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1 | INTRODUCTION

Statistical analysis of censored

| Jian Huang?

| Liuquan Sun?

Abstract

We propose a projection-based cross-validation method
for estimating a low-dimensional parameter in the pres-
ence of a high-dimensional nuisance parameter in the
Cox regression model. We show that the proposed esti-
mator is asymptotically normal, which enables us to
conduct hypothesis test for the parameter of inter-
est with high-dimensional nuisance parameters. Three
decision rules are presented to avoid the influence of
random splitting of samples. Simulation studies indicate
that our method is more powerful than that of Fang
et al. (2017, JRSSB) when the coefficients of predictors
are high-dimensional and not very sparse. As an illustra-
tive example, we apply our procedure to a breast cancer
study.

KEYWORDS
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survival data with high-dimensional covariates is of great

practical importance. For example, in cancer genetic studies, an important problem is to iden-
tify genetic elements that are potentially related to patient’s survival from high-throughput
and high-dimensional genomic data. A critical issue is how to estimate their effects on the
survival and make statistical inference about their significance. This problem can be formu-
lated as that of estimating treatment effects in the presence of a large number of nuisance
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parameters. Here we interpret a treatment effect parameter broadly as any low-dimensional
parameter in the model. Therefore, it is interesting to propose an approach to statistical infer-
ence in high-dimensional Cox regression (Cox, 1972) because of its central role in the analysis
of censored survival data and its wide applications (Fleming & Harrington, 1991; Kalbfleisch &
Prentice, 2002).

Several penalty-based variable selection approaches, including the lasso (Tibshirani, 1996)
and the smoothly clipped absolute deviation (SCAD; Fan & Li, 2001) methods, have been adapted
to survival models. For example, Tibshirani (1997) and Fan and Li (2002) applied the lasso
and SCAD methods to the partial likelihood for the Cox model. Zhang and Lu (2007) and
Zou (2008) considered the weighted lasso for low-dimensional Cox model. Huang et al. (2013)
and Kong and Nan (2014) derived error bounds for the lasso in sparse and high-dimensional Cox
model.

However, penalized procedures only yield point estimates but do not provide inferential
statements such as confidence interval and hypothesis testing about a parameter of inter-
est. To deal with this problem, Zhang and Zhang (2014) proposed a regularized projection
approach for constructing asymptotically normal estimators of low-dimensional parameters in
high-dimensional linear models. van de Geer et al. (2014) extended the approach of Zhang
and Zhang (2014) and proposed a novel method by “inverting” the Karush-Kuhn-Tucker
conditions for the lasso to construct estimators of low-dimensional parameters in linear and
generalized linear models. Javanmard and Montanari (2014) constructed confidence inter-
vals and p-values for high-dimensional linear models based on a “de-biased” version of reg-
ularized M-estimators. Wasserman and Roeder (2009) and Meinshausen et al. (2009) con-
structed p-values for high-dimensional regression via sample-splitting based methods. However,
these authors did not consider the statistical inference problem in the high-dimensional Cox
model. In the context of survival analysis, Zhong et al. (2015) considered hypothesis test-
ing for low-dimensional coefficients in the high-dimensional additive hazards model, but it is
unclear how to extend their method to the Cox model. Another closely related work is Fang
et al. (2017), who have proposed a method for hypothesis test and confidence interval construc-
tion for the high-dimensional Cox model based on projection of score functions. However, their
method is conservative and suffers from inefficiency when the coefficients of predictors are
high-dimensional and not very sparse (see page 24 of online supplementary materials of Fang
et al., 2017).

In this article, we propose a projection-based cross-validation approach to inference about a
low-dimensional parameter of interest in the Cox model in the presence of a high-dimensional
nuisance parameter. There are three important aspects of our proposed approach that are dif-
ferent from the abovementioned methods. First, we use a weighted lasso estimator as the initial
estimator. With this estimator, we only penalize the nuisance parameters, but not the parameter
of interest. This is different from the methods of Zhang and Zhang (2014) and Fang et al. (2017)
in which they used a fully penalized estimator as an initial estimator. Second, our method
only needs to calculate the least favorable direction related to the scores of the selected nui-
sance parameters rather than the whole set of the nuisance parameters as in Fang et al. (2017).
Third, our two-stage projection-based cross-validation technique is different from the sample
splitting method in Meinshausen et al. (2009). Roughly speaking, we randomly split the sam-
ple into two halves, and obtain a weighted lasso estimator using the first half of the sample.
Then we fit the Cox model using the variables selected based on the first half of the sam-
ple and use the second half of the data to estimate the parameter of interest; and vice versa.
The proposed estimator is then the average of these two estimators. To avoid the influence of
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random splitting of samples, we further provide three decision rules for the hypothesis test of
interest.

The remainder of this article is organized as follows. In Section 2 we describe the Cox model
and propose a projection-based cross-validation estimator. In Section 3 we first state an oracle
inequality for the weighted lasso in the high-dimensional Cox model. We then establish the
asymptotic normality of the proposed estimator, which provides a theoretical basis for making
statistical inference. In Section 4 we conduct simulation studies and demonstrate the proposed
method on a breast cancer gene expression data set. In Section 5 we give concluding remarks. All
proofs are deferred to the Appendix.

