤j≤p|Vij(t)| = O(1), whereVij(t) is the jth

component of Vi(t).
(C.3) The compatibility factor 𝜅(𝜉, S) is strictly bounded away from zero.
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ZHANG et al. 361

Condition (C.1) has been similarly used by Andersen and Gill (1982) and Bradic et al. (2011)
in their analysis of the partial likelihood estimator in the Coxmodel. Condition (C.2) was required
by Huang et al. (2013) and Fang et al. (2017) in deriving the error bounds for the lasso in the Cox
model, which is reasonable in most practical situations. Condition (C.3) was provided by Huang
et al. (2013) under some regular assumptions.

The following result provides an upper bound of the estimation error for the weighted lasso
estimator. For two positive sequences an and bn, we write an ≍ bn if c ≤ an∕bn ≤ c′ for some
c, c′ > 0.

Theorem 2. Assume that Conditions (C.1)–(C.3) hold, and 𝜆 ≍
√
{n−1 log(p)}. Let 𝜃 be

the weighted lasso estimator defined in (16), K is some positive constant and 𝜌 = K𝜆d0(1 +||wS||∞)(𝜉 +min{wSc})2∕[4min{wSc}𝜅2(𝜉, S)(𝜉 + 1)]with 𝜌 ≤ 1∕e. Then for 𝜉 > |wS|∞, in the event
{z0 ≤ (𝜉 − ||wS||∞)∕(𝜉 + 1)𝜆},

||𝜃 − 𝜃0||1 ≤ e𝛿𝜆d0(1 + ||wS||∞)(𝜉 +min{wSc})2

4min{wSc}𝜅2(𝜉, S)(𝜉 + 1)
, (19)

where 𝛿 ≤ 1 is the smaller solution of 𝛿e−𝛿 = 𝜌.
By Huang et al. (2013) the term 𝜅(𝜉, S) in (19) can be directly treated as a positive con-

stant. Moreover, since the oracle inequality in Theorem 2 holds only within the event {z0 ≤
(𝜉 − ||wS||∞)∕(𝜉 + 1)𝜆}, it is necessary to derive a probabilistic upper bound of z0. It follows from
Lemma 3.3 of Huang et al. (2013) that P{z0 > Kx} ≤ 2pe−nx2∕2. In order to better interpret the
upper bound of the estimation error in (19), the conclusion can be simplified to the case that
the convergence rate for the weighted lasso estimator is of order OP(𝜆d0), which is used to estab-
lish the asymptotic properties in Theorem 3. Moreover, for the estimation error ||𝜃 − 𝜃0||1 to be
small with high probability, we need to ensure that 𝜆d0 → 0 as n→∞. This requires the condition
p = exp{o(n∕d20)}. For bounded d0, the dimension p can be as high as e

o(n), which is in line with
the lasso estimator of Huang et al. (2013).

3.2 Asymptotic normality

Let

Σ̂1 = [Σ11(𝜃; I2, S1) − Σ12(𝜃; I2, S1)Σ−1
22 (𝜃; I2, S1)Σ21(𝜃; I2, S1)]

−1,

= Σ−1
𝛽|𝜂(𝜃; I2, S1) (20)

and

Σ̂2 = [Σ11(𝜃; I1, S2) − Σ12(𝜃; I1, S2)Σ−1
22 (𝜃; I1, S2)Σ21(𝜃; I1, S2)]

−1,

= Σ−1
𝛽|𝜂(𝜃; I1, S2), (21)

where Σij is defined in (5) and 𝜃 is the weighted lasso estimate in Stage 2. The following theorem
establishes the asymptotic normality of 𝛽.

Theorem 3. Suppose that Conditions (C.1)–(C.3) hold, 𝜆 ≍
√
{n−1 log(p)} and n−1∕2d0 log(p) =

o(1). Then as n→∞ we have √
nΣ̂−1∕2(𝛽 − 𝛽0)


→ N(0, Id),
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362 ZHANG et al.

where Id is a d× d identity matrix, Σ̂ = (Σ̂1 + Σ̂2)∕2 with Σ̂1 and Σ̂2 being defined in (20) and (21),
respectively.

