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Abstract

Object detection in high-resolution satellite imagery is
emerging as a scalable alternative to on-the-ground survey
data collection in many environmental and socioeconomic
monitoring applications. However, performing object detec-
tion over large geographies can still be prohibitively expen-
sive due to the high cost of purchasing imagery and com-
pute. Inspired by traditional survey data collection strategies,
we propose an approach to estimate object count statistics
over large geographies through sampling. Given a cost bud-
get, our method selects a small number of representative areas
by sampling from a learnable proposal distribution. Using im-
portance sampling, we are able to accurately estimate object
counts after processing only a small fraction of the images
compared to an exhaustive approach. We show empirically
that the proposed framework achieves strong performance on
estimating the number of buildings in the United States and
Africa, cars in Kenya, brick kilns in Bangladesh, and swim-
ming pools in the U.S., while requiring as few as 0.01% of
satellite images compared to an exhaustive approach.

Introduction

The quantity and location of human-made objects are key in-
formation for the measurement and understanding of human
activity and economic livelihoods. Such physical capital—
for instance, buildings, cars, and roads—is both an impor-
tant component of current economic well-being as well as
an input into future prosperity. Information on physical capi-
tal has traditionally been derived from ground-based surveys
of households, firms, or communities (Bureau of Economic
Analysis 2003). However, because such surveys are expen-
sive and time consuming to conduct, key data on physical
capital and related livelihood measures are lacking for much
of the world, inhibiting our understanding of the patterns and
determinants of economic activity (Burke et al. 2021).

Object detection in high-resolution satellite imagery has
emerged as a scalable alternative to traditional survey-based
approaches to gathering data on economic activity. For in-
stance, imagery-based counts of the number of buildings at
country level allows policymakers to monitor progress to-
wards economic development (Ayush et al. 2021; Uzkent,
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Yeh, and Ermon 2020; Uzkent and Ermon 2020; Sheehan
et al. 2019; Blumenstock, Cadamuro, and On 2015; Yeh
et al. 2020), counts of the number of brick kilns allows en-
vironmental scientists to track pollution from informal in-
dustries (Lee et al. 2021), counts of multiple objects en-
ables accurate poverty prediction (Jean et al. 2016; Ayush
et al. 2021), and counts of solar panels in high-resolution
imagery enables understanding of green energy adoption at
broad scale (Yu et al. 2018).

However, due to the substantial cost of purchasing high-
resolution imagery, and the large amount of computation
needed to estimate or apply models at scale, performing ob-
ject detection over large geographies is often prohibitively
expensive (Uzkent et al. 2019; Uzkent and Ermon 2020),
especially if estimates need to be updated. For instance,
at standard pricing for high-resolution imagery, purchasing
country-wide imagery for one year would cost roughly $3
million for Uganda, $15 million for Tanzania, and $38 mil-
lion in the Democratic Republic of Congo.1 Such costs in-
hibit the widespread application and adoption of satellite-
based approaches for livelihood measurement.

Here we propose an importance-sampling approach to ef-
ficiently generate object count statistics over large geogra-
phies, and validate the approach across multiple continents
and object types. Our approach draws inspiration from tra-
ditional approaches to large-scale ground survey data col-
lection, which use information from prior surveys (e.g., a
prior census) to draw sample locations with probability pro-
portionate to some covariate of interest (e.g., village pop-
ulation). In our setting, we expect most objects of interest
(e.g., cars) to have close to zero density in certain regions
(e.g. forested areas). In this case, sampling locations uni-
formly at random (i.e., with a uniform proposal) would have
a high variance and require a large number of samples. We
therefore propose to use importance sampling (IS) to se-
lect locations from important regions (e.g. regions where the
counts of cars are expected to be non-zero) by sampling from
a proposal distribution. While a good proposal can signifi-
cantly reduce variance, the optimal proposal distribution is
unknown, often complicated, and object-specific. We there-
fore propose to learn the proposal distribution by relating the

1We assume a price per sq km of $17 for 3-band imagery, con-
sistent with current industry rates.
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ages often changes drastically across data sources (e.g. Dig-
ital Globe and Google Static Map), objects of interest (e.g.
buildings and farmland), and regions (e.g. U.S. and Africa),
an object detector pre-trained on one dataset could fail easily
on another due to covariate shifts (Yi et al. 2021a) (see Fig-
ure 1). This makes it hard to directly apply a pre-trained ob-
ject detector to a new task where sources of satellite images
are different even if large-scale labeled datasets are available
for the object of interest.