2 | MODEL AND METHOD
2.1 | Model

Consider an n-dimensional counting process N®(t) = (N (%), ... ,N,(t)), t> 0 on a time interval
[0, 7] with = > 0, where N;(t) counts the number of observed events for the ith individual in the
time interval [0,t],i=1, ... ,n. Let F; be the filtration representing all the information available
up to time ¢ > 0. Following Andersen and Gill (1982), we assume that for {F;,t > 0}, N has a
predictable compensator A™ = (A4, ... ,A,) with

dAi(t) = Yi(t) exp{ T Xi(O) + 0" Zi(t)}dAo(D), i=1,....n, ey

where p € R? is a parameter vector of interest, # € R? is a vector of nuisance parameters, Ay(t) =
/Ol Ao(8)ds is an unknown baseline cumulative hazard function, and Y;(t) € {0, 1} is predictable. We
assume the dimension d of the parameter vector of interest f is fixed and small, but the dimension
q of the nuisance parameter # can be large or even larger than the sample size.

Denote V(1) = (X«()", Z(H)")" and let 6 = (B ,ny)" € RP be the true values of the regres-
sion coefficients, where p is possibly much bigger than n. Define Sy = {j : 6j0 # 0} with its
complement denoted by S = {j : 6jo = 0}. Let do =1So| be the cardinality of Sp with dy < n.

To estimate the parameter 6 in the fixed-dimensional settings with p < n, Cox (1975) proposed

the partial likelihood method. The negative log-partial likelihood function for (1) is

1 T n . n T
£0) =~ l /0 log lgnmexp{ewt»] dN(r)—; /0 {HTVl-a)}dNi(t)], 2)

where N = Y, Ni. The maximum partial likelihood estimator can be obtained by minimizing
£(0). However, in high-dimensional settings with p> n, the maximum partial likelihood esti-
mator is not well defined. Thus statistical inference cannot be based on the partial likelihood
directly.

For any givenset I C{1, ... ,n}and Sc{1, ..., p}, define

1

Op(t,0;1,5) = m

Vi?k(t)yi(t) exp{05Vis(t)}, for k=0,1,2;
iel

e 1 T @ut.0:1.8) [ @1t 0:L.9\ %
Z(G’I’S)_m;/() l(bo(t,Q;I,S) {(Do(t,e;I,S)} ]dN’(t)’ ®
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and

£(0:1,5) = = l / log lZYi(t) exp{egvis(t)}] INGHEDY / {0§Vl~s(t)}dNi(t>] . @
I 0 iel iel /0

where for any vector a, a®° =1, a®' = a, and a®? = aa"; as denotes the subvector of a with compo-

nents whose indices are in S; |I| denotes the cardinality of set I, and N D) = Zie Ni(t). Hereafter,

for notational simplicity, we assume that |Il =n/2 if n is even and Il =(n+1)/2 if n is odd. We

partition the matrix X(6; I, S) into

(5

*n(0;1,8) Z1,00;1,8
S(0:1.5) = 11( ) Zaa( ) ’
2n(0;1,8) Z(0;1,S)

where X11(0;1,S) € R™d,  5,,(0;1,S) e RUSI-Dxd  and  $,,(0;1,S) € RUSI-OXUSI-d) et
Zpin(051,8) = £11(051, S) — Z12(0; 1, 5)22‘21(0; I,8)%,,(6;1, S), we denote the population versions of
the quantities in (3) as
bi(t,0;9) = E[lVE )Y (1) exp{ogVs()}], for k=0,1,2;
T . . ®2
$4(0:8) = E / $a(t,0;5) { ¢1(t,9,5)} ANG) .
o | ®o(t,0;S) do(t, 0;S)

We partition the matrix X*(6; S) according to (5) as

(6)

(6:8) = FTI(@;S) 21‘2(6’;5)] ’

22,(0;8) Z3,(0:S)

and let T, (6;5) = I}, (6; 5) — I;,(0; )3, (6; S)Z3,(6; ).

2.2 | Projection-based cross-validation method

In this section, we describe the proposed two-stage projection-based cross-validation approach
to statistical inference for the high-dimensional Cox model. Our basic idea is to split the data
randomly into two halves I; and I, and perform model selection using the first half of the data
I. Then we fit the Cox model on the basis of the variables selected in the first stage, and calculate
a projection-based estimator f; using the second half of the data I,. We then switch the roles of
I, and I, and use the same procedure to obtain an estimator j,. Below we describe the proposed
method in details.

Stage 1. We split the data randomly into two halves I; and I,. Using the first half of the data
I, we obtain a weighted lasso estimator, which is defined as

q
0 = (f.#) = argmin,, {f(@;ll,Sp) + AZW,-|;1,| } , (7

=
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where £(0; 11, Sp) is defined in (4), S, ={1, ... ,p}; 4> 0 is a tuning parameter, and w; >0 are
weights for the nuisance parameters #;, j=1, ... ,q. Let S; = {j : éj # 0} be the index set of the
nonzero estimated coefficients. Our goal is to make statistical inference about g, we only penalize
5 while g is not penalized. Thus, the estimator § can be referred as a “semipenalized” estimator.

Stage 2. Consider a submodel based on the variables selected in the first stage (S;), using the
second half of the data I,,

dAi(t) = Yi() exp{8g Vis, (D}dAo(D), i€ D, ®)

where Y;(t) and Aq(¢) are given in (1). The negative log-partial likelihood function based on (8) is

£0:1,8)) = ﬁ l / log lanexp{egwsl(t»] dN(t 1) = ) / {H;Visl(o}dNi(t)], ©)
2 0 iel, iel, 70
where N(t;L,) = Y Ni(t). Let Mi(t) = Ni(¢) —/OtYi(u) eXp{HglViSl(u)}dAo(u) be the martin-

gales with predictable variation processes (M;, M;)(t) = /OlYi(u) exp{f)g1 Vis,(w)}dAo(u), and
(M;,M;) =0 for i #j. The gradient of #(8; I, S1) is

iel,

. 04(0;1,, S 1
#0: L, sy = 2205 1w

=—-— Vis. (£) = V(t, 0 L, S1) YdNi(¢),
265 ol /0{ s, (D) = V( 2,581) JdN;(1)

i€,

and the Hessian matrix of 2(0; I, S;) is

, | @yt 61 D (1,01 il
201250 = 2O 2. S = 7 / l L0 2’51)—{ UL 2’51)} ]dN(EIz),
2l Jo

Dy(t,0; 15, 51) Dy(t,0;15,51)

where V(t,0;L,S;,) = ®.(t,0; L, S1)/Do(t,0;5,S1), and Dg(t,0;1,S) is defined in (3), k=0
and 1. For notational simplicity, we partition the gradient #(0:L,S;) into #(0;L,S)) =
(Z50;15,81),2,0;1,,81)")T, where #4(0;1,,S) € R is the score function for the
low-dimensional parameter of interest g, and ZW(Q;IZ, S;) € RISi1-4 is the score function of the
nuisance parameters.