The conditions 𝜆 ≍
√
{n−1 log(p)} and n−1∕2d0 log(p) = o(1) are also required in Fang

et al. (2017) to ensure the asymptotic properties of their estimators. As an application, Theorem 3
provides a theoretical basis for conducting hypothesis test for a one-dimensional parameter
𝛽0 ∈ R in the high-dimensional Cox model. Consider

H0 ∶ 𝛽0 = 0 versus HA ∶ 𝛽0 ≠ 0, (22)

we use the Wald statistic Tw =
√
nΣ̂−1∕2(𝛽 − 𝛽0), which is asymptotically distributed as N(0, 1)

under H0. We reject H0 if the p-value Pw < 0.05, where

Pw = 2
{
1 − Φ

(√
nΣ̂−1∕2|𝛽|)} , (23)

and Φ(x) is the cumulative distribution function of N(0, 1). To remove the potential influence
of random splitting of samples, we repeat our proposed TPCV procedure B times. Denote the
resulting p-values in (23) as P(1)w , … ,P(B)w . For the hypothesis test (22), we propose the following
three decision rules:

• TPCV1: Reject H0 if B−1∑B
b=1 P

(b)
w < 0.05.

• TPCV2: Reject H0 if the median of P(1)w , … ,P(B)w is smaller than 0.05.
• TPCV3: Reject H0 if B−1∑B

b=1 I(P
(b)
w < 0.05) > 0.5, where I(⋅) is an indicator function.

Of note, the TPCV1 is coming from themean of B p-values, and it may be affected by poten-
tial outliers. TheTPCV2 is based on themedian, so it has the property of robustness. TheTPCV3

is from the idea of “majority voting,” and it also owns the robustness. The performances of
these decision rules will be evaluated via numerical simulation.

4 NUMERICAL STUDIES

In this section, we conduct simulation studies to evaluate the finite-sample performance of the
proposed method. We also illustrate the application of the proposed method on a breast cancer
gene expression data set.

4.1 Simulation studies

We generate failure times (T1, … ,Tn) from the Cox model with an exponential hazards function
exp(𝜃T0Vi), where 𝜃0 = (𝛽0, 𝜂T0 )

T, and Vi = (Vi1, … ,Vip)T, i= 1, … ,n. First, we assume that the
parameter of interest 𝛽0 is one-dimensional and the nuisance parameter vector 𝜂0 is chosen as
follows:

• Case I: 𝜂0 = (1, … , 1
⏟⏟⏟
10 times

, 0, … , 0)T,

• Case II: 𝜂0 = (1, … , 1
⏟⏟⏟
15 times

, 0, … , 0)T,
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ZHANG et al. 363

TABLE 1 Estimation results on the parameter of interest 𝛽 with Case I

𝜷 = 0 𝜷 = 0.5

Methods Bias ESE SSE CP Bias ESE SSE CP
p= 500 TPCV −0.0047 0.0866 0.0885 0.940 0.0232 0.0909 0.0930 0.940

DS 0.0098 0.0749 0.0503 0.990 −0.1475 0.0753 0.0771 0.520

TP −0.0023 0.0799 0.0839 0.935 0.0201 0.0839 0.0862 0.950

p= 1000 TPCV 0.0031 0.0873 0.0994 0.925 0.0183 0.0924 0.1032 0.905

DS 0.0169 0.0746 0.0482 0.990 −0.1727 0.0754 0.0736 0.360

TP 0.0010 0.0803 0.0902 0.915 0.0229 0.0849 0.0980 0.895

Note: TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the
two-stage projection-based method with the whole sample.