Sampling Denote SR the area of R, and U(R) the uniform
distribution on R. When l ≪ R, the total number of objects
of interest C in the region R can be computed as

C =
SR

l2
E
x∼U(R)[f(x, l)]. (2)

The following unbiased estimator is often used to evaluate
Equation (2)

Ĉ =
SR

l2
1

n

n
∑

i=1

f(xi, l), xi ∼ U(R), (3)

where {xi}
n
i=1 are i.i.d. samples from the uniform distribu-

tion U(R). This can drastically reduce cost if n is small,
even allowing for (gold-standard) human annotations for
evaluating f(xi, l).

In real-world applications, however, it is expected that the
object of interest (e.g., buildings) can have a close to zero
density in certain regions (e.g., forest). In this case, estimat-
ing object counts directly via uniform sampling would have
a high variance and thus require a huge number of samples
as we will show in the experimental section.

IS-Count: Large-scale Object Counting with

Importance Sampling
In this paper, we alleviate the above challenges by propos-
ing an efficient object counting framework that incorporates
prior knowledge from socioeconomic indicators into impor-
tance sampling (IS). Our method, IS-Count, provides an un-
biased estimation for object counts and requires as few as
0.01% high-resolution satellite images compared to an ex-
haustive approach (see Figure 3). IS-Count can be easily
adapted to different target regions or object classes using
a small number of labeled images, while achieving strong
empirical performance.

Importance Sampling

Importance sampling (IS) introduces a proposal distribution
to choose representative samples from important regions
(e.g., regions where the counts are non-zero) with the goal of
reducing the variance of uniform sampling. Given a proposal
distribution q(x) with a full support on R, we can estimate
the total object count using importance sampling

C =
1

l2
E
x∼q(x)

[

f(x, l)

q(x)

]

. (4)

Equation (4) can be approximated by the following unbiased
estimator

Ĉn =
1

l2
1

n

n
∑

i=1

f(xi, l)

q(xi)
, xi ∼ q(x), (5)

Algorithm 1: Object counting with IS-Count

Input: Region R, object class, budget n, covariate,
and a small number of labeled examples
Output: Estimated object count

1: q(x)← covariate distribution
2: Fine-tune q(x) with labeled examples
3: Sample {xi}

n
i=1 from q(x)

4: Ĉn ← Estimate C using Equation (5)

5: return Ĉn

where {xi}
N
i=1 are i.i.d. samples from q(x). The optimal

proposal distribution q∗(x) which has the smallest variance
should be proportional to f(x, l) (Owen 2013).

We therefore want to design a proposal distribution that
is as close as possible to the object density. Although high-
resolution images are costly, socioeconomic covariates such
as nightlight intensity are globally available, free of charge,
and correlate strongly human activities (Jean et al. 2016).

In the following, we assume that we always have access
to certain covariates that are cheap and publicly available for
the target region. We treat the covariate as the base distribu-
tion for designing the proposal distribution q(x). In order
for the base distribution to capture information specialized
to the task, we propose to fine-tune the base distribution us-
ing a small number of labeled satellite images, where the
labels are count statistics (see Figure 3). We also provide the
pseudocode for the framework in Algorithm 1.

Our key insight is that the base covariate distribution can
provide good prior knowledge for a given task, and therefore
we only need a small number of labeled images for fine-
tuning to obtain a task-specific proposal distribution that re-
duces the variance for sampling. As this framework only re-
quires a small amount of labeled images for each task and al-
ways provides an unbiased estimate, it can be easily adapted
to different counting tasks, providing a general framework
for large-scale counting.

Proposal Distributions with Task-specific Tuning

Given the base covariate distributions, we can fine-tune the
proposal distribution using a small number of labeled satel-
lite images to design a task-specific proposal distribution.
Isotonic regression provides an approach to learning a non-
decreasing transformation, allowing fine-tuning the proposal
distribution based on the input covariate distribution. More
specially, let h(x) ∈ R be the covariate pixel value at geolo-
cation x, and f(x, l) be the object count (see Figure 2), we
learn a non-decreasing map gθ(·, l) : R → R which maps
h(x) to be close to its corresponding object count f(x, l).
The objective function is defined as

θ = argmin
θ

n
∑

i=1

wi(gθ(h(xi), l))− f(xi, l))
2, (6)

subject to gθ(a, l) ≤ gθ(b, l) whenever a ≤ b. In Equa-
tion (6), wi are positive weights and {xi}

n
i=1 are coordinates

sampled from the target region R.
Although it might seem natural to use a general regression

model, which takes multiple input covariates, to predict the
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US (16.77%) Africa (21.02%)
Methods NL Population NL Population
Identity 8.46% 9.71% 15.58% 18.27%
Isotonic 8.80% 8.08% 15.79% 17.43%
Isotonic∗ 8.09% 7.48% 14.86% 16.85%

Table 1: Averaged error over all states in the US. and 43
African countries. All results are averaged over 20 runs. The
total area of used satellite images covers 0.1% of each target
state (US) and country (Africa). The result of uniform sam-
pling is provided in the parenthesis next to the region name.
We use 20% of the budget for training isotonic regression.

the density within each pixel as a uniform distribution. The
derived density q(x) can be used as the proposal distribution
for IS-Count. More details can be found in Appendix.