To remove the effects of the nuisance parameters, we project ¢ 5(0; I, S1) onto the linear span
of the partial score function # 2(0; I, S1) and consider the projected partial score function for g,

U(bo, ho; I, 1) = fﬁ(eo;lz, Sy) — hgfq(eo;lz, S1), (10)
where hy = argmin,E{Z 3(0o; I, S1) — h}£,/(0o; I, S1)}®* with an explicit expression

ho = E{Z (00 I, S1)Z 5 (B0: I, S1) Y E{Z 1(00: I, $1)7 (003 I, S1))
= 232_1(90;51)2;1(90;51) (11)

To better understand (10), we focus on the geometric interpretation for U(8o, ho; I, S1). The
linear space H spanned by the score function #(9;1,,5) is the closure of {a]Z(0;1,S1) +
by?,(0;15,51) : ag € RY, by € RISI-4}. As indicated by the notation, ay and by can depend on 6.
By Small and McLeish (1994), the space H is a Hilbert space with an inner product given by
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<g1(9; L, Sl),g2(6’; L, Sl)> = E{g1(6, L, Sl)gz(G; L, S1)} for any g; € H andgz € H.We further con-
sider the linear space Hy spanned by the nuisance score functions { bgf,,(&;[z, S1)} with by €
RI$1=4, and its orthogonal complement H3 = {geH, (g.f) = 0,Yf € Hy}. Since £ 4(0p; I, S1) €
H, and Hy is a closed space, the projection of £4(6o; I, S1) to Hy is well defined and identical to
U(6y, ho; I, Sv). )

In what follows, we need an initial consistent estimator 6 for estimating hy. First, we obtain a
weighted lasso estimator

)4
6 = arg min {f(e;lz, Sp) + AZW,W} . (12)

j=1

where S, ={1, ... ,p}, and £(6;1,5) is defined in (9); 4 > 0 is the penalty parameter, and w; is a
weight. In view of (11), we can estimate h by its sample version and plug-in the weighted lasso
estimator @ for 0. The resulting estimator has an explicit expression:

h=31(0; 1, 51)%1(8; I, S1), (13)

where X and 8 are defined in (5) and (12), respectively. We construct an estimated projected partial
score function

UGB, i1, i I, Sy) = £5(B. 713 1, S1) = ' 2B, 713 I, S1),

where 7 and h are defined in (12) and (13), respectively. Note that U(g, ii,h; 1>, S1) can be
regarded as an approximately unbiased estimating function for f. We define an estimator f,
as the solution to U(B, 7, fl; I, S1) = 0, which can be solved by the Newton-Raphson algorithm.
In practice, we use the weighted lasso estimator § in (12) as the initial value to start the
algorithm.

Similarly, we first select variables using the second half of the data I, and denote the active
setas S, = {j : éj # 0}. We then consider the submodel based on the variables whose indices are
in Sz,

dA(D) = Yt exp { 05 Vis, (0 | do(), i€ I, (14)

Based on (14), we obtain a projected partial score estimator j, parallel to the estimation pro-
cedure for ;. The two-stage projection-based cross-validation (TPCV) estimator of g is defined
as

~ B+
= b1 : ﬁz_ (15)

We use a diagram to illustrate the above two-stage estimation procedure in Figure 1. There
are three attractive features of our method. First, it has effectively handled the uncertainty due to
variable selection via cross-validation, because we use one half of data to do model selection, and
fit the selected variables using another half of the data. In addition, the martingale theory is still
applicable in deriving the theoretical properties, since the selection of active variables in Stage 1
is independent of the samples used in Stage 2. Second, the TPCV estimator / makes use of all the
information in the data by using cross-validation twice. Third, the estimated projection vector h
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[ (T;, 4,V),i=1,...,n ]

Data Splitting Data Splitting
[(Ti(l)' A0,y ®) i e 11} [(Ti(z)‘ AP,y ®), i e ,2]

51 52

L]'

[Fitting 70,40 by vV iern,jes, [ Fitting 7,,4% by Vi€ b,je SJ

FIGURE 1 A scenario of two-stage projection-based cross-validation procedure

has an explicit expression and its dimension is much smaller than p. Therefore, our method is
easy to implement for practical applications.