TABLE 2 Estimation results on the parameter of interest 𝛽 with Case II

𝜷 = 0 𝜷 = 0.5

Methods Bias ESE SSE CP Bias ESE SSE CP
p= 500 TPCV 0.0028 0.0941 0.1035 0.945 0.0147 0.0989 0.0974 0.955

DS 0.0134 0.0757 0.0492 0.990 −0.1898 0.0771 0.0719 0.335

TP 0.0067 0.0835 0.0910 0.950 0.0189 0.0883 0.0947 0.945

p= 1000 TPCV 0.0065 0.0966 0.1059 0.905 0.0164 0.1009 0.1075 0.935

DS 0.0135 0.0756 0.0414 1 −0.2057 0.0767 0.0678 0.200

TP 0.0078 0.0842 0.0907 0.920 0.0303 0.0890 0.0988 0.935

Note: TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes
the two-stage projection-based method with the whole sample.

where the dimension p= 500 and 1000, respectively. The covariates Vij = min(Zij, 103), and Zi =
(Zi1, … ,Zip)′ are generated frommultivariate normal distributionwithmean zero and covariance
matrix ΣZ = (0.15|i−j|). The censoring times Ci are generated from the uniform distribution on
[0, 5], which leads to about 40% censoring rate. The results presented below are based on 200
replications with sample size n= 300.

We use the R package glmnet (Simon et al., 2011) to compute the weighted lasso estimator.
The tuning parameter 𝜆 is determined by 10-folds cross-validation. For comparison, we con-
sider the decorrelated score (DS) method in Eq. (3.8) of Fang et al. (2017). The DS method was
implemented with R codes at http://www.personal.psu.edu/xxf13/Code/CoxHDInference.R. As
suggested by a reviewer, we also consider the two-stage projection-based (TP) method using the
whole sample, that is, I1 = I2 = I in Stages 1 and 2 of our method. In Tables 1 and 2, we report the
estimated bias (Bias) given by the sample mean of the estimates minus the true value, the sample
mean of the estimated standard errors (ESE), the sample standard error (SSE) of the estimates,
and the empirical coverage probability of the 95% confidence interval (CP). Tables 1 and 2 indi-
cate that the proposed TPCV estimator is unbiased, and its ESE is close to SSE. The DS method
leads to a biased estimator, especially for larger parameters (𝛽 = 0.5). Moreover, the ESE and SSE
do not agree well for TPmethod, which uses the same data set twice in Stages 1 and 2. Hence, the
overall performance of TPCV is better than those of the DS and TP methods.
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364 ZHANG et al.

TABLE 3 Size/power results with significance level 𝛼 = 0.05 (Case I)

p= 500 p= 1000

𝜷 TPCV1 TPCV2 TPCV3 DS TP TPCV 1 TPCV2 TPCV3 DS TP

0 0.005 0.035 0.035 0 0.070 0.030 0.050 0.050 0.035 0.085

0.1 0.125 0.140 0.140 0.095 0.215 0.130 0.165 0.165 0.065 0.240

0.2 0.565 0.610 0.610 0.320 0.670 0.595 0.670 0.670 0.345 0.725

0.3 0.910 0.945 0.945 0.760 0.955 0.935 0.945 0.940 0.720 0.965

0.4 0.990 0.995 0.995 0.970 0.995 0.990 0.995 0.995 0.945 1

0.5 1 1 1 1 1 1 1 1 1 1

Note: TPCVk denotes our proposed method, for k= 1, 2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017);
“TP” denotes the two-stage projection-based method with the whole sample.

TABLE 4 Size/power results with significance level 𝛼 = 0.05 (Case II)

p= 500 p= 1000

𝜷 TPCV1 TPCV2 TPCV3 DS TP TPCV 1 TPCV2 TPCV3 DS TP

0 0.025 0.040 0.035 0.020 0.060 0.025 0.055 0.055 0.015 0.085

0.1 0.115 0.215 0.215 0.075 0.305 0.115 0.190 0.190 0.060 0.300

0.2 0.565 0.685 0.670 0.350 0.735 0.515 0.625 0.620 0.255 0.685

0.3 0.825 0.890 0.890 0.650 0.925 0.855 0.920 0.920 0.550 0.945

0.4 0.985 0.990 0.990 0.930 0.990 0.980 1 1 0.870 0.990

0.5 1 1 1 1 1 1 1 1 0.985 1

Note: TPCVk denotes our proposed method, for k= 1, 2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017);
“TP” denotes the two-stage projection-based method with the whole sample.