Nightlight We use the global nightlight raster, which is
also a single channel image, with each pixel a positive float
value denoting the nightlight intensity for a 750m×750m
area (see Appendix ??). Similarly, we can derive a density
function q(x) to be proportional to the nightlight intensity
and treat the density within each pixel to be uniform.

Experiment Settings

We consider the following three settings for constructing the
proposal distribution for IS-Count.

Identity We directly use the base covariate distribution as
the proposal distribution without learning.

Isotonic We fine-tune the base proposal distribution with
isotonic regression using a small number of labeled samples
(e.g., 100 samples). We deduct the size of the training data
from the total budget, meaning that the larger the training
set, the fewer satellite images we can sample for count esti-
mation.

Isotonic⋆ Depending on task, there could already exist a
certain amount of observed labeled data, which could poten-
tially be sampled from an unknown distribution. Although
these data might not be used for count estimation as they
are not sampled from the proposal distribution, they can still
be used to fine-tune the proposal distribution. This observa-
tion motivates us to have the second isotonic setting where
the size of the training data is not deducted from the total
budget.

Evaluation Metrics

We evaluate the performance using percent error defined as

Error =
|Ĉn − C|

C
× 100%, (11)

where C is the “ground truth” (GT) object count obtained

from existing datasets or human annotators, and Ĉn is the
estimation using n samples (see Equation (5)).

Results
In this section, we evaluate the performance of IS-Count on
the tasks introduced in the previous section. We show with
empirical results that IS-Count drastically reduces the vari-
ance of sampling in most settings, leading to huge savings of
up to $163millions for purchasing high-resolution satellite
images and 1 million hours for image labeling with human
annotators compared to an exhaustive approach. We provide
extra details in Appendix.

IS-Count with Base Proposal Distributions

To evaluate the performance of importance sampling with
covariates as the proposal distributions, we compare IS-
Count (identity) with uniform sampling in this section. In
Table 2, we show the errors of object count estimation in dif-
ferent tasks, where IS-Count consistently outperforms uni-
form sampling by a large margin on counting buildings and
cars. Moreover, as sample size increases, the estimates based
on IS-Count converge quickly while the estimates based on
uniform sampling show no obvious trend of convergence
(see Figure 6(b)), whereas covariate-based estimates have
reduced variance.

It is interesting to note that all methods give a high error
rate on the count of swimming pools, and all estimates con-
verge to approximately the same value (see the last column
of Table 2). One plausible reason is that a significant num-
ber of swimming pools are indoors, and therefore not vis-
ible in satellite images. However we are not aware of data
sources on the count of outdoor swimming pools to perform
additional evaluation. Given that all approaches in Table 2
converge to approximately the same counts and our method
has strong performance on the other tasks, we believe IS-
Count should provide a reasonably accurate estimate of out-
door swimming pool counts.

The choice of covariates for building the proposal distri-
bution also affects the estimation. On the car counting task
(see Table 2), NL (identity) method outperforms both uni-
form and population (identity) methods, while NL (iden-
tity) does not outperform the uniform sampling on brick kiln
counting (see Table 2). We believe one potential reason is
that the distribution of cars could be more correlated with
NL than population, while the distribution of brick kilns
could be more correlated with population than NL. There-
fore, in order to generate a task-specific proposal distribu-
tion with strong performance, we propose to fine-tune the
covariate distribution using isotonic regression.

IS-Count with Tuned Proposal Distributions

We observe that learning the proposal distribution with iso-
tonic regression further improves the performance in most
of the settings (Table 2). In car and brick kiln experiments,
we observe that fine-tuning with isotonic methods consis-
tently improves the performance of identity methods even
with the training size deducted from the sampling budget. In
addition, in Figure 6(b), we observe that the population (iso-
tonic) proposal distribution converges fastest to the ground
truth building count, compared to the population (identity)
method. We believe our empirical results support the effec-
tiveness of IS-Count.
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