3 | THEORETICAL RESULTS
3.1 | Nonasymptotic oracle inequality

For the two-stage projection-based cross-validated estimation procedure, we adopt the weighted
lasso to select active variables. Similar to Fang et al. (2017), we need to prove that the weighted
lasso estimator 8 has the convergence rate ||§ — 6|, = Op(4d), which ensures estimation consis-
tency under some regularity conditions. In addition, the nonasymptotic oracle inequality for the
weighted lasso has its independent interest. For example, the convergence rate for penalty-based
estimator plays an important role in establishing distributional results for confidence interval
and hypothesis testing in high-dimensional models (Fang et al., 2017; Neykov et al., 2018; Ning
& Liu, 2017; Zhang & Zhang, 2014). Huang et al. (2013) and Kong and Nan (2014) consid-
ered oracle inequalities for the lasso in the high-dimensional Cox model. Zhang et al. (2017)
studied oracle inequalities for weighted lasso estimator in the high-dimensional additive haz-
ards model. Below, we present some general convergence results for weighted lasso estimator
in the high-dimensional Cox model (1), which are suitable for the estimator given by (12) in
Stage 2. Let w € RP be a (possibly estimated) weight vector with nonnegative elements wj,
1 <j<pand W =diag{w}. For any vector a € R? and matrix A € RP*P, we define ||a||; = Zil lail,
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llallo = maxi<i<plail, and [|A|l = max;<;j<play|. The weighted L, loss function is
Q) =2(0)+ AlWol1,

where 4 > 0 is a penalty parameter, and #(-) is defined in (2). The weighted lasso estimator is
given by

6 = arg mgin Q). (16)

Note that if the variablesin S C {1, ... , p} are of primary interest, it is not necessary to penalize
0s, which leads to “semipenalized” estimators with w; =0 for j€ S and w; # 0 for j € S°. In what
follows, it is sufficient to require min{ws:} > 0. A vector @ is a global minimizer of (16) if and only
if it satisfies the Karush-Kuhn-Tucker (KKT) conditions

{%‘(9) = —iwsgn(d)),  if0; #0, )

|f](§)| < /IWJ‘, if éj =0.
Theorem 1. Let § be the weighted lasso estimator defined in (16), and R = 6 — 6,. Then the
following inequality holds:

(4 = 20)|WseRse|l1 < D(8, 09) + (A — 20)[|WeeRse [l1 < (Allwslleo + 20)[IRs]l1

wherezy = max{||£(0o)sle, IW51Z(00)s¢ ||}, and D(@,0) = (8 — 0)T{£(8) — £(0)} is the Bregman
divergence. Furthermore, for any & > ||[ws||«, We have |WsRse ||y < E||Rs||1 in the event {zo < (& —
[[Wslle) /(€ + 1)A}, where Wy denotes the submatrix of W with components in S°.

By Theorem 1, in the event {7y < (£ — ||[Wsl|w)/(€ + 1)}, for any & > ||ws]|«, the estimation
error § — 6, belongs to the cone

G, S) ={beR": [[Wsbslly <<llbsll1}. (18)

To control estimation error of the weighted lasso in the Cox model, for the cone in (18) and
the Hessian matrix #(6,), we use a compatibility factor as Huang et al. (2013),

dy/*(bT#(6)b} />

k(&,S) = n
&S = ™ ksl

In fact, the «(&, S) is a direct extension of the compatibility factor in linear models (Huang &
Zhang, 2012; van de Geer, 2007; van de Geer & Biihlmann, 2009) by taking the Hessian of the
log-partial likelihood at the true 6,.

We make the following assumptions:

(C.1) [ Ao(t)dt < oco.
(C.2) The covariates are uniformly bounded: sup max maleU(t)l = O(1), where V;(¢) is the jth

o<t<r 1<i<n 1<j<p
component of V;(¢).

(C.3) The compatibility factor «(&, S) is strictly bounded away from zero.
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Condition (C.1) has been similarly used by Andersen and Gill (1982) and Bradic et al. (2011)
in their analysis of the partial likelihood estimator in the Cox model. Condition (C.2) was required
by Huang et al. (2013) and Fang et al. (2017) in deriving the error bounds for the lasso in the Cox
model, which is reasonable in most practical situations. Condition (C.3) was provided by Huang
et al. (2013) under some regular assumptions.

The following result provides an upper bound of the estimation error for the weighted lasso
estimator. For two positive sequences a, and b,, we write a, <b, if ¢ < a,/b, < ¢ for some
c,c’ > 0.

Theorem 2. Assume that Conditions (C.1)-(C.3) hold, and A=< +/{n'log(p)}. Let 6 be
the weighted lasso estimator defined in (16), K is some positive constant and p = Kido(1 +
[[Wslleo)(€ + min{wge })?/[4 min{wse } k%(&, S)(E + 1) with p < 1/e. Then for & > |Ws|«, in the event
{20 < (€ — lIwslle) /(€ + DA},

9 Ado(1 + [[wsll o) (€ + min{wsg: })?
4min{ws }x2(E,S)(E+ 1)

16 — 6oll1 < ) (19)

where § < 1 is the smaller solution of 5e° = p.

By Huang et al. (2013) the term «(&,S) in (19) can be directly treated as a positive con-
stant. Moreover, since the oracle inequality in Theorem 2 holds only within the event {7z, <
(€ — |lwsllo)/ (€ + 1) A}, it is necessary to derive a probabilistic upper bound of z;. It follows from
Lemma 3.3 of Huang et al. (2013) that P{zy > Kx} < 2pe‘"""z/ 2. In order to better interpret the
upper bound of the estimation error in (19), the conclusion can be simplified to the case that
the convergence rate for the weighted lasso estimator is of order Op(Ady), which is used to estab-
lish the asymptotic properties in Theorem 3. Moreover, for the estimation error || — 6,]|, to be
small with high probability, we need to ensure that Ad, — 0 as n — 0. This requires the condition
p = exp{o(n/d})}. For bounded do, the dimension p can be as high as ™, which is in line with
the lasso estimator of Huang et al. (2013).

3.2 | Asymptotic normality

Let
21 = [E0(0: 1, S1) — £12(0; I, S)E5) (0: 1, S)Ex (0: L, S)] 7,
=3, 6;1,5) (20)
and

2 =[Zu0; 11, S2) — Z12(0; 11, S2)E55 (0 I, S2)Z01 (0, I, ST,

where 2 is defined in (5) and 4 is the weighted lasso estimate in Stage 2. The following theorem
establishes the asymptotic normality of /.