Tables 3 and 4 present the sizes and powers on testingH0 ∶ 𝛽0 = 0 versus HA ∶ 𝛽0 ≠ 0 under
Cases I and II, respectively. We consider the performances of our methods (TPCV1, TPCV2, and
TPCV3), the DS and TP methods. Due to the computation burden, we set the times of splitting
as B= 50 (the conclusions are similar for a larger B). It can be seen from the tables that TPCV2

and TPCV3 have outstanding advantages over TPCV1. One possible explanation is that TPCV1

is based on the mean of p-values, which could be affected by potential outliers. The TPCV1 still
performs slightly better than the DS method. In brief, the proposed TPCV2 and TPCV3 methods
are more powerful than the DS method when the coefficients of predictors are high-dimensional
and not very sparse. Moreover, the TP method has an inflated type I error, which could leads to
higher false positive rate than the prespecified nominal level.

We conduct the second simulation to assess the performance of the proposed estimation
method for a two-dimensional vector 𝛽0 = (𝛽10, 𝛽20)′. The data are generated as in the first sim-
ulation, except that 𝛽0 = (0.15, 0.30)′. In Table 5, we report the bias, ESE, SSE, and CP for the
estimates of 𝛽10 and 𝛽20, respectively. It can be seen that the proposed method works well for
estimating multiple parameters of interest.
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ZHANG et al. 365

TABLE 5 Estimation results on the parameters of interest 𝜷 = (𝛽1, 𝛽2)T

Bias ESE SSE CP

p 𝜷1 𝜷2 𝜷1 𝜷2 𝜷1 𝜷2 𝜷1 𝜷2

Case I p= 500 0.0326 0.0312 0.0870 0.0891 0.0929 0.0892 0.925 0.935

p= 1000 0.0309 0.0412 0.0884 0.0903 0.0936 0.0972 0.920 0.925

Case II p= 500 0.0299 0.0204 0.0957 0.0962 0.1067 0.1009 0.930 0.930

p= 1000 0.0259 0.0176 0.0975 0.0987 0.1094 0.1062 0.925 0.935

TABLE 6 Summary of genes that are potentially related with breast cancer survival data

Gene identifier Est SE CI Padj
Contig55111_RC 1.6400 0.4176 [0.8214, 2.4586] 0.0430

NM_006397 2.9614 0.7371 [1.5167, 4.4062] 0.0294

NM_006622 −2.1774 0.5040 [−3.1653, −1.1896] 0.0078

NM_016448 3.0523 0.7598 [1.5630, 4.5415] 0.0295

NM_001168 1.9191 0.3840 [1.1664, 2.6717] 0.0003

Note: “Est” denotes our TPCV-based estimator; “SE” denotes the corresponding standard error; “CI”
denotes the 95% confidence interval; Padj denotes the Bonferroni adjusted p-value.

4.2 Breast cancer gene expression data

Breast cancer is one of themost commonly diagnosedmalignancy for women. Biomedical studies
indicate that genomic measurements may have independent predictive power for breast cancer
prognosis (Cheang et al., 2008; van’t Veer et al., 2002).We apply the proposedmethod to a publicly
available breast cancer gene expression data set (van’t Veer et al., 2002). The data set consists
of 295 tumor samples of breast cancer patients with expression measurements for 4919 genes.
Among these patients, 79 died during the follow-up time and the remaining 216 observations are
censored. We define the event time as the time from diagnosis to death. We first use the marginal
Cox model to select top 500 genes, which are used as the covariates Vi = (Vi1, … ,Vip)′ in model
(1) with p= 500.

We first take Vi1 as the covariate of interest, and the remaining covariates Vi2, … ,Vip are
regared as confounding variables. We apply the TPCV method to make inference on the first
parameter of interest in theCoxmodel.We repeat this process for the other covariates and conduct
inference about each coefficient using the proposed method. In Table 6, we report the estimated
coefficient (Est), the corresponding standard error (SE), the 95% confidence interval (CI) on five
genes with Bonferroni adjusted p-value Padj < 0.05. Among these genes, the NM_001168 was
shown to be biologically related to breast cancer (Goeman, 2010),which supports the effectiveness
of our proposed approach.