Theorem 3. Suppose that Conditions (C.1)-(C.3) hold, 1 < \/{n-1log(p)} and n=/?d,log(p) =
o(1). Then as n — oo we have

Vs 6 - po) 2 N, 1),
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where I, is a d x d identity matrix, £ = (£, + £,)/2 with £, and £, being defined in (20) and (21),
respectively.

The conditions A< y/{n-'log(p)} and n~'/2d;log(p) = o(1) are also required in Fang
et al. (2017) to ensure the asymptotic properties of their estimators. As an application, Theorem 3
provides a theoretical basis for conducting hypothesis test for a one-dimensional parameter
fo € R in the high-dimensional Cox model. Consider

Hy : po=0versus Hy : fy #0, (22)

we use the Wald statistic TV = \/ﬁﬁl_l/ z(ﬁ — po), which is asymptotically distributed as N(0, 1)
under H,. We reject Hy if the p-value Py, < 0.05, where

PW=2{1—c1><ﬁ2‘1/2|/§|)}, (23)

and ®(x) is the cumulative distribution function of N(0, 1). To remove the potential influence
of random splitting of samples, we repeat our proposed TPCV procedure B times. Denote the
resulting p-values in (23) as P, ... , P'®. For the hypothesis test (22), we propose the following
three decision rules:

. TPCV: Reject Hy if B Yp_, P < 0.05.
« TPCV?: Reject H, if the median of P\\’, ... , P!?) is smaller than 0.05.
« TPCV?: Reject Hy if B! Zle I(Pﬁf) < 0.05) > 0.5, where I(-) is an indicator function.

Of note, the TPCV! is coming from the mean of B p-values, and it may be affected by poten-
tial outliers. The TPCV?2 is based on the median, so it has the property of robustness. The TPCV3
is from the idea of “majority voting,” and it also owns the robustness. The performances of
these decision rules will be evaluated via numerical simulation.

4 | NUMERICAL STUDIES

In this section, we conduct simulation studies to evaluate the finite-sample performance of the
proposed method. We also illustrate the application of the proposed method on a breast cancer
gene expression data set.

4.1 | Simulation studies
We generate failure times (T4, ... , T),) from the Cox model with an exponential hazards function
exp(d, Vi), where 6y = (fo.n;)", and Vi=(Viy, ... ,Vip)T, i=1, ... , n. First, we assume that the

parameter of interest fy is one-dimensional and the nuisance parameter vector 7, is chosen as
follows:

e« CaseLino=(, ...,1,0, ... ,0)T,
—_——

10 times

e Casell:np=(, ...,1,0, ... ,0)T,
—_——

15 times
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TABLE 1 Estimation results on the parameter of interest g with Case I

=0 p=05
Methods  Bias ESE SSE CP Bias ESE SSE CcP
p=500  TPCV —0.0047  0.0866  0.0885  0.940  0.0232 0.0909  0.0930  0.940
DS 0.0098 0.0749  0.0503 0.990  —0.1475 0.0753  0.0771  0.520
TP —-0.0023  0.0799  0.0839  0.935  0.0201 0.0839  0.0862  0.950
p=1000 TPCV 0.0031 0.0873  0.0994 0925  0.0183 0.0924 01032  0.905
DS 0.0169 0.0746  0.0482 0990 —0.1727 0.0754  0.0736  0.360
TP 0.0010 0.0803  0.0902 0915  0.0229 0.0849  0.0980  0.895

Note: TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the
two-stage projection-based method with the whole sample.

TABLE 2 Estimation results on the parameter of interest # with Case II

B=0 p=05
Methods  Bias ESE SSE (03 4 Bias ESE SSE CP
p=>500 TPCV 0.0028 0.0941 0.1035 0.945 0.0147 0.0989 0.0974 0.955
DS 0.0134 0.0757 0.0492 0.990 —0.1898 0.0771 0.0719 0.335
TP 0.0067 0.0835 0.0910 0.950 0.0189 0.0883 0.0947 0.945
p=1000 TPCV 0.0065 0.0966 0.1059 0.905 0.0164 0.1009 0.1075 0.935
DS 0.0135 0.0756 0.0414 1 —0.2057 0.0767 0.0678 0.200
TP 0.0078 0.0842 0.0907 0.920 0.0303 0.0890 0.0988 0.935

Note: TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes
the two-stage projection-based method with the whole sample.

where the dimension p =500 and 1000, respectively. The covariates Vj; = min(Z;;, 10%), and Z; =
(Zu, ... ,Zp) are generated from multivariate normal distribution with mean zero and covariance
matrix ¥, = (0.15/"7). The censoring times C; are generated from the uniform distribution on
[0, 5], which leads to about 40% censoring rate. The results presented below are based on 200
replications with sample size n = 300.

We use the R package glmnet (Simon et al., 2011) to compute the weighted lasso estimator.
The tuning parameter A is determined by 10-folds cross-validation. For comparison, we con-
sider the decorrelated score (DS) method in Eq. (3.8) of Fang et al. (2017). The DS method was
implemented with R codes at http://www.personal.psu.edu/xxf13/Code/CoxHDInference.R. As
suggested by a reviewer, we also consider the two-stage projection-based (TP) method using the
whole sample, that is, I; =1, =1 in Stages 1 and 2 of our method. In Tables 1 and 2, we report the
estimated bias (Bias) given by the sample mean of the estimates minus the true value, the sample
mean of the estimated standard errors (ESE), the sample standard error (SSE) of the estimates,
and the empirical coverage probability of the 95% confidence interval (CP). Tables 1 and 2 indi-
cate that the proposed TPCV estimator is unbiased, and its ESE is close to SSE. The DS method
leads to a biased estimator, especially for larger parameters (8 = 0.5). Moreover, the ESE and SSE
do not agree well for TP method, which uses the same data set twice in Stages 1 and 2. Hence, the
overall performance of TPCV is better than those of the DS and TP methods.
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TABLE 3 Size/power results with significance level a = 0.05 (Case I)

p =500 p =1000

p TPCV! TPCV? TPCV?® DS TP TPCV! TPCV? TPCV?® DS TP

0 0.005 0.035 0.035 0 0.070  0.030 0.050 0.050 0.035  0.085
0.1 0.125 0.140 0.140 0.095 0.215 0.130 0.165 0.165 0.065  0.240
0.2  0.565 0.610 0.610 0.320 0.670  0.595 0.670 0.670 0.345  0.725
0.3 0910 0.945 0.945 0.760  0.955  0.935 0.945 0.940 0.720  0.965
0.4 0.990 0.995 0.995 0.970 0995  0.990 0.995 0.995 0945 1

0.5 1 1 1 1 1 1 1 1 1 1

Note: TPCV* denotes our proposed method, for k=1, 2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017);
“TP” denotes the two-stage projection-based method with the whole sample.

TABLE 4 Size/power results with significance level « = 0.05 (Case II)

p =500 p=1000

TPCV' TPCV? TPCV?® DS TP TPCV' TPCV? TPCV?® DS TP
0 0.025 0.040 0.035 0.020 0.060  0.025 0.055 0.055 0.015  0.085

0.1 0.115 0.215 0.215 0.075  0.305  0.115 0.190 0.190 0.060  0.300
0.2 0.565 0.685 0.670 0.350 0.735  0.515 0.625 0.620 0.255  0.685
0.3 0.825 0.890 0.890 0.650 0.925  0.855 0.920 0.920 0.550  0.945
04 0985 0.990 0.990 0.930  0.990  0.980 1 1 0.870  0.990

0.5 1 1 1 1 1 1 1 1 0.985 1

Note: TPCV* denotes our proposed method, for k = 1,2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017);
“TP” denotes the two-stage projection-based method with the whole sample.

Tables 3 and 4 present the sizes and powers on testing Hy : fy =0 versus Hy : fy # Ounder
Cases I and II, respectively. We consider the performances of our methods (TPCV?!, TPCV?2, and
TPCV3), the DS and TP methods. Due to the computation burden, we set the times of splitting
as B= 50 (the conclusions are similar for a larger B). It can be seen from the tables that TPCV?
and TPCV? have outstanding advantages over TPCV'. One possible explanation is that TPCV?
is based on the mean of p-values, which could be affected by potential outliers. The TPCV? still
performs slightly better than the DS method. In brief, the proposed TPCV? and TPCV? methods
are more powerful than the DS method when the coefficients of predictors are high-dimensional
and not very sparse. Moreover, the TP method has an inflated type I error, which could leads to
higher false positive rate than the prespecified nominal level.

We conduct the second simulation to assess the performance of the proposed estimation
method for a two-dimensional vector fy = (10, f20)’. The data are generated as in the first sim-
ulation, except that f, = (0.15,0.30)'. In Table 5, we report the bias, ESE, SSE, and CP for the
estimates of f1o and f,, respectively. It can be seen that the proposed method works well for
estimating multiple parameters of interest.
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TABLE 5 Estimation results on the parameters of interest f = (8, ;)7
Bias ESE SSE CP

p A B2 A B h B i} B2
Casel p=500 0.0326 0.0312 0.0870 0.0891 0.0929 0.0892 0.925 0.935

p=1000 0.0309 0.0412 0.0884 0.0903 0.0936 0.0972 0.920 0.925
Case II p=500 0.0299 0.0204 0.0957 0.0962 0.1067 0.1009 0.930 0.930
p=1000 0.0259 0.0176 0.0975 0.0987 0.1094 0.1062 0.925 0.935

TABLE 6 Summary of genes that are potentially related with breast cancer survival data

Gene identifier Est SE CI P.g;i

Contig55111_RC 1.6400 0.4176 [0.8214, 2.4586] 0.0430
NM_006397 2.9614 0.7371 [1.5167, 4.4062] 0.0294
NM_006622 —-2.1774 0.5040 [—3.1653, —1.1896] 0.0078
NM_016448 3.0523 0.7598 [1.5630, 4.5415] 0.0295
NM_001168 1.9191 0.3840 [1.1664, 2.6717] 0.0003

Note: “Est” denotes our TPCV-based estimator; “SE” denotes the corresponding standard error; “CI”
denotes the 95% confidence interval; P,q; denotes the Bonferroni adjusted p-value.

4.2 | Breast cancer gene expression data

Breast cancer is one of the most commonly diagnosed malignancy for women. Biomedical studies
indicate that genomic measurements may have independent predictive power for breast cancer
prognosis (Cheang et al., 2008; van’t Veer et al., 2002). We apply the proposed method to a publicly
available breast cancer gene expression data set (van’t Veer et al., 2002). The data set consists
of 295 tumor samples of breast cancer patients with expression measurements for 4919 genes.
Among these patients, 79 died during the follow-up time and the remaining 216 observations are
censored. We define the event time as the time from diagnosis to death. We first use the marginal

Cox model to select top 500 genes, which are used as the covariates V; = (Vj, ... , Vjp)' in model
(1) with p = 500.
We first take V;; as the covariate of interest, and the remaining covariates Vi, ... , V), are

regared as confounding variables. We apply the TPCV method to make inference on the first
parameter of interest in the Cox model. We repeat this process for the other covariates and conduct
inference about each coefficient using the proposed method. In Table 6, we report the estimated
coefficient (Est), the corresponding standard error (SE), the 95% confidence interval (CI) on five
genes with Bonferroni adjusted p-value P.g; <0.05. Among these genes, the NM_001168 was
shown to be biologically related to breast cancer (Goeman, 2010), which supports the effectiveness
of our proposed approach.