5 CONCLUDING REMARKS

We have considered the problem of statistical inference about a low-dimensional parameter of
interest in the Cox model when the number of nuisance parameters is possibly greater than the
sample size. A two-stage projection-based cross-validated estimation approach was proposed.
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366 ZHANG et al.

Simulations and a gene-expression data example from a breast cancer study were used to illus-
trate the proposed method. Of note, we actually do not know beforehand which is the parameter
of interest in many practical applications. For example, in the breast cancer gene expression data
example, we are interested in finding the genes that are related to cancer in clinical research (van’t
Veer et al., 2002). In this setting, we need to conduct statistical inference about all the regression
coefficients in the model. We can apply the proposed method to each coefficient in turn. This
approach was also adopted in the real data analysis of Fang et al. (2017).

There are several questions that are of interest to be considered in the future. First, the
weighted lasso estimator in our proposedmethod can be replaced with the SCAD or theminimax
concave penalty estimator (Zhang, 2010). This usually involves a high-dimensional nonconvex
optimization problem and is more difficult to implement. The theoretical and computational
aspects of using a concave penalty deserve further study. Second, a theoretical analysis of the test
in (22) is desirable, such as its local asymptotic power behavior. Third, the proposed method can
be extended to other survival models, such as the additive hazards model (Lin & Ying, 1994) and
the accelerated failure time model (Huang et al., 2006).
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368 ZHANG et al.

APPENDIX

Proof of Theorem 1. Because 𝓁(𝜃) is a convex function, it follows that D(𝜃, 𝜃0) = R̃T{𝓁̇(𝜃0 + R̃) −
𝓁̇(𝜃0))} ≥ 0, and the first inequality holds. Note that R̃j = 𝜃j for j∈ Sc. By the KKT condition (17),
we have

R̃T{𝓁̇(𝜃0 + R̃) − 𝓁̇(𝜃0)}

=
∑
j∈Sc

R̃j𝓁̇j(𝜃0 + R̃) +
∑
j∈S
R̃j𝓁̇j(𝜃0 + R̃) + R̃T(−𝓁̇(𝜃0))

≤ ∑
j∈Sc

𝜃j
(
−𝜆wjsgn(𝜃j)

)
+
∑
j∈S

|R̃j|𝜆wj + R̃TSc (−𝓁̇Sc (𝜃0)) + R̃TS(−𝓁̇S(𝜃0))

= −𝜆||WScR̃Sc ||1 + 𝜆||WSR̃S||1 + (WScR̃Sc )T
(
−W−1

Sc 𝓁̇Sc (𝜃0)
)
+ R̃TS(−𝓁̇S(𝜃0))

≤ (z0 − 𝜆)||WScR̃Sc ||1 + (z0 + 𝜆||wS||∞)||R̃S||1.
Due to R̃j = 𝜃j − 𝜃0j = 0 when j∈ Sc and 𝜃j = 0, the first inequality above shows that 𝓁̇j(𝜃0 +

R̃) = −𝜆wjsgn(𝜃j) only in the set Sc ∩ {j ∶ 𝜃j ≠ 0}. This completes the proof. ▪

Proof of Theorem 2. Let R̃ = 𝜃 − 𝜃0 ≠ 0 and b = R̃∕||R̃||1. It follows from the convexity of𝓁(𝛽0 + xb)
(as a function of x) and Theorem 1 that in the event {z0 ≤ (𝜉 − ||wS||∞)∕(𝜉 + 1)𝜆},

bT{𝓁̇(𝜃0 + xb) − 𝓁̇(𝜃0)} +
𝜆(1 + ||wS||∞)

𝜉 + 1
||WScbSc ||1 ≤ 𝜉𝜆(1 + ||wS||∞)

𝜉 + 1
||bS||1, (A1)

where x ∈ [0, ||R̃||1] and b ∈ G(𝜉, S). For any nonnegative x satisfying (A1), due to 𝛿xb =
max0≤s≤𝜏 maxi,j|xbTVi(s) − xbTVj(s)| ≤ Kx||b||1 = Kx and Lemma 3.2 in Huang et al. (2013),

xbT{𝓁̇(𝜃0 + xb) − 𝓁̇(𝜃0)} ≥ x2 exp(−𝛿xb)bT𝓁̈(𝜃0)b ≥ x2 exp(−Kx)bT𝓁̈(𝜃0)b. (A2)