5 | CONCLUDING REMARKS

We have considered the problem of statistical inference about a low-dimensional parameter of
interest in the Cox model when the number of nuisance parameters is possibly greater than the
sample size. A two-stage projection-based cross-validated estimation approach was proposed.
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Simulations and a gene-expression data example from a breast cancer study were used to illus-
trate the proposed method. Of note, we actually do not know beforehand which is the parameter
of interest in many practical applications. For example, in the breast cancer gene expression data
example, we are interested in finding the genes that are related to cancer in clinical research (van’t
Veer et al., 2002). In this setting, we need to conduct statistical inference about all the regression
coefficients in the model. We can apply the proposed method to each coefficient in turn. This
approach was also adopted in the real data analysis of Fang et al. (2017).

There are several questions that are of interest to be considered in the future. First, the
weighted lasso estimator in our proposed method can be replaced with the SCAD or the minimax
concave penalty estimator (Zhang, 2010). This usually involves a high-dimensional nonconvex
optimization problem and is more difficult to implement. The theoretical and computational
aspects of using a concave penalty deserve further study. Second, a theoretical analysis of the test
in (22) is desirable, such as its local asymptotic power behavior. Third, the proposed method can
be extended to other survival models, such as the additive hazards model (Lin & Ying, 1994) and
the accelerated failure time model (Huang et al., 2006).
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APPENDIX

Proof of Theorem 1. Because #(6) is a convex function, it follows that D(@, 6,) = RT{Lb (6o +R) —
£(6o))} > 0, and the first inequality holds. Note that R; = 6; for j € S¢. By the KKT condition (17),
we have

R™{Z(B0 + R) — 2(6y)}

= Y RiZj(60 + R + Y RiZ(60 + R) + R' (=£(60))
jese jes

< Y10 (—iwysgn(@)) + Y [R;| aw; + Rse(—Z5:(60)) + Rs(~Z5(8p))
Jjese jes

= —A|WseRse |l + Al WsRslly + WseRs)" (W' £5:(00)) + Rs(~Z5(60))
< (20 = MIWsRsell1 + 2o + Allwslleo)lIRs]l1-

Due to R; = 6; — 65 = 0 when j € ¢ and §; = 0, the first inequality above shows that #;(6, +
R = —/lesgn(éj) only in the set SN {j : éj # 0}. This completes the proof. L]

Proofof Theorem 2. LetR = 0 — 6y # 0and b = R/||R||;. It follows from the convexity of #(f, + xb)
(as a function of x) and Theorem 1 that in the event {zy < (¢ — ||[ws||w)/(E + 1)1},

MO+ slle) A sl

T(; _/
b*{£(0o +xb) — £(0o)} + F+1 E+1

llbsll1 (A1)

where x € [0, ||R||;] and b € G(£,S). For any nonnegative x satisfying (A1), due to &g =
MaXo<s<, Max;j|xbTVi(s) — xbTVj(s)| < Kx||b||; = Kx and Lemma 3.2 in Huang et al. (2013),

xbT{Z(0y + xb) — £(6y)} > x> exp(—6,3,)bT£(60)b > x* exp(—Kx)bT#(6,)b. (A2)
The (A2) together with x (&, S) and (A1) yields

xe k(€ 8)||bslI}/do < xe™bTZ(6p)b

< A A [wsle) A+ [Iws|loo)

< 11 Ibslly — Fr1 [|Wsebselly
A + [[wsllo) A+ [[wsllo) .
< Pt 1 Ibsll Fr1 [[bse |l min{wse}
_ A0+ [wslleo)(§ + minfws:}) Ibslly — Amin{wse }(1 + [[wslle)
£+1 S E+1
AL+ [[wsllo0)(€ + min{wg. })? 2
< [Ibs]l7-

4min{ws }(£ + 1)
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For any nonnegative x satisfying (A1), we have

Kado(1 + [[wslleo)(€ + min{ws})* _

Kx exp(—Kx) < 4min{ws }k2(&, S)(E + 1)

(A3)

Notice that b™{£(6y + xb) — #(8y)} is an increasing function of x. All nonnegative x satisfying
(A1) are a closed interval [0, x'] for some x" > 0. By (A3), we know that Kx* < 8, where § is the
smallest solution of §e~ = p. Thus,

IR <x* <2 = e’ Ado(1 + [lws||)(€ + min{ws.})*
TT UK 4min{ws }k2(&, S)(E + 1) .

This completes the proof. m

Proof of Theorem 3. The proof consists of three steps.
Step 1: Based on the second half sample I, and the active variables in Sy, we fit a submodel as

dAi() = Yi(t) exp{05 Vis, (D}dAo(D), 1€ L, (A4)

where S; is the selected active index set using the first half sample I;. The projected partial score
function for f is

U(6o, ho; I, S1) = £5(00; Lo, S1) — hy €,4(60; I, S1)
=(1,-h)T2(00; L, S1),

where

f(HO,Iz,Sl)——m /{Vlsl(t) V(t,0: 1, S1) }dM;(t),
i€l,

and M;(t) = Ni(t) — fot Yi(u) exp{9T Vis,w)}dAo(u) are martingales with (M;, M;)(t) =
f Yi(u) exp{QT is, (W) }dAo(u), and (M;, M;) =0 for i#j. The martingale theory is applicable to
model (A4), due to the selection of S; is independent of I,. By Lemma G.3 of Fang et al. (2017),
we can obtain