The (A2) together with 𝜅(𝜉, S) and (A1) yields

xe−Kx𝜅2(𝜉, S)||bS||21∕d0 ≤ xe−KxbT𝓁̈(𝜃0)b

≤ 𝜉𝜆(1 + ||wS||∞)
𝜉 + 1

||bS||1 − 𝜆(1 + ||wS||∞)
𝜉 + 1

||WScbSc ||1
≤ 𝜉𝜆(1 + ||wS||∞)

𝜉 + 1
||bS||1 − 𝜆(1 + ||wS||∞)

𝜉 + 1
||bSc ||1 min{wSc}

= 𝜆(1 + ||wS||∞)(𝜉 +min{wSc})
𝜉 + 1

||bS||1 − 𝜆min{wSc}(1 + ||wS||∞)
𝜉 + 1

≤ 𝜆(1 + ||wS||∞)(𝜉 +min{wSc})2

4min{wSc}(𝜉 + 1)
||bS||21.
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ZHANG et al. 369

For any nonnegative x satisfying (A1), we have

Kx exp(−Kx) ≤ K𝜆d0(1 + ||wS||∞)(𝜉 +min{wSc})2

4min{wSc}𝜅2(𝜉, S)(𝜉 + 1)
= 𝜌. (A3)

Notice that bT{𝓁̇(𝜃0 + xb) − 𝓁̇(𝜃0)} is an increasing function of x. All nonnegative x satisfying
(A1) are a closed interval [0, x*] for some x* > 0. By (A3), we know that Kx∗ ≤ 𝛿, where 𝛿 is the
smallest solution of 𝛿e−𝛿 = 𝜌. Thus,

||R̃||1 ≤ x∗ ≤ 𝛿

K
= e𝛿𝜆d0(1 + ||wS||∞)(𝜉 +min{wSc})2

4min{wSc}𝜅2(𝜉, S)(𝜉 + 1)
.

This completes the proof. ▪

Proof of Theorem 3. The proof consists of three steps.
Step 1: Based on the second half sample I2 and the active variables in S1, we fit a submodel as

dΛi(t) = Yi(t) exp{𝜃TS1ViS1(t)}dΛ0(t), i ∈ I2, (A4)

where S1 is the selected active index set using the first half sample I1. The projected partial score
function for 𝛽 is

U(𝜃0, h0; I2, S1) = 𝓁̇𝛽(𝜃0; I2, S1) − hT0 𝓁̇𝜂(𝜃0; I2, S1)
= (1,−hT0 )

T𝓁̇(𝜃0; I2, S1),

where

𝓁̇(𝜃0; I2, S1) = − 1|I2|∑i∈I2 ∫
𝜏

0
{ViS1 (t) − V(t, 𝜃; I2, S1)}dMi(t),

and Mi(t) = Ni(t) − ∫ t
0 Yi(u) exp{𝜃

T
S1
ViS1(u)}dΛ0(u) are martingales with ⟨Mi,Mi⟩(t) =

∫ t
0 Yi(u) exp{𝜃

T
S1
ViS1(u)}dΛ0(u), and ⟨Mi,Mj⟩= 0 for i≠ j. The martingale theory is applicable to

model (A4), due to the selection of S1 is independent of I2. By Lemma G.3 of Fang et al. (2017),
we can obtain √|I2| ⋅ {vTΣ∗(𝜃0; S1)v}−1∕2vT𝓁̇(𝜃0; I2, S1)


→ N(0, Id), (A5)

where v is similarly given in Lemma G.3 of Fang et al. (2017). Note that |I2|=n/2,
U(𝜃0, h0; I2, S1) = vT𝓁̇(𝜃0; I2, S1) and vTΣ∗(𝜃0; S1)v = Σ∗

𝛽|𝜂(𝜃0; S1). Then,√
n
2
⋅ {Σ∗

𝛽|𝜂(𝜃0; S1)}−1∕2U(𝜃0; I2, S1)

→ N(0, Id). (A6)

Step 2. It follows from the mean value theorem that

U(𝛽1, 𝜂̃, h̃; I2, S1) = U(𝛽0, 𝜂̃, h̃; I2, S1) + U̇𝛽(𝛽, 𝜂̃, h̃; I2, S1)(𝛽1 − 𝛽0),
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370 ZHANG et al.

where 𝛽 is on a line segment between 𝛽1 and 𝛽0. Because U(𝛽1, 𝜂̃, h̃; I2, S1) = 0,

𝛽1 − 𝛽0 = −U̇−1
𝛽 (𝛽, 𝜂̃, h̃; I2, S1)U(𝛽0, 𝜂̃, h̃; I2, S1)

= −Σ∗−1
𝛽|𝜂 (𝜃0; S1)U(𝛽0, 𝜂̃, h̃; I2, S1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
R1

+ U(𝛽0, 𝜂̃, h̃; I2, S1)[Σ∗−1
𝛽|𝜂 (𝜃0; S1) − U̇−1

𝛽 (𝛽, 𝜂̃, h̃; I2, S1)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

R2

.

(A7)

To derive the asymptotic distribution of 𝛽1, we start with decomposing U(𝛽0, 𝜂̃, h̃; I2, S1) as

U(𝛽0, 𝜂̃, h̃; I2, S1) = 𝓁̇𝛽(𝛽0, 𝜂̃; I2, S1) − h̃T𝓁̇𝜂(𝛽0, 𝜂̃; I2, S1)

= 𝓁̇𝛽(𝜃0; I2, S1) + (𝜂̃ − 𝜂0)T𝓁̈𝛽𝜂(𝛽0, 𝜂; I2, S1) − h̃T𝓁̇𝜂(𝜃0; I2, S1)

− h̃T𝓁̈𝜂𝜂 (𝛽0, 𝜂̄; I2, S1)(𝜂̃ − 𝜂0)

= 𝓁̇𝛽(𝜃0; I2, S1) − hT0 𝓁̇𝜂(𝜃0; I2, S1) + (h0 − h̃)T𝓁̇𝜂(𝜃0; I2, S1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E1

+ (𝜂̃ − 𝜂0)T{𝓁̈𝛽𝜂(𝛽0, 𝜂; I2, S1) − 𝓁̈𝜂𝜂(𝛽0, 𝜂̄; I2, S1)h̃}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E2

= U(𝜃0; I2, S1) + E1 + E2, (A8)

where 𝜂 = 𝜂0 + u(𝜂̃ − 𝜂0) and 𝜂̄ = 𝜂0 + u′(𝜂̃ − 𝜂0) for some u,u′ ∈ [0, 1]. By Lemmas 1 and 4 of
Fang et al. (2017), together with ||𝜂̃ − 𝜂0||1 = Op(𝜆d0), we get

||h̃ − h0||1 = OP

(
d0

√
log(p)
n

)
and ||𝓁̇𝜂(𝜃0; I2, S1)||∞ = OP

(√
log(p)
n

)
.

Hence E1 = OP{n−1d0 log(p)}. For the term E2,

E2 = (𝜂̃ − 𝜂0)T{𝓁̈𝛽𝜂(𝛽0, 𝜂; I2, S1) − 𝓁̈𝜂𝜂(𝛽0, 𝜂̄; I2, S1)h0}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E21

+ (h0 − h̃)T𝓁̈𝜂𝜂 (𝛽0, 𝜂̄; I2, S1)(𝜂̃ − 𝜂0)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E22

.