. D
VIL| - {(VIE*(00; SV} 2V E(60; I, S1) — N(0, 1), (A5)

where v is similarly given in Lemma G.3 of Fang et al. (2017). Note that |I;I=n/2,
U(6o, ho; I, S1) = V' Z(00; I, 1) and VI Z*(0p; S1)v = 2;;|,,(‘90251)- Then,

D
\f (25,00 S0} 2U(00: 1, S1) — N(0.Iy). (A6)
Step 2. 1t follows from the mean value theorem that

Uy, 71, h; I, S1) = U(Bo, 71, 1 I, S1) + U (B, 71, s I, S1)(By — Bo)s
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where f is on a line segment between ﬁl and f,. Because U(ﬁl, ii,h;L,S) =0,

1 = Po = =Uy' (B, i, hy I, SOUPo, 71, h: I, S1)

= =X 1(00; SOU(Bo, 71, 1 I, S1) + U(fo, 7 b I, SOIZ}, (603 S1) — Uy (B, 1, B I, Sy

Ry R,

(A7)
To derive the asymptotic distribution of [?1, we start with decomposing U(f, 7, h: L, Sy) as
U(Bo. . 13 1o, S1) = (B, 1o, S1) = B 2, (Po. 3 1o, S1)
= 25003 I, $1) + (7 = 10)"Z py(Bo. 73 1o, S1) = ' 2,003 I, S1)

~T¢ = N
— Tpy (Bou 77 I S1)( — 10)

= £5(00; I, S1) — 3 £,(80; I, S1) + (ho — h)'2,/(80; I, S1)

E
+ (77 = 10) {2 py(Po> 715 Lo, S1) = &y (Po» 13 I, S1)R)
E,
= U(09;I5,S1) + E1 + E3, (A8)

where 7 = 5o + u(ii — 7o) and 7 = no + u'(ij — no) for some u, u’ € [0,1]. By Lemmas 1 and 4 of
Fang et al. (2017), together with [|77 — #oll, = O,(Ady), we get

- 1 ) ]
1= holly = O <d0 Oi(p)> and (17,61, S0l = Op <\/—°i(”)> .

Hence E; = Op{n~'dylog(p)}. For the term E,

Ey = (77 — 10)"{Z py(Bo> T3 Ta S1) = &y (Pos 713 s SR Y + (Ro — )Y (Bo, 715 T, S1)(7 — 1)

WV n'g

Ey Ep

From the Lemma E.4 in Fang et al. (2017) and |77 — no||l1 = Op(4dy), we know that
Ex1 = (i = 10)"% gy (Bo, 71 1o, S1) = (7 = 10)" &y (Bo, 1 I, S1)ho = Op{n™"do log(p)}. (A9)
By the Cauchy-Schwarz inequality and (A.6) of Fang et al. (2017),
1 ~ Ty = ~ 1. . 7 = .
|Exa| < = (ho = g (Bo 71; 1o, S1)(ho = ) + (G = o)y (Bo, 13 Lo, S = 110)

= Op{n~"d log(p)}. (A10)
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It follows from (A9) and (A10) that E; = Op{n~'d, log(p)}. From (AS),

U(fos 71, h; I, S1) = U(Bo, ho; I, S1) + Op{n~"dy log(p)}
= U(bo, ho; I, 1) + op(n™'/?), (A11)

where the last equality holds by the assumption that n=/2d, log(p) = o(1). Thus,
Ry = =%5-1(00; SDU (B0, hos I, S1) + op(n™1/?).

Bln

By (A7), (Al11), and Lemma 2 of Fang et al. (2017), together with the assumption n=/2d, log(p) =
o(1), we can deduce that R, = op(n~'/2). Note that

B —po = —Z;r,,l(@o; S)U (60, ho; I, S1) + op(n~/?), (A12)

Then,

\F %5,/ (00: S By — o) = \[ {25, (80: S} 2U(00: I, S1) + 0p(1).

Based on (A6), together with the Slutsky’s theorem, we obtain

-1/2 D
\fz $72(By - fo) = N(O. 1), (A13)

where £, is defined in (20).
Step 3. Based on the first half sample I; and the active variables with the index set S, we can
fit a submodel as

dAi(8) = Yi(t) exp{fg Vis,(D}dAo(), i€ I

Following similar arguments as in Steps 1 and 2, we have

By — Bo = =5, 1803 S2)U (8o, ho3 1, S5) + op(n™'/%), (A14)
and
A— A D
\/g 5528, — o) S NI, (A15)

where £, is defined in (21).

Note that the selections of S; and S, are determined by two independent data sets in I;
and I,, respectively. Then, Zm(@o;sl) and E;M(HO;SZ) are independent. From (10), we know
that U(0y, ho; I1, Sz) and U(6y, ho; I, S1) are formulated with two independent data sets in I; and
I,, respectively. Under mild conditions on the weights for the weighted Lasso to have the ora-
cle property, for example, taking the weights to be the inverse of the an initial Lasso estimate
(Huang & Zhang, 2012; Zhang & Lu, 2007), we have P(S; =S,) — 1 and P(S, = Sp) — 1, where S;
and S, are given in Stage 1 of our method, and So = {1, ... ,d}U{j : 6o #0,j=d+1, ... ,p}.
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The U(0o, ho; 11, S,) and U(6y, ho; I, S1) are two asymptotically independent terms. Moreover,
ZZM(GO; S1) is independent of U(6y, ho; 11, S>), and ZZM(QO; S,) is independent of U(6y, ho; I, Sy).
In view of (A12) and (A14), f, and f, can be regarded as asymptotically independent. Thus, it
follows from (15), (A13), and (A15) that

83 = o) 2 N, Iy).

This completes the proof. m
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