From the Lemma E.4 in Fang et al. (2017) and ||𝜂̃ − 𝜂0||1 = Op(𝜆d0), we know that

E21 = (𝜂̃ − 𝜂0)T𝓁̈𝛽𝜂(𝛽0, 𝜂; I2, S1) − (𝜂̃ − 𝜂0)T𝓁̈𝜂𝜂(𝛽0, 𝜂̄; I2, S1)h0 = OP{n−1d0 log(p)}. (A9)

By the Cauchy–Schwarz inequality and (A.6) of Fang et al. (2017),

|E22| ≤ 1
2
(h0 − h̃)T𝓁̈𝜂𝜂 (𝛽0, 𝜂̄; I2, S1)(h0 − h̃) + 1

2
(𝜂̃ − 𝜂0)T𝓁̈𝜂𝜂 (𝛽0, 𝜂̄; I2, S1)(𝜂̃ − 𝜂0)

= OP{n−1d0 log(p)}. (A10)
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ZHANG et al. 371

It follows from (A9) and (A10) that E2 = OP{n−1d0 log(p)}. From (A8),

U(𝛽0, 𝜂̃, h̃; I2, S1) = U(𝜃0, h0; I2, S1) + OP{n−1d0 log(p)}
= U(𝜃0, h0; I2, S1) + oP(n−1∕2), (A11)

where the last equality holds by the assumption that n−1∕2d0 log(p) = o(1). Thus,

R1 = −Σ∗−1
𝛽|𝜂 (𝜃0; S1)U(𝜃0, h0; I2, S1) + oP(n−1∕2).

By (A7), (A11), and Lemma 2 of Fang et al. (2017), together with the assumption n−1∕2d0 log(p) =
o(1), we can deduce that R2 = oP(n−1/2). Note that

𝛽1 − 𝛽0 = −Σ∗−1
𝛽|𝜂 (𝜃0; S1)U(𝜃0, h0; I2, S1) + oP(n−1∕2). (A12)

Then, √
n
2
⋅ Σ∗1∕2

𝛽|𝜂 (𝜃0; S1)(𝛽1 − 𝛽0) =
√

n
2
⋅ {Σ∗

𝛽|𝜂(𝜃0; S1)}−1∕2U(𝜃0; I2, S1) + oP(1).

Based on (A6), together with the Slutsky’s theorem, we obtain√
n
2
⋅ Σ̂−1∕2

1 (𝛽1 − 𝛽0)

→ N(0, Id), (A13)

where Σ̂1 is defined in (20).
Step 3. Based on the first half sample I1 and the active variables with the index set S2, we can

fit a submodel as

dΛi(t) = Yi(t) exp{𝜃TS2ViS2(t)}dΛ0(t), i ∈ I1.

Following similar arguments as in Steps 1 and 2, we have

𝛽2 − 𝛽0 = −Σ∗−1
𝛽|𝜂 (𝜃0; S2)U(𝜃0, h0; I1, S2) + oP(n−1∕2), (A14)

and √
n
2
⋅ Σ̂−1∕2

2 (𝛽2 − 𝛽0)

→ N(0, Id), (A15)

where Σ̂2 is defined in (21).
Note that the selections of S1 and S2 are determined by two independent data sets in I1

and I2, respectively. Then, Σ∗
𝛽|𝜂(𝜃0; S1) and Σ∗

𝛽|𝜂(𝜃0; S2) are independent. From (10), we know
that U(𝜃0, h0; I1, S2) and U(𝜃0, h0; I2, S1) are formulated with two independent data sets in I1 and
I2, respectively. Under mild conditions on the weights for the weighted Lasso to have the ora-
cle property, for example, taking the weights to be the inverse of the an initial Lasso estimate
(Huang & Zhang, 2012; Zhang & Lu, 2007), we have P(S1 = S0)→ 1 and P(S2 = S0)→ 1, where S1
and S2 are given in Stage 1 of our method, and S0 = {1, … , d} ∪ {j ∶ 𝜃j0 ≠ 0, j = d + 1, … , p}.
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The U(𝜃0, h0; I1, S2) and U(𝜃0, h0; I2, S1) are two asymptotically independent terms. Moreover,
Σ∗
𝛽|𝜂(𝜃0; S1) is independent of U(𝜃0, h0; I1, S2), and Σ∗

𝛽|𝜂(𝜃0; S2) is independent of U(𝜃0, h0; I2, S1).
In view of (A12) and (A14), 𝛽1 and 𝛽2 can be regarded as asymptotically independent. Thus, it
follows from (15), (A13), and (A15) that

√
nΣ̂−1∕2(𝛽 − 𝛽0)


→ N(0, Id).

This completes the proof. ▪
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